
Universally Composable Blind Signatures in the Plain Model

Aslak Bakke Buan, Kristian Gjøsteen, Lillian Kr̊akmo

November 9, 2006

Abstract

In the universal composability framework, we define an ideal functionality for blind signa-
tures, as an alternative to a functionality recently proposed by Fischlin. Fischlin proves that
his functionality cannot be realized in the plain model, but this result does not apply to our
functionality. We show that our functionality is realized in the plain model by a blind signa-
ture protocol if and only if the corresponding blind signature scheme is secure with respect to
blindness and non-forgeability, as defined by Juels, Luby and Ostrovsky.

Keywords: Blind signatures, universal composability

1 Introduction

The idea of blind signatures was proposed by Chaum [4] as a key ingredient for anonymous electronic
cash applications. Blind signatures allow a bank to issue signatures without seeing the content of
the signed documents, and at the same time prevent users from forging signatures. Pointcheval
and Stern [7] first defined non-forgeability for blind signature schemes. Juels, Luby and Ostrovsky
(JLO) [6] further formalized the concept by giving a general definition of a blind signature scheme
and formulating the required security properties: blindness and non-forgeability. Informally, a
scheme has blindness if it is infeasible for a malicious signer to determine the order of which two
messages are signed by interaction with an honest user. A scheme has non-forgeability if, given l
interactions with an honest signer, it is infeasible for a malicious user to produce more than l valid
signatures.

Universally composable (UC) security is a framework proposed by Canetti [2] as a way to
define security for protocols such that security-preserving composition is possible. This allows for a
modular design and analysis of protocols. For each cryptographic task, an ideal functionality can be
defined, which incorporates the required properties of a protocol for the task and the allowed actions
of an adversary. A protocol is said to securely realize the ideal functionality if, loosely speaking, any
effect caused by an adversary attacking the protocol can be obtained by an adversary attacking
the ideal functionality. When designing complex protocols, one can allow the involved parties
to have secure access to ideal functionalities. Then, when implementing the protocol, each ideal
functionality is replaced by a protocol securely realizing the functionality. The composition theorem
then guarantees security. We refer to [2] for a complete overview of this framework.

Since UC security is a powerful and useful notion, an interesting question is how it relates to
conventional security notions. A recent paper by Fischlin [5] addresses this question in the context
of blind signatures. The author defines an ideal functionality for blind signatures, FBlSig, and

1

shows that blind signature schemes realizing FBlSig in the plain model do not exist. He does this
by showing that FBlSig can be used to realize the functionality Fcom for commitment schemes,
then applying a well-known impossibility result [3]. To realize FBlSig, Fischlin has to work in the
common reference string model.

One somewhat awkward artefact of Fischlin’s functionality is that any realizing functionality
must encode the entire message to be signed into the first protocol message. This restricts any
realizing protocols to a maximal message length, otherwise blindness would be violated. We could
extend this by signing a hash of the message instead of the message itself. If we use a collision
resistant hash function, this clearly does not degrade the real security of any such scheme. Un-
fortunately, the modified protocol no longer realizes the functionality. This can be considered an
artefact of the universal composability framework, not of the specific functionality, but nonetheless,
it is undesirable and we would like to allow blind signature protocols that do not encode the entire
message to be signed into the first protocol message.

To achieve this, we propose a new blind signature functionality. The main change is that while
Fischlin’s functionality requires, even for corrupt users, that the message to be signed is a part of
the signing command given to the ideal functionality, our functionality does not look at the message
specified by a corrupt user, but instead gives him a ”free signature”. Only when message/signature
pairs are verified, the functionality can learn what message was signed. As a consequence, it can
not be used to realize Fcom, meaning that Fischlin’s impossibility result does not apply to our
functionality. Even so, our functionality still captures the essentials of blind signature schemes.

We can now prove that a blind signature protocol realizes FBS in the plain model if and only if
the corresponding blind signature scheme satisfies weak blindness and non-forgeability, as originally
defined by JLO. We note that, in this paper, we refer to JLO’s version of blindness as weak blindness,
reflecting the fact that the adversary is not allowed to choose his target keys.

On the negative side, our functionality requires the signer to be honest during key generation.
In the UC framework, this corresponds to the property of weak blindness, that the adversary does
not choose his own key. We believe that in some cases this correctly models the real world, e.g. in
a scenario where the key generation for a bank is performed by a financial supervisory authority.

As an alternative to this corruption model, we may allow corruption of the signer before the key
generation takes place, but demand that the signer reveals his public and secret keys to a trusted
third party for verification. A possible scenario is one where the bank generates its own keys, but
then shows them to a financial supervisory authority. We express this in the UC framework by
adding an uncorruptible trusted third party to the protocol, to whom the signer sends his public
and secret keys (over a confidential channel) before any user issues signing requests. With this
requirement, it is clear that our result also holds for a slightly stronger version of blindness, where
the adversary chooses his target keys, but then reveals them to the simulator.

If we are willing to return to the common reference string model, it should be possible to relax
this requirement even further, by including in the public key a commitment to the secret key
along with a proof that this commitment is correct. (In the CRS model with a carefully chosen
commitment scheme, the simulator can extract the secret key, essentially reducing everything to
the case of blindness.) In this case, the main advantage of our functionality compared to Fischlin’s
functionality is that we allow protocols where the user’s first message does not contain an extractable
copy of the message to be signed. This means that the functionality could be realized by blind
signature protocols accepting messages of arbitrary length.

Another, minor difference between the functionalities is that our functionality lets the environ-

2

ment decide whether or not the signer should grant a signature to a user. This is a vital property
if the functionality is to be used in a bigger protocol, but it could of course be added to Fischlin’s
functionality.

Our main contribution in this paper is a more flexible blind signature functionality that allows
a larger class of realizing protocols, while still capturing the essence of blind signatures.

In Sect. 2 of this paper, we review the properties of a blind signature scheme and give formal
definitions of blindness and non-forgeability. In Sect. 3 we present our ideal functionality for blind
signatures and prove our main result.

2 Blind Signatures

Our definition of a blind signature scheme corresponds to the one given by Juels, Luby and Ostro-
vsky in [6].

Definition 1 (Blind Signature Scheme). A blind signature scheme BS is a four-tuple (Signer ,User ,
Gen,Verify) with the following properties:

• Gen is a probabilistic polynomial time algorithm, which takes as input a security parameter
τ (encoded as 1τ) and outputs a pair (pk, sk) of public and secret keys.

• Signer and User are a pair of polynomially-bounded probabilistic interactive Turing machines,
given as common input a public key pk. In addition, Signer is given a corresponding secret
key sk, and User is given a message m. The length of all inputs must be polynomial in the
security parameter τ . Signer and User interact according to the protocol. At the end of the
interaction, Signer outputs either completed or not completed and User outputs either fail
or σ(m).

• Verify is a deterministic polynomial time algorithm, which takes as input a public key pk,
a message m and a signature σ(m), and outputs either accept or reject, indicating whether
σ(m) is a valid signature on the message m.

It is required that for any message m, and for all key pairs (pk, sk) output by Gen, if both Signer
and User follow the protocol, then Signer(pk, sk) outputs completed, User(pk, m) outputs σ(m),
and Verify(pk, m, σ(m)) outputs accept.

The security of blind signature schemes is formally defined below. We note that, throughout
this paper, weak blindness corresponds to the original definition of blindness given by JLO.

Definition 2 (Weak Blindness). Consider the experiment Expwb
BS,A(τ) (steps 1, 2, . . . , 6) in

Fig. 1, where A is an algorithm. We define the advantage of A in breaking BS with respect to weak
blindness as

Advwb
BS,A(τ) =

∣∣∣Pr
[
b′ = 1|b = 1

]
− Pr

[
b′ = 1|b = 0

]∣∣∣.
The scheme BS is said to be secure with respect to weak blindness if, for all probabilistic polynomial
time A, Advwb

BS,A(τ) is negligible in τ .

3

Expwb/b
BS,A(τ):

1. (pk, sk)← Gen(1τ). Run A on input
(1τ , pk, sk).

1’. Run A on input 1τ . (pk, sk)← A.

2. (m0,m1)← A.

3. b← {0, 1}.
4. Let A engage in two parallel interactive

protocols, the first with User(pk, mb)
and the second with User(pk, m1−b).

5. If the first User outputs σ(mb) and the
second User outputs σ(m1−b), then give
{σ(m0), σ(m1)} to A as additional input.

6. A outputs a bit b′.

Expwror/ror
BS,A (τ):

1. (pk, sk)← Gen(1τ). Run A on input
(1τ , pk, sk).

1’ Run A on input 1τ . (pk, sk)← A.

2. b← {0, 1}.
3. A polynomial (in τ) number of times, A

is allowed to output a message m1:

If b = 0, choose a random message m0

and let A engage in a protocol with
User(pk, m0). Run a protocol between
Signer(pk, sk) and User(pk, m1) to get
σ(m1). If User(pk, m0) outputs σ(m0),
give σ(m1) to A as additional input.

If b = 1, let A engage in a protocol with
User(pk, m1). If User(pk, m1) outputs
σ(m1), give σ(m1) to A as additional
input.

4. A outputs a bit b′.

Expnf
BS,A(τ):

1. (pk, sk)← Gen(1τ).

2. Let A(1τ , pk) engage in polynomially many (in τ) parallel interactive protocols, with
polynomially many (in τ) copies of Signer(pk, sk), where A decides in an adaptive manner
when to stop. Let l be the number of executions, where the Signer outputs completed .

3. A outputs a collection {(m1, σ(m1)), . . . , (mk, σ(mk))}, subject to the constraint that
(mi, σ(mi)) 6= (mj , σ(mj)) for 1 ≤ i < j ≤ k, and Verify(pk, mi, σ(mi)) outputs accept for
1 ≤ i ≤ k.

Figure 1: Experiments for defining blindness and non-forgeability.

4

We now introduce a slightly stronger definition, blindness, in which the adversary determines
the key pair (pk, sk), and hands it over to us.

Definition 3 (Blindness). Consider the experiment Expb
BS,A(τ) (steps 1′, 2, . . . , 6) in Fig. 1,

where A is an algorithm. We define the advantage of A in breaking BS with respect to blindness as

Advb
BS,A(τ) =

∣∣∣Pr
[
b′ = 1|b = 1

]
− Pr

[
b′ = 1|b = 0

]∣∣∣.
The scheme BS is said to be secure with respect to blindness if, for all probabilistic polynomial time
A, Advb

BS,A(τ) is negligible in τ .

An even stronger notion, strong blindness, is defined in the same manner, except that the
adversary is only required to output a public key pk in the first step of the experiment.

Definition 4 (Non-forgeability). Consider the experiment Expnf
BS,A(τ) in Fig. 1, where A is an

algorithm. We define the success rate of A in breaking BS with respect to non-forgeability as

Succnf
BS,A(τ) = Pr [k > l] .

The scheme BS is said to be secure with respect to non-forgeability if, for all probabilistic polynomial
time A, Succnf

BS,A(τ) is negligible in τ .

We now present another notion for blindness, adapting the notion ”real-or-random” for sym-
metric encryption given in [1]. The idea is that, when interacting with an honest user, it should
be infeasible for a malicious signer to tell whether a known message or a hidden random string is
being signed. (Note that there does not seem to be a natural “strong” version of this notion.)

Definition 5 ((Weak) Real-or-Random Blindness). Consider the experiment Expwror/ror
BS,A (τ) in

Fig. 1, where A is an algorithm. We define the advantage of A in breaking BS with respect to
(weak) real-or-random blindness as

Adv
wror/ror
BS,A (τ) =

∣∣∣Pr
[
b′ = 1|b = 1

]
− Pr

[
b′ = 1|b = 0

]∣∣∣.
The scheme BS is said to be secure with respect to real-or-random blindness if, for all probabilistic
polynomial time A, Adv

wror/ror
BS,A (τ) is negligible in τ .

Adapting of a result from [1], we obtain the following theorem, the proof of which is given in
Appendix A:

Theorem 1. A blind signature scheme BS is secure with respect to (weak) blindness if and only if
it is secure with respect to (weak) real-or-random blindness.

3 Universally Composable Blind Signatures

Our ideal functionality for blind signatures, FBS, is defined in Figure 2. The protocol πBS is defined
in Figure 3.

For ease of presentation, the session id (SID), which should be present in all messages, is
not included. The first message sent to the functionality must be (KeyGen). We require that

5

no corruption takes place before the (KeyGen) message has been processed, which amounts to
the key generation being honest. In addition to generating keys, the ideal adversary S produces
signature generation and verification facilities for the functionality: Π(m) simulates a conversation
between honest signer and honest user, producing a signature σ on m. π(m,σ) outputs 1 if σ is a
valid signature on m, and 0 otherwise.

When the signer receives a signature request from a user, the environment determines whether
or not the user is entitled to a signature. If the functionality is to be used in a bigger protocol,
allowing this decision to depend on outer circumstances may be useful. For instance, it may depend
on the balance of the user’s bank account.

In the plain model, parties running a protocol have authenticated communication channels, but
messages are potentially delayed by the adversay. To handle this, we let S delay messages between
parties. S also decides when to inform the respective parties about the outcome of a signature
request. This allows S to get the order of these messages right, that is, according to the real
protocol.

Our functionality keeps track of signatures generated by corrupt users by means of a free signa-
ture count. In Fischlin’s functionality, when a corrupted user produces a signature by interaction
with an honest signer, this signature is stored together with the message m input by the user.
However, since the user is corrupt, we do not know if m really is the message being signed. Assume
that the user instead signs m′, a message never seen by FBlSig, and obtains a valid pair (m′, σ).
Upon verification, (m′, σ) will be rejected by FBlSig, while accepted by the real protocol. Our
functionality overcomes this problem, by increasing the free signature count every time an honest
signer completes a protocol with a corrupt user. If the free signature count is more than zero, a
pair (m,σ) may be accepted upon verification, even if FBS has never seen m before. We argue that
FBS still incorporates the required properties of a blind signature protocol, as it still prevents a
user from obtaining more valid signatures than generated by interaction with an honest signer.

The protocol πBS is described in Figure 3. The user initiates a protocol, and upon receiving
the first message from a user, the signer lets the environment decide whether he should engage in
the protocol, analogously to the formulation of FBS. We now prove our main result:

Theorem 2. The blind signature scheme BS is secure with respect to weak blindness and non-
forgeability if and only if the protocol πBS securely realizes FBS in the plain model.

Proof. Only if: Assuming that the blind signature scheme BS is secure with respect to weak
blindness and non-forgeability, we show that for every adversary A interacting with parties running
πBS in the plain model, there is an ideal adversary S such that no environment Z can tell whether
it is interacting with A and πBS or with S and the ideal protocol IDEALFBS

.
As usual, S runs a simulated copy of A, and forwards all messages from Z to A and back.

When A corrupts a party P , S corrupts P̃ . When P̃ is corrupt, any input from Z meant for P̃
goes directly to S, who forwards it to A on the input tape corresponding to P , and the other way
around. Moreover, S can send messages to FBS in the name of P̃ , and messages from FBS meant
for P̃ go to S. S runs as described below.

In the following, when a party P controls another party P ′, the notation ”P/P ′” should be read
as “P , in the name of P ′”.

Algorithm S(τ):

• Upon receiving (KeyGen, Q) from FBS, S runs Gen(τ), obtains a key pair (pk, sk) and stores

6

FBS proceeds as follows, with signer Q̃, users P̃1, . . . , P̃n and an ideal adversary S.
On message (KeyGen) from the signer Q̃:

1. Send (KeyGen) to S and wait.

2. Upon receipt of (Key, pk,Π, π) from S, store (pk, Π, π), send (Key, pk) to Q̃ and stop.
On message (Sign, pk,m) from a user P̃i:

1. Send (Sign, Pi) to S.

2. Upon receipt of (Sign, Pi, ack) from S, send (Sign, Pi?) to Q̃.

3. Upon receipt of (Sign, Pi, denied) from Q̃, send (Sign, Pi, denied) to S. Wait for
(Sign, Pi, denied , ack) from S, and output (Sign, denied) to P̃i.

4. Upon receipt of (Sign, Pi) from Q̃, send (Sign, Pi) to S.

1. Upon receipt of (Signature, Pi,Q completed) from S, send (Signature, Pi) to Q̃. If
Q̃ is honest and P̃i is corrupt, increase the free signature count.

2. Upon receipt of (Signature, Pi,Q not completed) from S, send
(Signature, Pi,not completed) to Q̃.

3. Upon receipt of (Signature, Pi,Pi completed) from S, if Pi is honest, σ
r← Π(m). If

(m,σ, 0) is stored, then stop. Otherwise, store (m,σ, 1) and send (Signature, σ) to P̃i.
4. Upon receipt of (Signature, Pi,Pi fail) from S, send (Signature, fail) to P̃i.

On message (Verify, pk,m, σ) from an honest user P̃i:
1. If (m,σ, 1) is stored, send (Verify) to P̃i and stop.

2. If (m,σ, 0) is stored, send (Verify, reject) to P̃i and stop.

3. If π(m,σ) = 1 and Q is corrupt, store (m,σ, 1), send (Verify) to P̃i and stop.

4. If π(m,σ) = 1 and the free signature count is larger than zero, decrease the signature
count, store (m,σ, 1), send (Verify) to P̃i and stop.

5. Store (m,σ, 0) and send (Verify, reject) to P̃i and stop.

Figure 2: Blind signature functionality FBS

7

πBS is defined as follows, with signer Q(τ) and users P1, . . . , Pn.

Q(τ):
1. Upon the first input (KeyGen), run
the algorithm Gen(τ), obtain a key pair
(pk, sk) and output (Key, pk).

2. Upon receiving (x) from Pi, send
(Sign, Pi?) to Z and wait.

3. Upon input (Sign, Pi, denied) from Z,
send (Sign, denied) to Pi and stop.

4. Upon input (Sign, Pi) from Z, run
Signer and give it x as input on its
communication tape. Forward any
output on Signer ’s communication tape
to Pi, and vice versa. If Signer(pk, sk)
outputs completed , then output
(Signature, Pi). Otherwise, if Signer
outputs not completed , output
(Signature, Pi,not completed).

Pi:
1. Upon input (Sign, pk,m), run
User(pk, m). When User(pk, m) outputs
x on its communication tape, send (x) to
Q and wait

2. Upon receiving (Sign, denied) from Q,
output (Sign, denied).

3. Upon receiving (y) from Q, forward y
to User ’s communication tape. Forward
any output on User ’s communication
tape to Q, and vice versa. If User
outputs σ, then output (Signature, σ).
Otherwise, if User outputs fail , output
(Signature, fail).

4. Upon input (Verify, pk,m, σ), run the
algorithm Verify , obtain accept/reject
and output (Verify)/(Verify, reject).

Figure 3: Blind signature protocol πBS

(pk, sk). S then produces signature generation and verification facilities Π and π, and sends
(Key, Q, pk,Π, π) to FBS.

• Upon receiving (Sign, Pi) from FBS, when both Q and Pi are honest: S simulates honest Q
and honest Pi, and allows A to delay any communication between S/Q and S/Pi.

1. S chooses a random message m̃, and runs User(pk, m̃). When User(pk, m̃) outputs x
on its communication tape, S/Pi sends (x) to S/Q. When S/Q, receives (x), S sends
(Sign, Pi, ack) to FBS.

2. Upon receipt of (Sign, Pi, denied) from FBS, S/Q sends (Sign, denied) to S/Pi. When
S/Pi receives (Sign, denied), S sends (Sign, Pi, denied , ack) to FBS.

3. Upon receipt of (Sign, Pi) from FBS, S runs Signer(pk, sk) and gives it x as input on
its communication tape. S/Q forwards any output on Signer ’s communication tape to
S/Pi, and vice versa. Similarily, S/Pi forwards any output on User ’s communication
tape to S/Q, and vice versa.

4. If Signer outputs completed , then S sends (Signature, Pi,Q completed) to FBS. Other-
wise, if Signer outputs not completed , then S sends (Signature, Pi,Q not completed)
to FBS.

5. If User outputs σ, then S sends (Signature, Pi,Pi completed) to FBS. Otherwise, if
User outputs fail , then S sends (Signature, Pi,Pi fail) to FBS.

8

• Upon receiving (Sign, Pi) from FBS, when Q is corrupt and Pi is honest: S simulates honest
Pi.

1. S chooses a random message m̃, and runs User(pk, m̃). When User(pk, m̃) outputs x
on its communication tape, S/Pi sends (x) to A.

2. S sends (Sign, Pi, ack) to FBS, and S/Q̃ receives (Sign, Pi?) from FBS.
3. If S/Pi receives (Sign, denied) from A, then S/Q̃ sends (Sign, Pi, denied) to FBS. Upon

receiving (Sign, Pi, denied) from FBS, S sends (Sign, Pi, denied , ack) to FBS.
4. If S/Pi receives (y) from A, then S/Q̃ sends (Sign, Pi) to FBS, and S receives (Sign, Pi)

from FBS. S/Pi forwards y to User ’s communication tape. S/Pi forwards any output
on User ’s communication tape to A, and vice versa.

5. If User outputs σ, then S sends (Signature, Pi,Pi completed) to FBS. Otherwise, if
User outputs fail , then S sends (Signature, Pi,Pi fail) to FBS.

6. S sends (Signature, Pi,Q not completed) to FBS, and S/Q̃ receives (Signature, Pi,
Q not completed) from FBS.

• When Q is honest and Pi is corrupt: S simulates honest Q.

1. When S/Q receives (x) from A, S chooses a random message m̃ and S/P̃i sends (Sign, pk, m̃)
to FBS. Upon receipt of (Sign, Pi) from FBS, S sends (Sign, Pi, ack) to FBS.

2. Upon receipt of (Sign, Pi, denied) from FBS, S/Q sends (Sign, denied) to A. S sends
(Sign, Pi, denied , ack) to FBS, and S/P̃i receives (Sign, denied) from FBS.

3. Upon receipt of (Sign, Pi) from FBS, S runs Signer(pk, sk) and gives it x as input on
its communication tape. S/Q forwards any output on Signer ’s communication tape to
A, and vice versa.

4. If Signer outputs completed , then S sends (Signature, Pi,Q completed) to FBS. Other-
wise, if Signer outputs not completed , then S sends (Signature, Pi,Q not completed)
to FBS.

5. S sends (Signature, Pi,Pi fail) to FBS, and S/P̃ receives (Signature, fail) from FBS.

We want to show that if there exists an environment Z able to distinguish IDEALFBS
and

πBS with non-negligible probability, then we can construct an adversary Aror breaking the real-or-
random blindness or an adversary Anf breaking the non-forgeability of our scheme. To this end, we
will consider a series of games, where we gradually modify the behaviour of the involved parties.

Game 0: In this game, Z interacts with the protocol πBS running with parties Q,P1, . . . , Pn.

Game 1: This game is the same as Game 0, with the following modifications: The honest parties
are now simulated by P . In addition, P keeps track of the produced signatures: If an honest Pi

generates a signature σ on a message m, P stores (m,σ, 1). However, if Pi is corrupt and Q is
honest, and Q outputs (Signature, Pi), P increases the free signature count.

From Z’s point of view, there is no difference between Game 0 and Game 1. Therefore, if we
let Gi denote the output of Z when taking part in Game i, we have∣∣∣Pr[G0 = 1]− Pr[G1 = 1]

∣∣∣ = 0.

9

Game 2: This game is the same as Game 1, with the following modifications: If an honest
Pi generates a signature σ on a message m, and (m,σ, 0) is stored, then P stops. Upon input
(Verify, pk,m, σ) to an honest Pi, P responds as follows:

1. If (m,σ, 1) is stored, send (Verify) to Pi and stop.

2. If (m,σ, 0) is stored, send (Verify, reject) to Pi and stop.

3. If π(m,σ) = 1 and Q is corrupt, store (m,σ, 1), send (Verify) to Pi and stop.

4. If π(m,σ) = 1 and the free signature count is larger than zero, decrease the signature count,
store (m,σ, 1), send (Verify) to Pi and stop.

5. Store (m,σ, 0) and send (Verify, reject) to Pi and stop.
We now prove the following lemma:

Lemma 1. There is an adversary Anf such that∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ ≤ Succnf

BS,Anf(τ).

Proof. We simplify the proof by defining the event F in a game as follows:

F : At some point during the game, while Q is honest, some honest party Pi is asked to verify
a valid pair (m,σ), but there is no recorded entry (m,σ, 1), and the free signature count is
zero.

We note that, unless F occurs, Game 1 and Game 2 proceed identically. In particular, if it ever
happens in Game 2 that an honest Pi generates a signature σ on a message m, and (m,σ, 0) is
stored, then (m,σ, 0) must have been stored while Q was honest, which implies that F occurred.
Hence we have ∣∣∣Pr[G1 = 1]− Pr[G2 = 1]

∣∣∣ ≤ Pr[F].

We now construct an adversary Anf trying to break the non-forgeability of our scheme. Anf(1τ , pk)
runs simulated copies of Z, A and the corrupted parties. Anf also simulates P , and behaves exactly
as P , with the following exceptions: When Q is asked to generate keys, instead of running Gen, Q
simply outputs (Key, pk). When Q engages in a protocol with some Pi, Anf engages in a protocol
with Signer(pk, sk), forwarding inputs from Pi to Signer(pk, sk) and vice versa. If F occurs, we
deduce that for some numbers k, l such that k > l, Z has produced k valid pairs (m,σ), while Q
has output completed l times. Since Anf stores the valid signatures and controls the free signature
count, Anf can detect F and output the k valid pairs (m,σ). Hence we have

Succnf
BS,Anf(τ) ≥ Pr[F],

which leads to ∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ ≤ Succnf

BS,Anf(τ),

by which the proof is complete.

10

Game 3: In this game, Z interacts with the ideal protocol IDEALFBS
running with parties

P̃1, . . . , P̃n.
We observe that Game 2 and Game 3 differs only in the case where Pi is honest: When signing

a message m, in Game 2, Q runs a protocol with User(pk, m), while in Game 3, Q runs a protocol
with User(pk, m̃), where m̃ is a randomly chosen message.

We prove the following lemma:

Lemma 2. There is an adversary Aror such that∣∣∣Pr[G2 = 1]− Pr[G3 = 1]
∣∣∣ = Advror

BS,Aror(τ).

Proof. We construct an adversary Aror trying to break the real-or-random blindness of our scheme:
Aror(1τ , pk, sk) runs simulated copies of Z, A and the corrupted parties. Aror also simulates P . We
note that, since we require that Q is honest during the key generation, Aror controls Q at this stage.
When Q is asked to generate keys, Aror simply outputs (Key, pk) in the name of Q. Aror behaves
exactly as P , with the following exception: When Q engages in a protocol to sign some message
m1 input by some honest user Pi, Aror outputs m1 and engages in a protocol with User(pk, mb),
where b is Aror’s challenge bit and m0 is a randomly chosen message. Aror forwards inputs from Q
to User(pk, mb) and the other way around. If Aror obtains σ as additional input, then Aror outputs
(Signature, σ) in the name of Pi. Finally, when Z outputs a bit b′, Aror outputs b′.

We observe that, if Aror’s challenge bit b = 0, then Z’s environment in Game 3 is perfectly
simulated, while if b = 1, Z’s environment in Game 2 is perfectly simulated. Hence, we compute
Aror’s advantage as follows:

Advror
BS,Aror(τ) =

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣

=
∣∣∣Pr[G2 = 1]− Pr[G3 = 1]

∣∣∣,
and the proof is complete.

By a standard hybrid argument, if there exists an effective distinguisher Z between Game 0 and
Game 3, then, for some i, 0 ≤ i ≤ 2, there exists an effective distinguisher Zi between Game i and
Game i+1. As shown above, such a Zi would imply the existence of an effective Anf or an effective
Aror. Hence this part of the proof is complete, and we proceed with the opposite direction.

If: We start by assuming that there exists an effective adversary Aror, and construct an envi-
ronment Z trying to distinguish interaction with πBS from interaction with IDEALFBS

. Z runs as
follows:

1. Z sends (KeyGen) to Q, and obtains pk.

2. Z corrupts Q and obtains sk.

3. Z runs Aror(τ, pk, sk).

4. Each time Aror outputs a message m1, Z sends (Sign, pk,m1) to P1. When Z/Q receives
(Sign) from P1, Z/Q sends (Sign) to P1. Z now lets Aror run a protocol with P1 on Q’s
behalf. If P1 outputs (Signature, σ), Z gives σ to Aror as additional input.

5. When Aror outputs a bit b′, Z outputs b′.

11

We note that, if Z interacts with πBS , Aror’s environment in Expror
BS,Aror(τ) in the case where b = 1

is perfectly simulated, while if Z interacts with IDEALFBS
, this holds for the case where b = 0. So

we get ∣∣∣Pr[ZπBS = 1]− Pr[ZIDEALFBS
= 1]

∣∣∣ =
∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣∣
= Advror

BS,Aror(τ),

which completes this part of the proof.
Finally, assuming that there exists an effective adversary Anf, we construct an environment Z

trying to distinguish interaction with πBS from interaction with IDEALFBS
. Z runs as follows:

1. Z sends (KeyGen) to Q, and obtains pk.

2. Z runs Anf(τ, pk).

3. Each time Anf engages in a protocol, Z corrupts a party Pi and lets Anf run a protocol with
Q on Pi’s behalf. (When Q outputs (Sign, Pi?), Z replies with (Sign, Pi)).

4. Assume that Q outputs l messages on the form (Signature, Pi) for some i, and that Anf

outputs k valid pairs (mi, σi). If k > l, Z sends (Verify, pk,mi, σi) to an honest party Pj for
each i = 1, . . . , k. For i = k, if Pj replies with (Verify, reject), then Z outputs 0. Otherwise,
if P2 replies with (Verify), then Z outputs 1.

We note that, if Z interacts with πBS , then Anf’s environment in Expnf
BS,A(τ) is perfectly simulated,

and if Anf outputs k > l valid pairs then Z’s output will be 1. If Z interacts with IDEALFBS
, then

Anf does not run in its expected environment, but whatever happens, we know that Z’s output will
be 0 in this case.

If Anf outputs k > l valid pairs (mi, σi), then if Z interacts with πBS , Z’s output will be 1,
while if Z interacts with IDEALFBS

, Z’s output will be 0. So we get∣∣∣Pr[ZπBS = 1]− Pr[ZIDEALFBS
= 1]

∣∣∣ =
∣∣∣Pr[k > l]− 0

∣∣∣
= Succnf

BS,Anf(τ),

by which the proof is complete.

References

[1] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A Concrete Security Treat-
ment of Symmetric Encryption. In FOCS ’97: Proceedings of the 38th Annual Symposium on
Foundations of Computer Science (FOCS ’97), pages 394–403, Washington, DC, USA, 1997.
IEEE Computer Society.

[2] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
Cryptology ePrint Archive, Report 2000/067, 2005. Available at http://eprint.iacr.org/
2000/067.

12

[3] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO ’01:
Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
pages 19–40, London, UK, 2001. Springer-Verlag.

[4] David Chaum. Blind signatures for untraceable payments. In Advances in Cryptology-Crypto’82,
pages 199–203, 1982.

[5] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Advances in Cryptology-Crypto 2006. Springer-Verlag, 2006.

[6] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In CRYPTO ’97: Proceedings of the 17th Annual International Cryptology Conference
on Advances in Cryptology, pages 150–164, London, UK, 1997. Springer-Verlag.

[7] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In ASIACRYPT
’96: Proceedings of the International Conference on the Theory and Applications of Cryptology
and Information Security, pages 252–265, London, UK, 1996. Springer-Verlag.

A Proof of Theorem 1

In order to simplify the proof, we introduce the notion left-or-right blindness, which is similar to
weak blindness, except that the step where A outputs two messages (m0,m1) and interacts with
User(pk, mb) and User(pk, m1−b) can be repeated polynomially many times.

Definition 6 (Left-or-Right Blindness). Consider the following experiment, where A is a proba-
bilistic polynomial-time algorithm which controls Signer but not User:

Explor
BS,A(τ):

1. (pk, sk)← Gen(τ).

2. b← {0, 1}.

3. Run A(1τ , pk, sk).

4. When A outputs two messages (m0,m1): Let A engage in two parallel interactive protocols,
the first with User(pk, mb) and the second with User(pk, m1−b). If the first User outputs
σ(mb) and the second User outputs σ(m1−b), then give {σ(mb), σ(m1−b)} to A as additional
input, ordered according to the corresponding order of (m0,m1). This step can be repeated
polynomially many (in τ) times.

5. A outputs a bit b′.

We define the advantage of A in breaking BS with respect to left-or-right blindness as

Advlor
BS,A(τ) =

∣∣∣Pr
[
b′ = 1|b = 1

]
− Pr

[
b′ = 1|b = 0

]∣∣∣.
The scheme BS is said to be secure with respect to left-or-right blindness if, for all A, Advlor

BS,A(τ)
is negligible in τ .

13

The proof consists of showing the following relations among the security notions for blind
signature schemes:

1. Weak Blindness ⇒ left-or-right blindness

2. Left-or-right blindness ⇒ real-or-random blindness

3. Real-or-random blindness ⇒ left-or-right-blindness

4. Left-or-right blindness ⇒ weak blindness

Weak Blindness ⇒ Left-or-Right Blindness: Assume that there exists an effective adver-
sary Alor with respect to left-or-right blindness. We will construct an effective adversary Awb with
respect to weak blindness, using Alor as a subroutine. In more detail, we consider the experiment
Expwb

BS,Awb(τ), where Awb proceeds as given below.
Algorithm Awb(1τ , pk, sk):

1. j ← {0, . . . , n}, where n is the number of times that Alor repeats step 4 in Explor
BS,Alor(τ).

2. Run Alor with input (1τ , pk, sk).

3. Denote by (m00,m10), . . . , (m0(n−1),m1(n−1)) the message pairs output by Alor during the
run. When Alor outputs (m0i,m1i):

• If 0 ≤ i < j, let Alor engage in two parallel interactive protocols, the first with
User(pk, m0i) and the second with User(pk, m1i). If User(pk, m0i) outputs σ(m0i) and
User(pk, m1i) outputs σ(m1i), then Alor is given (σ(m0i), σ(m1i)) as additional input.

• If i = j, then output (m0i,m1i). Forward inputs from User(pk, mbi) and User(pk, m(1−b)i)
to the respective communication tapes of Alor, and the other way around. If (σ(m0i), σ(m1i))
is obtained as additional input, forward this to Alor.

• If j < i < n, let Alor engage in two parallel interactive protocols, the first with
User(pk, m1i) and the second with User(pk, m0i). If User(pk, m0i) outputs σ(m0i) and
User(pk, m1i) outputs σ(m1i), then Alor is given (σ(m0i), σ(m1i)) as additional input.

4. When Alor outputs a bit b′, output b′.

For 0 ≤ i ≤ n, define Pi as the probability that Alor outputs 1 given that, for the first i message
pairs (m0,m1) output during a run, Awb lets Alor interact with User(pk, m0) and User(pk, m1),
respectively. Then, for the last n − i message pairs, Awb lets Alor interact with User(pk, m1) and
User(pk, m0), respectively.

We note that if i = 0, Awb simulates Alor’s environment in Explor
SC,Alor(τ) in the case where

b = 1, and if i = n, Awb simulates Alor’s environment in the case where b = 0. So by assumption
we have ∣∣∣P0 − Pn

∣∣∣ = δ(τ)

for some δ(τ) non-negligible in τ . We can write∣∣∣(P0 − P1) + (P1 − P2) + · · ·+ (Pn−1 − Pn)
∣∣∣ = δ(τ).

14

We note that if Awb’s challenge bit b = 0, the probability that Alor outputs 1 is Pj+1, and if
b = 1, the probability that Aror outputs 1 is Pj . Hence we get

Advwb
BS,Awb(τ) =

∣∣∣Pr
[
b′ = 1|b = 1

]
− Pr

[
b′ = 1|b = 0

]∣∣∣
=

∣∣∣Pr
[
b′ = 1|b = 1 ∧ j = 0

]
· Pr [j = 0] + · · ·+

Pr
[
b′ = 1|b = 1 ∧ j = n− 1

]
· Pr [j = n− 1]

−Pr
[
b′ = 1|b = 0 ∧ j = 0

]
· Pr [j = 0]− · · ·−

Pr
[
b′ = 1|b = 0 ∧ j = n− 1

]
· Pr [j = n− 1]

∣∣∣
=

∣∣∣ 1
n

(P0 + · · ·+ Pn−1 − (P1 + · · ·+ Pn))
∣∣∣

=
1
n

∣∣∣(P0 − P1) + · · ·+ (Pn−1 − Pn)
∣∣∣

=
δ(τ)
n

.

Since δ(τ) is non-negligible in τ , and n is polynomial in τ , 1
nδ(τ) is also non-negligible in τ .

Left-or-Right Blindness ⇒ Real-or-Random Blindness: In this part, assuming that
there exists an effective adversary Aror with respect to real-or-random blindness, we consider
Explor

BS,Alor(τ), where Alor runs the following procedure.
Algorithm Alor(1τ , pk, sk):

1. Run Aror with input (1τ , pk, sk).

2. Each time Aror outputs a message m1:

• Choose a random message m0 and output (m0,m1).

• Forward inputs from User(pk, mb) to Aror’s communication tape, and the other way
around. Run the protocol with User(pk, m1−b) honestly (to ensure that a signature is
produced). If (σ(m0), σ(m1)) is obtained as additional input, forward σ(m1) to Aror.

3. When Aror outputs a bit b′, output b′.

We observe that when Alor’s challenge bit b = 0, Alor simulates Aror’s environment in Expror
BS,Aror(τ)

in the case where Aror’s challenge bit b = 0, and correspondingly for the case b = 1. Hence we get

Advlor
BS,Alor(τ) = Advror

BS,Aror(τ),

which, by assumption, is non-negligible in τ .
Real-or-Random blindness ⇒ Left-or-Right blindness: Assuming that there exists an

effective adversary Alor with respect to left-or-right blindness, our goal is to construct an adversary
Aror breaking the real-or-random blindness of our scheme. To simplify this part of the proof, we
define the following games:

Game 1: This game is the same as Explor
BS,A(τ), except that we always have b = 0.

15

Game 2: This game is the same as Game 1, with the following modifications: Each time A outputs a
message pair, say (m0,m

′
1), we choose a random message m1, and let A engage in protocols

with User(pk, m0) and User(pk, m1), respectively. Moreover, we run internally a protocol
between honest Signer(pk, sk) and honest User(pk, m′

1), and obtain σ(m′
1). If User(pk, m0)

outputs σ(m0) and User(pk, m1) outputs σ(m1), then we give (σ(m0), σ(m′
1)) to A as addi-

tional input.

Game 3: This game is the same as Game 1, with the following modifications: Each time A outputs
a message pair, say (m′

0,m
′
1), we choose two random messages m0 and m1, and let A en-

gage in protocols with User(pk, m0) and User(pk, m1), respectively. Moreover, we run two
protocols internally, one between honest Signer(pk, sk) and honest User(pk, m′

0), the other
between honest Signer(pk, sk) and honest User(pk, m′

1). We thus obtain σ(m′
0) and σ(m′

1).
If User(pk, m0) outputs σ(m0) and User(pk, m1) outputs σ(m1), then we give (σ(m′

0), σ(m′
1))

to A as additional input.

We start by constructing a distinguisher between Game 1 and Game 3, A13, using Alor as a
subroutine. That is, A13 participates in either Game 1 or Game 3 and outputs a bit b.

Algorithm A13(1τ , pk, sk):

1. Run Alor with input (1τ , pk, sk).

2. b̃← {0, 1}

3. Each time Alor outputs a message pair, say (m̃0, m̃1):

• Output (m̃b̃, m̃1−b̃).

• Engage in two protocols, say with User0 and User1, respectively. Forward outputs from
User0 and User1 to the respective communication tapes of Alor, and the other way
around. If some pair (σ(m̃0), σ(m̃1)) is obtained as additional input, forward this to
Alor.

4. When Alor outputs a bit b′, if b′ = b̃, then output 1, otherwise output 0.

We observe that, if A13 participates in Game 1, A13 simulates Alor’s environment in Explor
BS,Alor(τ),

with b̃ acting as the challenge bit. On the other hand, if A13 participates in Game 3, Alor gets
no information about b̃, so in this case A13 outputs 1 with probability 1

2 . In line with the former
definitions, we compute the advantage of A13 as follows, where b′′ denotes the output of A13:

Adv13
BS,A(τ) =

∣∣∣Pr[b′′ = 1|Game 1]− Pr[b′′ = 1|Game 3]
∣∣∣,

where

Pr[b′′ = 1|Game 1] = Pr[b′ = 1|Game 1 ∧ b̃ = 1] · Pr[b̃ = 1]

+Pr[b′ = 0|Game 1 ∧ b̃ = 0] · Pr[b̃ = 0]

= Pr[b′ = 1|Game 1 ∧ b̃ = 1] · 1
2

+
(
1− Pr[b′ = 1|Game 1 ∧ b̃ = 0]

)
· 1
2
.

16

So we get

Adv13
BS,A(τ) =

∣∣∣1
2

(
Pr[b′ = 1|Game 1 ∧ b̃ = 1]− Pr[b′ = 1|Game 1 ∧ b̃ = 0]

)
+

1
2
− 1

2

∣∣∣
=

1
2
·Advlor

BS,A(τ),

which, by assumption, is non-neglible in τ . This means that A13 is an effective distinguisher between
Game 1 and Game 3.

By a standard hybrid argument, if there exists an effective A13, then there exists an effective
distinguisher A12 between Game 1 and Game 2 or an effective distinguisher A23 between Game 2
and Game 3. We complete this part of the proof by showing that, using either A12 or A23, we can
construct an effective adversary Aror with respect to real-or-random blindness.

First, we assume that there exists an effective A12 and consider the experiment Expror
BS,Aror(τ),

where Aror proceeds as described below.
Algorithm Aror(1τ , pk, sk):

1. Run A12 with input (1τ , pk, sk).

2. When A12 outputs a message pair, say (m̃0, m̃1), output m̃1.

3. Simulate honest User(pk, m̃0) internally, and engage in a protocol, say with User1. Forward
inputs from User(pk, m̃0) and User1 to the respective communication tapes of A12, and the
other way around. If User(pk, m̃0) outputs σ(m̃0) and σ(m̃1) is obtained as additional input,
forward (σ(m̃0), σ(m̃1)) to A12.

4. When A12 outputs a bit b′, output b′.

We note that if Aror’s challenge bit b = 0, then Aror simlulates A12’s environment in Game 2,
while if b = 1, Aror simlulates A12’s environment in Game 1. We compute the advantage of Aror as
follows:

Advror
BS,A(τ) =

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣

=
∣∣∣Pr[b′ = 1|Game 1]− Pr[b′ = 1|Game 2]

∣∣∣
= Adv12

BS,A(τ),

which, by assumption, is non-negligible in τ .
Now, in a similar manner, we assume that there exists an effective A23 and consider the exper-

iment Expror
BS,Aror(τ), where Aror proceeds as follows:

Algorithm Aror(1τ , pk, sk):

1. Run A23 with input (1τ , pk, sk).

2. When A23 outputs a message pair, say (m̃0, m̃1), output m̃0.

3. Choose randomly a message m̃. Simulate internally User(pk, m̃) in an honest manner, and
engage in a protocol, say with User0. Forward inputs from User1 and User(pk, m̃) to the
respective communication tapes of A23, and the other way around. Moreover, simulate inter-
nally a protocol between honest Signer(pk, sk) and honest User(pk, m̃0), so that a signature

17

σ(m̃0) is obtained. If User(pk, m̃) outputs σ(m̃) and σ(m̃0) is obtained as additional input,
forward (σ(m̃0), σ(m̃1)) to A23.

4. When A23 outputs a bit b′, output b′.

We note that if Aror’s challenge bit b = 0, then Aror simlulates A23’s environment in Game 3,
while if b = 1, Aror simlulates A23’s environment in Game 2. We compute the advantage of Aror as
follows:

Advror
BS,A(τ) =

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣

=
∣∣∣Pr[b′ = 1|Game 2]− Pr[b′ = 1|Game 3]

∣∣∣
= Adv23

BS,A(τ),

which, by assumption, is non-negligible in τ .
Left-or-Right blindness⇒ weak blindness: Assume that there exists an effective adversary

Awb with respect to weak blindness, and consider the experiment Explor
BS,Alor(τ), where Alor proceeds

as described below.
Algorithm Alor(1τ , pk, sk):

1. Run Awb with input (1τ , pk, sk).

2. When Awb outputs a message pair (m0,m1), output (m0,m1).

3. Forward inputs from User(pk, mb) and User(pk, m1−b) to the respective communication tapes
of Awb, and the other way around. If (σ(m0), σ(m1)) is obtained as additional input, forward
this to Awb.

4. When Awb outputs a bit b′, output b′.

It is clear that when Alor’s challenge bit b = 0, Alor simulates Awb’s environment in Expwb
BS,Awb(τ)

in the case where Awb’s challenge bit b = 0, and correspondingly for the case b = 1. Hence we get

Advlor
BS,Alor(τ) = Advwb

BS,Awb(τ),

which, by assumption, is non-negligible in τ .

18

