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Abstract. In this paper we show a general transformation from any
honest verifier statistical zero-knowledge argument to a concurrent sta-
tistical zero-knowledge argument. Our transformation relies only on the
existence of one-way functions. It is known that the existence of zero-
knowledge systems for any non-trivial language implies one way func-
tions. Hence our transformation unconditionally shows that concurrent
statistical zero-knowledge arguments for a non-trivial language exist if
and only if standalone secure statistical zero-knowledge arguments for
that language exist.

Further, applying our transformation to the recent statistical zero-knowledge
argument system of Nguyen et al (STOC’06) yields the first concurrent
statistical zero-knowledge argument system for all languages in NP from
any one way function.

1 Introduction

Zero-knowledge proof systems were introduced by Goldwasser, Micali and Rack-
off [GMR89] and have the remarkable property that they yield nothing except
the validity of assertion being proved. Such protocols involve a prover, who tries
to prove some assertion, and a verifier, who is trying to decide if he believes
the assertion. A cheating prover may act maliciously by trying to prove a false
statement; a cheating verifier may try to learn more than the validity of the
statement being proved. The property that the verifier learns nothing (except
the validity of the statement) is formalized as the zero-knowledge condition and
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the property that the prover cannot prove a false statement is formalized as the
soundness condition.

Depending upon how strong we want the zero-knowledge property or the
soundness property to be, we can define several different types of zero-knowledge
systems. In statistical zero-knowledge, we require the zero-knowledge condition
to hold even against an infinitely powerful cheating verifier. When we relax the
zero-knowledge condition so that it need only hold against a probabilistic poly-
nomial time cheating verifier, we get the so called computational zero-knowledge.
Similarly, we can have zero-knowledge with either statistical soundness (known
as zero-knowledge proof systems) or just computational soundness (known as
zero-knowledge argument systems).

It would be desirable to construct statistical zero-knowledge proof systems
for all languages in NP. Unfortunately it was shown that such systems can only
be obtained for languages in AM∩coAM [BHZ87], and AM∩coAM cannot
contain NP unless the polynomial hierarchy collapses. Thus if we want a zero-
knowledge system for all language in NP, we can only have either statistical
soundness or statistical zero-knowledge (but not both).

The original definition of zero-knowledge considers protocols running alone
in isolation. That is, we have a single prover interacting with a single verifier.
The concurrent setting was introduced by Dwork et al [DNS98] (see also [Fei90])
with a motivation to construct zero-knowledge protocols for more realistic set-
tings (such as when the protocols are to be executed over the Internet). In the
concurrent setting, many protocol executions are run at the same time with pos-
sibly a single prover simultaneously talking to many verifiers. The prover in this
setting runs the risk of a coordinated attack from many different verifiers which
interleave the execution of protocols and choose their responses to the prover
based on each others’ messages. If a zero-knowledge protocol maintains its zero-
knowledge property even in the concurrent setting, it is said to be concurrent
zero-knowledge.

Our Results. We give the first general transformation from any zero-knowledge
system to concurrent zero-knowledge system that maintains the statistical zero-
knowledge property of the system. Hence our compiler can be used to transform
a computational zero-knowledge argument system into a concurrent computa-
tional zero-knowledge argument system as well as a statistical zero-knowledge
argument system into a concurrent statistical zero-knowledge argument system.
Our transformation only relies on the existence of one-way functions. Further, it
does not require that the original protocol be public coin. These properties sepa-
rate it from the compiler in [MP03], since the compiler in [MP03] was designed to
maintain statistical soundness (whereas we deal with statistical zero-knowledge)
and was designed to be very efficient (our transformation is polynomial time but
we do not optimize for efficiency). Additionally, the compiler in [MP03] relies on
specific number theoretic assumptions.

We would like to emphasize that our compiler only uses one-way functions.
It is known that the existence of zero-knowledge systems for any non-trivial lan-
guage implies one way functions [OW93]. Hence our transformation uncondition-
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ally shows that concurrent statistical zero-knowledge arguments for a non-trivial
language exist if and only if standalone secure statistical zero-knowledge argu-
ments for that language exist. This feature also allows us to achieve a main goal
of ours: applying our transformation to the statistical zero-knowledge system
from [NOV06], we get the first concurrent statistical zero-knowledge argument
system for an NP-complete language from any one-way function.

Techniques. Here we describe our techniques at a high level. Our goal is to create
a general compiler that will work for honest verifier statistical zero-knowledge
arguments and turn them into concurrent statistical zero-knowledge arguments.
We first use a modified version of the preamble from the concurrent zero knowl-
edge protocol of [PRS02]. Using a preamble similar to [PRS02] enables us to have
a verifier committed to his randomness for the run of the protocol and to give
a strategy for a simulator that could extract that randomness in the concurrent
setting. Thus we are be able to use a straight-line simulator after the preamble.

The main technical challenges are to adapt the preamble of [PRS02] to work
with an all-powerful verifier and to base the preamble solely on one-way func-
tions. The proof of soundness in [PRS02] relies on the verifier using statistically
hiding commitments to commit to its randomness. However using statistically
hiding commitments during the preamble does not seem plausible in our setting
even though (independent of this work) they have recently been constructed from
one way functions [HR07]. The main reason is that since we are dealing with
statistical zero-knowledge, the verifier could potentially be all powerful. Thus
all the commitments by the verifier to the prover should be statistically binding.
Consequently, if the randomness of the verifier is not statistically hidden from the
prover during the PRS preamble, it remains unclear how the proof of soundness
would go through (even if the prover uses statistically hiding commitments).

To overcome this problem, the verifier commits using statistically binding
commitments based on one-way functions as it appears essential in our setting.
However, the verifier never actually opens the commitment. Instead the verifier
gives a (standalone secure computational) zero-knowledge proof that his message
are consistent with the randomness committed to in the PRS preamble. Note
that it is important that we use a zero-knowledge proof here since the verifier
is all powerful. This idea enables us to prove that our transformation preserves
the soundness of the underlying proof system.

Furthermore, since we are transforming from an honest verifier statistical
zero-knowledge argument into a concurrent statistical zero-knowledge argument,
we need to find a way to relax the requirement that the verifier is honest. In
order to achieve this goal, the randomness that the verifier uses is determined
by a coin-flipping protocol between the prover and the verifier (instead of being
chosen freely by the verifier alone). This is important for our proof of the zero-
knowledge condition since our simulator for the underlying protocol will require
verifier responses with correctly distributed randomness. Also, this technique
combined with the trick of using zero-knowledge proofs from the verifier allows
us to deal with private-coin protocols as well.
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We are able to combine all of these ideas into a single compiler that lets us
achieve our results.

1.1 Related Work

Statistical zero-knowledge arguments. In this paper, we will be examining statis-
tical zero-knowledge arguments which were first introduced by [BCC88]. From
the constructions of [GMW91, BCC88] it is clear that one main technique to
construct statistical zero-knowledge arguments for any language in NP is to
first construct statistically hiding commitments (and plug them into a standard
protocol).

Early constructions of statistically hiding commitments were built on specific
number theoretic assumptions [BCC88, BKK90]. In [GK96] it was shown how
to construct statistically hiding commitments from claw-free permutations; this
was further reduced to any family of collision-resistant hash functions in [NY89].

Naor et al [NOVY98] showed how to construct statistically hiding commit-
ments from one way permutations. In [Ost91, OW93] it was shown that one
could build a weak from of one-way functions from statistically hiding commit-
ments. Thus one-way functions would be the minimal assumption needed to
create statistically hiding commitments. Until recently, no further progress was
made. Haitner et al [HHK+05] showed how to construct statistically hiding com-
mitments from a one-way function that could approximate the pre-image size of
points in the range.

In a recent breakthrough work, Nguyen et al [NOV06] were able to construct
statistical zero-knowledge arguments from any one-way function for all languages
in NP. They deviated from the traditional line of constructing statistically bind-
ing commitments from one way functions. Instead they created a relaxed variant
of statistically binding commitments from one-way functions first introduced by
Nguyen and Vadhan [NV06]. Building on [NOV06], Haitner and Reingold [HR07]
recently constructed statistically hiding commitments from one way functions.
We remark that [NOV06] serves as a critical component for our results.

Concurrent zero-knowledge. The notion of concurrent zero knowledge was in-
troduced by [DNS98] (see also [Fei90]) who also gave a construction based on
timing assumptions. Richardson and Kilian [RK99] exhibited a family of concur-
rent zero-knowledge protocols for all languages in NP in the plain model. The
analysis of the their protocol required that the protocol have a polynomial num-
ber of rounds. This analysis was improved by Kilian and Petrank [KP01] who
showed that the protocol only required a poly-logarithmic number of rounds.
Prabhkaran, Rosen, and Sahai introduced a variant of the protocol and reduced
the number of rounds further to ω(log n) rounds in [PRS02]. This is the protocol
we will mainly use in our general compiler.

In [MP03], Micciancio and Petrank give a general compiler to compile any
public-coin honest verifier zero-knowledge proof system into a concurrent zero-
knowledge proof system while incurring only an additional ω(log n) rounds. This
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reduction is based on perfectly hiding commitment schemes (having some ad-
ditional special properties) based on the Decisional Diffie-Hellman assumption.
These reductions do not however maintain the statistical zero-knowledge prop-
erty. In other words, even if the original protocol is statistical zero-knowledge,
the resulting protocol may not be.

Concurrent statistical zero-knowledge. There has not been much work on con-
current statistical zero-knowledge. In [MOSV06], Micciancio et al show how to
build concurrent statistical zero-knowledge proofs for a variety of problems un-
conditionally, that is, without making any unproven complexity assumptions.
However since these were statistical zero-knowledge proofs, their results could
not include proofs for all languages in NP (unless NP is in AM∩coAM and
the polynomial hierarchy collapses).

2 Preliminaries

Statistical Difference The statistical difference between two random variables X,
Y taking values in a universe U is defined to be

∆(X, Y )
def
= max

S⊂U

∣∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣∣ =

1
2

∑

x∈U

∣∣∣Pr[X = S]− Pr[Y = S]
∣∣∣

We say two distributions are statistically close if ∆(X, Y ) is negligible.

Definition 1 (Argument Systems ([Gol01])) An interactive protocol (P, V )
is an argument (or computationally sound proof system) for a language L if the
following three conditions hold:

1. (Efficiency) P and V are computable in probabilistic polynomial time.
2. (Completeness) If x ∈ L, then V outputs accept with probability at least 2/3

after interacting with the honest prover P .
3. (Soundness) If x 6∈ L, then for every nonuniform PPT adversarial prover

P ∗, V outputs accept with probability at most 1/3.

For an argument system (P, V ), we define the following terms. If x ∈ L,
then the value that lower bounds the probability of V outputting accept after
interacting with the honest prover P is called the completeness bound. Similarly,
If x 6∈ L, then the value that upper bounds the probability of V outputting accept
after interacting with any nonuniform PPT adversarial prover P ∗ is called the
soundness error.

We say that an argument system is public coin if all the messages sent by
V are chosen uniformly at random, except for the final accept/reject message
(which is computed as a deterministic function of the transcript).
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Concurrent Zero-knowledge We assume the conversation between the prover P
and the verifiers V1 . . . Vn is of the form v1, p1, v2, p2, . . . , vt, pt where each vj

is a messages sent to the prover from a verifier Vij
and the provers’ response

is the message pj . We assume that there is an adversary A which controls the
verifiers and the verifiers’ messages. The adversary will take as input the partial
conversation so far, i.e., v1, p1 . . . vk, pk and output a pair (i, v) specifying that
P will receive message v from verifier Vi. The view of the adversary on input x
will include the verifiers’ random tapes and all the messages exchanged between
the prover and the verifiers. This view will be denoted by (P,A)(x).

Definition 2 We say that an argument system (P, V ) for a language L is statis-
tical (resp., computational) black box concurrent zero-knowledge if there exists a
probabilistic polynomial time oracle machine S (the simulator) such that for any
unbounded (resp., probabilistic polynomial time) adversary A, the distributions
(P, A)(x) and SA(x) are statistically close (resp., computationally indistinguish-
able) for every string x in L.

We call the statistical difference of these distributions the zero-knowledge
error of the protocol. If we are dealing with computational indistinguishability,
the probability that a probabilistic polynomial time adversary can distinguish
these distributions is called the zero-knowledge error of the protocol as well.

Honest Verifier We say a proof system is an honest verifier proof system if the
zero-knowledge property is guaranteed to hold only if the verifier acts according
to the protocol.

Note on Notation We will use P (T, r) (resp., V (T, r)) to signify the correct next
message of an honest P (resp., V ) as per the protocol (P, V ), given the random
coins r and the interaction transcript T observed so far. Sometimes, the random
coin r might be implicit (instead of being explicitly supplied as an input).

3 Compiler Parts

In this section, we give the different parts of the compiler in isolation before
putting them together in the next section to give our full protocol.

3.1 Underlying zero-knowledge protocol

We assume that as input to our compiler, we have an honest verifier statistical
zero-knowledge argument system for some language L. This protocol will have
a prover, a verifier, a completeness bound, a soundness error, a simulator, the
number of rounds and a zero-knowledge error (denoted by P, V, ec, es, S, t and
ez respectively). We let p1, . . . pt denote the messages of the prover and v1, . . . vt

the messages of the verifier in a particular execution of the argument system.
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3.2 Statistically binding commitments from any OWF

In our protocol, we shall use statistically binding commitments from any OWF.
Building on techniques from [HILL99], such commitments were constructed by
Naor [Nao91].

We denote such a commitment scheme by COM. We denote the probability of
an all powerful adversary breaking the binding property of the scheme as bcom.
We denote the probability of a PPT adversary breaking the hiding property of
the scheme as hcom.

3.3 Computational zero-knowledge proof based on any OWF for all
of NP

In our protocol, we shall use a computational zero-knowledge proof based on
one-way functions for every language in NP with negligible soundness error
and perfect completeness. One way to construct them is to create statistically
binding commitments based on a OWF as stated earlier [HILL99, Nao91]. These
commitments can then be used in the 3-colorability protocol of [GMW91] to
give us a zero-knowledge proof for any language in NP. We can then repeat the
protocol sequentially n2 times (where n is the security parameter) to achieve
negligible soundness error. We note that this protocol will also have perfect
completeness. We denote the final protocol after the sequential repetitions as
(P ′, V ′).

This protocol will have a prover, a verifier, a completeness bound, a statistical
soundness error, a simulator, the number of rounds and a zero-knowledge error
(denoted by P ′, V ′, e′c = 1, e′s, S

′, t′ and e′z respectively).

3.4 Preamble from PRS [PRS02]

In this subsection, we describe the preamble from [PRS02] and give its useful
properties for our context. We note that [RK99, KP01] also have similar pream-
bles (with round complexity higher than [PRS02]) which could be used for our
purpose.

The preamble of the PRS protocol is simple. Let n be the security parameter
of the system and k be any super-logarithmic function in n. Let σ be the bit
string we wish to commit to and γ be the length of σ. We break σ up into
two random shares k2 times. Let these shares be denoted by {σ0

i,`}k
i,`=1 and

{σ1
i,`}k

i,`=1 with σ0
i,` ⊕ σ1

i,` = σ for every i, `. The verifier will commit to these
bits using COM with fresh randomness each time. The verifier then sends these
k2 commitments to the prover. This is then followed by k iterations where in
the `th iteration, the prover sends a random k-bit string b` = b1,`, . . . , bk,`, and
the verifier decommits to the commitments COM(σb1,`

1,` ), . . . , COM(σbk,`

k,` ).
The goal of this protocol is to enable the simulator to be able to rewind and

find the value σ with high probability by following a fixed strategy. Since the
verifier commitments are set after the first round, once we rewind the verifier,
the simulator will have the opportunity to have the verifier open both the σ0
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commitment and the σ1 commitment. In the concurrent setting, rewinding a
protocol can be difficult since one may rewind past the start of some other
protocol in the system as observed by [DNS98]. The remarkable property of this
protocol is that there is a fixed rewinding strategy the simulator can use to
get the value of σ, for every concurrent cheating verifier strategy V∗, with high
probability.

We will follow [MOSV06] in formalizing the properties of the PRS preamble
we need. Without loss of generality, assume that there are Q concurrent sessions.
Recall that k is the number of rounds of the PRS preamble.

We call the simulator for the PRS preamble CEC-Sim. CEC stands for
concurrently-extractable commitments. CEC-Sim will have oracle access to V∗
and will get the following inputs.

– Commitments schemes COM = COM1, COM2, . . . , COMQ, where COMs

is the commitment scheme used for session s.
– Parameters γ, k, n and Q, all given in unary.

We also need to give the following definitions adapted from [MOSV06]:

Definition 3 (Major Decommitment) A major decommitment is a reveal
after the PRS preamble in which V∗ reveals the opening of commitments {COM(σ0

i,`)}k
i,`=1

and {COM(σ1
i,`)}k

i,`=1. P only accepts the major decommitment if: (a) all these
openings are valid openings to the commitments in the transcript, and, (b) there
exists σ such that for all i, `, σ0

i,` ⊕ σ1
i,` = σ.

Definition 4 (Valid Commit Phase) For a transcript T of the commit phase
interaction between P and V∗, let T [s] denote the messages in session s. T [s] is
a valid commit phase transcript if there exists a major decommitment D such
that P (T [s], D)= accept.

Definition 5 (Compatibility). Message M=(σ, σ0
i,j , σ

1
i,j) is compatible with T [s]

if

1. σ = σ0
i,j ⊕ σ1

i,j

2. There exist commitments COMs(σ0
i,j)[s] and COMs(σ1

i,j)[s] that are part of
the transcript of the first message of T [s].

Observe that if a message M=(σ, σ0
i,j , σ

1
i,j) is compatible with the transcript

T [s], the cheating verifier can major-decommit to a message different from σ
only with probability at most bcom. Thus we call σ the extracted message.

Definition 6 A Simulator CEC−SimV∗ has the concurrent extraction property
if for every interaction T it has with V∗, it also provides (on a separate output
tape) an array of messages (M1,M2, . . . , MQ) with the following property:

For every session s ∈ {1, 2, . . . , Q}, if T [s] is a valid commit phase transcript,
then Ms is compatible with T [s].
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A simulator that has the concurrently extractable property is also called a
concurrently-extractable simulator.

Using the simulation and rewinding techniques in [PRS02], we can obtain
a concurrently-extractable simulator for the PRS preamble. Let 〈P,V∗〉 denote
the output of V∗ after concurrently interacting with P. Recall that V∗ is an
unbounded adversary.

Lemma 1. (implicit in [PRS02], adapted from [MOSV06]). There exists a PPT
concurrently-extractable simulator CEC-Sim with a fixed strategy SIMULATE
such that for COM and all concurrent adversaries V∗, for settings of parameters
σ=poly(n), k = Õ(log n), and Q =poly(n), we have the ensembles
{

CEC-SimV
∗
(COM, 1σ, 1k, 1n, 1Q)

}

n∈N
and

{
〈P,V∗〉(COM, 1σ, 1k, 1n, 1Q)

}

n∈N

have statistical difference ε, where ε is negligible.

4 The Compiler

In this section, we discuss the compiler in detail. It takes as input an honest
verifier statistical zero knowledge argument system (P, V ) and compiles it into a
concurrent statistical zero knowledge argument system (P,V) assuming the exis-
tence of one way functions. The compiler uses statistically binding commitments
and computational zero knowledge proofs as building blocks. Both of these can
be constructed out of any one way function [HILL99, GMW91].

The compiler is presented formally in Figure 1. Let R denote the uniform
distribution. The verifier V first generates a random string r (i.e., r

r← R). P
and V then carry out the PRS preamble [PRS02] where V sets σ to be r.

Instead of using statistically hiding commitments as in the PRS preamble,
we will use statistically binding commitments based on one way functions. This
however causes a problem in the PRS soundness proof [PRS02] since the statis-
tical hiding property of the commitments is used in an essential manner in the
soundness proof1. We resolve this problem later on.

Once P and V have finished the PRS preamble,V gives a computational zero
knowledge proof acting as P ′ in the system (P ′, V ′) (constructed using a OWF as
described in section 3). It proves that all the shares it committed to in the PRS
preamble (first message) are “consistent” with r. In other words, r0

i,` ⊕ r1
i,` = r

for every i, `. The prover P then draws r′ r← R and sends it to V. Now P and
V will begin the supplied honest verifier statistical zero knowledge argument
protocol (P, V ) with some modifications. The random coins of the verifier V are

fixed to be r ⊕ r′ def= r′′.
1 For example, if the verifier uses computationally hiding commitments, a cheating

prover could potentially create dependencies between his own commitments and the
verifier challenge



10

Common Input to P and V: (P, V ), (P ′, V ′), x,COM
Compiler:

1. V→ P: Generate r
r← R. Using COM, commit to r and the shares

{r0
i,`}k

i,`=1, {r1
i,`}k

i,`=1 such that r0
i,` ⊕ r1

i,` = r for every i, `.
2. For ` = 1, . . . k:

(a) P→ V: Send b1,`, . . . , bk,`
r← {0, 1}k.

(b) V→ P: Decommit to r
b1,`

1,` , . . . , r
bk,`

k,` .
3. V↔ P: Zero-knowledge proof (P ′, V ′) where V acts as P ′ and proves to P

that r0
i,` ⊕ r1

i,` = r for every i, ` and that there exist valid openings to the
commitments in the PRS preamble to r0

i,`, r
1
i,`. If P accepts the

zero-knowledge proof, the transcript of the commit phase is guaranteed to
be a valid commit phase transcript.

4. P→ V: send r′
r← R.

5. V calculates r′′
def
= r ⊕ r′

6. For j = 1, . . . t:
(a) P→ V: send P (T P

j ) = pj .
(b) V→ P: send V (T V

j , r′′) = vj .
(c) V↔ P: zero-knowledge proof (P ′, V ′) where V acts as P ′ and proves

to P that there exist an r′′ such that r ⊕ r′ = r′′ and V (T V
j , r′′) = vj .

7. V→ P: send V (T, r′′) = accept/reject.

Fig. 1. Compiler

Let the protocol (P, V ) have t rounds where one round involves a prover
message followed by the verifier’s response. P and V interact as follows. In the
jth round, P calculates the next message pj of P on the transcript TP

j of the
interaction so far. Transcript TP

j is defined to contain all the messages exchanged
between P and V so far, i.e., TP

j = (p1, v1, . . . , pj−1, vj−1).
The verifier V receives pj from P. It will now calculate V ’s response in the

protocol (P, V ) using randomness r′′ and V ’s transcript TV
j (= (TP

j , pj)) of the
interaction so far; we call this response vj . Now V will act as the P ′ in the
computational zero-knowledge proof system (P ′, V ′).
V will prove that his response is indeed consistent with V acting on input

TV
j and randomness r′′. The statement being proven by V is in NP since it is

possible to check the statement given the opening of the commitment to r. We
are using the computational zero-knowledge proof here instead of just revealing
the commitments to make our soundness proof go through. P acts as V ′ during
this zero-knowledge proof. If the proof is accepted by V ′ then P accepts vj .

Once these t rounds are complete, V accepts if and only if V would accept
on the complete transcript T (=(TV

t , vt)).

4.1 Parameters of the compiler

Let (P, V ) be an honest verifier zero-knowledge argument system with t rounds,
ec completeness bound, es soundness error, and ez zero-knowledge error. Let
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(P ′, V ′) be a computation zero-knowledge proof system with t′ rounds, e′c com-
pleteness bound, e′s soundness error, and e′z zero-knowledge error. Let ε be the
value from Lemma 1 that represents the statistical difference of a simulated run
of the PRS preamble using SIMULATE from a real run against an arbitrary
unbounded concurrent verifier strategy. Let k be the number of rounds in the
PRS preamble. Let ep be the probability that the PRS preamble is accepted
by the prover and the verifier if they are behaving honestly. Let COM be the
commitment used in the PRS preamble. Let hcom be the probability of a PPT
machine breaking the hiding property of COM and bcom be the probability of
an all powerful adversary breaking the binding property of COM. Let S be the
simulator for (P, V ) and S be a simulator for (P,V).

We give the parameters that we obtain with our compiler in the following
theorem.

Theorem 1 Running the compiler given in Section 4 on the argument system
(P, V ) results in a system (P,V) with the following properties.

– The completeness bound of (P,V) is epec.
– The soundness error of (P,V) is es + (k2hcom + e′z)t.
– The zero-knowledge error of the protocol is:

∆((P,V∗)(x), SV∗(x)) = ε + ez + k2bcom + e′st

Proof. The proof of each of the above claims is given below individually.

Completeness Suppose x ∈ L. Then the probability that the protocol is accepted
by V is:

Pr[(PRS is accepted)∧((P, V ) is accepted)∧(each execution of (P ′, V ′) is accepted)] =

(ep)(ec)(e′c)
t

Note that e′c is one since our protocol (P ′, V ′) has perfect correctness. Thus
we get the probability that the transformed protocol is accepted is (ep)(ec).

Soundness Suppose x 6∈ L and there exists an adversarial PPT prover P∗ that
can get V to accept with non-negligible probability φ. In other words, suppose
(P,V) has non-negligible soundness error φ. We will show how to use P∗ to
build a machine D that breaks the soundness of the underlying zero-knowledge
protocol (P, V ). We give a formal description of D in Figure 2.

D will use P∗ as follows. D runs P∗ and executes the PRS preamble in-
teracting with it setting σ to a random r. Now, D gives a computational zero
knowledge proof to P∗ and receives r′ as shown in Figure 2. It then runs the
honest verifier machine V acting a cheating prover P ∗ and trying to break the
soundness of the system (P, V ).

In the jth round, D receives pj from P∗ and sends it to V . V will respond to pj

with vj . Now D wants to be able to give vj as his response to P∗ so as to be able
to continue the protocol. However D needs his response to P∗ to be generated
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Common Input to D and V : x
Auxiliary input to D: The cheating prover machine P∗
Description of D, a cheating prover for (P, V )

1. D runs a copy of P∗, acting as the verifier itself.
2. D generates r

r← R. It then interacts with P∗ to carry out the PRS
preamble using r.

3. D gives a zero knowledge proof (P ′, V ′) to P∗ proving that all the shares
it committed to in the PRS preamble are consistent with r.

4. D receives r′ from P∗
5. For j = 1, . . . t:

(a) D gets the message pj from P∗.
(b) D → V : pj .
(c) V → D: vj .
(d) D uses the simulator S′ of the system (P ′, V ′) and simulates a proof

with P∗ that V (T V
j , r ⊕ r′) = vj .

Fig. 2. D acting as a cheating prover for (P, V ).

using randomness r⊕r′ as per the protocol (P, V ). D has already committed to r
with a statistically binding commitment and thus can not necessarily decommit
to a r such that vj is consistent with r, r′ and (P, V ).

However D does not have to decommit to r, but only needs to give a zero-
knowledge proof that he has committed to a randomness r such that vj is con-
sistent with r, r′ and (P, V ). He can use the simulator of (P ′, V ′) to do this.
Hence, D sends vj to P∗ and simulates a zero knowledge proof of its correctness
by rewinding P∗. The probability that P∗ can differentiate between such a sim-
ulated run and a real run can be analyzed using a simple hybrid argument. As
we move from a real run to a simulated one, we construct the following hybrid.
D acts as an honest V sending correct verifier messages vj . However, instead
of giving real zero knowledge proofs, D gives simulated proofs. In other words,
although D would have the witness to the NP statement, it does not use it and
instead simulates the zero knowledge proof. Clearly, the probability that P∗ can
distinguish this hybrid from a real run is bounded by the zero-knowledge error
(see section 2) of (P ′, V ′). Now, we move from the hybrid to the simulated run
where, in the PRS preamble, D did not commit to a randomness which could
explain his message vj (but rather an unrelated randomness r). Hence, D would
not necessarily possess the witness of his statement.

Using the above hybrid argument, it can be shown that:

Pr[P∗ can distinguish this simulation from a real run] ≤

Pr[P∗can break the ZK condition of (P ′, V ′)]+

Pr[P∗can break any of the commitments during the PRS preamble] ≤

k2hcom + e′z
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P∗ will see t of these simulations from D. Thus we can use the union bound
and get that the probability that P∗ will be able to distinguish any of the simu-
lation from a real run is (k2hcom + e′z)t.

Now, V will only accept in the protocol if the internal V he is running accepts
p1, v1, . . . , pt, vt. Recall that the probability that V accepts when interacting with
P∗ is φ. Thus the probability that V will accept an interaction with D who is
running P∗ can be computed as follows:

Pr[V accepts] ≥

1− Pr[(P∗ does distinguish) ∨ (V does not accept)] ≥
1− (

Pr[P∗ does distinguish] + Pr[V does not accept]
) ≥

1− ((k2hcom + e′z)t + (1− φ))

This value must be less than the soundness error of (P, V ). Thus we get an
upper bound on the soundness error of the compiled protocol

φ ≤ es + (k2hcom + e′z)t

Note that if es, hcom, e′z are all negligible and t, k are at most polynomial,
the soundness error of the compiled protocol will be negligible.

Concurrent Statistical Zero-knowledge Lets consider an arbitrary unbounded
concurrent verifier strategy. Let V∗ be one of the verifiers representing a session
in the concurrent verifier strategy. Given S, the simulator for the underlying
protocol (P, V ), we show how to construct a simulator S for the protocol (P,V).
S will output a simulated transcript from a distribution which is only a negligible
statistical distance from the distribution of the transcript of a real interaction.
The simulator S is described formally in Figure 3.
S will first run S, the simulator of the underlying protocol. S will act as

the honest verifier oracle for S recording all the randomness that he uses as
the oracle. After running S, S will have a transcript p̂1, v̂1, . . . p̂t, v̂t and the
randomness r̂ (used in creating the honest verifier responses v̂1, . . . v̂t). This
transcript p̂1, v̂1, . . . p̂t, v̂t will be statistically close to a real run of (P, V ).

As shown in the figure, S then runs the concurrently extractable simulator
CEC-Sim (or in other words, the PRS simulator) and recovers the committed
randomness r∗ with probability at least (1− ε). Since the commitments that V∗
used during the PRS preamble are statistically binding, even an all powerful V∗
will not be able to change them except with negligible probability bcom. After
finishing the preamble, S will be a straightline simulator and will not rewind V∗
any further.
S will now give V∗ a string r′ such that r∗⊕r′ = r̂. Note that the distribution

of r′ will look completely uniform to V∗ since V∗ has no information about r̂.
Now for each round of the protocol, the simulator will proceed as follows.

In round j, S will give p̂j to V∗. Since V∗ has already committed to r∗, it will
now be forced use randomness r∗ ⊕ r′ which is exactly r̂, . It will therefore be
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Input: V∗, one of the verifiers in an arbitrary unbounded concurrent verifier
strategy.

The simulator S
1. S acts as an honest verifier V and runs the simulator S of the argument

system (P, V ) on itself. S generates r̂
r← R and uses it as randomness to

interact with S. After the interaction, S gets as output the simulated
transcript p̂1, v̂1, . . . p̂tv̂t.

2. S runs a copy of V∗
3. S runs the concurrently extractable simulator CEC-Sim on V∗. CEC-Sim

executes the PRS preamble with V∗ and extracts its committed
randomness r∗.

4. S carries out (P ′, V ′) with V∗ in which V∗ proves that all the shares it
committed to in the PRS preamble are consistent with r∗.

5. S computes r′ such that r∗ ⊕ r′ = r̂ and sends it to V∗ .
6. For j = 1, . . . t:

(a) S sends p̂j to V∗ and receives V∗’s response v̂′j .
(b) S carries out (P ′, V ′) with V∗ in which V∗ proves that its response

v̂′j = V (T V
j , r̂). S aborts if v̂′j 6= v̂j .

Fig. 3. The simulator S for (P,V).

forced to respond with v̂j , except of course with the probability that he can
break either the binding property of the commitment or the soundness of the
zero-knowledge proof (P ′, V ′). Since we are using statistically binding commit-
ments and a zero knowledge proof, the probability of an all powerful adversary
breaking the binding property of the commitments or the soundness property of
the (P ′, V ′) is negligible. Thus the randomness that V∗ is forced to use will be
r̂ and his response will therefore be v̂j , exactly as in the transcript created by
S. If this is not the case, S aborts.

We now analyze the probability of failure of the simulator S. From a union
bound, we can directly bound this probability by analyzing the probability of all
the events which may cause S to fail. The failure probability is upper bounded
by:

Pr[Output of S is not identically distributed to (P, V )]+

Pr[CEC-Sim is unsuccessful in recovering r∗]+

Pr[V∗ breaks the binding property of any of the commitments]+

Pr[V∗ breaks the soundness property of (P ′, V ′) for any of the executions]

= ε + ez + k2bcom + e′st

Thus ∆((P,V∗)(x), SV∗(x)) = (ε + ez + k2bcom + e′st) as claimed.
Note that if ε, ez, bcom, e′s are all negligible and t, k are at most polynomial,

the simulated transcript will have negligible statistical difference from a real run
of the protocol. ¥
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4.2 Concurrent statistical zero-knowledge arguments from any one
way function

In order to build concurrent statistical zero-knowledge arguments from a OWF,
we need the following theorem implicit in [NOV06].

Theorem 2 If one way functions exist, every language in NP has a public-coin
statistical zero-knowledge argument system.

We can now apply our compiler to the protocol of Nguyen et al [NOV06] to
get the following corollary.

Corollary 1 If one way functions exist, every language in NP has a concurrent
statistical zero-knowledge argument system.
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