
A preliminary version of this paper appears in Advances in Cryptology - ASIACRYPT 2006, Lecture
Notes in Computer Science Vol. 4284, pp. 299-314, X. Lai and K. Chen eds., Springer-Verlag, 2006.
This is the full version.

Multi-Property-Preserving Hash Domain Extension and

the EMD Transform

Mihir Bellare∗ Thomas Ristenpart†

October 2007

Abstract

We point out that the seemingly strong pseudorandom oracle preserving (PRO-Pr) property
of hash function domain-extension transforms defined and implemented by Coron et. al. [12] can
actually weaken our guarantees on the hash function, in particular producing a hash function
that fails to be even collision-resistant (CR) even though the compression function to which the
transform is applied is CR. Not only is this true in general, but we show that all the transforms
presented in [12] have this weakness. We suggest that the appropriate goal of a domain extension
transform for the next generation of hash functions is to be multi-property preserving, namely
that one should have a single transform that is simultaneously at least collision-resistance pre-
serving, pseudorandom function preserving and PRO-Pr. We present an efficient new transform
that is proven to be multi-property preserving in this sense.

Keywords: Hash functions, random oracle, Merkle-Damg̊ard, collision-resistance, pseudorandom
function.

∗Dept. of Computer Science & Engineering 0404, University of California San Diego, 9500 Gilman Drive, La Jolla,
CA 92093-0404, USA. Email: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in
part by NSF grant CNS 0524765 and a gift from Intel Corporation.

†Dept. of Computer Science & Engineering 0404, University of California San Diego, 9500 Gilman Drive, La
Jolla, CA 92093-0404, USA. Email: tristenp@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/tristenp.
Supported in part by above-mentioned grants of first author.

1

Contents

1 Introduction 3

2 Definitions 6

3 Domain Extension using Merkle-Damg̊ard 8

4 Orthogonality of Property Preservation 9
4.1 PRO-Pr does not imply CR-Pr . 9
4.2 Insecurity of Proposed PRO-Pr Transforms . 11

5 The EMD Transform 12
5.1 EMD is CR-Pr . 13
5.2 EMD is PRO-Pr . 13
5.3 EMD is PRF-Pr . 16

6 Proof of Lemma 5.1 17
6.1 The Simulator . 17
6.2 Bounding A’s Advantage . 18

A Families of Compression and Hash Functions 29

2

1 Introduction

Background. Recall that hash functions are built in two steps. First, one designs a compression
function h: {0, 1}d+n → {0, 1}n, where d is the length of a data block and n is the length of the
chaining variable. Then one specifies a domain extension transform H that utilizes h as a black
box to implement the hash function Hh: {0, 1}∗ → {0, 1}n associated to h. All widely-used hash
functions use the Merkle-Damg̊ard (MD) transform [16, 13] because it has been proven [16, 13] to
be collision-resistance preserving (CR-Pr): if h is collision-resistant (CR) then so is Hh. This means
that the cryptanalytic validation task can be confined to the compression function.

A rising bar. Current usage makes it obvious that CR no longer suffices as the security goal
for hash functions. In order to obtain MACs and PRFs, hash functions were keyed. The canonical
construct in this domain is HMAC [4, 2] which is widely standardized and used. (NIST FIPS
198, ANSI X9.71, IETF RFC 2104, SSL, SSH, IPSEC, TLS, IEEE 802.11i, and IEEE 802.16e are
only some instances.) Hash functions are also used to instantiate random oracles [6] in public-key
schemes such as RSA-OAEP [7] and RSA-PSS [8] in the RSA PKCS#1 v2.1 standard [18]. CR is
insufficient for arguing the security of hash function based MACs or PRFs, let alone hash-function
based random oracles. And it does not end there. Whether hash function designers like it or
not, application builders will use hash functions for all kinds of tasks that presume beyond-CR

properties. Not all such uses can be sanctified, but the central and common ones should be. We
think that the type of usage we are seeing for hash functions will continue, and it is in the best
interests of security to make the new hash functions rise as far towards this bar as possible, by
making them strong and versatile tools that have security attributes beyond CR.

This paper. Towards the goal of building strong, multi-purpose hash functions, our focus is
on domain extension, meaning we wish to determine which domain extension transforms are best
suited to this task. The first part of our work examines a natural candidate, namely transforms that
are pseudorandom oracle preserving as per [12], and identifies some weaknesses of this goal. This
motivates the second part, where we introduce the notion of a multi-property preserving (MPP)
transform, argue that this should be the target goal, and present and prove the correctness of an
efficient MPP transform that we refer to as EMD. Let us now look at all this in more depth.

Random-oracle preservation. Coron, Dodis, Malinaud and Puniya [12] make the important
observation that random oracles are modeled as monolithic entities (i.e., are black boxes working
on domain {0, 1}∗), but in practice are instantiated by hash functions that are highly structured
due to the design paradigm described above, leading for example to the extension attack. Their
remedy for this logical gap is to suggest that a transform H be judged secure if, when modeling h
as a fixed-input-length random oracle, the resulting scheme Hh behaves like a random oracle. They
give a formal definition of “behaving like a random oracle” using the indifferentiability framework
of Maurer et al. [14]. We use the moniker pseudorandom oracle to describe any construction that is
indifferentiable from a random oracle. (Note that a random oracle itself is always a pseudorandom
oracle.) The framework has the desirable property that any scheme proven secure in the random
oracle model of [6] is still secure when we replace the random oracles with pseudorandom oracles.
We call the new security goal of [12] pseudorandom oracle preservation (PRO-Pr). They propose
four transforms which they prove to be PRO-Pr.

PRO-Pr seems like a very strong property to have. One reason one might think this is that it
appears to automatically guarantee that the constructed hash function has many nice properties.
For example, that the hash function created by a PRO-Pr transform would be CR. Also that the
hash function could be keyed in almost any reasonable way to yield a PRF and MAC. And so on.
This would be true, because random oracles have these properties, and hence so do pseudorandom

3

oracles. Thus, one is lead to think that one can stop with PRO-Pr: once the transform has this
property, we have all the attributes we desire from the constructed hash function.

Weakness of PRO-Pr. The first contribution of this paper is to point out that the above reasoning
is flawed and there is a danger to PRO-Pr in practice. Namely, the fact that a transform is PRO-Pr

does not guarantee that the constructed hash function is CR, even if the compression function is
CR. We demonstrate this with a counter-example. Namely we give an example of a transform that
is PRO-Pr, yet there is a CR compression function such that the hash function resulting from the
transform is not CR. That is, the transform is PRO-Pr but not CR-Pr, or, in other words, PRO-Pr

does not imply CR-Pr. What this shows is that using a PRO-Pr transform could be worse than
using the standard, strengthened Merkle-Damg̊ard transform from the point of view of security
because at least the latter guarantees the hash function is CR if the compression function is, but
the former does not. If we blindly move to PRO-Pr transforms, our security guarantees are actually
going down, not up.

How can this be? It comes about because PRO-Pr provides guarantees only if the compression
function is a random oracle or pseudorandom oracle. But of course any real compression function
is provably not either of these. (One can easily differentiate it from a random oracle because it can
be computed by a small program.) Thus, when a PRO-Pr transform works on a real compression
function, we have essentially no provable guarantees on the resulting hash function. This is in some
ways analogous to the kinds of issues pointed out in [11, 3] about the sometimes impossibility of
instantiating random oracles.

The transforms of [12] are not CR-Pr. The fact that a PRO-Pr transform need not in gen-
eral be CR-Pr does not mean that some particular PRO-Pr transform is not CR-Pr. We therefore
investigate each of the four PRO-Pr schemes suggested by [12]. The schemes make slight modifi-
cations to the MD transform: the first applies a prefix-free encoding, the second “throws” away
some of the output, and the third and fourth utilize an extra compression function application.
Unfortunately, we show that none of the four transforms is CR-Pr. We do this by presenting an
example CR compression function h such that applying each of the four transforms to it results in a
hash function for which finding collisions is trivial. In particular, this means that these transforms
do not provide the same guarantee as the existing and in-use Merkle-Damg̊ard transform. For this
reason we think these transforms should not be considered suitable for use in the design of new
hash functions.

What this means. We clarify that we are not suggesting that the pseudorandom oracle preser-
vation goal of [12] is unimportant or should not be achieved. In fact we think it is a very good
idea and should be a property of any new transform. This is so because in cases where we are
(heuristically) assuming the hash function is a random oracle, this goal reduces the assumption
to the compression function being a random oracle. What we have shown above, however, is that
by itself, it is not enough because it can weaken existing, standard-model guarantees. This leads
to the question of what exactly is enough, or what we should ask for in terms of a goal for hash
domain extension transforms.

MPP transforms. The two-step design paradigm in current use is compelling because it reduces
the cryptanalytic task of providing CR of the hash function to certifying only that the compression
function has the same property. It makes sense to seek other attributes via the appropriate extension
of this paradigm. We suggest that, if we want a hash function with properties P1, . . . ,Pn then we
should (1) design a compression function h with the goal of having properties P1, . . . ,Pn, and (2)
apply a domain extension transform H that provably preserves Pi for every i ∈ [1..n]. We call
such a compression function a multi-property one, and we call such a transform a multi-property-

4

Transform CR-Pr PRO-Pr PRF-Pr Uses of h for |M | = b ≥ d

Plain MD (MD) No No No ⌈(b + 1)/d⌉

Strengthened MD (SMD) [16, 13] No No ⌈(b + 1 + 64)/d⌉

Prefix-Free (PRE) No [12] [5] ⌈(b + 1)/(d− 1)⌉

Chop Solution (CHP) No [12] ? ⌈(b + 1)/d⌉

NMAC Construction (NT) No [12] ? 1 + ⌈(b + 1)/d⌉

HMAC Construction (HT) No [12] ? 2 + ⌈(b + 1)/d⌉

Enveloped MD (EMD) [16] Thm. 5.2 Thm. 5.3 ⌈(b + 1 + 64 + n)/d⌉

Figure 1: Comparison of transform security and efficiency when applied to a compression function
h: {0, 1}n+d → {0, 1}n. The last column specifies the number of calls to h needed to hash a b-bit mes-
sage M (where b ≥ d) under each transform and a typical padding function (which minimally adds a bit of
overhead).

preserving domain extension transform (from now on simply an MPP transform). Note that we
want a single transform that preserves multiple properties, resulting in a single, multi-property
hash function, as opposed to a transform per property which would result in not one but numerous
hash functions. We suggest that multi-property preservation is the goal a transform should target.

Properties to preserve. Of course the next question to ask is which properties our MPP
domain extension transform should preserve. We wish, of course, that the transform continue to be
CR-Pr, meaning that it preserve CR. The second thing we ask is that it be pseudorandom function
preserving (PRF-Pr). That is, if an appropriately keyed version of the compression function is a
PRF then the appropriately keyed version of the hash function must be a PRF too. This goal is
important due to the many uses of hash functions as MACs and PRFs via keying as mentioned
above. Indeed, if we have a compression function that can be keyed to be a PRF and our transform
is PRF-Pr then obtaining a PRF or MAC from a hash function will be simple and the construction
easy to justify. The final goal we will ask is that the transform be PRO-Pr. Compelling arguments
in favor of this goal were made at length in [12] and briefly recalled above.

To be clear, we ask that, for a transform H to be considered suitable, one should do the
following. First, prove that Hh is CR using only the fact that h is CR. Then show that Hh is a
pseudorandom oracle when h is a pseudorandom oracle. Finally, use some natural keying strategy
to key Hh and assume that h is a good PRF, then prove that Hh is also a good PRF. We note
that such a MPP transform will not suffer from the weakness of the transforms of [12] noted above
because it will be not only PRO-Pr but also CR-Pr and PRF-Pr.

New transform. There is to date no transform with all the properties above. (Namely, that
it is PRO-Pr, CR-Pr and PRF-Pr.) The next contribution of this paper is a new transform EMD
(Enveloped Merkle-Damg̊ard) which is the first to meet our definition of hash domain extension
security: EMD is proven to be CR-Pr, PRO-Pr, and PRF-Pr. The transform is simple and easy to
implement in practice (see the figure in Section 5). It combines two mechanisms to ensure that
it preserves all the properties of interest. The first mechanism is the well-known Merkle-Damg̊ard
strengthening [16]: we always concatenate an input message with the 64-bit encoding of its length.
This ensures that EMD is CR-Pr. The second mechanism is the use of an “envelope” to hide
the internal MD iteration — we apply the compression function in a distinguished way to the
output of the plain MD iteration. Envelopes in this setting were previously used by the NMAC
and HMAC constructions [4] to build PRFs out of compression functions, and again in two of the
PRO-Pr transforms of [12], which were also based on NMAC and HMAC. We utilize the envelope

5

in a way distinct from these prior constructions. Particularly, we include message bits as input
to the envelope, which increases the efficiency of the scheme. Second, we utilize a novel reduction
technique in our proof that EMD is PRO-Pr to show that simply fixing n bits of the envelope’s
input is sufficient to cause the last application of the random oracle to behave independently with
high probability. This simple solution allows our transform to be PRO-Pr using a single random
oracle without using the other work-arounds previously suggested (e.g., prefix-free encodings or
prepending a block of zeros to input messages). A comparison of various transforms is given in
Fig. 1.

Patching existing transforms. We remark that it is possible to patch the transforms of [12]
so that they are CR-Pr. Namely, one could use Merke-Damg̊ard strengthening, which they omitted.
However our transform still has several advantages over their transforms. One is that ours is
cheaper, i.e. more efficient, and this matters in practice. Another is that ours is PRF-Pr. A result
of [5] implies that one of the transforms of [12] is PRF-Pr, but whether or not this is true for the
others is not clear.

Whence the compression function? We do not address the problem of constructing a multi-
property compression function. We presume that this can and will be done. This assumption might
seem questionable in light of the recent collision-finding attacks [19, 20] that have destroyed some
hash functions and tainted others. But we recall that for block ciphers, the AES yielded by the NIST
competition was not only faster than DES but seems stronger and more elegant. We believe it will be
the same for compression functions, namely that the planned NIST hash function competition will
lead to compression functions having the properties (CR and beyond) that we want, and perhaps
without increase, or even with decrease, in cost, compared to current compression functions. We
also note that we are not really making new requirements on the compression function; we are only
making explicit requirements that are implicit even in current usage.

Families of compression functions. Several works [1, 9, 15] consider a setting where compres-
sion and hash functions are families rather than individual functions, meaning, like block ciphers,
have an extra, dedicated key input. In contrast, we, following [4, 12, 2], adopt the setting of current
practical cryptographic compression and hash functions where there is no such dedicated key input.
An enveloping technique similar to that of EMD is used in the Chain-Shift construction of Maurer
and Sjödin [15] for building a VIL MAC out of a FIL MAC in the dedicated key input setting. We
further discuss this setting, and their work, in Appendix A.

2 Definitions

Notation. Let D = {0, 1}d and D+ = ∪i≥1{0, 1}id. We denote pairwise concatenation by || ,
e.g. M ||M ′. We will often write the concatenation of a sequence of string by M1 · · ·Mk, which
translates to M1 ||M2 || . . . ||Mk. For brevity, we define the following semantics for the notation
M1 · · ·Mk

d←M where M is a string of |M | bits: 1) define k = ⌈|M |/d⌉ and 2) if |M | mod d = 0
then parse M into M1, M2, . . ., Mk where |Mi| = d for 1 ≤ i ≤ k, otherwise parse M into M1, M2,
. . ., Mk−1, Mk where |Mi| = d for 1 ≤ i ≤ k − 1 and |Mk| = |M | mod d. For any finite set S we

write s
$
← S to signify uniformly choosing a value s ∈ S.

Oracle TMs, random oracles, and transforms. Cryptographic schemes, adversaries, and
simulators are modeled as Oracle Turing Machines (OTM) and are possibly given zero or more
oracles, each being either a random oracle or another OTM (note that when used as an oracle, an
OTM maintains state across queries). We allow OTMs to expose a finite number of interfaces: an
OTM N = (N1, N2, . . . ,Nl) exposes interfaces N1, N2, . . . ,Nl. For brevity, we write MN to signify

6

that M gets to query all the interfaces of N. For a set Dom and finite set Rng we define a random
function by the following TM accepting inputs X ∈ Dom:

Algorithm RFDom,Rng(X):

if T [X] = ⊥ then T [X]
$
← Rng

ret T [X]

where T is a table everywhere initialized to ⊥. This implements a random function via lazy
sampling (which allows us to reason about the case in which Dom is infinite). In the case that
Dom = {0, 1}d and Rng = {0, 1}r we write RFd,r in place of RFDom,Rng . We similarly define RFd,Rng

and RFDom,r in the obvious ways and write RF∗,r in the special case that Dom = {0, 1}∗. A random
oracle is simply a public random function: all parties (including the adversary) are given access.
We write f, g, . . . = RFDom,Rng to signify that f , g, . . . are independent random oracles from Dom
to Rng . A transform C describes how to utilize an arbitrary compression function to create a
variable-input-length hash function. When we fix a particular compression function f , we get the
associated cryptographic scheme Cf ≡ C[f].

Collision resistance. We consider a function F to be collision resistant (CR) if it is compu-
tationally infeasible to find any two messages M 6= M ′ such that F (M) = F (M ′). For the rest
of the paper we use h to always represent a collision-resistant compression function with signature
h: {0, 1}d+n → {0, 1}n.

Note our definition of CR is informal. The general understanding in the literature is that a
formal treatment requires considering keyed families. But practical compression and hash functions
are not keyed when used for CR. (They can be keyed for use as MACs or PRFs.) And in fact, our
results on CR are still formally meaningful because they specify explicit reductions.

PRFs. Let F : Keys×Dom → Rng be a function family. Informally, we consider F a pseudorandom
function family (PRF) if no reasonable adversary can succeed with high probability at distinguishing

between F (K, ·) for K
$
← Keys and a random function f = RFDom,Rng . More compactly we write

the prf-advantage of an adversary A as

Advprf
F (A) = Pr

[

K
$
← Keys; AF (K,·) ⇒ 1

]

− Pr
[

Af(·) ⇒ 1
]

where the probability is taken over the random choice of K and the coins used by A or by the coins
used by f and A. For the rest of the paper we use e to always represent a PRF with signature
e: {0, 1}d+n → {0, 1}n that is keyed through the low n bits of the input.

PROs. The indifferentiability framework [14] generalizes the more typical indistinguishability
framework (e.g., our definition of a PRF above). The new framework captures the necessary
definitions for comparing an object that utilizes public components (e.g., fixed-input-length (FIL)
random oracles) with an ideal object (e.g., a variable-input-length (VIL) random oracle). Fix some
number l. Let Cf1,...,fl : Dom → Rng be a function for random oracles f1, . . . , fl = RFD,R. Then let
SF = (S1, . . . , Sl) be a simulator OTM with access to a random oracle F = RFDom,Rng and which
exposes interfaces for each random oracle utilized by C. (The simulator’s goal is to mimic f1, . . . , fl

in such a way as to convince an adversary that F is C.) The pro-advantage of an adversary A
against C is the difference between the probability that A outputs a one when given oracle access
to Cf1,...,fl and f1, . . . , fl and the probability that A outputs a one when given oracle access to F
and SF . More succinctly we write that the pro-advantage of A is

Advpro
C, S(A) =

∣

∣

∣
Pr
[

ACf1,...,fl ,f1,...,fl ⇒ 1
]

− Pr
[

AF ,SF

⇒ 1
]∣

∣

∣

7

where, in the first case, the probability is taken over the coins used by the random oracles and A
and, in the second case, the probability is over the coins used by the random oracles, A, and S.
For the rest of the paper we use f to represent a random oracle RFd+n,n.

Resources. We give concrete statements about the advantage of adversaries using certain re-
sources. For prf-adversaries we measure the total number of queries q made and the running
time t. For pro-adversaries we measure the total number of left queries qL (which are either to C
or F) and the number of right queries qi made to each oracle fi or simulator interface Si. We also
specify the resources utilized by simulators. We measure the total number of queries qS to F and
the maximum running time tS . Note that these values are generally functions of the number of
queries made by an adversary (necessarily so, in the case of tS).

Pointless queries. In all of our proofs (for all notions of security) we assume that adversaries
make no pointless queries. In our setting this particularly means that adversaries are never allowed
to repeat a query to an oracle.

3 Domain Extension using Merkle-Damg̊ard

The Merkle-Damg̊ard transform. We focus on variants of the Merkle-Damg̊ard transform.
Let c: {0, 1}d+n → {0, 1}n be an arbitrary fixed-input-length function. Using it, we wish to con-
struct a family of variable-input-length functions F c: {0, 1}n × {0, 1}∗ → {0, 1}n. We start by
defining the Merkle-Damg̊ard iteration c+: D+ → {0, 1}n by the algorithm specified below.

Algorithm c+(I, M):
M1 · · ·Mk

d←M ; Y0 ← I
for i = 1 to k do

Yi ← c(Mi || Yi−1)
ret Yk

d

M1 M2

· · ·

Mk

n n n
YkI

c c c

We will also write f+, h+, and e+ which are defined just like c+ but with c replaced with the
appropriate function. Since I is usually fixed to a constant, the function c+ only works for strings
that are a multiple of d bits. Thus we require a padding function pad(M), which for any string
M ∈ {0, 1}∗ returns a string Y for which |Y | is a multiple of d. We require that pad is one-to-one
(this requirement is made for all padding functions in this paper). A standard instantiation for pad

is to append to the message a one bit and then enough zero bits to fill out a block. Fixing some
IV ∈ {0, 1}n, we define the plain Merkle-Damg̊ard transform MD[c] = c+(IV , pad(·)).

Keying strategies. In this paper we discuss transforms that produce keyless schemes. We would
also like to utilize these schemes as variable-input-length PRFs, but this requires that we use some
keying strategy. We focus on the key-via-IV strategy. Under this strategy, we replace constant
initialization vectors with randomly chosen keys of the same size. For example, if e is a particular
PRF, then keyed MDe would be defined as MDe

K(M) = e+(K, pad(M)) (it should be noted that
this is not a secure PRF). We will always signify the keyed version of a construction by explicitly
including the keys as subscripts.

Multi-property preservation. We would like to reason about the security of MD and its
variants when we make assumptions about c. Phrased another way, we want to know if a transform
such as MD preserves security properties of the underlying compression function. We are interested
in collision-resistance preservation, PRO preservation, and PRF preservation. Let C be a transform

8

that works on functions from {0, 1}d+n to {0, 1}n. Let h: {0, 1}d+n → {0, 1}n be a collision-resistant
hash function. Then we say that C is collision-resistance preserving (CR-Pr) if the scheme Ch is
collision-resistant. Let f = RFd+n,n be a random oracle. Then we say that C is pseudorandom
oracle preserving (PRO-Pr) if the scheme Cf is a pseudorandom oracle. Let e: {0, 1}d+n → {0, 1}n

be an arbitrary PRF (keyed via the low n bits). Then we say that C is pseudorandom function
preserving (PRF-Pr) if the keyed-via-IV scheme Ce

K is a PRF. A transform for which all of the above
holds is considered multi-property preserving.

Security of MD and SMD. It is well known that MD is neither CR-Pr, PRO-Pr, or PRF-Pr [16,
13, 5, 12]. The first variant that was proven CR-Pr was so-called MD with strengthening, which
we denote by SMD. In this variant, the padding function is replaced by one with the following
property: for M and M ′ with |M | 6= |M ′| then Mk 6= M ′

k (the last blocks after padding are distinct).
A straightforward way to achieve a padding function with this property is to include an encoding
of the message length in the padding. In many implementations, this encoding is done using 64
bits [17], which restricts the domain to strings of length no larger than 264. We therefore fix some
padding function pad64(M) that takes as input a string M and returns a string Y of length kd bits
for some number k ≥ 1 such that the last 64 bits of Y are an encoding of |M |. Using this padding
function we define the strengthened MD transform SMD[c] = c+(IV , pad64(·)). We emphasize the
fact that preservation of collision-resistance is strongly dependent on the choice of padding function.
However, this modification to MD is alone insufficient for rendering SMD either PRF-Pr or PRO-Pr

due to simple length-extension attacks [5, 12].

4 Orthogonality of Property Preservation

In this section we illustrate that property preservation is orthogonal. Previous work [12] has already
shown that collision-resistance preservation does not imply pseudorandom oracle preservation. We
investigate the inverse: does a transform being PRO-Pr imply that it is also CR-Pr? We answer
this in the negative by showing how to construct a PRO-Pr transform that is not CR-Pr. While
this result is sufficient to refute the idea that PRO-Pr is a stronger security goal for transforms, it
does not necessarily imply anything about specific PRO-Pr transforms. Thus, we investigate the
four transforms proposed by Coron et al. and show that all four fail to preserve collision-resistance.
Finally, lacking a formally meaningful way of comparing pseudorandom oracle preservation and
pseudorandom function preservation (one resulting in keyless schemes, the other in keyed), we
briefly discuss whether the proposed transforms are PRF-Pr.

4.1 PRO-Pr does not imply CR-Pr

Let n, d > 0 and h: {0, 1}d+n → {0, 1}n be a collision-resistant hash function and f = RFd+n,n be a

random oracle. Let Dom,Rng be non-empty sets and let C1 be a transform for which Cf
1 ≡ C1[f] is

a pseudorandom oracle Cf
1 : Dom → Rng . We create a transform C2 that is PRO-Pr but is not CR-

Pr. In other words the resulting scheme Cf
2 : Dom → Rng is indifferentiable from a random oracle,

but it is trivial to find collisions against the scheme Ch
2 (even without finding collisions against h).

We modify C1[c] to create C2[c] as follows. First check if c(0d+n) is equal to 0n and return 0n

if that is the case. Otherwise we just follow the steps specified by C1[c]. Thus the scheme Cf
2

returns 0n for any message if f(0d+n) = 0n. Similarly the scheme Ch
2 returns 0n for any message if

h(0d+n) = 0n. The key insight, of course, is that the differing assumptions made about the oracle
impact the likelihood of this occurring. If the oracle is a random oracle, then the probability is
small: we prove below that Cf

2 is a pseudorandom oracle. On the other hand, we now show how

9

Let h′: {0, 1}n+d → {0, 1}n−1 be CR.
Then define h: {0, 1}n+d → {0, 1}n by

h(M) =

{

0n if M = 0d+n

h′(M) || 1 otherwise

procedure Initialize
000 f = RFd+n,n

procedure f(x)
100 ret f(x)

procedure C(X) Game G0 Game G1

200 Y ← Cf
1 (X)

201 if f(0d+n) = 0n then bad← true; Y ← 0n

202 ret Y

Figure 2: (Top) Definition of the collision-resistant compression function used in the proof of Proposition 4.1
and the counter-examples of Section 4.2. (Bottom) Games utilized in the proof of Proposition 4.1 to show

that Cf
2 is a PRO.

to easily design a collision-resistant hash function h that causes Ch
2 to not be collision resistant.

Let h′: {0, 1}d+n → {0, 1}n−1 be some collision-resistant hash function. Then h(M) returns 0n if
M = 0d+n, otherwise it returns h′(M) || 1. Collisions found on h would necessarily translate into
collisions for h′, which implies that h is collision-resistant. Furthermore since h(0d+n) = 0n we have
that Ch

2 (M) = 0n for any message M , making it trivial to find collisions against Ch
2 .

Proposition 4.1 [C2 is PRO-Pr] Let n, d > 0 and Dom,Rng be non-empty sets and f = RFd+n,n

and F = RFDom,Rng be random oracles. Let Cf
1 be a pseudorandom oracle. Let Cf

2 be the scheme
as described above and let S be an arbitrary simulator. Then for any adversary A that utilizes qL

left queries, qR right queries, and runs in time t, we have that

Advpro
C2,S(A) ≤ Advpro

C1,S(A) +
1

2n
.

Proof: Let f = RFd+n,n and F = RFDom,Rng be random oracles. Let A be some pro-adversary

against Cf
2 . Let S be an OTM with an interface Sf that on (d+n)-bit inputs returns n-bit strings.

We utilize a simple game-playing argument in conjunction with a hybrid argument to bound the
indifferentiability of C2 by that of C1 (with respect to simulator S). Figure 2 displays two games,
game G0 (includes boxed statement) and game G1 (boxed statement removed). The first game

G0 exactly simulates the oracles Cf
2 and f . The second game G1 exactly simulates the oracles Cf

1

and f . We thus have that Pr[AC
f
2 ,f ⇒ 1] = Pr[AG0 ⇒ 1] and Pr[AC

f
1 ,f ⇒ 1] = Pr[AG1 ⇒ 1]. Since

G0 and G1 are identical-until-bad we have by the fundamental lemma of game playing [10] that
Pr[AG0 ⇒ 1]−Pr[AG1 ⇒ 1] ≤ Pr[AG1 sets bad] . The right hand side is equal to 2−n because f is a
random oracle. Thus,

Advpro
C2,S(A) = Pr

[

AG0 ⇒ 1
]

− Pr
[

AF ,SF

⇒ 1
]

= Pr
[

AG0 ⇒ 1
]

− Pr
[

AG1 ⇒ 1
]

+ Pr
[

AG1 ⇒ 1
]

− Pr
[

AF ,SF

⇒ 1
]

≤ Pr
[

AG1 sets bad
]

+ Pr
[

AC
f
1 ,f ⇒ 1

]

− Pr
[

AF ,SF

⇒ 1
]

=
1

2n
+ Advpro

C1,S(A) .

10

Prefix-free MD:
PRE[c] = c+(IV , padPF(·))
where padPF: {0, 1}∗ → D+ is a prefix-free
padding function

NMAC Transform:
NT[c, g] = g(c+(IV , pad(·)))
where g: {0, 1}n → {0, 1}n is a function

Chop Solution:
CHP[c] = first n− s bits of c+(IV , pad(·))

HMAC Transform:
HT[c] = c(c+(IV , 0d || pad(·)) || 0d−n || IV)

Figure 3: The four MD variants proposed in [12] that are PRO-Pr but not CR-Pr.

4.2 Insecurity of Proposed PRO-Pr Transforms

Collision-resistance preservation. The result above tells us that PRO-Pr does not imply
CR-Pr for arbitrary schemes. What about MD variants? One might hope that the mechanisms
used to create a PRO-Pr MD variant are sufficient for rendering the variant CR-Pr also. This is not
true. In fact all previously proposed MD variants proven to be PRO-Pr are not CR-Pr. The four
variants are summarized in Fig. 3 and below, see [12] for more details.

The first transform is Prefix-free MD specified by PRE[c] = c+(IV , padPF(·)). It applies a
prefix-free padding function padPF to an input message and then uses the MD iteration. The
padding function padPF must output strings that are a multiple of d bits with the property that
for any two strings M 6= M ′, padPF(M) is not a prefix of padPF(M ′). The Chop solution simply
drops s bits from the output of the MD iteration applied to a message. The NMAC transform
applies a second, distinct compression function to the output of an MD iteration; it is defined by
NT[c, g] = g(c+(IV , pad(·))), where g is a function from n bits to n bits (distinct from h). Lastly,
the HMAC Transform is defined by HT[c] = c(c+(IV , 0d || pad(·)) || 0d−n || IV). This transform
similarly utilizes enveloping: the MD iteration is fed into c in a way that distinguishes this last
call from the uses of c inside the MD iteration. The prepending of a d-bit string of zeros to an
input message helps ensure that the envelope acts differently than the first compression function
application.

Let IV = 0n. We shall use the collision-resistant hash function h that maps 0d+n to 0n (defined
in Sect. 4.1). We first show that the PRE construction, while being PRO-Pr for all prefix-free
encodings, is not CR-Pr for all prefix-free encodings. Let padPF(M) = g2(M) from Sect. 3.3

of [12]. Briefly, g2(M) = 0 ||M1, . . . , 0 ||Mk−1, 1 ||Mk for M1 || · · · ||Mk
d−1

← M || 10r, where r =
(d− 1)− ((|M |+ 1) mod d− 1). (That is we append a one to M , and then enough zero’s to make
a string with length a multiple of d − 1.) Now let X = 0d−1 and Y = 02(d−1). Then we have that
PREh(X) = PREh(Y) and no collisions against h occur. We should note that some prefix-free
encodings will render PRE CR-Pr, for example any that also include strengthening. The important
point here is that strengthening does not ensure prefix-freeness and vice-versa.

For the other three constructions, we assume that pad(M) simply appends a one and then
enough zeros to make a string with length a multiple of d. Now let X = 0d and Y = 02d. Then we
have that CHPh(X) = CHPh(Y) and NTh(X) = NTh(Y) and HTh(X) = HTh(Y). Never is there
a collision generated against h.

The straightforward counter-examples exploit the weakness of the basic MD transform. As noted
previously, the MD transform does not give any guarantees about collision resistance, and only when
we consider particular padding functions (i.e., pad64) can we create a CR-Pr transform. Likewise, we
have illustrated that the mechanisms of prefix-free encodings, dropping output bits, and enveloping
do nothing to help ensure collision-resistance is preserved, even though they render the transforms
PRO-Pr. To properly ensure preservation of both properties, we must specify transforms that

11

make use of mechanisms that ensure collision-resistance preservation and mechanisms that ensure
pseudorandom oracle preservation. In fact, it is likely that adding strengthening to these transforms
would render them CR-Pr. However, as we show in the next section, our new construction (with
strengthening) is already more efficient than these constructions (without strengthening).

PRF preservation. It is not formally meaningful to compare PRF preservation with PRO preser-
vation, since the resulting schemes in either case are different types of objects (one keyed and
one keyless). However we can look at particular transforms. Of the four proposed by Coron et
al. only PRE is known to be PRF-Pr. Let e be a PRF. Since we are using the key-via-IV strategy,
the keyed version of PREe is PREe

K(M) = e+(K, padPF(M)). This is already known to be a good
PRF [5]. As for the other three transforms, it is unclear whether any of them are PRF-Pr. For
NT, we note that the security will depend greatly on the assumptions made about g. If g is a
separately keyed PRF, then we can apply the proof of NMAC [4]. On the other hand, if g is not
one-way, then an adversary can determine the values produced by the underlying MD iteration and
mount simple length-extension attacks. Instead of analyzing these transforms further (which are
not CR-Pr anyway), we look at a new construction.

5 The EMD Transform

We propose a transform that is CR-Pr, PRO-Pr, and PRF-Pr. Let n, d be numbers such that
d ≥ n + 64. Let c: {0, 1}d+n → {0, 1}n be a function and let D◦ = ∪i≥1{0, 1}(i+1)d−n. Then we
define the enveloped Merkle-Damg̊ard iteration c◦: {0, 1}n × {0, 1}n × D◦ → {0, 1}n on c by the
algorithm given below.

Algorithm c◦(I1, I2, M):
M1 · · ·Mk

d←M
P ←M1 · · ·Mk−1

ret c(c+(I1, P) ||Mk || I2)

d

M1

nn
· · ·

Mk−1

n

n

d

Mk

n
Yk

I1

I2

c c

c

||

To specify our transform we require a padding function padEMD: {0, 1}≤264

→ D◦ for which the
last 64 bits of padEMD(M) encodes |M |. Fix IV 1, IV 2 ∈ {0, 1}n with IV 1 6= IV 2. Then we specify
the enveloped Merkle-Damg̊ard transform EMD[c] = c◦(IV 1, IV 2, padEMD(·)).

EMD utilizes two main mechanisms for ensuring property preservation. The first is the well-
known technique of strengthening: we require a padding function that returns a string appended
with the 64-bit encoding of the length. This ensures that EMD preserves collision-resistance.
The second technique consists of using an ‘extra’ compression function application to envelope
the internal MD iteration. It is like the enveloping mechanism used by Maurer and Sjödin in a
different setting [15] (which is discussed in more detail in Appendix A), but distinct from prior
enveloping techniques used in the current setting. First, it includes message bits in the envelope’s
input (in NMAC/HMAC and HT, these bits would be a fixed constant, out of adversarial control).
This results in a performance improvement since in practice it is always desirable to have d as
large as possible relative to n (e.g., in SHA-1 d = 512 and n = 160). Second, it utilizes a distinct
initialization vector to provide (with high probability) domain separation between the envelope and
internal applications of the compression function. This mechanism allows us to avoid having to use

12

other previously proposed domain separation techniques while still yielding a PRO-Pr transform.
(The previous techniques were prefix-free encodings or the prepending of 0d to messages, as used
in the HT transform; both are more costly.)

5.1 EMD is CR-Pr

Let h: {0, 1}d+n → {0, 1}n be a collision resistant hash function. Then any adversary which
finds collisions against EMDh (two messages M 6= M ′ for which EMDh(M) = EMDh(M ′)) will
necessarily find collisions against h. This can be proven using a slightly modified version of the
proof that SMD is collision-resistant [16, 13], and we therefore omit the details. The important
intuition here is that embedding the length of messages in the last block is crucial; without the
strengthening the scheme would not be collision resistant (similar attacks as those given in Section 4
would be possible).

5.2 EMD is PRO-Pr

Now we show that EMD is PRO-Pr. We proceed in two steps. First we state and discuss a lemma
that is core to the proof that EMD is PRO-Pr. Particularly, this lemma proves that a slightly
different transform is PRO-Pr. Second, we use this lemma in the proof of our main result, captured
by Theorem 5.2. That proof boils down to showing that EMD behaves indifferentiably from this
other, simplifed transform, and then by applying the lemma we finish. The proof of the lemma is
lengthy, and differed to Section 6.

Let f, g = RFd+n,n be random oracles. For any strings P1 ∈ D+ and P2 ∈ {0, 1}d−n we define
the function gf+: D◦ → {0, 1}n by gf+(P1 || P2) = g(f+(IV 1, P1) || P2 || IV 2). This function is
essentially EMDf , except that we replace the envelope with an independent random oracle g. The
following lemma states that gf+ is a pseudorandom oracle.

Lemma 5.1 [gf+ is a PRO] Let f, g = RFd+n,n. Let A be an adversary that asks at most qL left
queries with maximal length ld + (d − n) bits for l ≥ 1, qf right f-queries, qg right g-queries and
runs in time t. Then

Advpro
gf+,SB

(A) ≤
l2q2

L + (lqL + qf)(qf + qg)

2n

where SB = (SBf ,SBg), defined in Fig. 4, makes qSB ≤ qg queries and runs in time O(q2
f + qgqf).

We might hope that this result is given by Theorem 4 from [12], which states that NTf,g is in-
differentiable from a random oracle. Unfortunately, their theorem statement does not allow for
adversarially-specified bits included in the input to g. The proofs are likely similar, however since
no proof of the Coron et al. theorem has actually appeared we were forced to work from scratch.
We give the full proof of the lemma in Section 6. Now we describe the simulator used, which is
needed for the proof of the main result that EMD is PRO-Pr.

The simulator SB = (SBf ,SBg) exposes two interfaces that accept (n + d)-bit inputs and reply
with n bit outputs. Its goal is to behave in such a way that no adversary can determine (with
high probability) that it is not dealing with the construction and two random oracles f and g.
The first interface mimics the internal random oracle f and the second mimics the enveloping
random oracle g. The simulator maintains a tree structure that stores information about adversarial
queries (the edges) and the replies given (the nodes). The root is labeled with IV 1. The notation
NewNode(M1 · · ·MiU) ← Y for U ∈ {0, 1}d, Y ∈ {0, 1}n, and Mi ∈ {ε} ∪ {0, 1}d means (1)
locate the node found by following the path starting from the root and following the edges labeled
by M1, M2, etc. and (2) add an edge labeled by U from this found node to a new node labeled

13

On query SBf (X):

Y
$
← {0, 1}n

Parse X into U || V s.t.
|U | = d, |V | = n

if V = IV 1 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode(V) then

NewNode(M1 · · ·MiU)← Y
ret Y

On query SBg(X):

Parse X into V || U ||W s.t.
|V | = n, |U | = d− n, |W | = n

if W = IV 2 and
M1 · · ·Mi ← GetNode(V) then

ret F(M1 · · ·MiU)

ret Y
$
← {0, 1}n

On query SA(X):

Y
$
← {0, 1}n

Parse X into V || U ||W s.t.
|V | = n, |U | = d− n, |W | = n

if W = IV 2 then
if M1 · · ·Mi ← GetNode(V) then

ret F(M1 · · ·MiU)
else

ret Y
Parse X into U || V s.t. |U | = d, |V | = n
if V = IV 1 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode(V) then

NewNode(M1 · · ·MiU)← Y
ret Y

Figure 4: Pseudocode for simulators SB (utilized in the proof of Lemma 5.1) and SA (utilized in the proof
of Theorem 5.2).

by Y . The notation GetNode(V) for V ∈ {0, 1}n returns the sequence of edge labels on a path
from the root to a node labeled by V (if there are duplicate such nodes, return an arbitrary one, if
there are none then return false). The tree below is an example after several queries. For example,
a query SBf (0d || IV 1) adds the left child of the root; the random value Y1 is returned to the
adversary. If the next query is SBf (0d || Y1), then the simulator associates these two queries by
producing the child of Y1, labeled accordingly. Finally, if the adversary queries SBg(Y2 ||M || IV 2)
(for any M ∈ {0, 1}d−n) the simulator searches the tree for a node labeled Y2, and finding one,
returns F(0d || 0d ||M) (using the edge labels on the path from the root to form this query). Note
that if the low bits are not IV 2, the simulator just returns random bits. Intuitively, the simulator
will succeed whenever no Y values collide and the adversary does not predict a Y value.

Y1 Y3

1d

1d

Y4 Y5

0d

0d

IV 1

Y2

0d

The simulator is discussed further in Section 6. Now we use Lemma 5.1 to prove that EMD is
PRO-Pr.

Theorem 5.2 [EMD is PRO-Pr] Fix n, d, and let IV 1, IV 2 ∈ {0, 1}n with IV 1 6= IV 2. Let
f = RFd+n,n be a random oracle. Let A be an adversary that asks at most qL left queries with
maximal length ld + d − n bits for l ≥ 1, q1 right queries with lowest n bits not equal to IV 2, q2

right queries with lowest n bits equal to IV 2, and runs in time t. Then

Advpro
EMD,SA(A) ≤

l2q2
L + (lqL + q1)(q1 + q2)

2n
+

lqL + q1

2n
.

where the simulator SA, defined in Fig. 4, makes qSA ≤ q2 queries and runs in time O(q2
1 + q2q1).

14

Proof: Let f = RFd+n,n. Note that EMDf is just a special case (due to padding) of the function
f◦(M) = f◦(IV 1, IV 2, M) and we therefore prove the more general function is a PRO. Let F =
RFD◦,n. In Fig. 4 we define the simulator SA whose job is to mimic f in a way that convinces
any adversary that F is actually f◦. The behavior of SA is essentially identical to SB, the only
difference is that we use IV 2 to distinguish the envelope from internal applications of f .

Let A be an adversary attempting to differentiate between f◦, f and F ,SAF . We will show how
this adversary can be used to construct a pro-adversary B against gf+ (i.e., one that attempts
to distinguish between gf+, f, g and F ,SBF ,SBg). We utilize the three games shown in Fig. 5 to
perform the reduction. The first game G0 simulates exactly the pair of oracles f◦, f . It uses two
tables f and fIV 2 to implement the random oracle f . The fIV 2 table is used to track all domain
points for which the low n-bits are equal to IV 2. The f table tracks the other domain points. (Note
that the f table can also have domain/range pairs defined for domain points with the low bits equal
to IV 2. This can occur because of line 021. However, these points will not end up being used to
calculate values returned to the adversary because of the conditionals at lines 003 and 101.) We
thus have that

Pr
[

Af
◦,f ⇒ 1

]

= Pr
[

AG0 ⇒ 1
]

.

We create a new game G1 (the second figure with the boxed statement included) by splitting the
right oracle of G0 into two oracles: one for accessing the f table and one for accessing the fIV 2

table. Additionally we add a flag bad, set to true at line 201. Game G1 reveals three interfaces,
and so we create a new adversary B that behaves exactly as A except as follows. Whenever A
queries its right oracle on a string X, we have B query Rf (X) if the low n bits of X are not IV 2.
Otherwise B queries RfIV 2

(X). Because G1 returns values to B that are distributed identically to
those G0 returns to A we have that

Pr
[

AG0 ⇒ 1
]

= Pr
[

BG1 ⇒ 1
]

.

Our final game is G2 (the same as G1 except with the boxed statement removed). By removing
line 005, the new game G2 separates the single random oracle in the prior games into two separate
random oracles. We now argue that G1 and G2 are identical-until-bad, meaning that the conditional
at line 004 only evaluates to true in G1 and G2 if bad is set. In the case that i = 1, we can see that
Yi−1 = IV 1 6= IV 2, and thus the conditional will not evaluate to true.. For i > 1 we have that
Yi−1 is equal to the output of Sample-f, so if Yi−1 = IV 2 then necessarily bad must be set to true.
We therefore have that

Pr
[

BG1 ⇒ 1
]

− Pr
[

BG2 ⇒ 1
]

≤ Pr
[

BG2 sets bad
]

.

The right hand side of this equation can be upper bound as follows. The total number of times
that line 201 in G2 can be executed is lqL + q1 where q1 is the number of queries made by B to Rf .
Each time a (potentially) different random value f[X] is chosen and will equal the constant IV 2
with probability 1/2n. Thus we have that Pr

[

BG2 sets bad
]

≤ (lqL + q1)/2n.

Now we argue that Pr
[

AF ,SA ⇒ 1
]

= Pr
[

BF ,SBf ,SBg ⇒ 1
]

. Referring back to Fig. 4, we see that
SA and SB behave identically if all queries to SBg from an adversary have the low n bits equal
to IV 2 and all queries to SBf from an adversary have the low n bits not equal to IV 2. But this is
the behavior of B, by construction, and so the probabilities are equal. Combining all of the above

15

Game G0

A left query L(M):

000 M1 · · ·Mk
d←M ; Y0 ← IV 1

001 for 1 ≤ i ≤ k − 1
002 Yi ← Sample-f(Mi || Yi−1)
003 if Yi−1 = IV 2 then

004 Yi ← Sample-fIV 2(Mi || Yi−1)
005 Yk ← Sample-fIV 2(Yk−1 ||Mk || IV 2)
006 ret Yk

A right query Rf (X):

100 Parse X into U || V s.t. |U | = d, |V | = n
101 if V = IV 2 then ret Sample-fIV 2(X)
102 ret Sample-f(X)

Subroutine Sample-f(X):

200 if f[X] = ⊥ then f[X]
$

← {0, 1}n

201 ret f[X]

Subroutine Sample-fIV 2(X):

300 if fIV 2[X] = ⊥ then fIV 2[X]
$

← {0, 1}n

301 ret fIV 2[X]

Game G1 Game G2

A left query L(M):

000 M1 · · ·Mk
d←M ; Y0 ← IV 1

001 for 1 ≤ i ≤ k − 1
002 Yi ← Sample-f(Mi || Yi−1)
003 if Yi−1 = IV 2 then

004 Yi ← Sample-fIV 2(Mi || Yi−1)

005 Yk ← Sample-fIV 2(Yk−1 ||Mk || IV 2)
006 ret Yk

A right query Rf (X):

100 ret Sample-f(X)

A right query RIV 2(X):

400 ret Sample-fIV 2(X)

Subroutine Sample-f(X):

200 if f[X] = ⊥ then f[X]
$

← {0, 1}n

201 if f[X] = IV 2 then bad← true

202 ret f[X]

Subroutine Sample-fIV 2(X):

300 if fIV 2[X] = ⊥ then fIV 2[X]
$

← {0, 1}n

301 ret fIV 2[X]

Figure 5: Games utilized in proof of Theorem 5.2.

we get that

Advpro

EMDf ,SA
(A) ≤ Advpro

f◦,SA(A)

= Pr
[

Af
◦,f ⇒ 1

]

− Pr
[

AF ,SA ⇒ 1
]

= Pr
[

AG0 ⇒ 1
]

− Pr
[

AF ,SA ⇒ 1
]

= Pr
[

BG1 ⇒ 1
]

− Pr
[

BF ,SBf ,SBg ⇒ 1
]

≤ Pr
[

BG2 ⇒ 1
]

+
lqL + q1

2n
− Pr

[

BF ,SBf ,SBg ⇒ 1
]

= Advpro
gf+,SB

(B) +
lqL + q1

2n
.

Let q2 be the number of queries by B to RIV 2. Apply Lemma 5.1 (letting qf = q1 and qg = q2) and
the theorem statement follows.

5.3 EMD is PRF-Pr

We utilize the key-via-IV strategy to create a keyed version of our transform EMDe
K1,K2

(M) =
e◦(K1, K2, M) (for some PRF e). The resulting scheme is very similar to NMAC, which we know to
be PRF-Pr [2]. Because our transform allows direct adversarial control over a portion of the input
to the envelope function, we can not directly utilize the proof of NMAC (which assumes instead
that these bits are fixed constants). However, the majority of the proof of NMAC is captured by
two lemmas, The first (Lemma 3.1 [2]) shows (informally) that the keyed MD iteration is unlikely
to have outputs that collide. The second lemma (Lemma 3.2 [2]) shows that composing the keyed
MD iteration with a separately keyed PRF yields a PRF. We omit the details.

16

On query SBf (X):

Y
$

← {0, 1}n

Parse X into U || V s.t. |U | = d, |V | = n
if V = IV then

NewNode(U)← Y
if M1 · · ·Mi ← GetNode(V) then

NewNode(M1 · · ·MiU)← Y
ret Y

On query SBg(X):
Parse X into V || U s.t. |V | = n, |U | = d
if M1 · · ·Mi ← GetNode(V) then

ret F(M1 · · ·MiU)

ret Y
$

← {0, 1}n

Y1 Y3

1
d

1
d

Y4 Y5

0
d

0
d

IV 1

Y2

0
d

Figure 6: On the left is the simulator SB = (SBf ,SBg) which mimics the behavior of the random
oracles f and g used by gf+ (it has oracle access to a random oracle F). The functions GetNode
and NewNode are used to access and modify a tree structure, initially with only a root node
labeled with IV . The diagram on the right is a possible tree state (not including the dotted lines,
which would imply a pointless query) after several queries to SBf .

Theorem 5.3 [EMD is PRF-Pr] Fix n, d and let e: {0, 1}d+n → {0, 1}n be a function family
keyed via the low n bits of its input. Let A be a prf-adversary against keyed EMD using q queries
of length at most m blocks and running in time t. Then there exists prf-adversaries A1 and A2

against e such that

Advprf
EMDe

K1,K2

(A) ≤ Advprf
e (A1) +

(

q

2

)[

2m ·Advprf
e (A2) +

1

2n

]

where A1 utilizes q queries and runs in time at most t and A2 utilizes at most two oracle queries
and runs in time O(mTe) where Te is the time for one computation of e.

6 Proof of Lemma 5.1

Fix n and d with d ≥ n, some n-bit constant IV , and let f, g = RFd+n,n. To simplify the proof ex-
position slightly, we prove that a more general version of gf+ is a pseudorandom oracle, specifically
gf+(P1 || P2) = g(f+(IV , P1) || P2) for any strings P1 ∈ D+ and P2 ∈ D (i.e., we let the adversary
also control the low n bits of input into the envelope function). Thus, let F = RFD+,n. Now let A
be some adversary attacking the indifferentiability of gf+ that asks at most q = qL+qf +qg queries.
Recall from our definition of indifferentiability (see Section 2) that we must bound

Advpro
gf+,S

(A) =
∣

∣

∣
Pr
[

Agf+,f,g ⇒ 1
]

− Pr
[

AF ,SBf ,SBg ⇒ 1
]

∣

∣

∣

for some simulator S.

6.1 The Simulator

Figure 6 specifies the simulator SB = (SBf ,SBg), which is the same as that given in Figure 4. Here
we discuss it in a bit more detail.

Recall that we do not allow pointless queries, and thus SBf and SBg need not worry about
repeat queries. For queries to SBf , the simulator keeps track of the input messages and the values

17

chosen as replies, which can be done with a simple tree structure. The root is labeled with IV and
all other nodes are labeled with returned values. Edges are labeled with the first d bits of inputs
(which correspond to potential message blocks in our construction). Two subroutines are utilized
to maintain our tree structure.

The notation GetNode(V) performs a search of the tree, and upon finding a node with label V
returns the edge labels on the path from the root to that node. If multiple nodes exist with label V ,
then one is chosen arbitrarily. If no nodes exist with label V , then the value false is returned (and,
in particular, if the GetNode is located in a conditional, then the conditional fails).

The notation NewNode(M1M2 · · ·MiU) ← Y is interpreted as follows for a sequence of d-bit
strings M1, . . ., Mi (where i can be zero) and a d bit string U and an n-bit string Y . (1) Locate
the node found by by following from the root the edges labeled by M1, M2, . . . , Mi (if i = 0, then
this node is simply the root node). (2) Add an edge labeled U from the found node to a new node
with label Y . It is worth pointing out two facts. the path with edges labeled by M1, . . . , Mi is
guaranteed to exist since these labels are always returned by a call to GetNode. Second, each
path’s concatenation of edge labels is unique because we disallow pointless queries (particularly, no
node will ever have two edges with the same label to two different children).

The right hand diagram in Figure 6 displays a sample tree after the queries Y1 = SBf (0d || IV),
Y2 = SBf (0d || Y1), Y3 = SBf (1d || IV), Y4 = SBf (0d || Y3), and Y5 = SBf (1d || Y3). Note that
another query SBf (0d || Y6) for which Y6 is not equal to any of the nodes in the tree will have no
effect on the tree.

For queries to SBg, the simulator checks if the first n bits of the input are equal to the label of
some node in the graph. If there is no such node, then a random n-bit string is returned. Otherwise,
a sequence of edge labels are returned (corresponding to labels of the edges on the path from the
root to the matching node). The simulator then queries its oracle F on the concatenation of these
edge labels and the last d bits of the input.

We now give some intuition regarding why the simulator can fool any distinguisher. The sim-
ulator’s high-level goal is to behave like f, g in a way consistent with gf+. Towards this end it
must return values that are consistent with the construction and two random oracles. Since the
adversary never learns anything about f range points except by querying the right oracle (even
when dealing with the actual construction), the simulator can make up these values at random.
Only when queries to SBg occur must the simulator check to ensure that values returned here
correspond to values returned by F . Intuitively, this is always possible as long as the adversary
necessarily queries SBf for the intermediate values, and in order. In this case we are guaranteed
to have a path in the tree corresponding to the message that the adversary is checking. Then, the
only way to trick the simulator is for there to be a collision in intermediate values output or for the
adversary to predict one of these intermediate values. As we show rigorously in the proof, neither
can occur with high probability.

6.2 Bounding A’s Advantage

We utilize a game-playing argument. Thus, we replace the oracles by games that simulate them.
We will notate this by AGi where Gi = G0, G1, etc. Let pi = Pr

[

AGi ⇒ 1
]

.

(G0 and G1; Figure 7) We start with a game G0 that simulates exactly the oracles gf+, f ,
and g. The game, which includes the boxed statements, is shown in Figure 7. There are three
interfaces, corresponding to the three types of oracle queries that can be made: L, Rf , and Rg.
Note that we increment the query identifier t globally. We push the functionality of L into a
subroutine LSub, since this functionality is also sometimes utilized when answering g right oracle

18

Games G0 and G1

Respond to the t-th query as follows:

A left query L(M t):

000 M t
1 · · ·M

t
k

d←M t

000 ret LSub(t, M t
1 · · ·M

t
k)

Subroutine LSub(t, M t
1 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1 · · ·M
s
k = M t

1 · · ·M
t
k

101 if s < t then ret Y s
k

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 Y t
k

$

← {0, 1}n

109 if Y t
k−1 ||M

t
k ∈ Dom(g) then

110 bad← true

111 Y t
k ← g[Y t

k−1 ||M
t
k]

112 g[Y t
k−1 ||M

t
k]← Y t

k

113 ret Y t
k

A right query Rf (Xt):

200 Y t $

← {0, 1}n

201 if Xt ∈ Dom(f) then

202 Y t ← f [Xt]
203 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
204 if V t = IV then

205 NewNode(U t)← Y t

206 if M t
1M

t
2 · · ·M

t
i ← GetNode(V t) then

207 NewNode(M t
1M

t
2 · · ·M

t
i U t)← Y t

208 ret f [Xt]← Y t

A right query Rg(Xt):

300 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
301 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

302 ret LSub(t, M t
1M

t
2 · · ·M

t
i U t)

303 Y t $

← {0, 1}n

304 if Xt ∈ Dom(g) then

305 bad← true

306 Y t ← g[Xt]

307 ret g[Xt]← Y t

Figure 7: Games G0 (boxed statements included) and G1 (boxed statements removed).

Game G2

Respond to the t-th query as follows:

A left query L(M t):

000 M t
1M

t
2 · · ·M

t
k

d←M t

000 ret LSub(t, M t
1M

t
2 · · ·M

t
k)

Subroutine LSub(t, M t
1M

t
2 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
k

101 if s < t then ret Y s
k

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 if Y t
k−1 ||M

t
k ∈ Dom(g) then bad← true

109 ret g[Y t
k−1 ||M

t
k]← Y t

k

$

← {0, 1}n

A right query Rf (Xt):

200 Y t $

← {0, 1}n

201 if Xt ∈ Dom(f) then

202 Y t ← f [Xt]
203 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
204 if V t = IV then

205 NewNode(U t)← Y t

206 if M t
1M

t
2 · · ·M

t
i ← GetNode(V t) then

207 NewNode(M t
1M

t
2 · · ·M

t
i U t)← Y t

208 ret f [Xt]← Y t

A right query Rg(Xt):

300 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
301 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

302 ret LSub(t, M t
1M

t
2 · · ·M

t
i U t)

304 if Xt ∈ Dom(g) then bad← true

305 ret g[Xt]← Y t $

← {0, 1}n

Figure 8: Game G2.

19

queries (line 302). The tables f and g in the game track two lazily-sampled random functions,
and the notation Dom(f) is shorthand for the current set of all points defined on the domain of f .
Although range points are chosen in L and Rf separately, the checks ensure consistency (lines 105,
109, 201, and 304). Clearly L is an exact simulation of gf+. Although Rf tracks some of the input
and returned values, this has no affect on the responses and so Rf implements a random oracle.
Finally we argue that Rg also implements a random oracle. This is clear except in the case that
line 302 is executed. But in this case, all the intermediate values Y t

i (for 1 ≤ i ≤ k−1) used in LSub

have already been defined by adversarial queries to Rf . Thus all that possibly remains to do is
sample a point for Y t

k , which is the range point g[Xt] = g[Y t
k−1 ||M

t
k]. Had there been an earlier

query s to L with message M t
1M

t
2 · · ·M

t
i U

t, then LSub simply returns the correct g range point.
Otherwise a new range point is chosen and returned. This behavior is consistent with implementing
a random oracle g, we simply do it in a seemingly strange way.

Now we must justify that G1, which does not include the boxed statements, is a correct sim-
ulation of F , SBf , and SBg. It is easy to verify that L returns random bits for any query. The
game implements Rg identically to SBg. Now to justify that Rf behaves like SBf . If line 202 is
never executed, then Rf calculates its responses exactly like SBf . If line 202 is executed, then some
previous query to L defined f [Xt] with a randomly selected value. The adversary learned nothing
about this random choice since L always returns a string of random bits unrelated to the other
random choices (recall that line 111 is removed from this game). Thus, although the random choice
occurred previously, it is still ‘fresh’ and using it is equivalent to choosing a new random value.
Since G0 and G1 are identical-until-bad we have that

p0 − p1 ≤ Pr
[

AG1 sets bad
]

.

The rest of this proof focuses on bounding this probability.

(G1 → G2; Figure 8) A conservative change consisting of delaying the random choice of Y t
k

in LSub and Y t in Rg until after checking the corresponding domain points.

(G2 → G3; Figure 9) We replace our tracking of g by a multiset G and defer the setting of bad
until the finalization step. We must show that Pr

[

AG2 sets bad
]

= Pr
[

AG3 sets bad
]

. This must
be true since G2 setting bad signifies the event that a domain point of g is being redefined to some
new random choice. Whenever this happens in G2, we are guaranteed to add a duplicate domain
point to G in G3. Thus G3 will set bad whenever G2 would have.

(G3 → G4; Figure 10) We simply drop the random choices for g range points. These have no
impact on the ability of an adversary to set bad. More formally, we have that for any adversary A
we can create an adversary B such that Pr

[

AG3 sets bad
]

= Pr
[

BG4 sets bad
]

. We define B by
simply modifying A as follows: everywhere A expects a response to a query to L or Rg, we simply
choose a random value and use this wherever the response was utilized in A.

(G4 → G5; Figure 11) A conservative change where we replace the call to LSub in Rg with code
that implements the exact same behavior. In game G4, whenever LSub is called from Rg, all that
occurs is the possible addition of the value Xt to G. This is reflected by the new code in Rg in G5.

(G5→G6; Figure 12) We push handling of queries to L to the finalization stage. To facilitate this,
we introduce a query type variable tyt that is used to record which oracle was queried for query t.
We must justify that it is conservative to defer the random choices made due to L queries until
the finalization stage. Specifically we are discussing random choices for values Y t

i = f [M t
i || Y

t
i−1].

Recall that the adversary does not learn anything about a random choice of this form unless and

20

Game G3

Respond to the t-th query as follows:

A left query L(M t):

000 M t
1M

t
2 · · ·M

t
k

d←M t

001 ret LSub(t, M t
1M

t
2 · · ·M

t
k)

Subroutine LSub(t, M t = M t
1M

t
2 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
k

101 if s < t then ret Y s
k

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 G ∪← Y t
k−1 ||M

t
k

109 ret Y t
k

$

← {0, 1}n

Finalization:
400 bad← ∃X, X ′ ∈ G s.t. X = X ′

A right query Rf (Xt):

200 Y t $

← {0, 1}n

201 if Xt ∈ Dom(f) then

202 Y t ← f [Xt]
203 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
204 if V t = IV then

205 NewNode(U t)← Y t

206 if M t
1M

t
2 · · ·M

t
i ← GetNode(V t) then

207 NewNode(M t
1M

t
2 · · ·M

t
i U t)← Y t

208 ret f [Xt]← Y t

A right query Rg(Xt):

300 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
301 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

302 ret LSub(t, M t
1M

t
2 · · ·M

t
i U t)

303 G ∪←Xt

304 ret Y t $

← {0, 1}n

Figure 9: Game G3.

Game G4

Respond to the t-th query as follows:

A left query L(M t):

000 M t
1M

t
2 · · ·M

t
k

d←M t

001 ret LSub(t, M t
1M

t
2 · · ·M

t
k)

Subroutine LSub(t, M t
1M

t
2 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
k

101 if s < t then ret Y s
k

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 G ∪← Y t
k−1 ||M

t
k

Finalization:
400 bad← ∃X, X ′ ∈ G s.t. X = X ′

A right query Rf (Xt):

200 Y t $

← {0, 1}n

201 if Xt ∈ Dom(f) then

202 Y t ← f [Xt]
203 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
204 if V t = IV then

205 NewNode(U t)← Y t

206 if M t
1M

t
2 · · ·M

t
i ← GetNode(V t) then

207 NewNode(M t
1M

t
2 · · ·M

t
i U t)← Y t

208 ret f [Xt]← Y t

A right query Rg(Xt):

300 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
301 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

302 LSub(t, M t
1M

t
2 · · ·M

t
i U t)

303 else

304 G ∪←Xt

Figure 10: Game G4.

21

until it queries Rf (M t
i || Y

t
i−1). In the interactive portion of G6 these random choices are only made

upon right oracle queries. During the finalization phase, any remaining random choices for values Y t
i

are made. The distribution of these random variables remains unchanged, which in turn implies that
the distribution of values added to G is equivalent. Thus Pr

[

BG5 sets bad
]

= Pr
[

BG6 sets bad
]

.

(G6 → G7; Figure 13) We move handling of Rf and Rg queries to the finalization stage. Note
that these queries are still handled before queries to L, which is identical to be the behavior of G6.
Therefore Pr

[

BG6 sets bad
]

= Pr
[

BG7 sets bad
]

.

(G7 → G8; Figure 14) A lossy change in which G8 restricts sampling in Rf to not include
collisions with 1) previously defined f range points or IV, 2) the last n bits of previous f domain
points, and 3) the first n bits of previous queries to Rg. This is accomplished by maintaining
another set B and adding the appropriate points to it. Initially we have B = {IV }. Now to analyze
the loss due to this restriction. For the ith query to f we have i−1 domain and range points defined
for f and up to qg previous queries to Rg (and one point for IV). Thus

|B| ≤ 1 + 2(i− 1) + qg .

The probability then that none of these points would be selected by a random selection from {0, 1}n

is

Pr
[

Y
$
← {0, 1}n : Y ∈ B

]

≤
2i− 1 + qg

2n
.

Now we want to sum up this probability over all queries to Rf (i.e., apply the union bound):

qf
∑

i=1

2i− 1 + qg

2n
=

1

2n

(qf
∑

i=1

2i−

qf
∑

i=1

1

)

+
qg

2n

qf
∑

i=1

1

=
q2
f + qgqf

2n
.

Therefore we have that

Pr
[

BG7 sets bad
]

≤ Pr
[

BG8 sets bad
]

+
q2
f + qgqf

2n
.

Note that this change does not affect the random choices made in LSub in the finalization stage —
these might still cause collisions.

(G8→ G9; Figure 15) The last game is non-interactive. The adversary specifies a fixed transcript
that maximizes the probability of setting the flag bad. A transcript is

τ = (ty1, S1, Y1), (ty2, S2, Y2), . . . , (tyq, Sq, Yq)

where tyi ∈ {Left,Right-f,Right-g}; and Si ∈ {0, 1}d+n if tyi 6= Left (we’ll notate these
inputs by Xi) or Si ∈ ({0, 1}n)+ if tyi = Left (notated by Mi); and Yi ∈ {0, 1}n if tyi = Right-f or
is otherwise ǫ. We additionally constrain tuples (Right-fj , Sj , Yj). We have that Yj can never be
specified to be IV . Additionally, for i < j we have the following three constraints: 1) Yj 6= Yi for
tuple (Right-fi, Si, Yi); 2) Yj can not equal the last n bits of Si for a tuple (Right-fi, Si, Yi); and 3)
Yj can not equal the first n bits of Si for a tuple (Right-gi, Si, ǫ). We have that Pr

[

BG8 sets bad
]

≤
Pr
[

BG9 sets bad
]

.

(Analysis of G9) We now bound the probability of bad being set in game G9 by bounding the
probability of a collision occuring in G. We proceed by showing that a collision in G implies that a

22

Game G5

Respond to the t-th query as follows:

A left query L(M t):

000 M t
1M

t
2 · · ·M

t
k

d←M t

001 ret LSub(t, M t
1M

t
2 · · ·M

t
k)

Subroutine LSub(t, M t
1M

t
2 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
k

101 if s = t then

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 G ∪← Y t
k−1 ||M

t
k

Finalization:
400 bad← ∃X, X ′ ∈ G s.t. X = X ′

A right query Rf (Xt):

200 Y t $

← {0, 1}n

201 if Xt ∈ Dom(f) then

202 Y t ← f [Xt]
203 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
204 if V t = IV then

205 NewNode(U t)← Y t

206 if M t
1M

t
2 · · ·M

t
i ← GetNode(V t) then

207 NewNode(M t
1M

t
2 · · ·M

t
i U t)← Y t

208 ret f [Xt]← Y t

A right query Rg(Xt):

300 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
301 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

302 Let s be smallest index s.t.
M t

1M
t
2 · · ·M

t
k = M t

1M
t
2 · · ·M

t
i U t

303 if s = t then G ∪←Xt

304 else

305 G ∪←Xt

Figure 11: Game G5.

Game G6

Respond to the t-th query as follows:

A left query L(M t):

000 tyt ← Left

Subroutine LSub(t, M t
1M

t
2 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
k

101 if s = t then

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 G ∪← Y t
k−1 ||M

t
k

Finalization:
400 for 1 ≤ j ≤ q:
401 if tyj = Left then

402 LSub(M j)
403 bad← ∃X, X ′ ∈ G s.t. X = X ′

A right query Rf (Xt):

200 tyt ← Right-f

201 Y t $

← {0, 1}n

202 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
203 if V t = IV then

204 NewNode(U t)← Y t

205 if M t
1M

t
2 · · ·M

t
k ← GetNode(V t) then

206 NewNode(M t
1M

t
2 · · ·M

t
kU t)← Y t

207 ret f [Xt]← Y t

A right query Rg(Xt):

300 tyt ← Right-g
301 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
302 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

303 Let s be smallest index s.t.
M t

1M
t
2 · · ·M

t
k = M t

1M
t
2 · · ·M

t
i U t

304 if s = t then G ∪←Xt

305 else

306 G ∪←Xt

Figure 12: Game G6.

23

Game G7

Respond to t-th query as follows:

A left query L(M t):

000 tyt ← Left

Subroutine LSub(t, M t
1M

t
2 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
k

101 if s = t then

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 G ∪← Y t
k−1 ||M

t
k

Finalization:
400 for 1 ≤ j ≤ q:
401 if tyj = Right-f then

402 RSubf (j, Xj)
403 if tyj = Right-g then

404 RSubg(j, Xj)
405 for 1 ≤ j ≤ q:
406 if tyj = Left then

407 LSub(M j)
408 bad← ∃X, X ′ ∈ G s.t. X = X ′

A right query Rf (Xt):

200 tyt ← Right-f

201 ret Y t $

← {0, 1}n

A right query Rg(Xt):

300 tyt ← Right-g

Subroutine RSubf (t, Xt):

500 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
501 if V t = IV then

502 NewNode(U t)← Y t

503 if M t
1M

t
2 · · ·M

t
i ← GetNode(V t) then

504 NewNode(M t
1M

t
2 · · ·M

t
i U t)← Y t

505 f [Xt]← Y t

Subroutine RSubg(t, Xt):

600 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
601 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

602 Let s be smallest index s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
i U t

603 if s = t then G ∪←Xt

604 else

605 G ∪←Xt

Figure 13: Game G7.

24

Game G8

Respond to t-th query as follows:

A left query L(M t):

000 tyt ← Left

Subroutine LSub(t, M t
1M

t
2 · · ·M

t
k):

100 Let s be min value s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
k

101 if s = t then

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if M t
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [M t

i || Y
t

i−1]
107 f [M t

i || Y
t

i−1]← Y t
i

108 G ∪← Y t
k−1 ||M

t
k

Finalization:
400 for 1 ≤ j ≤ q:
401 if tyj = Right-f then

402 RSubf (j, Xj)
403 if tyj = Right-g then

404 RSubg(j, Xj)
405 for 1 ≤ j ≤ q:
406 if tyj = Left then

407 LSub(M j)
408 bad← ∃X, X ′ ∈ G s.t. X = X ′

A right query Rf (Xt):

200 tyt ← Right-f

201 Y t $

← {0, 1}n/B

202 B ∪← last n bits of Xt

203 B ∪← Y t

204 ret Y t

A right query Rg(Xt):

300 tyt ← Right-g

301 B ∪← first n bits of Xt

Subroutine RSubf (t, Xt):

500 Parse Xt into U t || V t s.t. |U t| = d, |V t| = n
501 if V t = IV then

502 NewNode(U t)← Y t

503 if M t
1M

t
2 · · ·M

t
i ← GetNode(V t) then

504 NewNode(M t
1M

t
2 · · ·M

t
i U t)← Y t

505 f [Xt]← Y t

Subroutine RSubg(t, Xt):

600 Parse Xt into V t || U t s.t. |V t| = n, |U t| = d
601 if M t

1M
t
2 · · ·M

t
i ← GetNode(V t) then

602 Let s be smallest index s.t.
Ms

1Ms
2 · · ·M

s
k = M t

1M
t
2 · · ·M

t
i U t

603 if s = t then G ∪←Xt

604 else

605 G ∪←Xt

Figure 14: Game G8. Initially B = {IV }.

25

choice of range point of f either collided with a previously defined f range point or the first n bits
of a string Xj where (Right-gj , Xj , ǫ) ∈ τ . We then bound the probability of such a collision.

Let Rng(f) be the set of all bit strings mapped to by f . Define PartDom(g) to be the set of all
bit strings consisting of the first n bits of values Xt where (Right-g, Xt, ǫ) ∈ τ . Let Colli be the
event that the ith random choice in game G9 selects a string already in Rng(f)∪PartDom(g). Note
that there are at most lqL such random choices, where l is the maximal number of full message
blocks in each left query. Let Coll be the event that Colli occurs for 1 ≤ i ≤ lqL. Then we will show
that

Pr
[

BG9 sets bad
]

≤ Pr [Coll] . (1)

Before we do so, let us use Equation 1 to conclude. We have that

Pr [Coll] = Pr [Coll1 ∨ · · · ∨ ColllqL
] ≤

lqL
∑

i=1

Pr [Colli] (2)

≤

lqL
∑

i=1

qf + i− 1 + qg

2n
≤

l2q2
L + lqL(qf + qg)

2n
(3)

where 2 is just the application of the union bound and 3 is due to the fact that at the ith random
choice of the game |Rng(f)| ≤ qf + i− 1. Combining this bound with all of the game transitions,
we can bound p:

p ≤ Pr
[

AG1 sets bad
]

= Pr
[

AG2 sets bad
]

= Pr
[

AG3 sets bad
]

= Pr
[

BG4 sets bad
]

= Pr
[

BG5 sets bad
]

= Pr
[

BG6 sets bad
]

= Pr
[

BG7 sets bad
]

≤ Pr
[

BG8 sets bad
]

+
q2
f + qgqf

2n

= Pr
[

BG9 sets bad
]

+
q2
f + qgqf

2n

≤
l2q2

L + lqL(qf + qg)

2n
+

q2
f + qgqf

2n
=

l2q2
L + (lqL + qf)(qf + qg)

2n

Now we return to justifying Equation 1. We split the analysis into separate cases, based on how
elements are added to G. In each case we show that a collision in G implies that Coll occurs.

First consider two values added to G via line 108. Let the transcript entries responsible for the
two values be (Left, Ms, ǫ) and (Left, Mt, ǫ) where Ms = Ms

1 · · · M
s
k and Mt = Mt

1 · · · M
t
c where c and k

are not necessarily equal. Then for a collision to occur we know that Y s
k−1 = Y t

c−1. As long as one
of these values was not specified in the transcript (and thus randomly chosen in the game), then
this implies that Coll occurs since then we have one random point colliding with a point in the set
Rng(f) ∪ PartDom(g). Otherwise they were both specified by transcript entries (Right-f, Xi, Yi)
where Y s

k−1 = Yi and (Right-f, Xj , Yj) where Y t
c−1 = Yj . By our restrictions on the transcript

we then know that Xi = Xj , or rather that Ms
k−2 || Y

s
k−2 = Mt

c−2 || Y
t
c−2. We then repeat the above

reasoning, finishing if ever a random choice is made that has to be in the set Rng(f)∪PartDom(g)
(and thus implying that Coll occurs). We now show that such a random choice must be made.
Suppose otherwise. If s = t (the messages are the same number of blocks) then by the above
reasoning Mt = Ms, which is not allowed in the transcript (no pointless queries). If (wlog) s < t,
then we have that the adversary necessarily specified a transcript entry (Right-f, X, IV), which is
not allowed.

26

Game G9

Respond to t-th query as follows:

Given transcript τ = (ty1, Si, Yi), . . . , (tyq, Sq, Yq):
400 for 1 ≤ j ≤ q:
401 if tyj = Right-f then

402 RSubf (j, Sj , Yj)
403 if tyj = Right-g then

404 RSubg(j, Sj)
405 for 1 ≤ j ≤ q:
406 if tyj = Left then

407 LSub(j, Sj)
408 bad← ∃X, X ′ ∈ G s.t. X = X ′

Subroutine LSub(t, Mt
1M

t
2 · · · M

t
k):

100 Let s be min value s.t.
Ms
1M

s
2 · · · M

s
k = Mt

1M
t
2 · · · M

t
k

101 if s = t then

102 Y0 ← IV
103 for 1 ≤ i ≤ k − 1

104 Y t
i

$

← {0, 1}n

105 if Mt
i || Y

t
i−1 ∈ Dom(f) then

106 Y t
i ← f [Mt

i || Y
t

i−1]
107 f [Mt

i || Y
t

i−1]← Y t
i

108 G ∪← Y t
k−1 || M

t
k

Subroutine RSubf (t, Xt, Yt):

500 Parse Xt into Ut || Vt s.t. |Ut| = d, |Vt| = n
501 if Vt = IV then

502 NewNode(Ut)← Yt

503 if Mt
1M

t
2 · · · M

t
i ← GetNode(V t) then

504 NewNode(Mt
1M

t
2 · · · M

t
iU

t)← Yt

505 f [Xt]← Yt

Subroutine RSubg(t, Xt):

600 Parse Xt into Vt || Ut s.t. |Vt| = n, |Ut| = d
601 if Mt

1M
t
2 · · · M

t
i ← GetNode(Vt) then

602 Let s be smallest index s.t.
Ms
1M

s
2 · · · M

s
k = Mt

1M
t
2 · · · M

t
iU

t

603 if s = t then G ∪← Xt

604 else

605 G ∪← Xt

Figure 15: Game G9.

Now consider a value Y s
k−1 || M

s
k added to G via line 108 for a transcript entry (Left, Ms, ǫ) and

a value Xt added via line 603 for a transcript entry (Right-g, Mt, ǫ). This is just a special case
of the previous case. We simply iterate backwards over the blocks of s, knowing that at each the
corresponding blocks for t are specified in the transcript. Thus the same reasoning gives us that
Y s

k−1 || M
s
k = Xt implies that Coll occurs.

Finally consider a value added to G via line 108 for a transcript entry (Left, Ms, ǫ) and a value
added via line 605 for a transcript entry (Right-g, Xt, ǫ). We will reason about the choices of Y s

i

values in LSub when Ms is handled, starting with i = k − 1 and working backwards. There are two
cases to consider for Y s

k−1. If Y s
k−1 is a random choice then we are done, as it colliding with the

first n bits of Xt gives that Coll occurs. Suppose then that Y s
k−1 = Yj for an entry (Right-f, Xj , Yj),

where the first d bits of Sj equal Ms
k−2. Necessarily j < t, since otherwise the transcript would

not be allowed. Now we switch to looking at Y s
k−2. We apply similar reasoning: if it is a random

choice then Coll occurs, otherwise an entry (Right-f, Sl, Yl) exists in the transcript with Y s
k−2 = Yl

and with l < j. Eventually we are guaranteed that some value Y s
i must be a new random choice,

otherwise all of these values would have been specified by Right-f entries that are located in the
transcript before t. If that were the case then our tree structure would contain a node labeled by
the first n bits of Xt and the path to the node would be labeled by Ms

1, . . . , M
s
k = Ms resulting in

line 605 never being executed. Thus a collision of this kind always implies that Coll occurs.

Acknowledgments

We would like to thank Thomas Shrimpton for valuable feedback on an earlier draft of this paper,
Donghoon Chang for pointing out a mistake in an earlier proof of Lemma 5.1, and Elena Andreeva

27

for pointing out a mistake in an earlier proof of Lemma 5.2.

References

[1] An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: message authentication
under weakened assumptions. In: Advances in Cryptology - CRYPTO ’99. Volume 1666 of
Lecture Notes in Computer Science, Springer (1999) 252–269.

[2] Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In:
Advances in Cryptology - CRYPTO ’06. Volume 4117 of Lecture Notes in Computer Science,
Springer (2006) 602–619.

[3] Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-Oracle-Model Scheme for
a Hybrid-Encryption Problem. In Cachin, C., Camenisch, J., eds.: Advances in Cryptology
- EUROCRYPT ’04. Volume 3027 of Lecture Notes in Computer Science, Springer (2004)
171–188.

[4] Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication.
In: Advances in Cryptology - CRYPTO ’96. Volume 1109 of Lecture Notes in Computer
Science, Springer (1996) 1–15.

[5] Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade con-
struction and its concrete security. In: FOCS ’96: Proceedings of the 37th Annual Symposium
on Foundations of Computer Science, IEEE Computer Society (1996) 514–523.

[6] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient
protocols. In: CCS ’93, ACM Press (1993) 62–73.

[7] Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: Advances in Cryptology -
EUROCRYPT ’94. Volume 950 of Lecture Notes in Computer Science, Springer (1994) 92–111.

[8] Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA
and Rabin. In: Advances in Cryptology - EUROCRYPT ’96. Volume 1070 of Lecture Notes
in Computer Science, Springer (1996) 399–416.

[9] Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical.
In: Advances in Cryptology - CRYPTO ’97. Volume 1294 of Lecture Notes in Computer
Science, Springer (1997) 470–484.

[10] Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-
Based Game-Playing Proofs. In: Advances in Cryptology - EUROCRYPT ’06. Volume 4004
of Lecture Notes in Computer Science, Springer (2006) 409–426.

[11] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM
51(4) (2004) 557–594.

[12] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard Revisited: How to Con-
struct a Hash Function. In: Advances in Cryptology - CRYPTO ’05. Volume 3621 of Lecture
Notes in Computer Science, Springer (2004) 21–39.

[13] Damg̊ard, I.: A design principle for hash functions. In: Advances in Cryptology - CRYPTO
’89. Volume 435 of Lecture Notes in Computer Science, Springer (1989) 416–427.

[14] Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reduc-
tions, and Applications to the Random Oracle Methodology. In: TCC ’04. Volume 2951 of
Lecture Notes in Computer Science, Springer (2004) 21–39.

[15] Maurer, U., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In: ICALP ’05. Volume
3580 of Lecture Notes in Computer Science, Springer (2005) 472–484.

[16] Merkle, R.C.: One way hash functions and DES. In: Advances in Cryptology - CRYPTO ’89.
Volume 435 of Lecture Notes in Computer Science, Springer (1989) 428–446.

28

[17] National Institute of Standards and Technology: FIPS PUB 180-1: Secure Hash Standard.
(1995) Supersedes FIPS PUB 180 1993 May 11.

[18] RSA Laboratories: RSA PKCS #1 v2.1: RSA Cryptography Standards (2002).
[19] Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Advances in Cryptology

- CRYPTO ’05. Volume 3621 of Lecture Notes in Computer Science, Springer (2005) 17–36.
[20] Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Advances in Cryptology

- EUROCRYPT ’05. Volume 3494 of Lecture Notes in Computer Science, Springer (2005) 19–
35.

A Families of Compression and Hash Functions

Practical cryptographic compression and hash functions do not come equipped with a dedicated
key input. As the signature h: {0, 1}d+n → {0, 1}n of a compression function indicates, it takes
a single input. (Which we view as the concatenation of a d-bit data block with a n-bit chaining
variable.) The hash function Hh: {0, 1}∗ → {0, 1}n correspondingly takes a single data input and
returns an n-bit output. In contrast, a primitive like a block cipher has an explicit, dedicated key
input and defines a family of functions, one per key. The absence of such an input is why using
compression or hash functions to build PRFs or MACs requires “keying” [4]. One typically keys via
the chaining variable.

One can, however, consider designing compression and hash functions which have a dedicated
key input. In that case, the signature of the compression function becomes h: {0, 1}k × {0, 1}d+n

→ {0, 1}n while that of the hash function is Hh: {0, 1}k×{0, 1}∗ → {0, 1}n. We now have families
of functions in the sense that for each key K ∈ {0, 1}k we have functions h(K, ·) and Hh(K, ·) with
the old signatures. For collision-resistance, a key K is chosen at random and made public, but
when we want to use the compression or hash functions as MACs or PRFs, we can use a secret key
K.

This setting is adopted in many works [1, 9, 15]. In particular, in this setting, An and Bel-
lare [1] initiated the consideration of MAC preservation and provided a MAC preserving transform.
Maurer and Sjödin later proposed the Chain-Shift construction [15]. The Chain-Shift and EMD
constructions both utilize a similar enveloping technique (i.e., allowing adversarially controlled-bits
and fixing n bits of the input). However, the setting is different, since the former uses the dedi-
cated key-input model. This leads to a difference in the analyses. Also the goal of [15] is only MAC

preservation while ours is MPP.
Explicitly keyed compression and hash functions have both advantages and disadvantages com-

pared to the current, unkeyed setting. The disadvantage is that none currently exist. Since we
foresee new compression functions being built anyway, perhaps this is not critical; one could recom-
mend that new compression and hash functions be keyed. However, we would expect this to cost
in efficiency, since each application of the compression function must now process an additional
k-bit input. The advantage of explicitly keyed compression and hash functions is that preservation
of key-involving properties like PRF and MAC becomes easier. Indeed, MAC preservation is a goal
that seems very difficult to achieve in the current no explicit key setting, at least with transforms of
reasonable efficiency, and is not one we have targeted. (The reason is that if you key a compression
function via the chaining variable or data input, the property of its being a MAC does not guarantee
that the output has the randomness properties sufficient to be used again as a key.) One should
note that the lack of MAC preservation in transforms does not mean we don’t get hash functions
that can be used as MACs, because we do have PRF preservation, so, assuming the compression
function is a PRF, the hash function is a PRF and hence a MAC. But the MAC property of the hash

29

function relies on the assumption that the compression function is a PRF, while in the setting of
[1, 15] it only relies on the assumption that the compression function is a MAC.

30

