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Abstract. We establish rigorous foundations to the use of modular,
layered design for building complex distributed systems, resilient to fail-
ures and attacks. Layering is key to the design of the Internet and other
distributed systems. Hence, solid, theoretical foundations are essential,
especially when considering adversarial settings, such as for security and
cryptographic protocols.
We use games to define specifications for each layer. A protocol realizes
a layer (over some lower layer), if it ‘wins’, with high probability, a spec-
ified game, when running over any implementation of the lower layer.
This is in contrast to existing frameworks allowing modular design of
cryptographic protocols, e.g. Universal Composability [15], where proto-
cols must emulate an ideal functionality. Ideal functionalities are a very
elegant method for specifications, but we argue that often, game-based
specifications are more appropriate. In particular, it may be hard to de-
sign the ‘correct’ ideal functionality, and avoid over-specification (‘forc-
ing’ the protocol to follow a particular design) and under-specification
(e.g., allowing protocols that work reasonably only for worst-case adver-
sary but poorly for realistic adversaries); see details within.
Our definitions include the basic concepts for modular, layered design:
protocols, systems, configurations, executions, and models. We also define
three basic relations: indistinguishability (between two systems), satisfac-
tion (of a model by a system), and realization (by protocol, of one model
over another model).
We prove several basic properties, including the layering lemma and the
indistinguishability lemma. The layering lemma shows that given proto-
cols {πi}ui=1, if every protocol πi realizes model Mi over model Mi−1,
then the composite protocol π1||...||u realizes model Mu over M0. This
allows specification, design and analysis of each layer independently, and
combining the results to ensure properties of the complete system.

1 Introduction

The design and analysis of complex distributed systems, such as the Internet
and applications using it, is an important and challenging goal. Such systems are
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designed in modular fashion, typically by decomposing the system into multiple
layers. Some of the well known layered network architectures include the ‘OSI 7-
layers reference model’ and the ‘IETF 5-layers reference model’ (also referred to
as the Internet or TCP/IP model, and often extended with two optional security
sub-layers - TLS and IP-Sec); see e.g. Kurose and Ross [33]. The present work
is part of an effort, described in Herzberg and Yoffe [28], to extend such layered
networking architectures, to support secure e-commerce applications. Figure 1
shows the five IETF layers, together with two optional security sub-layers, and
the four secure e-commerce layers of [28].

Physical 

Link (Ethernet)

Network (IP)

 Network Security (IP-SEC)

Delivery Evidences (DE)

Payment

Application

Orders

Transport (TCP)

Transport Security (TLS)

E-commerce
layers

IETF
layers

Fig. 1. IETF and e-commerce layers; (optional) IETF security sub-layers marked with
dotted contour. Layer i expects the (lower) layer i−1 to fulfill some (lower) layer model.
For example, in Herzberg and Yoffe [30] we define the communication layer model
MComm, for the service expected by the Delivery Evidences (DE) layer, operating on
top of the IETF layers.

Layered (or modular) architectures allow to specify, design, analyze, imple-
ment and test protocols for each layer, independently of protocols for other
layers. This is based on the paradigm of lower layers abstraction. For each layer
i, we define a model Mi. The model Mi defines specifications, not just for the
protocol πi for layer i, but for the entire system Γi, comprising of copies of πi

running in multiple processors, all communicating via the ‘lower layer’ system
Γi−1.

Given protocol πi and (lower layer) system Γi−1, let Γi ≡
[

πi

Γi−1

]
be the

composition of (multiple instances of) πi running over Γi−1 (see Figure 5 (b)).
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Protocol πi realizes model Mi over model Mi−1, if Γi ≡
[

πi

Γi−1

]
satisfies Mi,

provided that Γi−1 satisfies Mi−1. We write this as: Mi `
[

πi

Mi−1

]
.

Practical, standard specifications for network layers, do not fully define the
model of each layer. Precise specifications of layer models is essential, to allow
proof that a given protocol realizes one model Mi over another model Mi−1.
Precise specifications and analysis (proofs) are especially critical for security and
cryptographic protocols.

There are many works defining rigorous security specifications for crypto-
graphic protocols, and proving security of such protocols. These works basi-
cally follow one of two approaches: the game/experiment-based approach, or the
simulation-based approach (referring to simulation of ideal system/scenario by
a protocol running in ‘real’ scenario).

In the simulation-based approach, the specifications consist of a special ‘ideal’
system I, modeling the desired operation of the system if it was implemented
by a single machine (rather than by multiple communicating parties). Roughly
speaking, protocol Π is secure if, for any adversary A, there is some other (‘sim-
ulator’) adversary S such that the interaction of Π with A is indistinguishable
from the interaction of I with S. The simulation-based approach was initiated
in the seminal works of Yao [39] and Goldreich et al. [23], showing ideal func-
tionalities and their realizations, for computing any function.

In the game/experiment approach, specifications consist of a special exper-
iment program, and of a well-defined win/loss game between the experiment,
the system and an adversary; a system satisfies the specifications if it wins in a
sufficient fraction of the executions. Such experiments (and games) were defined
for many cryptographic schemes, and appropriate protocols were proven secure,
e.g. encryption [24, 7, 8].

To use protocols in practice, security should be guaranteed when the pro-
tocol is composed (run) with arbitrary other protocols, and in particular used
as a module by other protocols. However, not all notions of security are pre-
served under such general compositions. Several notions of security following the
simulation-based approach, where shown to be preserved under general compo-
sitions, e.g. universal composability (UC) by Canetti [15], reactive simulatability
by Backes, Pfitzmann, and Waidner [4], Pfitzmann and Waidner [37], and ob-
servational equivalence by Lincoln, Mitchell, Mitchell, and Scedrov [35]. In this
work we show, for the first time, a game/experiment security notion, which is
also preserved under general compositions.

Since comparable composition results already exist for simulation-based secu-
rity notions, what is the importance of a composable game/experiment security
notion? The basic reason, is that game/experiment definitions seem often more
natural1. In particular, consider tasks for which the ‘ideal’ centralized solution is

1 One may be tempted to define a ‘flexible ideal functionality’, that is built-in with
the experiment, and accept from the adversary an arbitrary program; the ideal func-
tionality would then run the program, continuously validating that its behavior does
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hard to define or to realize, e.g. resource allocation problems. In fact, we do not
know whether there is some general relation among these two types of security
definitions, e.g. whether all game-based security notions can be shown equivalent
to corresponding simulation-based notion (for some ideal functionality).

A possibly more practical motivation is that many existing security proofs of
cryptographic primitives using experiments and games, can be viewed as special
cases of our security notion, and therefore can be used as modules by crypto-
graphic protocols. In fact, some cryptographic primitives have secure implemen-
tations for game-based specifications, where the corresponding ideal functional-
ities are not realizable, see Datta, Derek, Mitchell, Ramanathan, and Scedrov
[19], Canetti, Kushilevitz, and Lindell [17], Canetti and Fischlin [14]. Note that
Backes et al. [3] define a relaxed notion of conditional reactive simulatability,
where simulation is required only if the environment fulfills some constraints;
this allows them to circumvent such impossibility results, however at price of
added complexity. This is very different from the restrictions placed on lower
layers (modules) in the layered games framework.

Furthermore, there are common scenarios, where a game-based security def-
initions seem to have advantages. One such advantage is, when comparing per-
formance under adversarial settings, in particular for Denial of Service (DoS)
attacks. With simulation-based approach, the protocol is evaluated only for its
operation against the strongest adversary. In contrast, an experiment can val-
idate the performance of the protocol, as function of the resources of the ad-
versary. The simulation-based approach is especially problematic in handling
realistic network delays and failures. The standard solution is to design the ideal
functionality to ask the adversary (simulator) to define such delays and failures
(and then simulate the same delays and failures as in the real execution). This
is an elegant solution, however, it has drawbacks. In particular, the adversary is
exposed to the existence of communication; this is realistic in many scenarios,
however in common networking scenarios, the adversary is ‘blind’ (can inject
spoofed traffic but not eavesdrop on communication), and it is unjustified to
assume it can know when a message was sent.

To illustrate this advantage of game-based specifications, i.e. the ability to
model ‘blinded traffic’ scenarios (where the mere existence of communication is
secret), Algorithm 1 shows the experiment from [27] to define a blinded-traffic
asynchronous datagram communication channel. Note that many network secu-
rity mechanisms assume such channels (often implicitly).

Finally, sometimes it is hard to avoid over-specification with the simulation-
based approach. In particular, consider ‘external’ lower layers, which are not
(fully) under the designer’s control, such as modeling of physical systems. When
designing protocols to operate over such layers, we must make some simplifying
assumptions about their behavior; however, any particular ‘ideal functionality’
may assume behaviors which differs from reality. Namely, while we can define
tests which identify unreasonable behaviors, but we may not be able to write an

not violate the tests. However, many tests cannot be validated (efficiently) during
execution.
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On initialization do

b
R← ⊥ // b ∈ {0, 1,⊥} is the secret, random choice

SENT ← ⊥ // to contain the ‘challenge’ (s, d, m), where s, d are

processor identifiers, m is a message

On A2E(S, s, d, m) do
Ss(d, m) // adversary instructs s to send m to d

On A2E(select, s, d, m) // adversary selects ‘challenge’

do
SENT ← (s, d, m)

b
R← {0, 1}

if b = 1 then
Ss(d, m) // adversary has to guess b

On A2E(guess, g) do
if b = g 6= ⊥ then

adversary wins
else

adversary losses

Abort experiment

On Rd(s, m) do
if (s, d, m) 6= SENT then

E2A(R, s, d, m)

Algorithm 1: Blinded-traffic datagram channel experiment ExpBTD
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‘ideal functionality’ that has exactly the set of (all) reasonable behaviors. In such
cases, a ‘negative specification’, defining tests for unacceptable systems, maybe
more appropriate than a ‘positive specification’ as with ideal functionalities.
Notice that designers of practical network layers, intentionally avoid unnecessary
restrictions of lower layers. This is critical, to allow flexible, independent design
and implementation of each layer. Over-specification is considered harmful, see
e.g. Bradner [12].

Our results. In addition to presenting the layered games framework, in this
paper we prove few basic results regarding it. In particular, we prove the layering
lemma, which shows that layers compose well: given protocols {πi}u

i=1, if every
protocol πi realizes model Mi over model Mi−1, then the composite protocol
π1||...||u realizes model Mu over M0. We only handle compositions by layering,
but this is sufficient for many practical network architectures and protocols.

We also prove several other properties, such as the indistinguishability lemma.
The indistinguishability lemma shows that if two systems ΓL, ΓR are indistin-
guishable, and ΓL satisfies some model M, then ΓR also satisfies M. This allows
use of complex reduction arguments, e.g. hybrid arguments, to facilitate proofs
of security of complex protocols; see for example [9].

Organization. In Section 2 we define a specific execution model which
we use in the framework, consisting of protocols, systems, configurations (of
protocols and systems), and executions (of configurations). In Section 3 we define
models and realizations, and present the layering lemma. In Section 4 we define
emulation and indistinguishability of systems, based on the indistinguishability
game, and the indistinguishability lemma. We conclude and discuss future work
in Section 5.

In the rest of this introduction, we present the following subsections. In sub-
section 1.1, we give an example of layering of two secure electronic commerce
layers (combining the order layer over the deliver evidences layer). In subsection
1.2 we discuss the need for a theoretical basis for layering. Finally, in subsection
1.3, we discuss related works.

1.1 Example: secure e-commerce layers

In Herzberg and Yoffe [30] we define the communication model MComm; this
is a formalization of a commonly-used model of communication systems such
as the Internet, using a reliable transport protocol like TCP over an unreliable
lower-layer service (e.g. the Internet Protocol). We then define the delivery evi-

dences model MDE, and show a protocol πDE s.t. MDE `
[

πDE

MComm

]
. Similarly,

in Herzberg and Yoffe [29] we define the orders model MOrders, and show pro-

tocol πOrders s.t. MOrders `
[

πOrders

MDE

]
. Using the fundamental lemma of layering,

the composite protocol πDE||Orders realizes the orders model directly over the

communication model, i.e. MOrders `
[

πDE||Orders

MComm

]
.
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System ΓComm 
satisfying model MComm

Experiment ΓExp(MDE)

Adversary system ΓA

πDE πDE πDE

System ΓDE 
satisfying model MDE

Experiment ΓExp(MOrders)

Adversary system ΓA

πOrders πOrders πOrders

∧
System ΓComm 

satisfying model MComm

Experiment ΓExp(MOrders)

Adversary system ΓA

πDE||Orders

(a) DE over Comm (b) Orders over DE (c) Orders over Comm

πDE||Orders πDE||Orders

Fig. 2. Layering of realizations of the Order and Delivery Evidences (DE) layers. This
figure contains three simple configurations ((a), (b) and (c)), each of them containing
three copies of a protocol (πDE, πOrders and πDE||Orders, respectively). Part (a) illustrates
that πDE realizesMDE overMComm; part (b) illustrates that πOrders realizesMOrders over
MDE; and part (c) illustrates that protocol πDE||Orders realizes MOrders over MComm.

This is illustrated in Figure 2. In each of the three parts of the figure, we see
three nodes (processors) running a protocol, realizing one model over another.
For example, in (a) we see protocol πDE, which realizes model MDE over model
MComm. Namely, when πDE is combined over any system ΓComm that satisfies

MComm, the resulting combined system ΓDE =
[

πDE

ΓComm

]
satisfies MDE.

Formally, the model MDE includes an experiment system ΓExp(MDE), which

interacts with the composite system ΓDE =
[

πDE

ΓComm

]
and with an adversary

system ΓA (see Figure 2 (a)). The experiment has direct interfaces with the ‘lower
layer’ system (in (a), this is ΓComm), which we use in [30] to allow the experiment
ΓExp(MDE) to control delays and faults, and to eavesdrop on communication. The

system ΓDE =
[

πDE

ΓComm

]
satisfies MDE, if the probability that Exp(MDE) outputs

1 is negligible, for any efficient (polynomial time) ΓA.
Similarly, in Figure 2 (b), we see protocol πOrders, which realizes modelMOrders

over modelMDE. Namely, when πOrders is combined over any system ΓDE that sat-

isfies MDE, the resulting combined system ΓOrders =
[

πOrders

ΓDE

]
satisfies MOrders.

Finally, in Figure 2 (c), we see protocol πDE||Orders, which is the composition

of protocol πOrders ‘on top of’ protocol πDE, denoted πDE||Orders ≡
[

πOrders

πDE

]
.

The layering lemma of shows that πDE||Orders realizes model MOrders directly over
model MComm. Namely, when πDE||Orders is combined over any system ΓComm that
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satisfies MComm, the resulting combined system ΓOrders =
[

πDE||Orders

ΓComm

]
satisfies

MOrders.

1.2 The need for theoretical foundations for layering

Modular design is a basic engineering principle, applied in all large scale sys-
tems. In particular, layering is a common, simple form of modular design, which
is widely used in distributed systems and networks, e.g. the Internet. However,
existing proposals and standards of specifications of layers are only stated infor-
mally, often by (partial) specification for the operation of the protocols, rather
than (full) specification for the service model that the higher layer can rely on.
For example, the IP (Internet Protocol) layer is required to provide a vaguely-
described ‘best effort’ service.

Layered compositions of protocols are also used without formal definition or
proof. A possible explanation for the fact that layering was not yet based on
formal foundations, in spite of its wide use, is the fact that similar compositions
work as expected for many models, often trivially. For example, the composition
of two polynomial time algorithms is trivially also a polynomial time algorithm.
However, as Abadi and Lamport [1] argue, composition properties require proof,
and may not hold for all (natural) models. For example, the composition of
two polynomial time interactive Turing machines (ITM), or of (infinite) state
machines with polynomial-time transition functions, may not be polynomial-
time, in the natural setting where the outputs of each machine is considered
part of the inputs of the other. Indeed, our proof of the layering lemma is simple;
however, we found that some definitional choices could have subtle but critical
impact on composability. This motivated the precise execution model, which we
present in Section 2.

1.3 Related areas

The game-playing paradigm The layered games framework is based on the
game-playing paradigm, instead of following the ideal functionality paradigm.
The game playing paradigm is central to the theory of cryptography, see e.g.
Goldreich et al. [23], Goldreich [21]. Game playing supports strong analytical
tools, e.g. Bellare and Rogaway [9]. This may facilitate the use of (semi) auto-
mated proof-checking tools, see e.g. Halevi’s proposal [26] and and Blanchet’s
CryptoVerif tool [10].

In the game-playing paradigm, one specifies an interactive game between a
component and an adversary, where security is defined by the probability of the
adversary winning in the game. With information-theoretic games the adver-
sarial entity is allowed unbounded computational resources, while concrete and
probabilistic polynomial time games assume certain limitations on adversarial
resources, e.g. available time. Game-based specifications are widely used, and
available for many cryptographic primitives such as digital signature and en-
cryption schemes, pseudo-random functions, and many more, e.g., Goldwasser
and Micali [24], Goldwasser, Micali, and Yao [25], Goldreich [21].
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Execution model Our execution model is closely related to the execution
models of I/O Automata of Lynch and Tuttle [36], especially the Probabilistic
I/O Automata model of Canetti et al. [16], and to the Reactive Simulatability
framework [4, 5, 38].

Computational vs. symbolic security The layered games framework follows
the computational approach to cryptography, which treats protocols and cryp-
tographic schemes as programs/machines, operating on arbitrary strings (bits).
This is in contrast to the symbolic approach, where cryptographic operations
are seen as functions on a space of symbolic (formal) expressions, and security
properties are stated as symbolic expressions; see Dolev and Yao [20], Burrows,
Abadi, and Needham [13]. Several works investigate compositions of crypto-
graphic protocols with the symbolic approach, e.g. Datta et al. [18] and Backes
at al. [6]. It may be beneficial, to extend the layered games framework to support
symbolic/formal analysis, possibly building on recent results on the relationships
between the two approaches, such as Abadi and Rogaway [2].

Worst-case analysis Our focus and main motivation is specification and analy-
sis of security and cryptographic protocols. However, the layered games frame-
work can be applicable when the goal is to analyze performance of protocols
under hard to predict scenarios. In particular, the layered games framework al-
lows generalization of the the adversarial queuing theory of Borodin, Kleinberg,
Raghavan, Sudan, and Williamson [11].

2 Execution Model: Protocols, Systems, Configurations
and Executions

In this section, we present an execution model for distributed systems, which we
later use to define models and games, and to prove the layering lemmas. Such
precise execution model is essential, to ensure that the analysis is not invali-
dated due to some ‘technical’, subtle issues; we handled several such issues when
developing the framework, some of them found by careful readers (see acknowl-
edgments). The execution model defines protocols, systems, configurations and
executions. Some readers may prefer to skip this section at first reading, and read
the rest of the paper based on their intuitive interpretation of these concepts.
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2.1 Protocols

Our basic element of computation is a protocol. Protocols are state machines2

that accept input on one of the input interfaces, and produce output on one or
more output interfaces.

The protocol also includes a mapping SeCo of ‘self-connections’, from output
interfaces to input interfaces (or to ⊥, signaling an output interfaces which is not
connected to an input interface of the same protocol). We use self-connections
to merge two protocols into one (by transforming the connections between the
two protocols into self-connections of the merged protocol).

The protocol includes a transition function δ, which maps the input (interface
and value) and current state, to a new state and to outputs on the different
output interfaces. We use ⊥ to denote a special value which is not a binary
string (⊥ 6∈ {0, 1}∗); a protocol outputs ⊥ on some output interface to signal ‘no
output’.

The transition function δ can depend on two additional inputs: random bits
and a security parameter. A deterministic protocol ignores the random bits;
deterministic protocols can be useful, e.g. to analyze the provision and use of
pseudo-random bits. The (unary) security parameter, allows to define computa-
tional properties of the protocol and of specifications, such as security against
computationally-bounded adversary. Specifically, we use the security parameter
to define a polynomial protocol.

Definition 1 (Protocol). A protocol π is a tuple 〈S, IIN , IOUT , δ, SeCo〉 where:

1. S is a set of states, where ⊥ ∈ S is the initial state,
2. IIN is a finite sequence of input interface identifiers,
3. IOUT is a finite set of output interface identifiers,
4. δ : IN → OUT is a transition function, with:

– Domain IN = 1∗×S×IIN×{0, 1}∗×{0, 1}∗ (security parameter, current
state, input interface, input value, random bits).

– Range OUT = S × ({0, 1}∗ ∪ {⊥})|IOUT |. The outputs consist of a new
state, denoted δ.s ∈ S, and output values δ.ov[ιo] ∈ {0, 1}∗∪{⊥} for each
interface ιo ∈ IOUT .

5. SeCo is a mapping of ‘self connections’, from IOUT to IIN ∪ {⊥}

The protocol is polynomial if δ is polynomial-time computable, and if the length of
the outputs is the same as the length of the inputs3, plus a polynomial in the secu-
rity parameter, i.e. ∃c ∈ N s.t. ∀(1k, s, ι, x; r) ∈ IN, ιo ∈ IOUT : |δ.ov[ιo](1k, s, ι, x; r)| ≤
|x|+ |k|c.
2 We use state machines, rather than e.g. ITM as in Universal Composability [15],

since we found it simpler, and easier to ensure that an execution involving multi-
ple protocols, some of which are adversarial, will have well-defined scheduling and
distribution of events. Also, in many cases protocols may be represented by finite
state machines, which may have advantages including possible use of automated
verification tools.

3 This restriction of the output length to be the same as input length, plus some ‘over-
head’ which depends only on the security parameter, is a simple method to prevent
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Notations:

Π, Πpoly: we denote the set of all protocols by Π, and the set of polynomial
protocols by Πpoly.

Dot notation: The range of δ is a set of pairs (s, ov[ιo]), where s ∈ S is the
new state and ov[ιo] ∈ {0, 1}∗ ∪ {⊥} is the output on each output interface
ιo ∈ IOUT . To refer directly to the state or the outputs, we use dot notation
as in δ.s(·) and δ.ov[ιo](·) respectively. We also use dot notation to refer to a
specific part of a protocol, e.g. π.IIN is the set of input interface identifiers
IIN of protocol π.

Range, Domain: We use Domain(SeCo) and Range(SeCo) to refer to range
and domain, respectively, of SeCo (or other mapping), i.e. SeCo = Domain(SeCo) →
Range(SeCo).

2.2 Configurations

We study executions of configurations, containing multiple protocols connected
via their interfaces. A configuration is a directed graph, whose nodes P are iden-
tifiers of protocols, and whose edges are defined by mappings p′ = nP(p, ι) (for
‘next protocol’) and ι′ = nI(p, ι) (for ‘next interface’), mapping output interface
ι ∈ oI(p) of node p, to input interface ι′ ∈ iI(p′) of node p′.

Definition 2 (Configuration). A configuration is a tuple C = 〈P, iI, oI, nP, nI〉,
where:

P is a set of protocol instance identifiers,
iI, oI map identifiers in P to input and output interfaces, respectively,
nP maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

p′ = nP(p, ι), where either p′ = ⊥ or p′ ∈ P (another instance),
nI maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

input interface ι′, s.t. if nP(p, ι) ∈ P then ι′ ∈ iI(nP(p, ι)),

Configurations as defined above, are quite general. In particular, we inten-
tionally avoided assuming any specific communication or synchronization mecha-
nisms. This allows use of the framework in diverse scenarios, e.g. with or without
assumptions on synchronization, communication and failures.

exponential blow-up in input and output lengths, as outputs of one protocol become
inputs to another protocol during execution. This restriction is reasonable in prac-
tice, and sufficient for our needs; for example, it allows a protocol to ‘duplicate’ input
from one interface, to multiple output interfaces, but maintains a polynomial bound
on the length of the inputs and outputs on each interface during the execution. More
elaborate ways to prevent exponential blow-up were presented by Küsters [34] de-
scribing a general model for systems which satisfy certain acyclic conditions, Canetti
[15] and Hofheinz, Müller-Quade, and Unruh [32] for UC, and Backes et al. [5] for
reactive simulatability.
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2.3 Schedules and Executions

An execution is defined by a sequence of transitions of a protocol π running
in one node p ∈ P inside a configuration C = 〈P, iI, oI, nP, nI〉. To define the
execution, we use a mapping π = Π(p) from the protocol identifiers P to the
protocols implementing each node.

An important design goal, is that the set of executions of a given config-
uration C, with a specific mapping to protocols Π, would be a well-defined
random variable. This makes it easier to use an execution as a ‘subroutine’, to
facilitate reduction-based reasoning and proofs. To simplify such reductions, we
require that executions be a deterministic function of explicit random-tape in-
puts. Specifically, the ith event in the execution, denoted ξi, is defined by the
(deterministic) transition function of the protocol Π(pi) invoked at this event
(where pi is the identifier of that node). We allow the protocol to make random
choices, but only using uniformly-selected random bits Ri ∈R {0, 1}∗, provided
as input to the transition function. Let R ≡ {{0, 1}∗}i=1,2,... be the sequence
whose elements are the sets of all binary strings {0, 1}∗; each execution is a de-
terministic function of the specific sequence R ∈ R used in that execution (i.e.,
R = {Ri}i=1,2,... s.t. (∀i)Ri ∈ {0, 1}∗).

Each protocol instance has its own state, and in each round it may decide
to invoke interfaces of multiple other protocol instances; see for example the
configurations in Figure 2. Recall that some of the output interfaces of a protocol
may also be connected to input interfaces of the same protocol (self-connections).

At any point in the execution, there may be multiple ‘pending’ values sent
from some output interface of one protocol p ∈ P, to some input interface of an-
other protocol q ∈ P (possibly q = p, for self-connection). To define an execution,
we need to decide on the order (scheduling) in which we handle these ‘pending’
input values. To ensure well-defined executions, without any non-deterministic
choice (except for the explicit use of the random input strings R ∈ R), we use a
schedule S.

Definition 3 (Schedule). A schedule S of configuration C = 〈P, iI, oI, nP, nI〉
and protocol mapping Π, is a sequence of pairs S = {< pi, ιi >}i∈N where pi ∈ P
and ιi ∈ Π(pi).IIN .

The schedule is defined in advance and cannot depend on the execution (or
on the random bits). Schedules can be completely adversarial, as in [16], or
(partially) specified, as in Section 3.

A similar issue, where we tried to avoid non-determinism, involves how we
handle multiple pending inputs, submitted on the same input interface. Our def-
inition delivers inputs on an interface, in the order in which they were submitted.
We do this by keeping a FIFO queue Q[p, ι], for protocol instance p and input
interface ι, with regular semantics for the enqueue, dequeue, and is empty
operations. This choice is natural, although other choices may be possible.

Definition 4 (Execution). Let C = 〈P, iI, oI, nP, nI〉 be a configuration, and let
Π : P → Π be a mapping of the protocol identifiers P to specific protocols. Let
S = {〈pi ∈ P, ιi ∈ iI(pi)〉}i∈N be a schedule of C and Γ .
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The execution Xk(C,Π,S;R) of security parameter k ∈ 1∗, configuration C,
protocol mapping Γ , schedule S and sequence (of random bits) R = {Ri} ∈ R,
is the sequence of execution events {ξi} = {〈pi, ιi, ivi, ovi[·]〉} resulting from the
execution process in Figure 3.

For all p ∈ P:
s[p] := ⊥;

Q[p1,ι1].enqueue(0);

For i := 1 to ∞ do:
If Q[pi, ιi].is empty() then ivi = ⊥, ovi[·] = ⊥;
Else:

1. ivi := Q[pi, ιi].dequeue();
2. 〈S, IIN , IOUT , δ, SeCo〉 := Π(pi);
3. 〈s[pi], ovi[ι ∈ IOUT ]〉 := δ(k, s[pi], ιi, ivi; Ri);
4. For all ιo ∈ IOUT s.t. ovi[ιo] 6= ⊥:

If nP(pi, ιo) 6= ⊥
Then Q[nP(pi, ιo), nI(pi, ιo)].enqueue(ovi[ιo]);
Else if SeCo(ιo) 6= ⊥

Then Q[pi, SeCo(ιo)].enqueue(ovi[ιo]);

Fig. 3. Execution process defining {〈pi, ιi, ivi, ovi[·]〉} = Xk(C, Π,S; R)

For given p ∈ P, ι ∈ oI(p), let:

ik,p,ι,l(C,Π,S;R) ≡ max [0 ∪ {i ≤ l|(pi = p) ∧ ovi[ι] 6= ⊥}]

and

Xk,l,l,p,ι,l(C,Π,S;R) ≡
{

ovik,l,p,ι,l(C,Π,S;R)[ι] if ik,l,p,ι,l(C,Π,S;R) > 0
⊥ otherwise

If all protocols in the range of Π are polynomial, we say that Π is polynomial.
If Π is polynomial, then Xk(C,Π,S)[l] is sampleable in time polynomial in k
and l. This allows a polynomial protocol to run polynomial number of steps
of an execution containing polynomial protocols, as part of its computational
process (e.g. for reduction proofs). We restate this observation in the following
proposition.

Proposition 1 (Executions of polynomial protocols are efficiently sam-
pleable). Let C = 〈P, iI, oI, nP, nI〉 be a configuration and Π : P → Πpoly be
a mapping of the protocol identifiers P to specific polynomial protocols. Then
Xk(C,Π,S)[l] is sampleable in probabilistic polynomial time (as a function of k
and l).
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3 Layered Protocols, Systems, Models and Realizations

From this section, our discussion is focused, on layered architectures 4. Layered
architectures are based on abstraction. Namely, the designer of protocol πi for
layer i, is oblivious to details of lower layers, and only cares that the system
Γi−1, representing layer i − 1 and all lower layers, will satisfy the layer i − 1
model, denoted Mi−1. The goal of the designer of protocol πi, for layer i, is to
realize model Mi, over any system Γi−1 satisfying model Mi−1.

In the first subsection below, we define layered protocols and systems. Next,
in Section 3.2, we give a game-based definition of a model, with conditions on
the outcomes of the game, defining when a (layered) system ΓL is considered
to satisfy model M; we denote this by M |= ΓL. Finally, in Section 3.3, we

define the realization relation, denoted MU `
[

πU

ML

]
, indicating that protocol

πU realizes model MU , when running over any system satisfying lower layer
model ML, and present the layering lemma.

3.1 Layered protocols and systems

For simplicity, in this work we focus on analysis of layered protocols and sys-
tems, as common in practice; see Figure 4. A layered protocol π has only
two external input interfaces, {IH, IL} = π.IIN/Domain(π.SeCo), for higher and
lower layer, respectively. Similarly, π has only two external output interfaces,
{OH,OL} = π.IOUT /Range(π.SeCo), for higher and lower layer, respectively.
Layered protocols are a simplification of practical protocols, which usually have
several interfaces to and from the higher layer, and several interfaces to and from
the lower layer; these can usually be ‘merged’ to the interfaces above.

We investigate executions of n copies of the analyzed layered protocol π,
each running in one of n ‘processors’. The n copies of π interact with some
network-wide protocols, for the adversary, experiments, and ‘environment’ (e.g.,
lower layers). We found it convenient to refer to such network-wide protocols
as systems; this allows us to refer to layered protocols simply as ‘protocols’.
The parameter n can impact the number of interfaces of the systems, or their
transition functions.

As a convention, we use π for (layered) protocols, and Γ for systems. Specifi-
cally, we use ΓA for the adversary system, ΓExp for the experiment system, and Γi

for the layer i system. The layer i system is the combination of the environment
and all protocols, from layer i and below.

The layer i system Γi(n), for n processors, has input interfaces {Ij}n
j=1, and

output interfaces {Oj}n
j=1, one pair (Ij ,Oj) for each processor j ∈ {1, . . . , n}. In

addition, the layer has input interface IE and output interface OE, for inputs to

4 We believe that it is possible to generalize our concepts and results to modular, but
not layered, architectures. However, this will cause (at least technical) complexities,
that may make the resulting definitions less easy to understand and use. We therefore
leave this for future investigation.
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π

Γ

(a) Layered Protocol π (b) System Γ

. . .IH OH

ILOL IE OE O1 OnInI1

Fig. 4. Layered protocol (a) and system (b).

(respectively, outputs from) the ‘environment’, e.g. to define delays and to report
on ‘low level’ events, observable via the environment (e.g. packet transmission).
In addition, the system Γi(n) can contain self-connections.

Usually, we investigate families of configurations C = {C(n)}. This allows, in
particular, to consider n protocols, and systems Γ (n) whose set of interfaces is a
function of n (e.g. to interact with n protocols). For convenience, we use the term
‘configuration’ also when referring to a family of configurations C = {C(n)}.

Given two (layered) protocols π2, π1, we define the composite protocol π1||2 ≡[
π2

π1

]
by ‘merging’ the two protocols, as shown in Figure 5 (a). Similarly, given

protocol π1 and system Γ0, we define the composite system Γ1 ≡
[

π1

Γ0

]
, as in

Figure 5 (b). We omit the (trivial) details of both compositions.
The following proposition states a trivial, yet important, observation, namely

that composition is associative.

Proposition 2 (Layering is associative). Let π1, π2, π3 be three protocols.
The layering of π1, π2 and π3 results in the same protocol π1||2||3, regardless of
the order, i.e.

π1||2||3 = π1||(2||3) =
[

π2||3
π1

]
=

[
π3

π1||2

]
= π(1||2)||3

Similarly, let Γ0 be a system; the layering of π1 and π2 on top of Γ0 results in
the same system Γ2, regardless of the order, i.e.:

Γ2 =

 π2[
π1

Γ0

] =

[
π2

π1

]
Γ0


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π1
Γ0

(a) Composition of protocols (b) Composition of protocol over system

. . .
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π2
IH OH

ILOL

π1
IH OH

ILOL
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ILOL

πn
IH OH

ILOL

IE OE
O1

OnInI1IH OH

ILOL

. . .

. . .

. . .

Fig. 5. Composite protocol π1||2 (a) and system Γ1 (b) .

The next proposition states that composition preserves efficiency, in the sense
of polynomial-time complexity. A system Γ is polynomial if for every n, Γ (n) is
a polynomial protocol; if Γ (n) is efficiently computable, we say that the system
Γ is uniformly polynomial, otherwise, it is non-uniformly polynomial.

Proposition 3 (Layering preserves efficiency). The layering of polynomial
protocols, results in a polynomial protocol. The layering of a polynomial proto-
col over a (uniformly) polynomial system, results in an (uniformly) polynomial
system.

3.2 Layered Models

We use the term (layered) model for the specifications of a (layered) system ΓL.
We define a (layered) model M by a simple zero-sum (win-lose) game between
an adversary system ΓA and a system ΓL. These systems interact only via a third
system, the experiment ΓExp(M), as shown in Figure 6. When the relevant model
M is clear, we sometimes omit it and write simply ΓExp.

The experiment system defines the ‘rules of the game’, and outputs 1, on a
designated output interface outcome, if the adversary ‘won’; if this happens (with
probability over some winning threshold α(M) ∈ [0, 1]), then the system ΓL does
not satisfy model M. Without loss of generality, the experiment outputs only 1
on outcome, and does so at most once in every execution. Typically, α(M) =
0 (e.g. for forgery games) or α(M) = 1

2 (e.g. for indistinguishability games).
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In Proposition 5, we show that, for computational security, we can always use
α(M) = 1

2 , without loss of generality.

                ΓL                 

        ΓExp(M)

ΓA

outcome

O I

 ... ...

IA
OA

I1 InO1
OE IE

On

I1 In
O1OEIE

On
 ... ...

 ... ...

Fig. 6. Layer Model Configuration.

Figure 6 shows the configuration CLM (n) = 〈Pn, iIn, oIn, nPn, nIn〉 of the layer
modeling game, for n processors. The configuration contains only three protocol
identifiers, Pn = {A,Exp, L}, which we map to the three systems ΓA (adversary),
ΓExp(M) (experiment) and ΓL (layered system), respectively.

For layered models, we only allow simple, ‘round robin’ schedules SRR(n) =
(SA(n)||SExp(n)||SL(n))∗, where, for φ ∈ {A,Exp, L}, the ‘sub-schedule’ Sφ is
defined by the sequence of input interface of φ, i.e. Sφ(n) ≡ φ× Γφ(n).IIN .

Definition 5 (Layer model satisfaction game). A model M is a tuple M =
(ΓExp(M), α(M)), where α(M) ∈ [0, 1], ΓExp(M) is a polynomial system that
output on interface outcome at most once (and only the value 1).

We say that system ΓL ∈ Πpoly computationally satisfies model M, and write
M |=poly ΓL, if for every n, ΓA ∈ Πpoly, polynomial l, constant c and large enough
k, holds:

Pr
R∈R

(Xk,Exp,outcome,l(CLM (n),Πn,SRR(n)) = 1) ≤ α(M) + kc

Where Πn(A) = ΓA(n),Πn(Exp) = ΓExp(n),Πn(L) = ΓL(n) and SRR(n) =
(SA(n)||SExp(n)||SL(n))∗ as above.

System ΓL non-uniformly satisfies model M, which we denote by M |=nu ΓL,
if the above holds even for non-uniform ΓA. System ΓL perfectly satisfies model
M, which we denote by M |=perf ΓL, if the above holds when protocols are not
required to be polynomial, and without the kc term.
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Shorthand: we may writeM |= ΓL, when it is obvious that we refer toM |=poly

ΓL. We also may omit the word ‘computational’, i.e. say that ΓL satisfies layer
model M.

We observe the trivial relation among the three notions of satisfaction.

Proposition 4. For any model M and system ΓL holds:

(M |=perf ΓL) ⇒ (M |=poly ΓL) ⇒ (M |=nu ΓL)

Model ML is (polynomially / non-uniformly / perfectly) weaker than model
MR, if every system ΓL that satisfies MR, also satisfies ML. We denote this by
ML ≺φ MR, where φ ∈ {poly, nu, perf} respectively. Models ML and MR are
φ−equivalent, if ML ≺φ MR and MR ≺φ ML; we denote this by ML ≡φ MR.
Models ML and MR are fully equivalent if they are polynomially, non-uniformly
and perfectly equivalent; we denote this by ML ≡MR. Clearly, the ≺ relations
define a partial order, while the ≡ relations define equivalence classes.

We next show that for computational and non-uniform satisfaction, we can
consider, without loss of generality, only models M with winning threshold
α(M) = 1

2 .

Proposition 5 (WLOG α = 1
2). Every model M, has a polynomially and

non-uniformly equivalent model M’, s.t. α(M′) = 1
2 .

Proof: We first show that there exists such M′ s.t. α(M′) ≤ 1
2 . This is trivial;

let α(M′) = α(M)· 12 , and ΓExp(M′) = ΓExp(M), except that if ΓExp(M) outputs
1 on outcome, then ΓExp(M′) flips a fair coin b ∈R {0, 1}, and returns 1 only if
b = 1.

Hence, we assume, without loss of generality, that α(M) ≤ 1
2 , and define

M′ s.t. α(M′) = 1
2 . Again, the experiment system ΓExp(M′) is a modification

of ΓExp(M), as follows.
As its first step in the execution, ΓExp(M′) flips a biased coin b ∈ {0, 1}, with

Pr(b = 1) =
1
2−α(M)

1−α(M) . If b = 1 then ΓExp(M′) immediately outputs 1 on outcome.
Otherwise, if b = 0, then ΓExp(M′) proceeds exactly like ΓExp(M).

For fixed l, k, R, n,S, ΓA and ΓL, let:

W =
{

true if Xk,Exp,outcome,l(CLM ,Π,S) = 1
false else

And:

W ′ =
{

true if Xk,Exp,outcome,l(CLM ,Π ′,S) = 1
false else

Where Π ′(A) = Π(A) = ΓA, Π ′(L) = Π(L) = ΓL, Π(Exp) = ΓExp(M) and
Π ′(Exp) = ΓExp(M′).
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It follows that:

Pr(W ′) = Pr ((b = 1) ∨ ((b = 0) ∧W ))

=
1
2 − α(M)
1− α(M)

+
(

1−
1
2 − α(M)
1− α(M)

)
Pr(W )

=
1
2 − α(M) + (1− α(M) Pr(XM)−

(
1
2 − α(M)

)
Pr(W )

1− α(M)

=
1
2 − α(M) + 1

2 Pr(W )
1− α(M)

=
1
2

+
Pr(W )− α(M)

1− α(M)

It follows that for every layered system ΓL, holds:

M |= ΓL ⇔M′ |= ΓL

Which shows that M≡poly M′ and M≡nu M′. ut

3.3 Model Realization and the Layering Lemma

The model satisfaction game defines specifications for systems, i.e. defines when
a system satisfies a model. However, we normally design only the protocols for a
specific layer, assuming they operate over some ‘underlying’ system, representing
the combination of lower layers and the underlying environment. We next define
such specification for a protocol.

Definition 6. Let M1,M0 be two models, and let π be a protocol. We say that

π computationally realizes M1 over M0, and denote this by M1 `
[

π
M0

]
, if

M1 |=
[

π
Γ0

]
, for every Γ0 s.t. M0 |= Γ0.

Similarly, π non-uniformly realizesM1 overM0, which we denote by M1 `nu[
π
M0

]
, if M1 |=nu

[
π
Γ0

]
, for every Γ0 s.t. M0 |=nu Γ0; and π perfectly realizes

M1 over M0, which we denote by M1 `perf

[
π
M0

]
, if M1 |=perf

[
π
Γ0

]
, for every

Γ0 s.t. M0 |=perf Γ0.

We now present the layering lemma, allowing compositions of protocols of
multiple layers. The layering lemma shows that we can prove realization of each
layer separately, and the composition of the realizations will be a realization
of the highest layer over the lowest layer. This provides firm foundations to
the accepted methodology of designing, implementing, analyzing and testing of
each layer independently, yet relying on their composition to ensure expected
properties. We state the lemma for only three layers - generalization for an
arbitrary stack is immediate.
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Lemma 1 (The Layering Lemma). Let M2,M1,M0 be three polynomial
models, and π1, π2 be two polynomial protocols, such that for i = 1, 2, protocol πi

computationally (non-uniformly, perfectly) realizes Mi over Mi−1. Then π1||2 =[
π2

π1

]
computationally (respectively, non-uniformly, perfectly) realizes M2 over

M0. Namely: (
(i = 1, 2)Mi `poly

[
πi

Mi−1

])
⇒M2 `poly

[
π1||2
M0

]
(1)(

(i = 1, 2)Mi `nu

[
πi

Mi−1

])
⇒M2 `nu

[
π1||2
M0

]
(2)(

(i = 1, 2)Mi `perf

[
πi

Mi−1

])
⇒M2 `perf

[
π1||2
M0

]
(3)

Furthermore, let Γ0 be a polynomial system that computationally ( non-

uniformly, perfectly) satisfies M0. Then Γ2 =
[

π1||2
Γ0

]
computationally (respec-

tively, non-uniformly, perfectly) satisfies M2.

Proof: We prove the computational claims; the non-uniform and perfect vari-
ants follow exactly in the same way. Let Γ0 be a system that computationally

satisfies model M0. Since M1 `poly

[
π1

M0

]
, by definition 6, the composite pro-

tocol Γ1 =
[

π1

Γ0

]
satisfies M1, namely M1 |= Γ1.

Protocol layering is associative (Proposition 2), hence Γ2 =
[

π1||2
Γ0

]
=

[
π2

Γ1

]
.

Since M2 `poly

[
π2

M1

]
and M1 |= Γ1, it follows from definition 6 that Γ2 =[

π2

Γ1

]
satisfies M2, namely M2 |= Γ2, proving the second part of the lemma.

The first part also follows, from definition 6, since this holds for every Γ0 that
computationally satisfies model M0. ut

4 Indistinguishable Systems

Indistinguishability games are used in many cryptographic definitions, e.g. pseudo-
random functions Goldreich, Goldwasser, and Micali [22]. We next define such
game for systems. Intuitively, two systems are (polynomially) indistinguishable,
if no (polynomial time) adversary can distinguish between them. We use the
‘left-or-right’ style of Bellare et al. [7].

The configuration CLR(n) = 〈PLR, iIn, oIn, nPn, nIn〉 of the system indistin-
guishability games is illustrated in Figure 7, for some fixed number of instances
n. The main difference between CLR and the configuration CLM of the model
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Fig. 7. The Systems Indistinguishability game. System ΓL is indistinguishable from
system ΓR, if no (polytime) adversary can distinguish between interacting with ΓL

and interacting with ΓR (with significant probability).

game, is the addition of the node R, mapped to the system ΓR; we also use the
name IND for the experiment here, i.e. PLR = {A, IND, L,R}.

In the layer realization indistinguishability game, we use the specific experi-
ment system ΓIND below, i.e. Πn(IND) = ΓIND(n). Upon initialization, ΓIND flips
a fair coin b ∈R {L,R}. The game ends when ΓIND receives a guess b′ of either
L or R from the adversary A, on the g (guess) input interface. Upon receiving
the guess b′, ΓIND outputs on its outcome output interface 1 if b = b′ (otherwise,
it never produces output on outcome). Details follow.

Definition 7 (System indistinguishability experiment). Let ΓIND(n) =
〈S, IIN (n), IOUT (n), δn〉 be the following system:

S = {⊥, testing, done}
IIN (n) = {Init, g, IE} ∪ {Ii, ILi, I

R
i}i=1,...,n

IOUT (n) = {outcome} ∪ {Oi,O
L
i,O

R
i}i=1,...,n

δn:
1. In initialization state ⊥, upon any input, select randomly b ∈R {L,R}, and move
to testing state.
2. In testing state, pass all input events on interfaces Ii, for i ∈ {E, 1, . . . , n}, to
corresponding output event on output interfaces OL

i (if b = L), or OR
i (if b = R).

Similarly, pass all input events on interfaces ILi (if b = L) or IRi (if b = R), to
corresponding output events on interface Oi.
3. When, in testing state, the guess input interface g is invoked with input (guess)
b′ ∈ {L,R}, output on outcome the value 1 if b = b′. Move to the done state (and
ignore all further inputs).
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The system indistinguishability experiment is the core of the system indistin-
guishability game, which we define next. The game tests whether an adversarial
system ΓA is able to distinguish between two systems, ΓL and ΓR.

Definition 8 (System indistinguishability game). Let PLR = {A, IND, L,R}
and CLR(n) = 〈PLR, iIn, oIn, nPn, nIn〉, as above.

System ΓR computationally emulates system ΓL, if for every adversary system
ΓA, integer n, constant c and polynomial l, for sufficiently large k holds:

Pr (Xk,IND,outcome,l(CLR(n),Πn,S(n)) = 1) ≤ 1
2

+ kc

Where Πn(A) = ΓA(n),Πn(IND) = ΓIND(n),Πn(L) = ΓL(n),Πn(R) = ΓR(n) and
S(n) = (SA(n)||SIND(n)||SL(n)||SR(n)||SIND(n))∗, with Sφ(n) = φ × Γφ(n).IIN ,
for φ ∈ {A, IND, L,R}.

System ΓR non-uniformly emulates system ΓL if the above holds even for non-
uniform ΓA. System ΓL perfectly emulates system ΓL if the above holds even for
non-polynomial ΓA, and without the kc term.

We say that system ΓR non-uniformly emulates system ΓL, if the above holds
when the adversary system ΓA is non-uniformly polynomial. We say that ΓR

perfectly emulates system ΓL, if the above holds when the adversary system ΓA is
not limited to polynomial time, and without the kc term. We denote the emulation
relation by ΓL ≺poly ΓR (respectively, ΓL ≺nu ΓR or ΓL ≺perf ΓR).

We say that system ΓR is computationally (non-uniformly, perfectly) indis-
tinguishable from system ΓL, if each of the two systems computationally (re-
spectively, non-uniformly or perfectly) emulates the other. We denote this by
ΓL ≡poly ΓR (respectively, ΓL ≡nu ΓR or ΓL ≡perf ΓR).

We observe the trivial relation among the three notions of emulation and
indistinguishability.

Proposition 6. For any two systems ΓL, ΓR holds:

(ΓL ≺perf ΓR) ⇒ (ΓL ≺nu ΓR) ⇒ (ΓL ≺poly ΓR)

(ΓL ≡perf ΓR) ⇒ (ΓL ≡nu ΓR) ⇒ (ΓL ≡poly ΓR)

We next present the system emulation lemma, which shows that if ΓR emu-
lates ΓL, and ΓL satisfies model M, then ΓR also satisfies M. This allows us to
use emulation and indistinguishability relations among systems, e.g. in hybrid
arguments.

Lemma 2 (System emulation lemma). Let M be a model and ΓL ≺poly ΓR

be two systems. If M |=poly ΓL, then M |=poly ΓR.

Proof: We prove the equivalent claim:

(M |=poly ΓL)
∧

(¬ [M |=poly ΓR]) ⇒ (¬ [ΓL ≺poly ΓR])
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Namely, assume ΓL satisfies M, but ΓR does not satisfy M. We will construct
an adversary ΓLR

A that distinguishes between ΓR and ΓL, which completes the
proof.

Without loss of generality, assume that M = (ΓExp(M), 1
2 ), i.e. the win-

ning threshold α(M) is 1
2 . Since ΓR does not computationally satisfy M, i.e.

¬ [M |=poly ΓR], it follows that for some n, there exists some ΓA ∈ Πpoly, poly-
nomial l, and constant c, s.t. for infinitely many integers k, holds:

Pr
R∈R

(Xk,Exp,outcome,l (CLM (n),Πn,S(n)) = 1) >
1
2

+ kc

Where Πn(A) = ΓA(n),Πn(Exp) = ΓExp(M)(n),Πn(L) = ΓR(n) and S(n) =
(SA(n)||SExp(n)||SR(n))∗, with Sφ(n) = φ × Γφ(n).IIN for φ ∈ {A,Exp} and
SR(n) = L× ΓR(n).IIN .

Since the result of the execution depends only on the output after lR(k) steps,
we can assume, without loss of generality, that S is of length at most lR(k).

We now use ΓA, to design the distinguishing adversary ΓLR
A . Specifically, let

ΓLR
A be the natural composition of ΓA and ΓExp(M), except for following change

in the output on outcome. If ΓExp(M) outputs 1 on outcome, then ΓLR
A outputs R

on its g (guess) output interface. On the other hand, if ΓExp(M) does not output
1 by the end of the run, after l(k) steps, then ΓLR

A flips a coin b′ ∈R {L,R} and
outputs 1 if b′ = 1.

It remains to show, that ΓLR
A distinguishes between runs where ΓIND(n) flips

R, i.e. ΓLR
A interacts with ΓR, and between runs where ΓIND(n) flips L, i.e. ΓLR

A

interacts with the system ΓL. Specifically, we complete the proof by showing
that, for the same n, c, l, and for as above 5 , and for infinitely many integers k,
holds:

Pr
(
Xk,IND,outcome,2l(CLR(n),ΠLR

n ,SLR(n)) = 1
)

>
1
2

+ kc−2 (4)

Where ΠLR
n (A) = ΓLR

A (n),ΠLR
n (IND) = ΓIND(n),ΠLR

n (L) = ΓL(n),ΠLR
n (R) =

ΓR(n) and SLR(n) =
(
SLR

A (n)||SLR
IND(n)||SLR

L (n)||SLR
R (n)||SIND(n)

)∗, where SLR
φ (n) =

φ× Γφ(n).IIN for φ ∈ {A, L,R} and SIND(n) ≡ {< IND, ι > |ι ∈ ΓIND(n).IIN}.
We prove that Equation 4 holds, by proving that:

Pr
(
Xk,IND,outcome,2l(CLR,Π,SLR) = 1|b = R

)
>

3
4

+ kc (5)

And that, for every cL (and sufficiently large k), holds:

Pr
(
Xk,IND,outcome,2l(CLR,Π,SLR) = 1|b = L

)
>

1
4
− kcL

2
(6)

The layer realization experiment flips a fair coin to select L or R, hence
the expected outcome of the experiment is the average of the left-hand-side of
5 Assuming, without loss of generality, that |ΓL(n).IIN | ≤ |ΓR(n).IIN |. This is needed

only to bound the length of the execution by 2l.
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equations 5 and 6, which is at least 1
2 + 1

4 (2kc − kcL). Since this holds for every
cL, we set cL = c− 1; by assuming k > 4, we have that:

Pr
(
Xk,IND,outcome,2l(CLR(n),ΠLR

n ,SLR(n)) = 1
)

>
1
2

+
1
4
kc−1(k−1) >

1
2

+kc−2

Which shows that equation 4 holds, and therefore completes the proof.
It remains to prove the two equations; we begin with Equation 5. Consider

an execution of the indistinguishability game, where the indistinguishability ex-
periment protocol ΓIND picks b = R. This execution is equivalent to that of the
model experiment above (except for the adaptation of outcome by ΓLR

A ), hence
for some c and infinitely many values k, holds:

Pr
(
Xk,IND,outcome,2l(CLR(n),ΠLR

n ,SLR(n)) = 1
∣∣∣b = R

)
≥

≥ Pr (Xk,Exp,outcome,l(CLM ,Π,S) = 1) + Pr (Xk,Exp,outcome,l(CLM ,Π,S) = 0) · 1
2 >

> 3
4 + kc

Hence, Equation 5 holds, for cLR ≤ cR − 1.
It remains to prove Equation 6. Recall that ΓL(n) computationally satisfies

M, i.e. M |=poly ΓL. Consider an execution of the indistinguishability game,
where the indistinguishability experiment protocol ΓIND picks b = L. This exe-
cution is equivalent to that of the layer model experiment above (except for the
adaptation of outcome by ΓLR

A ), hence for every cL:

Pr
(
Xk,IND,outcome,2l(CLR(n),ΠLR

n ,SLR(n)) = 1
∣∣∣b = L

)
≥

≥ Pr (Xk,Exp,outcome,l(CLM ,Π,S) = ⊥) · 1
2 >

> 1
4 −

kc

2

This completes the proof. ut

5 Conclusions and Research Directions

In this work, we try to lay solid, rigorous foundations, to the important method-
ology of layered decomposition of distributed systems and network protocols,
particularly concerning security in adversarial settings. The framework is built
on previous works on modeling and analysis of (secure) distributed systems, as
described in the introduction. There are many directions that require further
research. Here are some:

– The best way to test and improve such a framework, is simply by using
it to analyze different problems and protocols; there are many interesting
and important problems, that can benefit from such analysis. As one impor-
tant example, consider the secure channel layer problem. Many protocols
and applications assume they operate over ‘secure, reliable connections’. In
practice, this is often done using the standard layers in Figure 1, in one of
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two methods. In the first method, we use TLS (for security) over TCP (for
reliability) over the ‘best effort’ service of IP. In the second method, we use
TCP (for reliability) over IP-Sec (for security), again over ‘best effort’ (IP).
It would be interesting to define a ‘secure, reliable connection’ layer, and to
analyze these two methods with respect to it.

– There are many desirable extensions to the framework, including: support for
corruptions of nodes, including adaptive and/or mobile corruptions (proac-
tive security and forward security); adaptive control of the number of nodes;
support for side channels such as timing and power.

– In this work, we have focused on layered configurations. These are sufficient
for many scenarios. However, there are other scenarios. It would be interest-
ing to identify important non-layered scenarios, and find appropriate games,
specifications and composition properties, which will support them, possibly
as generalizations of our definitions and results.

– It would be interesting to explore the relationships between the layered games
framework, and other formal frameworks for study of distributed algorithms
and protocols (see introduction).

– The framework is based on the computational approach to security, where
attackers can compute arbitrary functions on information available to them
(e.g. ciphertext). Many results and tools are based on symbolic analysis, see
introduction (and [20, 13, 2]). It can be very useful to find how to apply such
techniques and tools, within the framework.
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