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Abstract

A linear (qd, q, t)-perfect hash family of size s in a vector space V of order qd over a
field F of order q consists of a set S = {φ1, . . . , φs} of linear functionals from V to F
with the following property: for all t subsets X ⊆ V there exists φi ∈ S such that φi
is injective when restricted to F . A linear (qd, q, t)-perfect hash family of minimal size
d(t− 1) is said to be optimal. In this paper we extend the theory for linear perfect hash
families based on sequences developed by Blackburn and Wild. We develop techniques
which we use to construct new optimal linear (q2, q, 5)-perfect hash families and (q4, q, 3)-
perfect hash families. The sequence approach also explains a relationship between linear
(q3, q, 3)-perfect hash families and linear (q2, q, 4)-perfect hash families.

1 Introduction to Perfect Hash Families

Perfect hash families were introduced by Mehlhorn [14] in 1984 as part of compiler design. Per-

fect hash families have also proved useful in a large variety of applications, in particular, there

have been a number of recent applications to cryptography. For example, to threshold cryp-

tography (see Blackburn, Burmester, Desmedt and Wild [8] and Blackburn [6]), to broadcast

encryption (see Fiat and Naor [11]) and to improve explicit constructions of secure frameproof

codes, key distribution patterns, group testing algorithms, cover free families and separating

systems (see Stinson, van Trung and Wei [15]).

Let s, t, n, q be positive integers and let V be a set of size n and let F be a set of size q. A

function φ:V → F separates a subset X of V if φ is an injection when restricted to X. An

(n, q, t)-perfect hash family of size s is a set S = {φ1, . . . , φs} of s functionals from V to F with

the property that for all t-subsets X ⊆ V , at least one of φ1, . . . , φs separates X.
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We say that S is a linear perfect hash family if F can be identified with a finite field GF(q)

and V can be identified with a vector space over GF(q) in such a way that S is a set of linear

functionals under this identification. Thus in the linear case, q is a prime power and n = qd

for some non-negative integer d. This paper deals solely with linear perfect hash families and

throughout we use q to denote a prime power. Linear perfect hash families also have a geometric

interpretation which was used in [3, 4] to construct linear perfect hash families.

The following result from Blackburn and Wild [9] gives a bound on the size of a linear perfect

hash family.

Theorem 1.1 ([9]) Let d and t be integers such that d ≥ 2 and t ≥ 2 and let q be a prime

power. If S is a linear (qd, q, t)-perfect hash family, then |S| ≥ d(t− 1).

If |S| = d(t− 1) then S is called optimal. Blackburn and Wild give conditions for the existence

of optimal linear perfect hash families.

Theorem 1.2 ([9]) An optimal linear (qd, q, t)-perfect hash family S exists if q ≥
(
t
2

)d(t−1)
.

Perfect hash families are an interesting combinatorial structure with practical applications.

They are hard to construct, and there are limited known constructions of linear perfect hash

families. Blackburn and Wild [9] give a general construction of an optimal linear perfect hash

family which works for q much larger than the bound of Theorem 1.2 and of a certain form,

namely q = q
α1α2···αd(t−2)

0 where q0 is any prime power and each αi ≥ d. Blackburn [7] gives

a construction of optimal linear (p2, p, 4)-perfect hash families where p is a prime, p = 11 or

p ≥ 17. Wang and Xing [16] construct linear perfect hash families but their constructions are

not optimal. In [3] the authors use geometric techniques to show that optimal linear (q2, q, 4)-

perfect hash families exist if and only if q = 11 or q ≥ 17 (q a prime power) and constructions are

given for each such q. In [4] geometric techniques are used to show that optimal linear (q3, q, 3)-

perfect hash families exist if and only if q ≥ 11 (q a prime power) and constructions are given

for each such q. The authors also give constructions of optimal linear (q2, q, 5)-perfect hash

families for restricted values of q. In [1, 2], recursive algorithms for constructing perfect hash

families are given. These algorithms need as input perfect hash families with small parameters.

This gives motivation for constructing small perfect hash families.

In this paper we investigate the sequence representation of linear perfect hash families developed

by Blackburn and Wild [9] in more detail. We generalise their results with the aim of using

a sequence approach to construct optimal linear perfect hash families. In Theorem 2.14, we

give a set of conditions that can be used to check whether a given set of functionals forms a
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perfect hash family. We then use the theory developed to give a general construction technique

in Section 2.2. Known constructions methods of perfect hash families are ad hoc and this

sequence approach gives a general method which can be used to recursively construct optimal

linear perfect hash families for any q, d, t for which they exist. We illustrate how this approach

can be used to construct the optimal linear (q2, q, 4)- and (q3, q, 3)-perfect hash families found

in [3, 4]. Further, the sequence approach explains a correspondence between these two cases.

We also use these techniques to construct new optimal linear (q2, q, 5)- and (q4, q, 3)-perfect

hash families.

2 The sequence approach to linear perfect hash families

In this section we introduce the sequence approach used by Blackburn and Wild in [9]. In their

paper they used sequences to prove Theorem 1.2, that is, to show that optimal linear perfect

hash families exist if q is large enough. The proof of this result is a probabilistic argument and

does not use the sequences to produce constructions of perfect hash families. Our approach here

is to study the sequences with the aim of characterizing when they are perfect hash families in

order to develop techniques to construct perfect hash families. Consequently we need to study

these sequences in more detail than previously done, in particular we need to generalise the

results of [9] to results that hold for smaller q; and we need to obtain some more specialised

results on these sequences. Some of the preliminary results here are from [9], but we have

included some short proofs to assist in understanding the theory. We use the notation of [9].

As a lot of notation and definitions are involved, we include a notation and definition index in

the appendix for easy reference by the reader.

2.1 The sequence approach to the characterization of optimal linear

perfect hash families

Let V be a vector space of dimension d > 0 over GF(q), where q ≥ 2. Let V ∗ be the dual

space of V , consisting of the set of linear functionals φ:V → GF(q). If p ∈ V and φ ∈ V ∗, we

will use the notation pφ to represent φ acting on p. Given a set S = {φ1, . . . , φk} of k linear

functionals, we may order them in some arbitrary way to produce an associated functional

sequence Φ = (φ1, . . . , φk) ∈ (V ∗)k. In [9], conditions were found on Φ so that S (or equivalently

Φ) is a perfect hash family. To explain these conditions we need to introduce the following

notation and concepts from [9].

Note that the t = 1 case is trivial and if q < t then no functional can separate t points.
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Hence let 2 ≤ t ≤ q and consider (V ∗)t, a dt-dimensional vector space over GF(q). Let

Ψ = (ψ1, . . . , ψt) ∈ (V ∗)t. Let P = (p1, . . . , pt) be a sequence of t elements of V . We can regard

Ψ as a linear map Ψ:V t → GF(q) over GF(q) where PΨ = pψ1

1 + · · ·+pψt
t . We define a subspace

UP of (V ∗)t given by

UP =
{

Ψ = (ψ1, . . . , ψt) ∈ (V ∗)t : pψ1

1 + · · ·+ pψt
t = 0

}
.

Let T = {1, 2, . . . , t} and define T 2 to be {(a, b) ∈ T × T : 1 ≤ a < b ≤ t}. Note that in our

notation here, T 2 is a proper subset of T × T . An element (a, b) of T 2 is called a pair on T ,

and a sequence c of k pairs (possibly repeated) from T 2 is called a k-pair sequence on T . For

a pair (a, b) on T and all φ ∈ V ∗, define the vector w(a,b),φ ∈ (V ∗)t by

w(a,b),φ = (ψ1, . . . , ψt) where ψi =


φ if i = a,

−φ if i = b,

0 if i 6= a, b.

So for example, w(1,2),φ = (φ,−φ, 0, . . . , 0). We use w(a,b),φ to determine whether φ separates a

t-subset {p1, . . . , pt} of V . We let P = (p1, . . . , pt) be an arbitrary ordering of the t-subset and

say that φ separates the sequence P if φ separates the set {p1, . . . , pt}.

Result 2.1 ([9]) Let P = (p1, . . . , pt) be a sequence of t distinct elements of V . Let φ ∈ V ∗.

Then φ fails to separate P if and only if w(a,b),φ ∈ UP for some (a, b) ∈ T 2.

Proof The linear functional φ fails to separate P if and only if φ maps two elements of P to

the same element of GF(q). That is, if and only if there exists (a, b) ∈ T 2 such that pφa = pφb ,

that is, w(a,b),φ ∈ UP . �

So, for example, if w(1,2),φ ∈ UP , then pφ1 + p−φ2 + p0
3 + . . .+ p0

t = 0, that is pφ1 = pφ2 , so φ maps

p1 and p2 to the same element of GF(q). Thus φ fails to separate P .

For (a, b) ∈ T 2, we define the subspace V(a,b) of (V ∗)t by

V(a,b) = {w(a,b),φ : φ ∈ V ∗}.

Note that V(a,b) is a vector space of dimension d over GF(q). We are interested in t-subsets

{p1, . . . , pt} of V which necessarily have distinct elements. However, when we consider an

arbitrary t-sequence P = (p1, . . . , pt) from V t, P may have repeated elements. The subspace

V(a,b) gives us a way to determine whether P has repeated elements.

Result 2.2 ([9]) Let P = (p1, . . . , pt) be a sequence of t elements of V . Then P has a repeated

element pa = pb (for some a, b, 1 ≤ a < b ≤ t) if and only if V(a,b) ⊆ UP .
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Proof We have pa = pb if and only if pφa = pφb for all φ ∈ V ∗, if and only if w(a,b),φ ∈ UP for all

φ ∈ V ∗, if and only if V(a,b) ⊆ UP . �

Let c = ((a1, b1), . . . , (ak, bk)) be a k-pair sequence on T and let Φ = (φ1, . . . , φk) ∈ (V ∗)k be a

k-functional sequence. Define the subspace Wc,Φ of (V ∗)t to be

Wc,Φ =
〈
w(ai,bi),φi

: 1 ≤ i ≤ k
〉
.

So, for example, let k = 2, c = ((1, 2), (1, 3)) and Φ = (φ1, φ2), then Wc,Φ = 〈(φ1,−φ1, 0, . . . , 0),

(φ2, 0,−φ2, 0, . . . , 0)〉 .

It will often to be convenient to write the subspace Wc,Φ in matrix form. We let [Wc,Φ] be the

matrix with k rows w(ai,bi),φi
, i = 1, . . . , k. So in the above example, we have

[Wc,Φ] =

[
φ1 −φ1 0 0 . . . 0

φ2 0 −φ2 0 . . . 0

]
.

This matrix has t columns over V ∗; and dt columns over GF(q). The row space of the matrix

[Wc,Φ] is equal to the subspace Wc,Φ, and dimWc,Φ = rank [Wc,Φ]. In what follows, we will drop

the brackets and use Wc,Φ to refer to both the subspace and to the matrix, and we will use

rank Wc,Φ to mean the rank of the matrix.

The next result involving Wc,Φ shows when the set {φ1, . . . , φk} of functionals from V ∗ separates

the t-subset {p1, . . . , pt} of V .

Result 2.3 ([9]) Let P = (p1, . . . , pt) be a sequence of t distinct elements of V and let S =

{φ1, . . . , φk} be a set of k linear functionals with associated k-functional sequence Φ. Then S

fails to separate P if and only if there exists a k-pair sequence c on T such that Wc,Φ ⊆ UP .

Proof The set S fails to separate P if and only if every functional φi ∈ Φ maps two distinct

elements of P to the same element of GF(q). That is, if and only if for each φi ∈ Φ there exists

(ai, bi) ∈ T such that pφi
ai

= pφi

bi
, that is, w(ai,bi),φi

∈ UP . This occurs if and only if there exists

a k-pair sequence c on T with Wc,Φ ⊆ UP . �

Note that if a set {φ1, . . . , φk} fails to separate a sequence (p1, . . . , pt) of distinct elements, then

it fails to separate any supersequence (p1, . . . , pt, pt+1).

In the next Lemma we will use the subspace Y of (V ∗)t defined as:

Y =
{
(ψ1, . . . , ψt) ∈ (V ∗)t : ψ1 + · · ·+ ψt = 0

}
.

Note that Y has dimension d(t − 1) over GF(q) (since ψ1, . . . , ψt−1 can be chosen arbitrarily,

and then ψt = −(ψ1 + . . .+ ψt−1)).
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Lemma 2.4 Suppose S is a set of d(t−1) linear functionals with associated functional sequence

Φ. Let c be a d(t − 1)-pair sequence on T . Then Wc,Φ ⊆ Y , and so rank Wc,Φ ≤ d(t − 1). In

particular, if rank Wc,Φ = d(t − 1), then Wc,Φ = Y and so V(a,b) ⊆ Wc,Φ for all pairs (a, b) on

T .

Proof As w(a,b),φ ∈ Y for all pairs (a, b) on T and φ ∈ V ∗, it follows that Wc,Φ ⊆ Y . Hence

rank Wc,Φ ≤ dimY , that is rank Wc,Φ ≤ d(t− 1) (this rank bound also follows directly as c,Φ

have length d(t− 1), so Wc,Φ is the span of d(t− 1) vectors). The remaining statement follows

as V(a,b) ⊆ Y by definition. �

The following result was stated in [9] without proof (the proof is very similar to the proof of

[9, Theorem 4]).

Result 2.5 ([9]) Suppose S is a linear (qd, q, t)-perfect hash family of optimal size d(t − 1).

Then every d elements of S are linearly independent over GF(q).

We now describe the geometrical interpretation of linear perfect hash families as introduced

in [9]. This allows us to give an easy proof for the next two results. For an introduction to

finite projective geometry see [10]. Let π∞ be the hyperplane at infinity in the projective space

PG(d, q), so π∞ is a subspace of projective dimension d−1. We identify the elements of V with

the affine points of PG(d, q); that is, the points of AG(d, q) = PG(d, q)\π∞. For any linear

functional φ ∈ V ∗ and γ ∈ GF(q), the points v ∈ V with vφ = γ form a hyperplane of AG(d, q)

and so φ corresponds to a parallel class of hyperplanes. These parallel hyperplanes all meet

π∞ in a hyperplane [φ] of π∞ (so [φ] is a subspace of projective dimension d − 2). So there is

a 1-1 correspondence between parallel classes of hyperplanes in PG(d, q) and the hyperplanes

of π∞, that is, there is a 1-1 correspondence between linear functionals φ and hyperplanes [φ]

of π∞. Two affine points p1, p2 ∈ PG(d, q)\π∞ are separated by φ if and only if they belong to

different hyperplanes of the parallel class determined by φ. That is, p1, p2 are separated by φ

if and only if the line p1p2 meets π∞ in a point not in [φ].

We note that perfect hash family results have a geometric interpretation in PG(d, q). For exam-

ple, Result 2.5 states that every d linear functionals of a perfect hash family S = {φ1, . . . , φd(t−1)}
are independent. Hence the hyperplanes [φ1], . . . , [φd(t−1)] corresponding to the linear function-

als form a dual arc in π∞. We use this geometric interpretation to classify optimal linear perfect

hash families with t = 2.

Lemma 2.6 The set S = {φ1, . . . , φd} is an optimal linear (qd, q, 2)-perfect hash family if and

only if φ1, . . . , φd are linearly independent.
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Proof The functionals φ1, . . . , φd correspond to hyperplanes [φ1], . . . , [φd] in π∞. Consider two

distinct affine points p1, p2 ∈ PG(d, q)\π∞. Then p1p2∩π∞ is a point r. If r ∈ [φi], then φi does

not separate p1, p2. Hence we need the d hyperplanes [φ1], . . . , [φd] of π∞ ∼= PG(d−1, q) to have

no common point. This will happen if and only if [φ1], . . . , [φd] are linearly independent. That

is, φ1, . . . , φd separate every 2-set {p1, p2} of V if and only if φ1, . . . , φd are linearly independent.

�

Theorem 2.7 Suppose 2 ≤ t ≤ q. If Φ is a linear (qd, q, t)-perfect hash family, then for each

t′ (2 ≤ t′ < t), any d(t′ − 1) subset Φ′ of Φ is a (qd, q, t′)-perfect hash family.

Proof If t = 2 there is nothing to prove. So suppose firstly that t′ = t − 1 ≥ 2. Let Φ′ be

a subset of Φ of size d(t′ − 1) = d(t − 2). Suppose that Φ′ is not a (qd, q, t − 1)-perfect hash

family. So there exists a set {p1, . . . , pt−1} of t−1 distinct elements of V that are not separated

by Φ′. In the geometrical representation, these t− 1 elements of V correspond to t− 1 distinct

points p1, . . . , pt−1 of PG(d, q)\π∞. Consider the d linear functionals φ1, . . . , φd in Φ\Φ′. They

are linearly independent by Result 2.5, so they correspond to linearly independent hyperplanes

[φ1], . . . , [φd] of π∞. Hence the intersection [φ1] ∩ [φ2] ∩ · · · ∩ [φd−1] is a point r ∈ π∞ which is

not contained in the final hyperplane [φd].

Now the line p1r intersects 〈p2, [φd]〉 in a point p. Suppose firstly that p 6∈ {p1, . . . , pt−1} (in

particular, p 6= p1, p2). We have p2p ∩ π∞ ∈ [φd], hence φd does not separate {p2, p}. Further,

p1p∩π∞ = r ∈ [φ1]∩ [φ2]∩· · ·∩ [φd−1], so φ1, . . . , φd−1 do not separate {p1, p}. As no functional

in Φ′ separates the set {p1, . . . , pt−1} we have shown that no functional in Φ separates the

set {p1, . . . , pt−1, p} of t distinct elements. Thus Φ is not a (qd, q, t)-perfect hash family, a

contradiction.

If p = p1 then let pt be any point of p1r\{p1, . . . , pt−1, r}, this is possible as q ≥ t implies every

line contains q + 1 ≥ t+ 1 points. Then no functional in {φ1, . . . , φd−1} separates {p1, pt}; and

φd does not separate {p1, p2}. As no functional in Φ′ separates the set {p1, . . . , pt−1}, we have

shown that no functional in Φ separates the set {p1, . . . , pt−1, pt} of t distinct elements. Thus Φ

is not a (qd, q, t)-perfect hash family, a contradiction. Similarly, if p = p2 then φ1, . . . , φd−1 do

not separate {p1, p2}. Let pt ∈ 〈p2, [φd]〉\{p1, . . . , pt−1, π∞} (this is possible as q ≥ t), then φd

does not separate {p2, pt}. Hence Φ does not separate the distinct elements {p1, . . . , pt} and so

Φ is not a perfect hash family, a contradiction. Finally, if p ∈ {p3, . . . , pt−1}, then Φ does not

separate {p1, . . . , pt−1} and so does not separate any t-set containing them, a contradiction.

Hence Φ′ is a (qd, q, t − 1)-perfect hash family. The remaining values of t′ follow by repeating

the argument. �

In the following lemmas we relate pair sequence properties with the rank properties of Wc,Φ.
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Recall that if Φ is a perfect hash family, then Φ is a d(t− 1)-functional sequence and so Wc,Φ

is the span of d(t− 1) vectors, hence rank Wc,Φ ≤ d(t− 1). The next result shows that d(t− 1)

is the maximal rank of Wc,Φ for any k-functional sequence Φ and k-pair sequence c. We will

show later that Φ is a perfect hash family if and only if the rank of Wc,Φ is this maximal value

d(t− 1) for all relevant k-pair sequences c. We will use the subspace

R = {(p, . . . , p) : p ∈ V } ⊆ V t.

Note that R is a vector space of dimension 1 over V , and consequently of dimension d over

GF(q).

Lemma 2.8 Let Φ be a k-functional sequence and let c be any k-pair sequence on T . Then we

have rank Wc,Φ ≤ d(t− 1). Further, rank Wc,Φ < d(t− 1) if and only if there exists P ∈ V t \R
with Wc,Φ ⊆ UP .

Proof Let Φ = (φ1, . . . , φk), c = (c1, . . . , ck) and consider Wc,Φ in matrix form. It satisfies the

dimension theorem over GF(q), that is,

dim kerWc,Φ + rank Wc,Φ = dimV t.

Now dim V t = dt and R ⊆ kerWc,Φ, hence as dimR = d we have dim kerWc,Φ ≥ d. Thus

rank Wc,Φ ≤ d(t− 1), with equality if and only if kerWc,Φ = R. Now kerWc,Φ strictly contains

R, if and only if there exists P 6∈ R with P ∈ kerWc,Φ, if and only if wc1,Φ, . . . , wck,Φ ⊆ UP , if

and only if Wc,Φ ⊆ UP . So kerWc,Φ = R if and only if for all P 6∈ R, Wc,Φ 6⊆ UP . �

Let I be a subset of T = {1, . . . , t}. If c is a pair sequence on T , define cI to be the subsequence

of c which contains the pairs of c whose entries lie entirely in I. So cI is a pair sequence on I.

Similarly, if Φ is a functional sequence in correspondence with c, let ΦI be the subsequence of

Φ consisting of those elements of Φ corresponding to the pairs in cI . That is, if cI is c without

the pairs in positions i1, . . . , ij, then ΦI is Φ without the functionals in positions i1, . . . , ij. For

example, let T = {1, 2, 3, 4}, c = ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4)), Φ = (φ1, φ2, φ3, φ4, φ5). Let

I = {1, 2, 3}. Then cI = ((1, 2), (1, 3), (2, 3)) and ΦI = (φ1, φ2, φ4).

We remind the reader that a k-pair sequence c = ((a1, b1), . . . , (ak, bk)) on T may contain

repeated pairs. We say c is (d, t)-limited if for every t′ (2 ≤ t′ < t), and t′-subset I of T , the

number of pairs in cI is strictly less than d(t′ − 1). That is, |cI | < d(|I| − 1) for all proper

subsets I ⊂ T .

The concept of (d, t)-limited sequences is fundamental to our technique for constructing perfect

hash families. This concept was not used in Blackburn and Wild [9]; it is important for

our constructions as it considerably reduces the number of sequences to be considered in the

construction of a perfect hash family.
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Lemma 2.9 Consider a (qd, q, t)-perfect hash family with associated linear functional sequence

Φ. Let c be a d(t− 1)-pair sequence. Let c′ be a subsequence of c with d(t− 1)− 1 pairs. If c′

is (d, t)-limited, then rank Wc,Φ = d(t− 1).

Proof Suppose that c′ is a (d, t)-limited sequence and let Φ′ be the subsequence of Φ corre-

sponding to c′. That is, if c′ is c without the ith pair, then Φ′ is Φ without the ith functional.

We prove this result by contradiction, so suppose that rank Wc,Φ < d(t − 1). By Lemma 2.8

there exists P = (p1, . . . , pt) ∈ V t \ R with Wc,Φ ⊆ UP . Note that Wc′,Φ′ ⊆ Wc,Φ, so we have

Wc′,Φ′ ⊆ UP . As Φ is a perfect hash family, by Result 2.3, P can not have distinct elements.

So P has some repeated elements, but at least two different elements, as P 6∈ R. Suppose P

has r (1 < r < t) distinct elements q1, . . . , qr. For each i = 1, . . . , r, let Ii ⊆ T be the set

{j : pj = qi}. Let xi = |Ii|, the number of times qi occurs in P , so 1 ≤ xi < t. If no xi = 1, set

s to 0. Otherwise suppose without loss of generality that 1 = x1 = x2 = · · · = xs, and xi > 1

for i = s+ 1, . . . , r. Note that s < r and

s+
r∑

i=s+1

xi = t. (∗)

Our aim is to show that the number of pairs in c (denoted |c|) is strictly bounded above by

d(t−1), contradicting c being of length d(t−1). We partition the pairs of c′ into r+1 categories

(0), (1), . . . , (r). Category (i) consists of the pairs (a, b) of c′ where a, b ∈ Ii, (1 ≤ i ≤ r). If

xi = 1, then there are no pairs in this category (as a pair has two distinct entries), so |c′Ii| = 0

for i = 1, . . . , s. Otherwise, as c′ is (d, t)-limited, we have a bound on the number of pairs in

category (i):

|c′Ii| ≤ d(xi − 1)− 1 for i = s+ 1, . . . , r.

Category (0) consists of the remaining pairs (a, b) of c′, so a ∈ Ii, b ∈ Ij and i 6= j. We use

these pairs to define a new pair sequence c′0. For each pair (a, b) of c′ of category (0), define

a corresponding pair (i, j) of c′0, where a ∈ Ii, b ∈ Ij. By definition of category (0), i 6= j, so

without loss of generality, write these pairs as (i, j) with i < j. Let Φ′
0 be those elements of

Φ′ corresponding to the pairs in category (0). Let Q = (q1, . . . , qr). As Wc′,Φ′ ⊆ UP , we have

Wc′0,Φ
′
0
⊆ UQ. Now Q has distinct elements, so by Result 2.3, Φ′

0 does not separate Q, and so

Φ′
0 is not a (qd, q, r)-perfect hash family. Hence by Theorem 2.7, |Φ′

0| < d(r − 1). Thus the

number of pairs in category (0) is |c′0| ≤ d(r − 1)− 1.

We are now ready to bound the length of c′, using the bounds on the pairs in categories

(0), (1), . . . , (r). We have

|c′| ≤ d(r − 1)− 1 +
r∑

i=s+1

(d(xi − 1)− 1)
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= dr − d− 1 +

(
r∑

i=s+1

dxi

)
− (r − s)d− (r − s)

= d

(
s+

r∑
i=s+1

xi

)
− d− 1− (r − s)

= d(t− 1)− 1− (r − s) by (*)

≤ d(t− 1)− 2

as s < r. As |c| = |c′| + 1, this contradicts c being of length d(t − 1). Hence we must have

rank Wc,Φ = d(t− 1) as required. �

Lemma 2.10 Let Φ be a d(t − 1)-functional sequence with the property that every d(t − 2)-

subset of Φ is a (qd, q, t− 1)-perfect hash family. Let c be a d(t− 1)-pair sequence on T which

is not (d, t)-limited. Then V(a,b) ⊆ Wc,Φ for some pair (a, b) on T .

Proof As c is not (d, t)-limited, let t′ be the smallest value (2 ≤ t′ < t) with a t′-subset I

of T satisfying |cI | ≥ d(t′ − 1). Choose any subsequence c′ of cI of length d(t′ − 1), and let

Φ′ be the corresponding subsequence of ΦI . By choice of t′, c′ is (d, t′)-limited. As t′ < t, by

Theorem 2.7, Φ′ is a (qd, q, t′)-perfect hash family. Applying Lemma 2.9 with Φ′ and c′, we

have rank Wc′,Φ′ = d(t′ − 1). By Lemma 2.4, there exists a, b ∈ I with V(a,b) ⊆ Wc′,Φ′ ⊆ Wc,Φ,

as required. �

The following is our first theorem that characterises perfect hash families in terms of sequences.

In [9] the forward implication was indicated, but we include the proof for completeness.

Theorem 2.11 Suppose 2 ≤ t ≤ q. Suppose S is a set of d(t − 1) linear functionals with

associated functional sequence Φ. Then S is an optimal linear (qd, q, t)-perfect hash family if

and only if, for all |S|-pair sequences c we have either: (a) there exists a pair (a, b) on T with

V(a,b) ⊆ Wc,Φ, or (b) rank Wc,Φ = d(t− 1).

Proof (⇒) Suppose that S is a perfect hash family and let c be a |S|-pair sequence. If c is

not (d, t)-limited, then (a) holds by Theorem 2.7 and Lemma 2.10. If c is (d, t)-limited, then

every (d(t− 1)− 1)-pair subsequence of c is (d, t)-limited and so (b) holds by Lemma 2.9.

(⇐) Suppose that S is not a perfect hash family. Then there exists a set P of t distinct

elements of V that S does not separate. Thus by Result 2.3, there exists a |S|-pair sequence c

with Wc,Φ ⊆ UP . If c satisfies (a), then there exists (a, b) ∈ T 2 such that V(a,b) ⊆ Wc,Φ ⊆ UP

and so by Result 2.2, P does not have distinct elements, a contradiction. If c satisfies (b), then

by Lemma 2.4 we have V(a,b) ⊆ Wc,Φ ⊆ UP for all (a, b) ∈ T 2, and so by Result 2.2, P does not

have distinct elements, a contradiction. Thus S is a perfect hash family. �
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We are interested in the following property. Let Φ be a sequence d(t− 1) linear functionals.

Property (*) for (Φ, d, t): For every d(t−1)-pair sequence c of the form c = (c′, (a, b)), where

c′ is a (d, t)-limited pair sequence of length d(t− 1)− 1, we have rank Wc,Φ = d(t− 1).

Lemma 2.12 Suppose 2 ≤ t ≤ q. Let Φ be a d(t − 1)-functional sequence. Suppose Property

(∗) for (Φ, d, t) holds. Then Φ is a (qd, q, t)-perfect hash family.

Proof We begin by summarising the proof, noting which parts need further argument. We

prove the lemma by induction on t. The first step is to prove that it holds in the case t = 2

(this is Assertion 1 and is proved below).

We now assume that the lemma holds for the value t − 1 (≥ 2), and prove the lemma for the

value t. Thus, we will assume the following:

1. If Property (∗) holds for (Ψ, d, t−1) (where Ψ is any d(t−2) sequence of linear functionals),

then Ψ is a (qd, q, t− 1)-perfect hash family.

2. Property (∗) holds for (Φ, d, t).

We need to show that Φ is a (qd, q, t)-perfect hash family. To this end, we first prove that

any d(t − 2) subset Ψ of Φ is a (qd, q, t − 1)-perfect hash family (this is Assertion 2 and is

proved below). Assuming this, consider a d(t − 1)-pair sequence c. If c is not (d, t)-limited,

by Lemma 2.10, V (a, b) ⊆ Wc,Φ. If c is (d, t)-limited then any subsequence is (d, t)-limited,

so by Property (∗) for (Φ, d, t) we have rank Wc,Φ = d(t − 1). So by Theorem 2.11, Φ is a

(qd, q, t)-perfect hash family. This completes the proof.

It now remains to prove Assertions 1 and 2.

Proof of Assertion 1: We prove that the lemma holds for t = 2. In this case T = {1, 2} and

c is the sequence with the pair (1, 2) repeated d times. The condition that rank Wc,Φ = d

is equivalent to every d functionals in Φ being linearly independent. By Lemma 2.6, this is

equivalent to Φ being a (qd, q, 2)-perfect hash family.

Proof of Assertion 2: We prove that any d(t− 2) subset Ψ of Φ is a (qd, q, t− 1)-perfect hash

family.

Let T ′ = {1, . . . , t − 1} and let e = (e′, (a, b)) be a d(t − 2)-pair sequence on T ′ where e′ is

(d, t−1)-limited. Extend e′ to a (d(t−1)−1)-sequence c′ = (e′, (t−2, t), (t−1, t), . . . , (t−1, t))

on T (that is, the pair (t − 1, t) occurs as the last d − 1 pairs of c′). We will show that c′ is

(d, t)-limited. Note that as e′ is (d, t− 1)-limited, for any subset I ′ of T ′, we have

|c′I′| ≤ d(|I ′| − 1)− 1.
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Consider I ⊂ T , we need to show that |c′I | ≤ d(|I| − 1)− 1. There are four cases to consider:

(1) t− 1 ∈ I, t ∈ I, (2) t− 1 ∈ I, t 6∈ I, (3) t− 1 6∈ I, t ∈ I, (4) t− 1 6∈ I, t 6∈ I.

In Case (1), write I = I ′∪{t}, so |I ′| ≥ 1. If |I ′| > 1, then |c′I | ≤ d(|I ′|−1)−1+d = d(|I|−1)−1

as required. Otherwise |I ′| = 1 and I = {t−1, t} and so |c′I | = d−1 = d(|I|−1)−1 as required.

In Case (2), |c′I | = |e′I | ≤ d(|I| − 1)− 1 as required. In Case (3), write I = I ′ ∪ {t}. If |I ′| > 1,

then |c′I | ≤ d(|I ′| − 1) − 1 + 1 ≤ d(|I| − 1) − 1. If |I ′| = 1 then |c′I | ≤ 1 ≤ d(|I| − 1) − 1, as

required. In Case (4), |c′I | = |e′I | ≤ d(|I| − 1)− 1, as required.

Hence, c′ is (d, t)-limited. Thus by Property (∗) for (Φ, d, t), if c = (c′, (a, b)), then rank Wc,Φ =

d(t − 1). So if Ψ is any d(t − 2) subset of Φ, then as e is a subsequence of c and Wc,Φ has

maximal rank, we deduce that We,Ψ has maximal rank. That is, rank We,Ψ = d(t− 2), that is,

Property (∗) holds for (Ψ, d, t− 1). So by the inductive hypothesis, Ψ is a (qd, q, t− 1)-perfect

hash family. �

Theorem 2.13 Suppose 2 ≤ t ≤ q. Suppose S is a set of d(t − 1) linear functionals with

associated functional sequence Φ. Then S is a (qd, q, t)-perfect hash family if and only if both

1. Every d(t− 2)-subset of S is a (qd, q, t− 1)-perfect hash family.

2. For all (d, t)-limited |S|-pair sequences c we have rank Wc,Φ = d(t− 1).

Proof The forward direction follows immediately from Theorem 2.7 and Lemma 2.9. The

reverse direction follows from Lemma 2.10 and Theorem 2.11. �

We are now able to prove the main theorem which characterizes when a functional sequence Φ

is a perfect hash family in terms of the rank of Wc,Φ and (d, t)-limited pair sequences.

Theorem 2.14 Suppose 2 ≤ t ≤ q. Suppose S is a set of d(t − 1) linear functionals with

associated functional sequence Φ. Then S is an optimal linear (qd, q, t)-perfect hash family if

and only if, for all |S|-pair sequences of the form c = (c′, (a, b)) where c′ is (d, t)-limited, and

all pairs (a, b) on T , we have

rank Wc,Φ = d(t− 1).

Proof The forward direction follows immediately from Lemma 2.9. The reverse direction is

Lemma 2.12. �
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2.2 Methods to construct linear perfect hash families

These results give us two approaches to constructing perfect hash families. Both these methods

involve finding a set of d(t− 1) linear functionals that satisfy Theorem 2.14.

Before describing these methods, we first note that if c1, c2 are two k-pair sequences, then we

can determine whether they are isomorphic under the induced action of the symmetric group

St acting on the collection of k-pair sequences. If c1 and c2 are isomorphic, then for any k-

functional sequence Φ, Wc1,Φ is a column permutation of Wc2,Φ and so rank Wc1,Φ = rank Wc2,Φ.

Thus, to show that a d(t − 1)-functional sequence Φ satisfies Theorem 2.14, it is sufficient to

show that it satisfies the rank condition for one representative of each isomorphism group under

the induced action of St of the sequences c = (c′, (a, b)) with c′ a (d, t)-limited (d(t−1)−1)-pair

sequence. We will call representative k-pair sequences the collection of one sequence from each

isomorphism group. In the next sections, we present some examples and show how to find the

representative pair sequences.

Method 1. The first method we could use to construct a perfect hash family involves guessing

a d(t−1)-functional sequence Φ, and then checking if it is a linear (qd, q, t)-perfect hash family.

To do this we check that for each representative d(t−1)-pair sequence c with a subsequence c′ of

length d(t−1)−1 which is (d, t)-limited, we have rank Wc,Φ = d(t−1). Then by Theorem 2.14,

Φ is an optimal linear (qd, q, t)-perfect hash family. This method is not very practical for small

q as it will result in a high failure rate. However, for large q (relative to d, t) there are many

perfect hash families and this guessing method has a better chance of succeeding.

Method 2. We now present a method that gives us a technique for recursively building a

perfect hash family for any q, d, t where they exist. This method has two main steps. The first

step is to find an appropriate d(t−1)−1 functional sequence Φ′. We say a (d(t−1)−1)-functional

sequence Φ′ is (d, t)-suitable if

(i) every d(t− 2) subset of Φ′ is a (qd, q, t− 1)-perfect hash family and

(ii) rank Wc′,Φ′ = d(t − 1) − 1 for all (representative) (d, t)-limited sequences c′ of length

d(t− 1)− 1.

The second step is to consider all (d, t)-limited sequences c′ of length d(t− 1)− 1, and all pairs

(a, b) and find the functionals φ for which

rank Wc′,Φ′ = rank W(c′,(a,b)),(Φ′,φ).

We call such a functional φ excluded. These functionals φ cannot be added to Φ′ to form a

perfect hash family. We show that any other functional in V ∗ will complete Φ′ to a perfect

hash family.
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Theorem 2.15 Let 2 ≤ t ≤ q. Let Φ′ be a (d, t)-suitable (d(t − 1) − 1)-functional sequence.

For any linear functional φ which is not excluded, (Φ′, φ) forms a (qd, q, t)-perfect hash family.

Further, every (qd, q, t)-perfect hash family can be constructed in this way.

Proof As Φ′ is (d, t)-suitable, rank Wc′,Φ′ = d(t−1)−1 for all (d, t)-limited (d(t−1)−1)-pair

sequences c′. If φ is not excluded, then rank W(c′,(a,b)),(Φ′,φ) = rank Wc′,Φ′ +1 = d(t−1). Hence,

by Theorem 2.14, (Φ′, φ) is a (qd, q, t)-perfect hash family.

Conversely, let Φ be a (qd, q, t)-perfect hash family. Let Φ = (Φ′, φ), where Φ′ is the sequence

of the first d(t−1)−1 elements of Φ and φ is the remaining linear functional. Then Φ′ is (d, t)-

suitable by Theorems 2.7 and 2.14, and the functional φ is not excluded by Theorem 2.14.

�

It is important to note that by definition, Wc,Φ and its rank is dependent on the value of q.

We also note that there are two types of excluded functionals. In the case that (c′, (a, b)) is

(d, t)-limited, we say that φ is limit-excluded. Now suppose (c′, (a, b)) is not (d, t)-limited. As

c′ is (d, t)-limited, this means there exists I ⊂ T with |(c′, (a, b))I | ≥ d(|I| − 1). If φ is a linear

functional with rank Wc′,Φ′ = rank W(c′,(a,b)),(Φ′,φ), then (Φ′
I , φ) is not a (qd, q, |I| − 1)-perfect

hash family, for I with |I| < t. We call φ sub-excluded (reflecting a subset of a perfect hash

family also being a perfect hash family). Thus the sub-excluded functionals are the functionals

which are excluded because adding them would result in a functional sequence contradicting

Theorem 2.7.

In previous sections, we have used c,Φ and c′,Φ′ to represent sequences of length d(t− 1) and

d(t − 1) − 1 respectively. In the construction of perfect hash families, we are only concerned

with sequences of length d(t− 1)− 1. Hence from now on we will omit the ′, and use c and Φ

to denote sequences of length d(t− 1)− 1. We summarise our method using this new notation.

Algorithm to find a (qd, q, t)-perfect hash family

1. Suitability Phase: Find a (d, t) suitable d(t−1)−1 functional sequence Φ, that is, so that

(i) every d(t− 2) subsequence of Φ is a (qd, q, t− 1)-perfect hash family;

(ii) for every (d, t)-limited (d(t−1)−1)-pair sequence c, we have rank Wc,Φ = d(t−1)−1.

2. Exclusion Phase: Find the (representative) (d, t)-limited (d(t − 1) − 1)-pair sequences

c. For every (representative) d(t − 1)-pair sequence (c, (a, b)), calculate the excluded

functionals of Φ. That is, find the linear functionals φ with rank Wc,Φ = rank W(c,(a,b)),(Φ,φ)

3. Construction Phase: We can now add any functional of V ∗ that is not excluded to Φ and

we will have an optimal linear (qd, q, t)-perfect hash family.
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In the following sections we give examples which demonstrate how to find suitable functional

sequences and representative pair sequences.

2.3 Sequence condition for every d functionals linearly independent

We can simplify the search for perfect hash families by using the fact that every d linear

functionals in a linear (qd, q, t)-perfect hash family are linearly independent (by Result 2.5).

We now show that this condition relates to the sub-excluded linear functionals.

We consider the case d = 2. An optimal linear (q2, q, t)-perfect hash family S has size 2(t− 1).

A linear functional φ ∈ V ∗ can be represented by φ = [a, b] where a, b ∈ GF(q) (we will use

square brackets to denote linear functionals). Suppose that c is a (2, t)-limited sequence of

length 2(t − 1) − 1, and suppose the pair (a, b) occurs d − 1 = 2 − 1 = 1 times in c. Then

(c, (a, b)) is a 2(t − 1)-pair sequence that is not (2, t)-limited (since if we pick I = {a, b} ⊂ T ,

then |cI | = 2 = d(|I| − 1)). Hence this sequence leads to sub-excluded linear functionals.

Suppose the pair (a, b) occurs in position i in c. Let Φ = (φ1, . . . , φt−1) be a (2, t)-suitable

(2(t− 1)− 1)-functional sequence and consider the matrix W(c,(a,b)),(Φ,φt). Row i has functional

φi in column a, and functional −φi in column b. Row t has functional φt in column a, and

functional −φt in column b. Hence in order for this matrix to have maximal rank 2(t− 1), we

must have all rows linearly independent, that is, we must have φi and φt linearly independent.

That is, the functionals which are linearly dependent on a functional in Φ are sub-excluded

functionals. Hence, if φ = [a, b] ∈ Φ then αφ = [αa, αb] is a sub-excluded linear functional.

Thus, without loss of generality, in the case t = 2 we only consider linear functionals of the form

φ = [1, α] where α ∈ GF(q) ∪ {∞} (where φ = [1,∞] is used to represent the linear functional

[0, 1]).

For general d, let Φ be a (d, t)-suitable (d(t− 1)− 1)-functional sequence. If c is a (d, t)-limited

sequence of length d(t − 1) − 1 with the pair (a, b) occurring at least d− 1 times in c (and

hence exactly d − 1 times), then (c, (a, b)) is not (d, t)-limited. Thus those functionals which

are linearly dependent on d− 1 functionals of Φ are sub-excluded linear functionals.

3 Case d = 2, t = 4

We will use the sequence theory developed above to show how to construct optimal linear

(q2, q, 4)-perfect hash families. We take a brief look at this case for three reasons. Firstly, this

case was considered using a geometrical approach in [3] and we want to illustrate the difference

between the geometric approach and the sequence approach. Secondly, we want to explain
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the correspondence between this case and a case of d = 3, t = 3 in Section 5. Thirdly, when

considering the d = 2, t = 5 case in Section 4, we will see that (as implied by Theorem 2.7) the

results for t = 4 appear as part of the conditions for the t = 5 case.

3.1 (q2, q, 3)-perfect hash families

In order to construct a (q2, q, 4)-perfect hash family S, we need to find a (2, 4)-suitable 5-

functional sequence Φ, so we need every d(t− 2) = 2(4− 2) = 4 subset of Φ to be a (q2, q, 3)-

perfect hash family. We show here that a set of 4 functionals is an optimal linear (q2, q, 3)-perfect

hash family if and only if they are pairwise linearly independent.

By the argument in Section 2.3, we only need consider functionals of the form [1, α], α ∈
GF(q)∪{∞}. To construct a (q2, q, 3)-perfect hash family, we begin with T = {1, 2, 3} and T 2 =

{(1, 2), (1, 3), (2, 3)}. We need to construct a (2, 3)-limited sequence c of length d(t−1)−1 = 3;

c will be (2, 3)-limited if each pair from T 2 occurs exactly once in c. Consider the 3-functional

sequence Φ = ([1, u], [1, v], [1, w]). We need Φ to be (2, 3)-suitable. Firstly, by Lemma 2.6, every

2-subsequence of Φ is a (q2, q, 2)-perfect hash family if every 2 functionals of Φ are linearly

independent, that is, we need u, v, w distinct. Secondly, we need to check that rank Wc,Φ = 3

for every (2, 3)-limited sequence c. For c = ((1, 2), (1, 3), (2, 3)), we have

Wc,Φ =


1 u −1 −u 0 0

1 v 0 0 −1 −v
0 0 1 w −1 −w

 .
This has rank 3 provided u, v, w are distinct. Further, permuting pairs in c is equivalent to

permuting u, v, w in the matrix, so Wc,Φ has rank 3 for any (2, 3)-limited sequence c. Thus

Φ = ([1, u], [1, v], [1, w]) is (2, 3)-suitable if u, v, w are distinct.

We now calculate the excluded functionals. We can complete c to a 4-pair sequence in 3

ways. Note that none of these gives a (2, 3)-limited sequence, so there are no limited-excluded

functionals. If we add the pair (1, 2), then we have the matrix

W(c,(1,2)),(Φ,[1,x]) =


1 u −1 −u 0 0

1 v 0 0 −1 −v
0 0 1 w −1 −w
1 x −1 −x 0 0

 .
Thus rank W(c,(1,2)),(Φ,[1,x]) = rank Wc,Φ if and only if x = u. That is, the functional [1, u] is

excluded. Similarly, adding the pairs (1, 3) or (2, 3) to c result in the excluded linear functionals

[1, v], [1, w] respectively. Hence we can add any remaining functional in V ∗ to Φ and get a perfect

hash family. That is, {[1, u], [1, v], [1, w], [1, x]} is an optimal linear (q2, q, 3)-perfect hash family

if and only if u, v, w, x are distinct.
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3.2 Constructing (q2, q, 4)-perfect hash families

We will use the algorithm described in Section 2.2 to construct a perfect hash family. As ex-

plained in Section 2.3, we will assume the linear functionals are of the form φ = [1, α] where α ∈
GF(q)∪{∞}. We have T 2 = {(a, b) ∈ Z×Z : 1 ≤ a < b ≤ 4} = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4),

(3, 4)}. Note that a (2, 4)-limited k-pair sequence on T uses each pair on T at most once.

We briefly outline the steps we need to take following the algorithm:

1. We find a (2, 4)-suitable 5-functional sequence Φ.

2. We find all the representative (2, 4)-limited 5-pair sequences c on T , these consist of

5 distinct pairs from T 2. We can complete such a sequence to a 6-pair sequence in 6

ways. Five of these ways involve repeating a pair, and so lead to a sequence that is not

(2, 4)-limited. Since we have chosen our functionals to have form [1, α], the resulting sub-

excluded functionals in these cases are just the functionals in Φ. There is a unique way to

complete a (2, 4)-limited 5-pair sequence c to a (2, 4)-limited 6-pair sequence (c, (a6, b6)).

For each representative (2, 4)-limited 5-pair sequence c, we form Wc,Φ and row reduce

to calculate the limit-excluded linear functional φ corresponding to the remaining pair

(a6, b6) on T .

3. Once we have calculated all the excluded linear functionals, any of the remaining linear

functionals in V ∗ \ Φ of the form [1, α], α ∈ GF(q) ∪ {∞} can be added to Φ to form a

perfect hash family.

We first count the number of representative (2, 4)-limited 5-pair sequences on T . The ac-

tion of the symmetric group S4 on 1, 2, 3, 4 induces an action on T . For example, the map-

ping σ = (123) (that is, 1 7→ 2 7→ 3 7→ 1) maps the pair (2, 3) on T onto (3, 1) ≡ (1, 3).

Without loss of generality, we can assume that a representative 5-pair sequence contains the

5 pairs Q = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. So the subgroup 〈(1, 2), (3, 4)〉 of S4 of size

4 fixes the set Q. The number of representative 5-pair sequences consisting of the pairs

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} under S4 is therefore 5!/4 = 30.

We choose a general 5-functional sequence Φ and consider the following 5-pair sequence c:

Φ = ([1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4)).

We need to construct Wc,Φ. Recall that w(1,2),φ = (φ,−φ, 0, 0), thus the first row of Wc,Φ is
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(1, v,−1,−v, 0, 0, 0, 0). Similarly we obtain all the wc,φ and so Wc,Φ written as a matrix is:

Wc,Φ =



1 v −1 −v 0 0 0 0

1 w 0 0 −1 −w 0 0

1 x 0 0 0 0 −1 −x
0 0 1 y −1 −y 0 0

0 0 1 z 0 0 −1 −z


.

We need Φ to be (2, 4)-suitable. Firstly, we need every 4-subset of Φ to be a (q2, q, 3)-perfect

hash family. That is, by Section 3.1, we need every 4 elements of v, w, x, y, z to be distinct.

Secondly, we need the rank of Wc,Φ to be 5 for all (2, 4)-limited 5-pair sequences c. By inspection

the matrix above has rank 5 if v, w, x, y, z are distinct. Now, different representative 5-pair

sequences correspond to permuting the pairs in c and so correspond to permuting v, w, x, y, z

in this matrix. Hence for any representative 5-pair sequence c, rank Wc,Φ = 5. Thus any set of

5 distinct values of v, w, x, y, z results in a (2, 4)-suitable 5-functional sequence Φ.

We can now easily see that completing c to a 6-pair sequence by adding a pair already in c

results in the sub-excluded functionals of form [1, α] being the functionals already in Φ (that is,

the functionals [1, v], [1, w], [1, x], [1, y], [1, z]). There is a unique way to complete c to a (2, 4)-

limited 6-pair sequence, namely by adding the pair (3, 4). We now perform row operations on

Wc,Φ to find the functional [1, θ] such that w(3,4),[1,θ] is in the row space of Wc,Φ. That is, we

perform row operations to construct a row [0, 0, 0, 0, 1, θ,−1,−θ]. For the above matrix, the

linear functional corresponding to the final pair (3, 4) is [1, θ] where

θ = −xy(v − w − z) + (x+ y)wz − vwz

xy − (x+ y)v + zv − zw + wv
.

Thus we have rank Wc,Φ = rank W(c,(3,4)),(Φ,[1,θ]) = 5 and so we cannot add the linear functional

[1, θ] to our set {[1, v], [1, w], [1, x], [1, y], [1, z]} to obtain a perfect hash family. That is, [1, θ] is

a limit-excluded linear functional.

There are 30 representative 5-pair sequences, so there are 30 limit-excluded functionals. How-

ever, we see that θ is symmetrical in x and y (with corresponding pairs (1, 4) and (2, 3)) and

so two sequences with the pairs (1, 4) and (2, 3) swapped yield the same limit-excluded linear

functional [1, θ]. This gives us a total of 15 representative 5-pair sequences to consider. These

can be calculated directly by hand; Table 1 lists 15 representative 5-pair sequences. (Note also

that θ is symmetrical in w and z but this does not further reduce the number of sequences to

be considered.)

To construct a perfect hash family, we choose the 5-functional sequence to be

Φ = ([0, 1], [1, 0], [1, 1], [1, a], [1, b]).
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Table 1: The 15 representative sequences c1, . . . , c15 for d = 2, t = 4

c1 ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4)) c9 ((1, 3), (1, 4), (2, 3), (1, 2), (2, 4))

c2 ((1, 2), (1, 3), (1, 4), (2, 4), (2, 3)) c10 ((1, 3), (1, 4), (2, 3), (2, 4), (1, 2))

c3 ((1, 2), (1, 3), (2, 4), (1, 4), (2, 3)) c11 ((1, 3), (1, 4), (2, 4), (1, 2), (2, 3))

c4 ((1, 3), (1, 2), (1, 4), (2, 3), (2, 4)) c12 ((1, 3), (1, 4), (2, 4), (2, 3), (1, 2))

c5 ((1, 3), (1, 2), (1, 4), (2, 4), (2, 3)) c13 ((1, 3), (2, 4), (1, 2), (1, 4), (2, 3))

c6 ((1, 3), (1, 2), (2, 4), (1, 4), (2, 3)) c14 ((1, 3), (2, 4), (1, 4), (1, 2), (2, 3))

c7 ((1, 3), (1, 4), (1, 2), (2, 3), (2, 4)) c15 ((1, 3), (2, 4), (1, 4), (2, 3), (1, 2))

c8 ((1, 3), (1, 4), (1, 2), (2, 4), (2, 3))

We can do this without loss of generality as the group GL(2, q) of linear functionals of GF(q)2

is 3-transitive on a one dimensional subspace (see for example [13]). If we have a 6= b and

a, b 6= 0, 1,∞ then Φ is (2, 4)-suitable.

We want to find the limit-excluded functional for each representative 5-pair sequence c in Ta-

ble 1. Rather than performing row operations on a newWc,Φ for each sequence c, we use theWc,Φ

matrix above, and note that changing the sequence c by permuting the pairs in c is equivalent to

permuting v, w, x, y, z in the matrix. Hence it is equivalent to permuting v, w, x, y, z in the ex-

cluded functional [1, θ]. So for the first sequence c1 = ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4)), we have

v = ∞, w = 0, x = 1, y = a, z = b, hence θ = −a/(b−a−1). Thus we obtain the limit-excluded

linear functional φ1 = [1,−a/(b− a− 1)] which appears against c1 in Table 2. For the second

sequence c2 = ((1, 2), (1, 3), (1, 4), (2, 4), (2, 3)), we have v = ∞, w = 0, x = 1, y = b, z = a

and so θ = −b/(a− b− 1), giving the limit-excluded linear functional φ2 = [1,−b/(a− b− 1)].

Similarly, we obtain φ3. For the remaining 12 sequences c4 to c15, the pair (1, 3) corresponds

to ∞, that is w = ∞. Thus in these cases θ becomes −(−xy+ zx− zv+ yz)/(−z + v). So, for

example, for the sequence c4 = ((1, 3), (1, 2), (1, 4), (2, 3), (2, 4)), we have w = ∞, v = 0, x = 1,

y = a, z = b and hence θ = −(−a + b + ab)/(−b). Table 2 lists the 15 limit-excluded linear

functionals obtained.

Table 2: The 15 excluded linear functionals for d = 2, t = 4

c1 φ1 = [1,−a/(−a+ b− 1)] c9 φ9 = [1, b(a− 1)/(a− b)]

c2 φ2 = [1,−b/(−b+ a− 1)] c10 φ10 = [1, a(b− 1)/(b− a)]

c3 φ3 = [1, ab/(a+ b− 1)] c11 φ11 = [1, (a− b)/(a− 1)]

c4 φ4 = [1, (ab− a+ b)/b] c12 φ12 = [1, (b− a)/(b− 1)]

c5 φ5 = [1, (ab+ a− b)/a] c13 φ13 = [1, ab]

c6 φ6 = [1,−ab+ a+ b] c14 φ14 = [1, b/a]

c7 φ7 = [1, b(a− 1)/(b− 1)] c15 φ15 = [1, a/b]

c8 φ8 = [1, a(b− 1)/(a− 1)]
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We note that these 15 limit-excluded linear functionals correspond to the 15 linear functionals

calculated via geometrical means in [3]. Constructions there used these 15 excluded linear

functionals to show the following existence result.

Theorem 3.1 Optimal linear (q2, q, 4)-perfect hash families exist for all prime powers q except

when q = 2, 3, 4, 5, 7, 8, 9, 13.

4 Case d = 2, t = 5

An optimal linear (q2, q, 5)-perfect hash family has size d(t− 1) = 8. Theorem 1.2 shows that

they exist for q ≥ 108. In this section we prove an existence bound that is much smaller.

Further, we construct optimal linear (q2, q, 5)-perfect hash families for much smaller q than the

known examples.

We first list the known constructions of optimal linear (q2, q, 5)-perfect hash families. They

are all based on chains of subfields. The Blackburn-Wild [9] construction gives optimal linear

(q2, q, 5)-perfect hash families for q of the form q = qα1α2···α6
0 where q0 is any prime power and

each αi ≥ 2. In [4], optimal linear (q2, q, 5)-perfect hash families are constructed for q = r2, r

any prime with char(r) ≥ 31; and for q = r4, r any prime such that r ≥ 11 (r 6= 13).

4.1 An Existence Bound

We use the algorithm given in Section 2.2. As noted in Section 2.3, we only need to consider

linear functionals of the form [1, α], α ∈ GF(q) ∪ {∞} when constructing our perfect hash

family. We are interested in (2, 5)-limited 7-pair sequences from T 2 = {(1, 2), (1, 3), (1, 4),

(1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. So we only need to consider 7-pair sequences

on T where each pair from T 2 occurs at most once. Since |T 2| = 10, we can complete such a

sequence to an 8-pair sequence in 10 ways, but in only 3 ways without repeating a pair.

We wish to count the number of representative (2, 5)-limited 7-pair sequences so that we can

get a bound on the number of excluded functionals. Note that different sequences may result in

the same excluded functional, so this count gives us an upper bound. Let c be a (2, 5)-limited

7-pair sequence on T . Then, under the action of the symmetry group S5, the remaining three

pairs in T 2 are one of four types: A, B, C or D which are given in Table 3.

We now provide an upper bound on the total number of sequences of each type.

A. This sequence c contains the pairs {(1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. It is not
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Table 3: Sequence types for d = 2 and t = 5

Case remaining 3 pairs

A {(1, 2), (1, 3), (1, 4)}
B {(1, 2), (1, 3), (4, 5)}
C {(1, 2), (1, 3), (2, 3)}
D {(1, 2), (1, 3), (2, 4)}

(2, 5)-limited as taking I = {2, 3, 4, 5} results in |cI | = 2(|I| − 1) = 6. So we can ignore

this case.

B. To preserve a sequence of type B, we can permute 2, 3 and 4, 5. Hence sequences of type

B are still type B under the action of the permutation group 〈(23), (45)〉 of size 4. This

group has 4 elements, hence there are 7!/4 = 1260 representative sequences of type B.

C. Sequences of type C remain type C under the action of the group S3 × S2 of size 12

permuting 1, 2, 3 and 4, 5. Hence there are 7!/12 = 420 representative sequences of type

C.

D. A sequence of type D remains a sequence of type D under the action of the permutation

group 〈(12)(34)〉 of size 2. Hence there are 7!/2 = 2520 representative sequences of type

D.

This gives a total of 1260 + 420 + 2520 = 4200 representative (2, 5)-limited 7-pair sequences.

For each (2, 5)-limited sequence c above, consider repeating a pair (a, b) already occurring in

the sequence c, so the sequence (c, (a, b)) is not (2, 5)-limited. By the discussion in Section 2.3,

the condition generated by this sequence is that every two functionals in our perfect hash family

are linearly independent. Since we only consider functionals of the form [1, α], the resulting

sub-excluded functionals are the functionals already in our (2, 5)-suitable 7-functional sequence

Φ.

So we only need consider the case where we extend c by adding a pair not in c. Some of the

resulting sequences will be (2, 5)-limited, and some will not. So each of the 4200 representative

(2, 5)-limited 7-pair sequences can be completed to an 8-pair sequence containing distinct pairs

in three ways. Hence there are 4200× 3 representative 8-pair sequences. Each 8-pair sequence

results in one excluded linear functional of the form [1, α]. Hence there at most 4200 × 3

excluded linear functionals of the form [1, α]. However, to prove existence of a perfect hash

family, we first need to verify that there exists a (2, 5)-suitable 7-functional sequence Φ. So

we need to show that there is a 7-functional sequence Φ such that firstly, every 6 elements of

Φ form a (q2, q, 4)-perfect hash family, and secondly, Wc,Φ has maximal rank 7 for any (2, 5)-
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limited 7-pair sequence c. We study the form of Wc,Φ in the next section and will prove in

Lemma 4.2 that a (2, 5)-suitable sequence exists if q > 95. The next theorem gives a bound on

the existence of optimal linear (q2, q, 5)-perfect hash families assuming a (2, 5)-suitable sequence

Φ exists. This extra condition is removed in Theorem 4.3.

Theorem 4.1 If q+1 > 7+4200×3 = 12607, and there exists a (2, 5)-suitable sequence, then

there exists an optimal linear (q2, q, 5)-perfect hash family.

Proof We assume there exists a (2, 5)-suitable 7-functional sequence Φ. In the discussion

above, we showed that the 7 functionals in Φ are excluded functionals. Further, each of the

4200 representative (2, 5)-limited 7-pair sequences results in 3 excluded functionals of the form

[1, α]. There are q + 1 linear functionals of the form [1, α], α ∈ GF(q) ∪ {∞}, so provided

q + 1 > 7 + 4200 × 3 = 12607, there are functionals in V ∗ that we can add to Φ to form a

(q2, q, 5)-perfect hash family. �

In fact we will show that (q2, q, 5)-perfect hash families exist for much smaller q than given in

Theorem 4.1, since the excluded linear functionals are not necessarily distinct.

4.2 Sequence Analysis for d = 2 and t = 5

In order to construct linear (q2, q, 5)-perfect hash families, we use a similar technique to that

used in Section 3.2. We now study in detail the representative (2, 5)-limited 7-pair sequences

from each of the cases B, C and D given in Table 3.

Case B. Consider the 7-functional sequence Φ and 7-pair sequence c:

Φ = ([1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)).

Row reducing Wc,Φ enables us to calculate the excluded linear functionals for each of the 3

missing pairs (4, 5), (1, 2), (1, 3). They are:

B(4,5) =
[
1,−−vwz−wxy+wzx+wzy−yzx+yvx

−vy+zv−wz+vw−vx+xy

]
,

B(1,2) =
[
1, −wuzv+zuvs+zuwy−vwsx+xwzs+xysv−xzys+wuvx−uvsx−wuxy+yusx−uysv−swuz+swuvzsv+wzy−zys−vsx−wxy+ysx−yzx+yvx+wzx+yuz−uvy−wuz+wuv−vwz)

]
,

B(1,3) =
[
1, −uysv+yusx+swuv+yzsv−xzys−wzsv+xwzs+zuvs−uvsx−yuzv+yuvx−swuz+zuwy−wuxy−uvy+uxy+wuv−wux−yzx−vwz+wzx+zsv−vsx+yvx−wzs+wsx+wzy−wxy

]
.

Case C: Consider the 7-functional sequence Φ and 7-pair sequence c:

Φ = ([1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)).
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The excluded linear functionals for the 3 missing pairs (1, 2), (1, 3), (2, 3) are:

C(1,2) =
[
1, −(−uzv−wus+wuv+uvs−svw+wzs)

−uv−zs+zv+ws+uz−wz

]
,

C(1,3) =
[
1, −usx+uzx+uys−uxy+ysx−zys−(−ys+zy−uz+ux+zs−zx)

]
,

C(2,3) =
[
1, −(−yzv+yvx−vwx+yvw−wxy+wzx)

zy−wz+wx−vy+zv−zx

]
.

Case D: Consider the 7-functional sequence Φ and 7-pair sequence c:

Φ = ([1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)).

The excluded linear functionals for the 3 missing pairs (1, 2), (1, 3), (2, 4) are:

D(1,2) =
[
1, −uysv+uvsx+yuzv−uzvx−vwsx−wusx−wuzv+wuzx+wuvx+wuys−wuxy+wysx+wzsv−wzysyuz+wys−wsx−wzy+wzx−uzv+uvx−uxy−ysv+ysx+yzv+zsv−zvx−zys

]
,

D(1,3) =
[
1, −usx+uzx+uys−uxy+ysx−zys−(−ys+zy−uz+ux+zs−zx)

]
,

D(2,4) =
[
1, −vwx−yzv+zvx+vwz+wxy−wzxxy+wy−wx−vy+zv−zy

]
.

We note that the linear functional B(4,5) is a sub-excluded linear functional. In this case the

8-pair sequence is c = ((1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)). This is not (2, 4)-

limited since if we let I = {2, 3, 4, 5}, then |cI | = 6. This corresponds to the excluded linear

functionals arising from the case d = 2, t = 4 with the 5-functional sequence and 5-pair sequence

as follows:
Φ′′ = ([1, v], [1, w], [1, x], [1, y], [1, z])

c′′ = ((2, 3), (2, 4), (2, 5), (3, 4), (3, 5)).

Similarly, C(1,2), C(1,3), C(2,3), D(1,3)(= C(1,3)) and D(2,4) are sub-excluded linear functionals.

These cases correspond to the fact that given any 5-functional subsequence of Φ, the 15 excluded

linear functionals given in Table 2 for the case d = 2, t = 4 are sub-excluded functionals here.

Thus the total number of sub-excluded functionals resulting from these cases is (at most)(
7
5

)
× 15 = 350. The remaining excluded functionals B(1,2), B(1,3) and D(1,2) are limit-excluded

functionals.

This means we can improve our bound on the number of excluded linear functionals. There are

1260 excluded functionals of the form B(1,2) and 1260 of the form B(1,3). There are 2520 excluded

functionals of the form D(1,2). There are in total at most 350 excluded functionals generated

by B(4,5), C(1,2), C(1,3), C(2,3), D(1,3) and D(2,4). Finally, there are 7 functionals in Φ that are

also excluded. Hence the number of excluded functionals is 1260× 2 + 2520 + 350 + 7 = 5387.

We can use this to improve the bound given in Theorem 4.1; the improved bound is given in

Theorem 4.3.

Note also that the symmetry group 〈(23)〉 maps the sequence ((1, 4), (1, 5), (2, 3), (2, 4), (2, 5),

(3, 4), (3, 5)) to the sequence ((1, 4), (1, 5), (2, 3), (3, 4), (3, 5), (2, 4), (2, 5)), hence B(1,3) is B(1,2)

23



with the variables w and y swapped and x and z swapped. This reduces the search space when

using a computer to construct a perfect hash family.

4.3 The existence of (2, 5)-suitable sequences

In this section we prove that there exists a (2, 5)-suitable sequence if q > 95. Moreover, the

first paragraph of the proof gives a technique which we will use to construct suitable sequences.

Lemma 4.2 If q > 95, there exists a (2, 5)-suitable sequence.

Proof We first need to check that we can find a 7-functional sequence Φ such that every 6

linear functionals of Φ form a (q2, q, 4)-perfect hash family. Secondly, we need to show that in

each of the Cases B, C and D from Section 4.2, the functional Φ satisfies rank Wc,Φ = 7. Recall

by Section 2.3 we can consider the linear functionals to be of the form [1, α], α ∈ GF(q)∪{∞}.
Suppose q is a prime power greater than 95, then by Theorem 3.1 there exists a linear (q2, q, 4)

perfect hash family S = {φ1, . . . , φ6}. For each 5-subset of S, the associated 5-functional

sequence Φ′ leads to 15 excluded linear functionals (given by Table 2). Including the original

six linear functionals φ1, . . . , φ6, this accounts for 6+6×15 = 96 functionals. Hence if q+1 > 96,

there is a functional φ ∈ V ∗ which is not excluded. Thus S ∪ {φ} is a set of 7 functionals, such

that every 6 form a (q2, q, 4)-perfect hash family.

Let Φ = ([1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z]) be an associated functional sequence for

S ∪ {φ}. It is easy to see that in each of Cases B, C, D from Section 4.2, the matrix Wc,Φ

always has rank 7 if s, u, v, w, x, y, z are distinct. For example, for Case B, Wc,Φ has form

(writing ∗ instead of the linear functionals):

Wc,Φ =

1 2 3 4 5

∗ ∗
∗ ∗
∗ ∗
∗ ∗

0 ∗ ∗
∗ ∗
∗ ∗


The bottom five rows have rank 5 because every 6 functionals of Φ form a (q2, q, 4)-perfect hash

family. Thus the whole matrix has rank 7 as any two functionals in Φ are linearly independent.

A similar argument holds for cases C and D. Hence the associated 7-functional sequence Φ is

(2, 5)-suitable. �
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We can now state a more general bound for the existence of an optimal linear (q2, q, 5)-perfect

hash family. By Lemma 4.2, a (2, 5)-suitable sequence exists if q > 95. Hence by Theorem 4.1,

an optimal linear (q2, q, 5)-perfect hash family exists if q > 12606. However, in the discussion

in Section 4.2, we showed that we could reduce the number of excluded functionals to 5387.

Hence we have that if q + 1 > 5387, then there exists an optimal linear (q2, q, 5)-perfect hash

family.

Theorem 4.3 If q > 5386, then there exists an optimal linear (q2, q, 5)-perfect hash family.

4.4 Strategy for constructing perfect hash families for d = 2, t = 5

We can now use these calculations to construct (q2, q, 5)-perfect hash families. As discussed, we

only use functionals of the form [1, α], α ∈ GF(q)∪{∞}. We need to start with a (2, 5)-suitable

7-functional sequence Φ. To build Φ, we use the technique described in the first paragraph of

the proof of Lemma 4.2. We begin with S ′′, an optimal linear (q2, q, 4)-perfect hash family

(constructions for these are given in [3]). Note that S ′′ consists of 6 linear functionals. For each

5-functional subsequence of S ′′ we calculate the 15 excluded linear functionals given in Table 2.

We then choose any non-excluded functional from V ∗ to add to S ′′ to give us a (2, 5)-suitable

sequence Φ. (2, 5)-suitable sequences were investigated in [4] and examples are found for all

primes q ≥ 31. For example, Φ = ([1,∞], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12]) is a (2, 5)-suitable

sequence for all primes q > 79.

Given a (2, 5)-suitable 7-functional sequence Φ, we want to calculate the excluded linear func-

tionals for each representative (2, 5)-limited 7-pair sequence. In this case, there are 4200 repre-

sentative (2, 5)-limited 7-pair sequences, which is too many to calculate by hand as we did in the

d = 2, t = 4 case. However, using a computer, we can easily find the excluded functionals for

all 7! of the (2, 5)-limited 7-pair sequences. We choose a (2, 5)-suitable 7-functional sequence,

for example, let Φ = ([1,∞], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12]) (for q a prime, q > 79). There

are 7! ways of assigning s, u, v, w, x, y, z to be one of ∞, 0, 1, 2, 3, 5, 12. These different permu-

tations correspond to choosing different 7-pair sequences c in the matrix Wc,Φ. For each of

these permutations, we calculate the nine excluded linear functionals B(4,5), . . . , D(2,4) given in

Section 4.2. This method will generate all the excluded linear functionals, and we can then

choose a non-excluded linear functional (distinct from the original seven) from V ∗ to add to Φ

to form a perfect hash family.

For simplicity we looked for constructions in the case q a prime, q < 50, 000. However, the

excluded functionals in Section 4.2 can be used to construct (q2, q, 5)-perfect hash families for

any (large enough) value of q. We found many constructions of optimal linear (q2, q, 5)-perfect
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hash families. In summary, using the (2, 5)-suitable sequence

Φ = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12]},

we found constructions of (q2, q, 5)-perfect hash families for primes q = 359, 397, 401, 433, 439,

443, 449, 461, and for all primes 467 ≤ q ≤ 50, 000, q 6= 541. The larger q is, the more (q2, q, 5)-

perfect hash families containing Φ there are. We conjecture that optimal linear (q2, q, 5)-perfect

hash families containing Φ will exist for all primes q ≥ 467, q 6= 541.

The smallest example we found for d = 2 and t = 5 is a (3112, 311, 5)-perfect hash family

S = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 16], [1, 87]}. In fact, starting with the (q2, q, 4)-

perfect hash family S ′′ = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5]}, we found optimal linear (q2, q, 5)-

perfect hash families for all primes 347 ≤ q ≤ 50, 000. Our search was by no means complete,

as we only used a few suitable sequences to base our search on. It seems likely that using

a different starting suitable sequence may lead to examples of optimal linear (q2, q, 5)-perfect

hash families for q < 311. For the interested reader, Table 4 lists constructions for the smallest

values of q for which we found examples.

Table 4: Small values of q for which optimal linear (q2, q, 5)-perfect hash families

S = {[1, s], [1, u], [1, v], [1, w], [1, x], [1, y], [1, z], [1, i]} exist.

q s, u, v, w, x, y, z i

311 ∞, 0, 1, 2, 3, 5, 16 87, 264

317 ∞, 0, 1, 2, 3, 5, 19 179

331 ∞, 0, 1, 2, 3, 5, 14 75, 295

337 ∞, 0, 1, 2, 3, 5, 20 268

347 ∞, 0, 1, 2, 3, 5, 20 227

359 ∞, 0, 1, 2, 3, 5, 12 329

367 ∞, 0, 1, 2, 3, 5, 26 334

We also wanted to find a general construction of an optimal linear (q2, q, 5)-perfect hash family.

The set S = {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12], [1, 44]} is an optimal linear (q2, q, 5)-

perfect hash family for primes q, 2400 ≤ q ≤ 50, 000, except for q = 2543, 2579 and 2843. (In

these cases {[0, 1], [1, 0], [1, 1], [1, 2], [1, 3], [1, 5], [1, 12], [1, 46]} is a perfect hash family.) This set

S is also a perfect hash family for many smaller values of q. We conjecture that S is a perfect

hash family for all primes q > 2843.
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5 Case d = 3, t = 3

An optimal linear (q3, q, 3)-perfect hash family has size d(t − 1) = 6. We start by consid-

ering the representative (3, 3)-limited 5-pair sequences from T 2 = {(1, 2), (1, 3), (2, 3)}. To

be (3, 3)-limited, each pair on T occurs at most twice in the sequence. Using the action

of the symmetric group S3 on 1,2,3 we may assume that the sequence contains the pairs

{(1, 2), (1, 2), (1, 3), (1, 3), (2, 3)} (that is, the missing pair is (2, 3)). As the pairs (1, 2) and

(1, 3) each occur exactly twice, there are (5!/(2!2!)) (3, 3)-limited sequences. However, the sub-

group of size 2 swapping 2 and 3 fixes the missing pair (2, 3). Hence there are 5!/(2!2!×2) = 15

sequences to consider.

To build a (q3, q, 3)-perfect hash family, we need to start with a (3, 3)-suitable 5-functional

sequence Φ. To be (3, 3)-suitable, we need any d(t−2) = 3 functionals in Φ to form a (q3, q, 2)-

perfect hash family. So by Lemma 2.6, we need every three functionals in Φ to be linearly

independent. This means we can use a special form for Φ to make our calculations easier. We

use the fact that without loss of generality, any five elements, no three dependent, in GF(q)3

can be written as [1, α, α2] for five distinct values of α ∈ GF(q) ∪ {∞} (see [12], [4]). Hence

without loss of generality we may consider the following 5-functional sequence Φ and the general

(3, 3)-limited representative 5-pair sequence c:

Φ = ([1, v, v2], [1, w, w2], [1, x, x2], [1, y, y2], [1, z, z2])

c = ((2, 3), (1, 2), (1, 3), (1, 3), (1, 2)).

So we have

Wc,Φ =



0 0 0 1 v v2 −1 −v −v2

1 w w2 −1 −w −w2 0 0 0

1 x x2 0 0 0 −1 −x −x2

1 y y2 0 0 0 −1 −y −y2

1 z z2 −1 −z −z2 0 0 0


.

Our choice of functionals ensures that any d = 3 elements in Φ are linearly independent provided

v, w, x, y, z are distinct. The remaining condition for Φ to be (3, 3)-suitable, is that rank Wc,Φ =

5 for all 3-limited 5-pair sequences c. Clearly the matrix Wc,Φ has rank 5 for any distinct

v, w, x, y, z. This is true for any permutation of c, so rank Wc,Φ = 5 for any (3, 3)-limited 5-pair

sequence c. Thus Φ is a (3, 3)-suitable functional sequence for any distinct v, w, x, y, z.

By inspection, adding the pair (1, 2) to c results in the subspace of sub-excluded functionals

〈[1, w, w2], [1, z, z2]〉. Similarly, adding the pair (1, 3) to c results in the subspace of sub-excluded

functionals 〈[1, x, x2], [1, y, y2]〉.

There is a unique way to complete c to a (3, 3)-limited 6-pair sequence, namely by adding the

pair (2, 3). Thus we need to perform row operations on Wc,Φ to find the limit-excluded linear
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functional corresponding to this last pair (2, 3). Row reductions give us two rows in the right

form, namely (0, 0, 0, 1, v, v2,−1,−v,−v2) and (0, 0, 0, a, b, c,−a,−b,−c) where a = z+w−x−y,
b = wz − xy, c = zw(x + y) − xy(z + w). Thus any linear functional which is a linear

combination of these is excluded. A general linear functional has form [`,m, n], so the limit-

excluded functionals are all functionals [`,m, n] satisfying∣∣∣∣∣∣∣∣
` m n

1 v v2

a b c

∣∣∣∣∣∣∣∣ = 0. (1)

We now consider the special case where the final linear functional [`,m, n] is of the form

[1, θ, θ2]. Assume that all parameters v, w, x, y, z, θ are distinct. This will ensure that any three

functionals in our perfect hash family are linearly independent. Note that this also means that

the sub-excluded functionals are automatically prevented from occurring. Solving equation (1)

gives us the limit-excluded functionals [1, θ, θ2] where

θ = −xy(v − w) + wz(x− v) + yz(w − x)

z(v − w) + y(x− v) + v(w − x)
.

That is, w(2,3),[1,θ,θ2] is in the row space of Wc,Φ if θ has this form.

We note that this is exactly the same expression for θ as in the t = 2, d = 4 case. This corre-

spondence was noted in [4] where this case was studied using geometric methods, however the

geometric interpretation did not explain the correspondence, whereas the sequence technique

does. More specifically, the correspondence between the sequences is:

d = 3, t = 3 Φ = ([1, v, v2], [1, w, w2], [1, x, x2], [1, y, y2], [1, z, z2])

c = ((2, 3), (1, 2), (1, 3), (1, 3), (1, 2))

d = 2, t = 4 Φ = ([1, v], [1, w], [1, x], [1, y], [1, z])

c = ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4))

So in this special case we can use the construction results from the d = 2, t = 4 case. This

gives us constructions of (q3, q, 3)-perfect hash families for all prime powers q except q =

2, 3, 5, 7, 8, 9, 13. Using the general form [`,m, n] in equation (1) allows us to construct a

(q3, q, 3)-perfect hash family for the additional case q = 13. Constructions of (q3, q, 3)-perfect

hash families for prime powers q ≥ 11 are given in [4].

6 Case d = 4, t = 3

An optimal linear (q4, q, 3)-perfect hash family has d(t−1) = 8 elements. Once again we use the

algorithm outlined in Section 2.2. We have T 2 = {(1, 2), (1, 3), (2, 3)}, and we first count the
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number of representative (4, 3)-limited 7-pair sequences on T . Since each pair from T 2 occurs

at most 3 times in a (4, 3)-limited sequence, we have 9 pairs to choose from. We consider the

different possibilities for the two pairs that are not in the sequence. Under the symmetric group

S3 acting on {1, 2, 3} there are 2 possibilities for these remaining two pairs.

Case A. The two pairs not in c are (2, 3), (2, 3). The number of (4, 3)-limited representa-

tive 7-pair sequences c containing the pairs {(1, 2), (1, 2), (1, 2), (1, 3), (1, 3), (1, 3), (2, 3)} is:

7!/(3!3!1!× 2) = 70.

Case B. The two pairs not in c are (1, 3), (2, 3). The number of (4, 3)-limited representa-

tive 7-pair sequences c containing the pairs {(1, 2), (1, 2), (1, 2), (1, 3), (1, 3), (2, 3), (2, 3)} is:

7!/(3!2!2!× 2) = 105.

In both cases, extending c to an 8-pair sequence will lead to a subspace of excluded functionals.

First consider the sub-excluded functionals. Suppose Φ = (φ1, . . . , φ7) is a (4, 3)-suitable 7-

functional sequence. Let c = ((1, 2), (1, 2), (1, 2), (1, 3), (1, 3), (1, 3), (2, 3)) be a sequence of type

A. If we add the pair (1, 2) to c then we get an 8-pair sequence that is not (4, 3)-suitable.

The resulting sub-excluded functionals are the functionals in 〈φ1, φ2, φ3〉. Similarly adding the

pair (1, 3) gives sub-excluded functionals 〈φ4, φ5, φ6〉. Permuting the pairs in c will result in

sub-excluded functionals being all the functionals that are dependent on 3 functionals of Φ. We

get a similar statement if a sequence c of type B is extended to an 8-pair sequence that is not

(4, 3)-limited.

In order to simplify our search for constructions, we will restrict our attention to functionals

of a special form. This will make it easier to find constructions, but will mean that we do not

completely answer the existence question. We will consider the special case using only linear

functionals that have form [1, α, α2, α3] for α ∈ GF(q). Note that this means that provided we

use distinct values of α for our functionals, we automatically have any 4 functionals linearly

independent, and so the sub-excluded functionals are automatically excluded.

Let Φ = ([1, s, s2, s3], [1, u, u2, u3], [1, v, v2, v3], [1, w, w2, w3], [1, x, x2, x3], [1, y, y2, y3], [1, z, z2, z3])

for distinct s, u, v, w, x, y, z. We check that Φ is (4, 3)-suitable. By Lemma 2.6, every 4 elements

of Φ form a (q4, q, 2)-perfect hash family since any 4 elements of Φ are independent. To check

the rank condition, consider the (4, 3)-limited 7-pair sequence

c = ((1, 2), (1, 2), (1, 2), (1, 3), (1, 3), (1, 3), (2, 3)).

The resulting matrix Wc,Φ has rank 7 as s, u, v, w, x, y, z are distinct. This is true for any

permutation of c. Similarly, the rank condition holds for sequences of type B. Hence Φ is

(4, 3)-suitable.

We now use this c and Φ and perform row reductions on Wc,Φ to find the excluded lin-
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ear functionals. Completing the sequence c with the pair (1, 2) or (1, 3) repeats the condi-

tion that every four linear functionals are independent. Completing the sequence c with the

pair (2, 3) gives us the limit-excluded linear functionals (0, 0, 0, 0, 1, z, z2, z3,−1,−z,−z2,−z3),

(0, φ1,−φ1), (0, φ2,−φ2), for certain φ1, φ2. (The functionals φ1, φ2 are easy to calculate, but

have a complex form, so we omit the detailed description here.) Any linear combination of

these 3 functionals is limit-excluded. However, we are considering the special case where we

only want to add a functional to Φ that has form [1, α, α2, α3]. To find the limit-excluded

functionals of this form we solve ∣∣∣∣∣∣∣∣∣∣
1 α α2 α3

1 z z2 z3

φ1

φ2

∣∣∣∣∣∣∣∣∣∣
= 0.

This equation has 3 solutions for α ∈ GF(q), one solution being α = z which corresponds to a

functional already in Φ . Thus there are at most two further excluded functionals of the form

[1, α, α2, α3].

We undertake a similar process for a sequence c of type B. Here the two pairs missing from c

are different, so we will get a different subspace of excluded functionals for each missing pair.

Each of these subspaces excludes three linear functionals of the form [1, α, α2, α3]. Two of these

are functionals are already in Φ. Hence for each of the two pairs missing from c, we have one

further excluded functional of the form [1, α, α2, α3].

In total there are 70 + 105 = 175 representative (4, 3)-limited 7-pair sequences, each with

2 excluded linear functionals of the form [1, α, α2, α3]. So there are at most 175 × 2 = 350

functionals excluded in this way. Since there are q linear functionals of the form [1, α, α2, α3],

α ∈ GF(q), then provided q > 7+350 = 357, an optimal (q4, q, 3)-perfect hash family will exist.

We have proved:

Theorem 6.1 Optimal linear (q4, q, 3)-perfect hash families exist for all prime power q > 357.

In order to construct optimal linear (q4, q, 3)-perfect hash families, we begin with a (4, 3)-

suitable 7-functional sequence Φ; by the above argument, any choice of distinct s, u, v, w, x, y, z

for Φ will do. We chose 0, 1, 2, 3, 4, 5, 6, that is,

Φ = ([1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 22, 23], [1, 3, 32, 33], [1, 4, 42, 43], [1, 5, 52, 53], [1, 6, 62, 63]).

For each of the 7! arrangements of {s, u, v, w, x, y, z} = {0, 1, 2, 3, 4, 5, 6}, we calculate the 2 so-

lutions for α obtained from Case A, and the 2 solutions for α from Case B. Each arrangement ex-

cludes (at most) 4 values of α. Once these are calculated, any value β ∈ GF(q)\{0, 1, 2, 3, 4, 5, 6}

30



not excluded will give us a linear functional [1, β, β2, β3] which we can add to Φ to make a per-

fect hash family. We did some computer searches and found that optimal linear (q4, q, 3)-perfect

hash families exist for q much smaller than the bound of 357. Our program searched for such

perfect hash families for each prime q < 2000. Table 5 lists an example of a perfect hash

family containing S = {[1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 22, 23], [1, 3, 32, 33], [1, 4, 42, 43], [1, 5, 52, 53],

[1, 6, 62, 63]} for each prime q < 2000 where they exist.

Table 5: Examples of (q4, q, 3)-perfect hash families S ∪ {[1, β, β2, β3]} for prime q < 2000

q β

47 24

59 21

67 34

79 37

83 42

89 43

97,109 26

101,137 11

103,107,151,163,173,179,191,193,197,199,211,227,241,251,263,269 12

113,127,131,223,229,233,239,271,277,281,349,521,541,599 13

139,157,257 17

149 19

283 ≤ q ≤ 2000, q 6= 349, 521, 541, 599 12

Table 5 shows that the set {[1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 22, 23], [1, 3, 32, 33], [1, 4, 42, 43], [1, 5, 52, 53],

[1, 6, 62, 63], [1, 12, 122, 123]} is an optimal linear (q4, q, 3)-perfect hash family for all prime q,

599 < q < 2000. We conjecture that this set will be a perfect hash family for all primes q > 599.

7 Conclusion

In this paper we have developed a useful technique to construct optimal linear (qd, q, t)-perfect

hash families. In Method 1 in Section 2.2 we demonstrate how to check whether a given set

of functionals is a linear (qd, q, t)-perfect hash family. In Method 2 in Section 2.2, we give

an algorithm that can be used recursively to construct optimal linear (qd, q, t)-perfect hash

families for any parameters q, d, t where they exist. We have illustrated this algorithm by

constructing new optimal linear (q2, q, 5)- and (q4, q, 3)-perfect hash families. This algorithm is

straightforward to use for small d and t. It can be used for larger d, t, but the size of d and t

will be limited by computational capacity.
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Appendix: Notation Index

This appendix contains an index of the notation and definitions introduced in Section 2.1.

V = GF(q)d

V ∗ = {φ : V → GF(q)}

P = (p1, . . . , pt) ∈ V t

UP =
{

(ψ1, . . . , ψt) ∈ (V ∗)t : pψ1

1 + · · ·+ pψt
t = 0

}
T = {1, . . . , t}

T 2 = {(a, b) ∈ T × T : 1 ≤ a < b ≤ t}

w(a,b),φ = (ψ1, . . . , ψt) ∈ (V ∗)t where

ψi =


φ if i = a,

−φ if i = b,

0 if i 6= a, b

(for (a, b) ∈ T 2, φ ∈ V ∗)

V(a,b) = {w(a,b),φ : φ ∈ V ∗} ⊆ (V ∗)t, for (a, b) ∈ T 2

Wc,Φ =
〈
w(ai,bi),φi

: 1 ≤ i ≤ k
〉
⊆ (V ∗)t,

where c = ((a1, b1), . . . , (ak, bk)) ∈ (T 2)k,Φ = (φ1, . . . , φk) ∈ (V ∗)k

rank Wc,Φ means the rank of the matrix Wc,Φ with k rows w(ai,bi),φi
, i = 1, . . . , k..

R = {(p, . . . , p) : p ∈ V } ⊆ V t

Y = {(ψ1, . . . , ψt) ∈ (V ∗)t : ψ1 + · · ·+ ψt = 0}

dimL refers to the dimension of the subspace L over GF(q)

A k-pair sequence c = ((a1, b1), . . . , (ak, bk)) on T is a sequence of k pairs from T 2.

A k-functional sequence Φ = (φ1, . . . , φk) ∈ (V ∗)k is a sequence of k functionals from V ∗.

cI ,ΦI : Let c be a k-pair sequence, Φ a k-functional sequence and I ⊆ T . Then cI is the

subsequence of c consisting of the pairs in c that lie in I2. ΦI is the subsequence of Φ consisting
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of the functional corresponding to the pairs in cI .

A (d, t)-limited k-pair sequence is a k-pair sequence on T where for each proper subset I of T

we have |cI | < d(|I| − 1).

A (d, t)-suitable sequence Φ is a (d(t− 1)− 1)-functional sequence such that (i) every d(t− 2)

elements of Φ form a (qd, q, t−1)-perfect hash family, and (ii) for every (d, t)-limited (d(t−1)−1)-

pair sequence c, we have rank Wc,Φ = d(t− 1)− 1.

The representative k-pair sequences are the collection of one sequence from each isomorphism

group under the action of the symmetry group St.
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