
Seifert’s RSA Fault Attack:
Simplified Analysis and Generalizations

James A. Muir∗

School of Computer Science
Carleton University

jamuir@scs.carleton.ca

15 December 2005 21:11:36 EST

Abstract

Seifert recently described a new fault attack against an implementation of RSA signature verification.
Here we give a simplified analysis of Seifert’s attack and gauge its practicality against RSA moduli of
practical sizes. We suggest an improvement to Seifert’s attack which has the following consequences: if
an adversary is able to cause random faults in only 4 bits of a 1024-bit RSA modulus stored in a device,
then there is a greater than 50% chance that they will be able to make that device accept a signature on a
message of their choice. For 2048-bit RSA, 6 bits suffice.

1 Introduction

Recently, Seifert described a novel attack against an implementation of the RSA signature verification oper-
ation [5]. His attack is based on the following assumptions:

• An adversary has a device which contains an RSA public key,(N, e), stored in protected read-only
memory (e.g. in EEPROM).

• The valuesN ande are known to the adversary.

• On input(m, s), the device transfers the valuesN ande from protected memory and proceeds to check
if s is a valid signature form.

• As the device transfers the valueN from protected memory,the adversary can induce data faults.

The attacker’s goal is to create a message-signature pair which the device will accept as valid. Seifert
describes a probabilistic algorithm which does this. Moreover, Seifert’s attack is aselective forgery; that is,
an adversary is able to select a message, compute a “signature” on it and have the device accept these as a
valid message-signature pair. This is all done without factoringN and without computing the private key,d.

Seifert’s attack uses an incredibly simple strategy: if forging RSA signatures using the modulusN is
too difficult, then modify some bits ofN and create a new modulus,̂N, where itis easy to forge signatures.
Seifert points out that it is very easy to create signatures whenN̂ is prime, since then we can simply compute
the private exponent,̂d, ase−1 mod(N̂−1), assuming thate is relatively prime tôN−1. In the off-line part
of Seifert’s attack, the adversary canchoosewhich bits ofN to modify to creatêN. In the on-line part of

∗J.A. Muir is supported by a Natural Sciences and Engineering Research Council Postdoctoral Fellowship.

1



the attack, the adversary repeatedly queries the device with a specially constructed message-signature pair
and causes data faults until this particularN̂ is used as the modulus in the signature validation algorithm.

To put a practical perspective on Seifert’s attack, imagine that the device is a “locked” computer that
will only execute code if it can validate a signature on that code. This is exactly what Microsoft had hoped
to implement in its Xbox game-console [7]. Microsoft attempted to design the Xbox so that only software
signed by Microsoft would run on it. However, a number of Xbox enthusiasts found ways to circumvent
Microsoft’s software authentication techniques [3]. In fact, Seifert credits Andy Green and Franz Lehner’s
Xbox “hack” (see [3], p. 143) as the inspiration for his attack. However, there is an important distinction
between the two techniques. Green and Lehner’s attack involves adeterministicchange to an internal
parameter; Seifert’s attack involves arandomchange to an internal parameter. If an attacker has the ability
to change bits of(N, e) deterministically, then it is much easier to unlock the device. In this case, it is
possible to defeat the authentication procedure by just settinge to equal 1.

In this paper, we present a modification of Seifert’s attack. We demonstrate that we do not need to
restrict ourselves to errors only in the least significant bits of the modulus. Also, we show that we do not
need to limit ourselves to moduli,̂N, that are prime; what we are really after is moduli that have easily
computed factorizations. We give a simplified analysis for our attack and we compare this analysis against
some computational trials using RSA public keys of practical sizes (i.e. 1024 bits and 2048 bits).

Outline In §2 we describe the fault model which use throughout the paper. In §3 we review Seifert’s
attack and adapt it to our fault model. An analysis and some computational results are presented in §3.1 and
§3.2. In §4 we give an improvement to Seifert’s attack. Analysis, computational results and an example are
provided in §4.1, §4.2 and §4.3. We end with some remarks in §5.

2 Fault Model

Suppose the device implements the following RSA signature verification algorithm:

FAULTY-RSA-VERIFY(m, s)

comment: the device’s embedded RSA public key is(N, e).

(N̂, ê)f (N, e)
h← H(m)

h′← ŝe mod N̂
if h = h′

then return “accept”
else return “reject”

The operator “f” denotes an assignment operation that is subject to random bit faults. We will make
this more precise in a moment. The functionH denotes a message encoding function which typically
incorporates some cryptographic hash function. For example,H might be a full-domain hash function
constructed from a concatenation of SHA-256 hashes.

The bit faults which affect the public key are instigated by the adversary. In our model,we only consider
bit faults in the RSA modulus, N. These faults change the valueN to N̂. This is anon-deterministicprocess
and so we can consider̂N to be a random variable. We assume that the public exponente is unaffected by
bit faults. It seems unlikely that an adversary would be able to take advantage of errors ine. However, if by
randomly flipping bits ofe, we could obtain a valuêe for which it is easy to computêe-th roots moduloN,
then this type of attack would certainly be worth exploring. But, this seems to happen very rarely (unless

2



the adversary has a way to setê= 1 with high probability). In practice,e is usually taken to be 3 or 65537
since these values help make signature verification more efficient.

The effect of faults on the modulus can be described using anerror function, ξ . This function takes
two parameters; the first isN and the second is a random variable,1. Both ξ and1 determine howN is
transformed. The definition ofξ is highly dependent on the architecture of the device and the technique that
the adversary uses to cause faults.

One possible definition ofξ is the following

ξ(N, 1) = N ⊕ 0n−b−c
‖1‖0c, where 1 ∈ {0, 1}b. (1)

Here, N is considered as ann-bit array; its value is changed by xoring it with ab-bit string,1, which is
offset according to the valuec. The valuesb andc are fixed. This error function modelsrandom-data
fixed-locationfaults (i.e. random data appears at a fixed location within the modulus).

Another possible definition ofξ is this:

ξ(N, 1) = N � 1n−b−1
‖0b
‖11, where 1 ∈ {0, 1, 2, . . . n− b}. (2)

The symbol� denotes a bit-wise “and” of two bit-strings. Now, the bits ofN are changed by zeroing a block
of b bits which is offset according to the parameter1 (which is now an integer). This error function models
fixed-data random-locationfaults (i.e. constant data appears at a random location within the modulus).

In general, we can consider
ξ : {0, 1}n × S→ {0, 1}n

whereS is a finite set. The random variable1 is drawn fromS. In the algorithm FAULTY-RSA-VERIFY,
after the operation(N̂, ê)f (N, e), we have that

N̂ = ξ(N, 1), for some1 ∈ S, and e= ê.

The number of possible values of̂N is related to the size ofS. When FAULTY-RSA-VERIFY executes, the
adversary initiates faults but theycannotcontrol the value of1.

An excellent survey of techniques for inducing computational faults in a device is presented in [1]. For
example, a random-data fixed-location fault can be induced by illuminating one of the device’s registers or
data buses with a strong light source. Alternately, a fixed-data random-location fault can be initiated by
varying the device’s supply voltage.

For the sake of clarity, we continue our exposition assuming thatξ is defined as in (1). Thus, we have

N̂ = N ⊕ 0n−b−c
‖1‖0c, for some1 ∈ {0, 1}b.

We sometimes refer to1 as anerror vector. 1 is b-bits wide and this might be influenced by the size of the
device’s data-bus or registers; for example, many smart card have 8-bit registers while typical desktop PCs
have 32-bit registers. The bit-length of the modulus isn, so we haven = blg Nc + 1.

Using the parameters,b, c, 1, we can rewrite the algorithm FAULTY-RSA-VERIFY like so:

3



FAULTY-RSA-VERIFY(m, s)

comment: the device’s embedded RSA public key is(N, e). n is the bit-length ofN.

b is the length of the error vector andc is its offset.

1 ∈R {0, 1}b

N̂ ← N ⊕ 0n−b−c
‖1‖0c

ê← e

h← H(m)

h′← ŝe mod N̂
if h = h′

then return “accept”
else return “reject”

3 Seifert’s Attack

Here is a simplified description of Seifert’s attack which we have adapted according to our fault model:

RSA-ATTACK(m, (N, e))

comment: m is a message selected by the adversary.

S← {0, 1}b \ {0b
}

repeat
1 ∈R S
S← S\ {1}
N̂ ← N ⊕ 0n−b−c

‖1‖0c

until (N̂ is primeand gcd(e, N̂ − 1) = 1) or (S= ∅)

if S= ∅
then return “fail”

d̂← e−1 mod(N̂ − 1)

h← H(m)

s← hd̂ mod N̂

repeat
output← FAULTY-RSA-VERIFY(m, s)

until output = “accept”

return “success”

Essentially, what is happening here is that we randomly flip bits ofN until we find a valuêN such thatN̂
is prime ande−1 exists moduloN̂ − 1. If we find such a value, then we use it to construct a new private
exponent̂d by computing the inverse ofe modulo N̂ − 1. This can be done efficiently using the extended
Euclidean algorithm or Fermat’s Theorem. Next, we generate a signature form, usingd̂, which will verify
against the public key(N̂, e). All of this work so far is doneoff-line (i.e. it does not require us to interact
with the device). The attack finishes with anon-linephase where we repeatedly query the device with our
selected message and the signature we constructed for it. Each time we query the device, we hope that the
bit faults we initiate will cause the device to use the modulusN̂ when it checks our message and signature.

4



When Seifert presented his attack he did not consider the parameterc. The bit faults he considered were
always restricted to theb least significant bits ofN (i.e. whenc = 0). Our model is more general. We will
see that the value ofc has no effect on the running time or success probability of the attack. The value ofb
does, however.

3.1 Analysis

The procedure RSA-ATTACK contains two iterative loops. The first loop is executed during the off-line
portion of the attack:

S← {0, 1}b \ {0b
}

repeat
1 ∈R S
S← S\ {1}
N̂ ← N ⊕ 0n−b−c

‖1‖0c

until (N̂ is primeand gcd(e, N̂ − 1) = 1) or (S= ∅)

Note that the error spaceS may be traversed in other ways. Instead of selecting error vectors uniformly at
random fromS, it might be more convenient to consider them in lexicographic order (i.e. counting from 1
to 2b
− 1 in binary).

The off-line portion of the attack succeeds if we can find a value ofN̂ that causes the loop to exit before
we exhaust the error space. The probability of this happening for a particular value ofN̂ is

Pr(N̂ is prime) · Pr(gcd(e, N̂ − 1) = 1).

In practice,e is usually equal to 3 or 65537 which are both prime numbers. We will make the simplifying
assumption thate is prime. Thus,

Pr(gcd(e, N̂ − 1) = 1) = Pr(e6 | N̂ − 1) =
e− 1

e
.

A consequence of the Prime Number Theorem is that the probability that a randomoddpositive integerx is
prime is roughly 2/ ln x. Using this fact, and the bound 2n−1

≤ N̂ < 2n, we have

Pr(N̂ is prime) ≈
2

ln N̂
>

2

ln 2n
=

2

n ln 2
.

The reader who carefully examines the definition of RSA-ATTACK may notice that there are some values
of N̂ that arenot necessarily odd. This happens only whenc = 0. However, in the off-line phase of the
attack, since we are searching forN̂ that are prime, when carrying out our search we would simply modify
the error space,S, so thatN̂ is always odd. Whenc > 0, no modification is necessary. Whenc = 0, we
would setSequal to{0, 1}b−1

{0} \ {0b
} instead of{0, 1}b \ {0b

}.
Now we can estimate the probability that̂N meets our criteria as

2(e− 1)

e · n ln 2
.

So, we expect that we will have to consider aboute·n ln 2
2(e−1)

values ofN̂ before we find one that suits our needs.

The probability that there isnogood value of̂N inside our search space can be estimated as(
1−

2(e− 1)

e · n ln 2

)2b
−1

.

5



off-line stage worst case running time O(2b
− 1)

expected running time O
(

e·n ln 2
2(e−1)

)
probability of success 1−

(
1− 2(e−1)

enln 2

)2b
−1

on-line stage expected running time O(2b)

FIGURE 1: Characteristics of RSA-ATTACK.

This represents the probability that the off-line stage of the attackfails.
Theon-lineportion of the attack is described in the second iterative loop:

repeat
output← FAULTY-RSA-VERIFY(m, s)

until output = “accept”.

This portion of the attack is much simpler to analysis. We want the RSA verification algorithm to be affected
by a particular error vector. Assuming that each error vector from{0, 1}b is equiprobable, this happens with
probability 1

2b . So, we expect to have to carry out about 2b faulted signature verification operations before
the desired error occurs.

Some of the important characteristics of RSA-ATTACK are summarized in Figure 1. Notice how the
parameterb affects the success probability and running time of the attack. By increasingb we can increase
the probability that the off-line stage of the attack succeeds. However, this also increases the expected
number of steps in the on-line stage of the attack. Depending on how quickly the target device processes
and responds to on-line queries, the expected number of on-line queries required can present a major obstacle
to attack implementors.

3.2 The off-line search in practice

We constructed two RSA public keys by pairing the RSA challenge numbers RSA-1024 and RSA-2048 [9]
with the exponente= 65537. For each public key, we examined the search space used in the off-line stage
of RSA-ATTACK for various values ofb andc (recall thatb is the length of the error vector andc is its
offset). All our numerical computations (i.e. probabilistic primality testing and gcd’s) were done using the
C++ library NTL [6].

For each public key, we tookb ∈ {4, 6, 8, 10, 12, 14, 16}. For each value ofb, we setc to equal each
multiple ofb in the interval 0. . . n−b−1; so,c takes on 1+

⌊
n−b−1

b

⌋
different values. In theory, the offset,

c, could take any value in the interval 0. . . n − b; our reason for limitingc to multiples ofb was that we
wanted thec values to define disjoint search spaces.

We illustrate our experiments with an example. Supposeb = 4 andn = 1024. For these parameters, the
error offsetc takes on 255 different values; namely, 0, 4, 8, 12, . . . , 1016. Each value ofc defines a search
space which is disjoint from all the others. We found that 3 of the 255 search spaces containedN̂ values
for which the off-line stage of the attack succeeds. The ratio 3/255 can be compared to our estimate of the
probability that the off-line stage of the attack succeeds whenb = 4 (see below). Across the 255 search
spaces, we examined 255· (24

− 1) = 3825 values of̂N. Of these 3825 values, 3 had the desired properties.
The ratio 3/3825 can be compared to our estimate of the probability thatN̂ is prime andN̂ − 1 is relatively
prime toe = 65537. The same methodology was used for the other values ofb. Our experimental results
are summarized in Figure 2.

6



b goodN̂’s total # of N̂’s ratio goodc’s total # ofc’s ratio

RSA-1024 4 3 3825 0.00078 3 255 0.0118
e= 65537 6 24 10710 0.00224 23 170 0.135

8 68 32385 0.00210 53 127 0.417
10 264 104346 0.00253 97 102 0.951
12 969 348075 0.00278 85 85 1
14 3354 1195959 0.00280 73 73 1
16 11658 4128705 0.00282 63 63 1

RSA-2048 4 11 7665 0.00144 11 511 0.0215
e= 65537 6 44 21483 0.00205 41 341 0.120

8 106 65025 0.00163 80 255 0.314
10 332 208692 0.00159 164 204 0.804
12 1018 696150 0.00146 169 170 0.994
14 3433 2391918 0.00144 146 146 1
16 11601 8322945 0.00139 127 127 1

FIGURE 2: Experimental results for the off-line stage of RSA-ATTACK.

From our analysis in the previous section, for the 1024-bit public key, we estimate the probability that a
value ofN̂ has the desired properties as

2 · 65536

65537· 1024· ln 2
≈ 0.00282.

The empirical values listed for RSA-1024 in column 5 of Figure 2 appear to converge toward this estimate.
Thus, we expect to have to examine about 1/0.00282= 355 values of̂N before we find one that meets our
criteria. If the architecture of a device permits the attacker some control over the size ofb, then they might
chooseb so that their search space contains at least 355 values (but, of course, this does not guarantee that
the search space will contain a good value ofN̂). In practice, it would seem prudent to first find lots of good
values ofN̂, for various values ofb andc, and then pick one that has a short error vector which is easy to
instantiate in the device.

Using the probability above, we can estimate the probability that the off-line stage of the attack will
succeed for different values ofb:

b = 4, 1− (1− 0.00282)24
−1
≈ 0.0415

b = 6, 1− (1− 0.00282)26
−1
≈ 0.163

b = 8, 1− (1− 0.00282)28
−1
≈ 0.513

b = 10, 1− (1− 0.00282)210
−1
≈ 0.944.

These estimates are quite close to the empirical values listed for RSA-1024 in column 8 of Figure 2.
Similar comparisons can be made for RSA-2048. We estimate the probability that a 2048-bit value of

N̂ has the desired properties as
2 · 65536

65537· 2048· ln 2
≈ 0.00141.

7



And, we estimate the probability that the off-line stage of the attack will succeed for different values ofb as:

b = 4, 1− (1− 0.00141)24
−1
≈ 0.0209

b = 6, 1− (1− 0.00141)26
−1
≈ 0.0851

b = 8, 1− (1− 0.00141)28
−1
≈ 0.302

b = 10, 1− (1− 0.00141)210
−1
≈ 0.764.

These estimates are quite close to our empirical results.
Although our fault model greatly simplifies many of the arguments Seifert worked through in his paper,

from these experiments it appears that our analysis does give an accurate picture of what can be expected in
practice.

4 Improving Seifert’s Attack

The criteria that Seifert uses for his off-line search can be relaxed. When we examine various values ofN̂,
what we really want is an integer that has aneasily computed prime factorization. If N̂ is prime, then this
is certainly true. However, there are many other integers which have this property. If we know the prime
factorization ofN̂, then we can easily computeϕ(N̂) and then use the extended Euclidean algorithm to
obtaind̂ = e−1 mod ϕ(N̂).

Deciding whether or not the prime factorization of a random integer can be easily computed is a subjec-
tive task. It depends upon what factorization method you are using, how efficiently is it implemented and
how much time you are willing to invest. The strategy we used was this: givenN̂, divide out any prime
factors≤ 210, and then check whether the quotient is equal to 1 or is prime. We chose a small bound of
210 since we did not want to invest much time in attempting to factor eachN̂. There is a convenient data
structure in NTL which can be used to generate all the primes less than 230 in sequence1.

Using this approach, the off-line stage of the attack becomes:

S← {0, 1}b \ {0b
}

repeat
1 ∈R S
S← S\ {1}
N̂ ← N ⊕ 0n−b−c

‖1‖0c

N̂0← N̂ with any prime factors≤ 210 divided out.
until (N̂0 is prime or equal to 1and gcd(e, ϕ(N̂)) = 1) or (S= ∅)

Obviously, the bound 210 can be replaced with one larger or smaller according to the preference of the
implementor.

4.1 Analysis

The probability that a value of̂N causes the loop above to exit is

Pr(N̂0 is prime or equal to 1) · Pr(gcd(e, ϕ(N̂)) = 1) =

Pr(the second-largest prime factor of̂N is ≤ 210) · Pr(gcd(e, ϕ(N̂)) = 1).

1Actually, during our experiments, we found that the largest prime generated by NTL’sPrimeSeq class to be 230
− 216

− 1
which is not the greatest prime≤ 230. There 3184 more primes which are larger.

8



off-line search using off-line search using
Seifert’s off-line search primes≤ 210 primes≤ 230

b
expected
iterations

probability
of success

expected
iterations

probability
of success

expected
iterations

probability
of success

RSA-1024 4 355 0.041 57 0.233 19 0.564
e= 65537 6 355 0.084 57 0.421 19 0.820

8 355 0.513 57 0.989 19 0.999

RSA-2048 4 710 0.021 115 0.123 38 0.331
e= 65537 6 710 0.043 115 0.238 38 0.564

8 710 0.302 115 0.893 38 0.999

FIGURE 3: Comparison of off-line search strategies.

The distribution of the second-largest prime factor of random integers≤ x asx → ∞ was investigated by
Knuth and Trabb Pardo [4]. Following their discussion, we define

F2(β) := lim
x→∞

Pr(a random integer≤ x has its second-largest prime factor≤ xβ).

This limit was shown to exist. Over the interval 0≤ β ≤ 1/2, F2(β) increases monotonically from 0 to 1;
for β ≥ 1/2, F2(β) = 1. Sincen is the bit-length of the modulus,N, we haveN̂ ≤ 2n. Settingx andβ

equal to 2n and 10/n, respectively, we obtain

F2 (10/n) ≈ Pr(a random integer≤ 2n has its second-largest prime factor≤ 210).

AssumingN̂ behaves like a random integer≤ 2n, this is the probability that we want to approximate. Using
our assumption thate is prime, we estimate the probability that̂N meets our criteria as

(e− 1)F2(10/n)

e
.

Unfortunately,F2(β) does not have a simple closed form so it is not immediate what sort of improvement
this achieves. However, we can quantify the difference by plugging in some numbers.

EvaluatingF2(β) requires some careful work and, fortunately, a table of values is provided in [4]. From
this table, we use Lagrange interpolation to build a polynomial approximation toF2(β) in the interval
0≤ β ≤ 1/2. This gives us

F2(10/1024) ≈ 0.0175, F2(10/2048) ≈ 0.00872,

F2(30/1024) ≈ 0.0538, F2(30/2048) ≈ 0.0264.

Now, for a 1024-bit public key withe = 65537, the probability that a random value ofN̂ ends our search
when we cast out primes≤ 210 is roughly

65536· 0.0175

65537
≈ 0.0175.

So, our chances, which we calculated in §2.4, have increased from 0.282% to 1.75%. If we cast out primes
less than 230, we get 5.38%. Some more comparisons are made in Figure 3. The most dramatic difference
appears in the number of values ofN̂ we expect to consider before the search ends.

9



b goodN̂’s total # of N̂’s ratio goodc’s total # ofc’s ratio

RSA-1024 4 63 3825 0.0165 54 255 0.212
e= 65537 6 191 10710 0.0178 111 170 0.653

8 545 32385 0.0168 126 127 0.992
10 1843 104346 0.0177 102 102 1
12 6018 348075 0.0173 85 85 1
14 20861 1195959 0.0174 73 73 1
16 72711 4128705 0.0176 63 63 1

RSA-2048 4 63 7665 0.00822 60 511 0.117
e= 65537 6 203 21483 0.00945 155 341 0.455

8 598 65025 0.00920 228 255 0.894
10 1863 208692 0.00893 204 204 1
12 6259 696150 0.00899 170 170 1
14 20910 2391918 0.00874 146 146 1
16 72968 8322945 0.00877 127 127 1

FIGURE 4: Experimental results of searching for easily factorableN̂’s

4.2 The improved off-line search in practice

We repeated the experiments from §2.4 using our new on-line search criteria. For various error widths and
offsets, we exhausted the resulting search spaces and determined whichN̂’s could be easily factorized after
casting out primes≤ 210. Our results are summarized in Figure 4. Our empirical results are close to what
our analysis predicts.

4.3 An Example

The 2048-bit modulus from the public RSA key that Microsoft stores inside the Xbox can be found in
publicly available source code [8]. Here is the modulus in hexadecimal:

A44B1BBD7EDA72C7143CD5C2D4BA880C7681832D5198F75FCAB1618598E2B3E4
8D9A47B0BFF6BC967CAE88F198266E535A6CB41B470C0A38A19D8F57CB11F568
DB52CF69E49F604EEA52F4EB9D37E80C60BD70A5CF5A67EC05AA6B3E8C80C116
819A14892BFA7603BECE39F09C42724EE9F371C473AAA09FEDA34F9EA1019827
BD07CA52A80013BE9471E46FCF1CA4D915FB9DF95E9344330B6AAE0B90526AD1
BE475D10797526075C9206FF758A3EB3BAF7C0A22E51645BB9F13FE129A22F2E
1BEDDA95D68AFC6D46585B01FBB5737273C6AEE399148C5B8E77B479DE8B05BD
EEC27FEFFF7B349C64F51002D2F6522ED43617F2A1A3D4C2E6D73D66E54ED7D3

Some of the techniques for inducing faults explained in [1] can be used to zeroize bytes of data. It is
interesting to consider an off-line search, with respect to the modulus above, in this fault model.

The modulus above consists of 256 bytes. If we index the bytes from least significant (byte 0) to most
significant (byte 255), then the smallest index,i , such that when we zeroize bytei we obtain an easily
factorable number isi = 16. The method of factorization we used was to cast out all prime factors≤ 230

and then apply a probabilistic primality test. The factorization is 3·13·199·856469· p0 wherep0 is a large
prime.

The smallest index,j , such that when we zeroize bytej we obtain a prime number isj = 104.

10



5 Remarks

Our analysis and computational trials show that if an adversary is able to cause random faults inonly 4 bits
of a 1024-bit RSA modulus stored in a device, then there is a greater than 50% chance that they will be able
to make that device accept a signature on a message of their choice. For 2048-bit RSA,6 bitssuffice. This
is an improvement over Seifert’s original attack which required 8 and 10 bits, respectively.

These percentages do not take into account any of the practical difficulties that might be involved in a
real-world implementation of the attack. For example, it might be difficult to limit the effect of faults to
a particular block of bits within the modulus. Our examination was limited to a mathematical model and
so we did not deal with these issues. Presently, there is no record of anyone successfully carrying out this
attack in the open literature. But, when the technical requirements for the attack are compared to what is
reported in [1], its practicality does not seem that far fetched.

One way to defend against this attack is to have the device check the integrity of its public key. This
might be done by computing a cryptographic hash of the public key and then comparing it to some stored
value. However, care must be taken in when this comparison is done. If an integrity check is done before a
signature is verified, this will not stop attackers who cause bit faults in the public key after the check. Other
countermeasures, against fault analysis attacks in general, are discussed in [1].

An interesting lesson that can be taken from Seifert’s attack is that RSA public keys are somewhat
fragile; that is, if you flip a few bits of an RSA modulus then there is a non-negligible probability that you
end up with an integer that is easy to factor. It would be interesting to know if other public key cryptosystems
not based on the integer factorization problem exhibit this behaviour. The discrete log problem, as it is posed
in DSA, does not seem to have this susceptibility (i.e. ify = gx is a DSA public key, then, by flipping bits
of y, it does not seem likely we will obtain a valuêy for which it is easy to compute logg ŷ; in fact, the
probability that̂y is in the subgroup generated byg is negligible.).

References

[1] H. BAR-EL , H. CHOUKRI, D. NACCACHE, M. TUNSTALL AND C. WHELAN. The sorcerer’s appren-
tice guide to fault attacks.Cryptology ePrint Archive, Report 2004/100.

[2] D. BONEH, R. DEM ILLO , AND R. LIPTON. On the importance of checking cryptographic protocols
for faults.Journal of Cryptology14 (2001), 101–119.

[3] A. H UANG. Hacking the Xbox: An Introduction to Reverse Engineering, No Starch Press, 2003.

[4] D. K NUTH AND L. TRABB PARDO Analysis of a simple factorization algorithm.Theoretical Computer
Science3 (1976), 321–348.

[5] J. SEIFERT. On authenticated computing and RSA-based authentication. InProceedings of the 12th
ACM Conference on Computer and Communications Security (CCS 2005), November 2005, pp. 122–
127.

[6] V. SHOUP. NTL: A Library for doing Number Theory (version 5.4).http://shoup.net/ntl/

[7] Microsoft Xbox,http://www.microsoft.com/xbox/

[8] Operation X,http://sourceforge.net/projects/opx/

[9] RSA Challenge Numbers,http://www.rsasecurity.com/rsalabs/node.asp?id=2093

11


