
An Anonymous Authentication Scheme for

Trusted Computing Platform

He Ge ⋆⋆

Abstract. The Trusted Computing Platform is the industrial initiative
to implement computer security. However, privacy protection is a criti-
cal problem that must be solved in Trusted Computing Platform. In this
paper, we propose a simple and efficient method to implement anony-
mous authentication in such setting. The new scheme is proved to be
secure under the strong RSA assumption and decisional Diffie-Hellman
assumption.

Keywords: Privacy, Direct Anonymous Attestation, Trusted Computing Plat-
form.

1 Introduction

Trusted Computing Group [17] is an industry standardization body to develop
standards for Trusted Computing Platforms. A trusted computing platform is a
computing device which is integrated with a cryptographic chip called trusted
platform module (TPM). TPM is the root of trust. It is designed and manufac-
tured in specific way such that all other remote parties trust some cryptographic
computing results from this TPM. A trusted computing platform implements
many security related features based on TPM, for example, secure boot, sealed
storage, software integrity attestation, etc. More introduction about TPMs, and
trusted computing platform can be found at the website of trusted computing
group [17].

However, the deployment of TPM introduces privacy concerns. During a
transaction a remote server knows a unique identifier for TPM. Different servers
can cooperate with each other to link transactions made by the same TPM. To
protect the privacy of a TPM owner, it is desirable to implement anonymous
authentication, i.e, a TPM can prove its authenticity to a remote server without
disclosing its real identity.

Two solutions have been proposed in the specification of TPM. TPM v1.1 is
based on a trusted third party, called Privacy CA. A TPM generates a second
RSA keypair called Attestation Identity Key (AIK). TPM sends AIK to Privacy
CA to apply for a certificate on AIK. After TPM prove its ownership on a valid
EK, Privacy CA issues the certificate on AIK. Later, TPM send the certificate

⋆⋆ Department of Computer Science and Engineering, University of North Texas,
ge@unt.edu.

for AIK to a verifier and prove it owns such AIK. This way, the TPM hides its
identity during the transaction. Obviously, this is not satisfactory solution, since
each transaction needs the involvement of Privacy CA, and the compromise of
CA will disclose all mapping between AIK’s and EK.

The solution in TPM v1.2 is called direct anonymous attestation (DAA) in
which TPM can directly proves its authenticity to a remote server with the help
of Privacy CA. The current solution for DAA has been introduced by Brick-
ell et al. in [4], which we refer to as BCC scheme in this paper. The solution
is based on the research results from group signature which has been intro-
duced by Chaum and Heyst in 1991 [11]. More specifically, it is based on the
Camenisch-Lysyanskaya signature scheme [5] and ACJT group signature scheme
[1]. A direct anonymous attestation can be seen as a group signature without
opening capability.

In this paper, we propose a new solution to anonymous attestation method for
Trusted Computing Platform. Our method is quite a simple and efficient solution
compared to the current solution. The rest of this paper is organized as follows.
The next section presents the model for our solution. Section 3 reviews some
definitions and cryptographic assumptions. Section 4 introduces the building
blocks for our scheme. Section 5 presents the proposed scheme. The security
properties are considered in Section 6. The paper concludes in section 7.

2 The Model

We propose the model for our solution to anonymous authentication in Trusted
Computing Platform. We adopt a different method for the creation of anonymous
credential as in BCC scheme, a way more like the key generation for Endorsement
Key EK. We suggest a new keypair for TPM, called Anonymous Authentication
Key (AAK) This keypair is created during manufacturing just as EK, and solely
used for anonymous authentication.

Definition 1 (The Model). A manufacturer creates TPMs. After creation,
TPMs independently work as expected, and cannot be interfered by the outside.
Manufacturer and TPMs forms a group in which manufacturer holds group mas-
ter key, while TPMs hold their anonymous authentication keypairs (AAK). The
system should satisfy the following security requirements.

1. (Forgery-resistance) AAKs can only be created using manufacturer’s master
key.

2. (Anonymity) TPM can directly anonymous attest its authenticity to a remote
server, without the help of a trusted third party. It is infeasible to extract the
real identity of a TPM, or link the transactions by the same TPM.

3. (Revocation) TPM should be tamper-proof. On very rare circumstances a
TPM may be compromised, and the group member certificate is exposed. In
such case, a revocation mechanism should be available for the identification,
or exclusion of rogue TPMs.

3 Definitions and Preliminaries

This section reviews some definitions, widely accepted complexity assumptions
that we will use in this paper.

Definition 2 (Special RSA Modulus [5]). An RSA modulus n = pq is called
special if p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers.
Special RSA modulus is also called safe RSA modulus in some literature [1].

Definition 3 (Quadratic Residue Group QRn). Let Z∗

n be the multiplicative
group modulo n, which contains all positive integers less than n and relatively
prime to n. An element x ∈ Z∗

n is called a quadratic residue if there exists an
a ∈ Z∗

n such that a2 ≡ x (modn). The set of all quadratic residues of Z∗

n forms
a cyclic subgroup of Z∗

n, which we denote by QRn. If n is the product of two
distinct primes, then |QRn| = 1

4 |Z
∗

n|.

We list some properties about QRn which will be used in the paper.

Property 1 If n is a special RSA modulus, with p, q, p′, and q′ as in Def-
inition 2 above, then |QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are
generators of QRn .

Property 2 If g is a generator of QRn, then ga (mod n) is a generator of QRn

if and only if GCD(a, |QRn|) = 1.

Property 3 If x ∈R Z∗

n is uniformly distributed over Z∗

n, then x2 (mod n) is
uniformly distributed over QRn.

The security of our techniques relies on the following security assumptions
which are widely accepted in the cryptography literature. (see, for example, [2,
13, 6, 1]).

Assumption 1 (Strong RSA Assumption) Let n be an RSA modulus. The
Flexible RSA Problem is the problem of taking a random element u ∈ Z∗

n and
finding a pair (v, e) such that e > 1 and ve = u (modn). The Strong RSA
Assumption says that no probabilistic polynomial time algorithm can solve the
flexible RSA problem with non-negligible probability.

Assumption 2 (Decisional Diffie-Hellman Assumption over QRn) Let n
be a special RSA modulus, and let g be a generator of QRn. For two distributions
(g, gx, gy, gxy), (g, gx, gy, gz), x, y, z ∈R Zn, there is no probabilistic polynomial-
time algorithm that distinguishes them with non-negligible probability.

Kiayias et al. have investigated the Decisional Diffie-Hellman Assumption
over the subset of QRn in [15], i.e., x, y, z are randomly chosen from some subsets
of QRn. They showed that the Decisional Diffie-Hellman Assumption is still
attainable over subset of QRn with the size down to at most |QRn|

1/4. The
unlinkability of our construction for direct anonymous attestation will depend
on this variation of DDH assumption. Readers refer to their paper for deep
discussion.

4 Building Blocks

Our main building blocks are statistical honest-verifier zero knowledge proofs
of knowledge related to discrete logarithms over QRn [9, 14, 8]. They include
protocols for things such as the knowledge of a discrete logarithm, the knowledge
of the equality of two discrete logarithms, the knowledge of the discrete logarithm
that lies in certain interval, etc. Readers refer to the original papers for the
protocol details.

4.1 Knowledge of Discrete Logarithm in an Interval

The zero-knowledge proof of the discrete logarithm in certain interval was in-
troduced in [9, 14]. Camenisch and Michels proposed a slight modification and
provided a security proof in [6]. Here we introduce the version in [6, 1].

Definition 4 (Protocol 1). Let n be a special RSA modulus, QRn be the
quadratic residue group modulo n, and g is a generator of QRn. α, l, lc are se-
curity parameters that are all greater than 1. X is a constant number. A prover
Alice knows x, the discrete logarithm of T1, and x ∈ [X − 2l, X + 2l]. Alice
demonstrates her knowledge of x ∈ [X − 2l, X + 2l] as follows.

– Alice picks a random t ∈ ±{0, 1}α(l+lc) and computes T2 = gt (mod n).
Alice sends (T1, T2) to a verifier Bob.

– Bob picks a random c ∈ {0, 1}lc and sends it to Alice.

– Alice computes

w = t − c(x − X),

and w ∈ ±{0, 1}α(l+lc)+1. Alice sends w to Bob.

– Bob checks w ∈ ±{0, 1}α(l+lc)+1 and

gw−cXT c
1 =? T2 (mod n).

If the equation holds, Alice proves knowledge of the discrete logarithm of T1

lies in the range [X − 2α(l+lc), X + 2α(l+lc)].

Remark 1. It should be pointed out that Alice knows a secret x in [X−2l, X+2l],
the protocol only guarantees that x lies in the extended range [X −2α(l+lc), X +
2α(l+lc)].

Remark 2. In the protocol, the generator g is a pre-defined system parameter.
This protocol has been generalized to prove the relationship of two arbitrary
elements T1, T2 ∈ QRn such that T2 = T x

1 (mod n), and x ∈ [X − 2l, X + 2l] in
[15]. In the generalized protocol, T1, T2 are both provided by a prover.

4.2 Knowledge of Equality of Discrete Logarithms with Different
Bases

The protocol was first introduced in [10]. It is adopted to the group with unkown
order in [6]. In this protocol, Alice proves she knows the discrete logarithm
of two elements T1, T2 ∈ QRn with the generator g, h, respectively. That is,
gx = T1 (mod n), hx = T2 (mod n). The protocol works as follows.

Definition 5 (Protocol 2). Let n, QRn, g, α, l, lc, X as defined in protocol 1.

– Alice picks a random t ∈ ±{0, 1}α(l+lc) and computes

T3 = gt (mod n), T4 = ht (mod n).

Alice sends (T1, T2, T3, T4) to a verifier Bob.
– Bob picks a random c ∈ {0, 1}lc and sends it to Alice.
– Alice computes

w = t − c(x − X),

and w ∈ ±{0, 1}α(l+lc)+1. Alice sends w to Bob.
– Bob checks w ∈ ±{0, 1}α(l+lc)+1 and

gw−cXT c
1 =? T3 (mod n), hw−cXT c

2 =? T4 (mod n)

If the equations hold, Alice has proved knowledge of equality of two discrete
logarithm of T1, T2 with base g, h.

4.3 Knowledge of the Co-primality of Two Discrete Logarithms

In this section, we propose a zero-knowledge protocol to show the co-primality
of two discrete logarithms. That is, a prover demonstrates the knowledge of
the discrete logarithms of two elements T1, T2 in QRn are relatively prime. The
method is based on the following theorem.

Theorem 1. Let n be an RSA modulus. For a random element u ∈ Z∗

n, if one
can find a tuple (T1, T2, x, y) such that T x

1 T y
2 = u (mod n), then x, y must be

relatively prime.

Proof. By contradiction. If x, y are not co-prime, we assume GCD(x, y) = e,
x = k1e, y = k2e. Then we have T x

1 T y
2 = (T k1

1 T k2

2)e = u (mod n). Thus, we find
a pair (v, e) such that ve = u (mod n), where v = T k1

1 T k2

2 (mod n), to solve a
flexible RSA problem. This contradicts the strong RSA assumption. Therefore
x, y must be relatively prime. ⊓⊔

Definition 6. (Sketch) Suppose Alice knows a, c are relatively prime. She first
uses GCD algorithm to compute b, d, such that ab+cd = 1. Then Alice computes

T1 = gb (mod n), T2 = T a
1 (mod n),

T3 = gd (mod n), T4 = T c
3 (mod n).

Alice sends (T1, T2, T3, T4) to Bob, and proves she knows the discrete logarithms
of T2, T4 with base T1, T3, respectively. Finally, T2T4 = g (mod n), this shows
that the discrete logarithms of T2, T4 are relatively prime.

5 The Protocol to Implement Anonymous Authentication

The manufacturer, the producer of TPMs, sets various parameters, the lengths
of which depend on a security parameter, which we denote by σ.

5.1 System Parameter Setting

The system parameters are set by manufacturer, these values are:

– n, g, h: n is a special RSA modulus such that n = pq, p = 2p′ + 1, and
q = 2q′ + 1, where p and q are each at least σ bits long (so p, q > 2σ), and
p′ and q′ are prime. g, h ∈R QRn are random generators of the cyclic group
QRn. n, g, h are public values while p, q are kept secret by the administrator.

– α, lc, ls: security parameters that are greater than 1.
– X : a constant value. X > 2α(lc+ls)+1.

The verification of manufacturer’s parameters can be accomplished by certain
“independent evaluator”. For example, manufacture should prove n is indeed
the product of two safe primes through the protocol in [7]. An illustration of
the system parameter is the setting of σ = 1024 (so n is 2048 bits), α = 9/8,
X = 2520, ls = 300 and lc = 160.

5.2 Generation of Anonymous Authentication Key (AAK)

The specification for the generation of Endorsement Key (EK) states: “The
TPM can generate the EK internally using the TPM CreateEndorsementKey
or by using an outside key generator. The EK needs to indicate the genealogy
of the EK generation” [18] 1. AAK is our proposal for TPM, we would like to
follow the same specification for the generation of AAK.

Outside Key Generation. The method for key creation is straightforward.
Manufacturer picks a random prime number s ∈ [X−2ls , X +2ls] and computes

E = gs−1

(mod n),

where s−1 is the inverse of s modulo |QRn| = p′q′. (E, s) is TPM’s AAK. s must
be kept private by TPM, E may also be kept private. Manufacturer feeds (E, s)
into TPM, and record E in its database. After that, s should be destroyed by
manufacturer.

Internal Key Generation TPM internally generate s ∈ [X−2ls , X +2ls] that
will never be revealed to outside. p′q′ is temporally fed into TPM, and TPM
compute s−1 modulo p′q′ and E. Since TPM is totally a passive chip created by
manufacturer, it is surely “trusted” by manufacturer. TPM accomplishes these
computation “honestly”. After key generation, the copy of p′q′ should be de-
stroyed by TPM.

1 In practice, EK is generally produced internally by TPM.

5.3 Anonymous Authentication

The idea of our method to implement direct anonymous attestation is: TPM gen-
erates a random blinding integer b, computes T1 = Eb = gs−1b (mod n), T2 =
gb (mod n). Then TPM sends (T1, T2) to a verifier. TPM proves that T s

1 =
T2 (mod n) and s lies in the correct interval; T2 = gb (mod n) and s, b are co-
prime.

Definition 7 (Protocol 4: Direct Anonymous Attestation).

1. A TPM Alice picks a random b ∈R [X−2ls , X +2ls]. She also picks t1, t2 ∈R

±{0, 1}α(l+lc). Alice uses GCD algorithm to solve 2 × sa + bd = 1. That is,
TPM should find an even integer a′ = 2a such that sa′ + bd = 1.

T1 = Eb (mod n), T2 = gb (mod n), T3 = T t1
1 (mod n),

T4 = ha (mod n), T5 = (T 2
4)s (mod n), T6 = (T 2

4)t1 (mod n),

T7 = gd (mod n), T8 = T b
7 (mod n), T9 = T t2

7 (mod n),

T10 = gt2 (mod n)

(T1, T2, T3; T4, T5, T6) are used to prove the equality of the discrete logarithm
of T2, T5 with base T1, T

2
4 respectively. Also, they are served to prove s lies

in the correct range. (g, T2, T10; T7, T8, T9) are used to prove the equality of
the discrete logarithm of T2, T8 with the base g, T7, respectively. Alice sends
(T1, T2, T3, T4, T5, T6, T7, T8, T9, T10) to a verifier Bob.

2. Bob picks number c1, c2 ∈ {0, 1}lc, and sends them to Alice.
3. Alice computes

w1 = t1 − c1(s − X), w2 = t2 − c2(b − X),

Alice sends (w1, w2) to Bob.
4. Bob checks w1, w2 ∈ ±{0, 1}α(ls+lc)+1,

T w1−c1X
1 T c1

2 =? T3 (mod n), (T 2
4)w1−c1XT c1

5 =? T6 (mod n)

gw2−c2XT c2

2 =? T10 (mod n), T w2−c2X
7 T c2

8 =? T9 (mod n),

T5T8 =? h (mod n).

The computation of T 2
4 serves to force it to be the element of QRn.

If all these equations hold, this finish the direct anonymous attestation.

Remark 3. Using the Fiat-Shamir heuristic[12], our DAA scheme can be turned
into a non-interactive “signature of knowledge” scheme just as BCC scheme,
which is secure in the random oracle model [3].

5.4 Rogue TPM Identification

We mentioned TPMs should be built tamper-proof. Otherwise, the whole efforts
of trusted computing platform become meaningless. Even though, if in extreme
circumstances, a TPM is compromised and its keypair is exposed, verifier should
be able to identify an attestation request from rogue TPM. In our construction,
it is quite easy to accomplish this task. Suppose a keypair (E, s) is put on
revocation list, when a request comes, the verifier check

T s
1 =? T2 (mod n).

If the equation holds, the request comes from a revoked TPM.

6 Security Properties of Proposed Scheme

Before discussing the security of the new scheme, we first introduce a lemma due
to Shamir [16] that will be used shortly.

Lemma 1. Let n be an integer. For given values u, v ∈ Z∗

n and x, y ∈ Zn such
that GCD(x, y) = 1 and vx = uy (mod n), there is an efficient way to compute
the value z such that zx = u (mod n).

Proof. Since GCD(x, y) = 1, we can use the Extended GCD algorithm to find
a and b such that ay + bx = 1, and let z = vaub. Thus

zx = vaxubx = uay+bx = u (mod n).

⊓⊔

First, we need to address the issue of keypair forgery. In the context of trusted
computing platform, TPM is produced tamper-proof. It should be extremely rare
that a TPM can be compromised. If this could happen, attacker should not be
able to forge new valid keypair. Therefore, we consider an attack model in which
an attacker can obtain a set of legitimate keypairs. A successful attack is one in
which a new keypair is generated that is valid and different from current keypairs.
The following theorem shows that, assuming the Strong RSA Assumption, it is
intractable for an attacker to forge such a keypair.

Theorem 2 (Forgery-resistance). If there exists a probabilistic polynomial
time algorithm which takes a list of valid keypairs, (s1, E1), (s2, E2), . . . , (sk, Ek)
and with non-negligible probability produces a new keypair (s, E) such that Es =
g (mod n) and s 6= si for 1 ≤ i ≤ k, then we can solve the flexible RSA problem
with non-negligible probability.

Proof. Suppose there exists a probabilistic polynomial-time algorithm which
computes a new valid TPM keypair based on the available keypairs, and succeeds
with some non-negligible probability p(σ). Then we construct an algorithm for
solving the flexible RSA problem, given a random input (u, n), as follows (the
following makes sense as long as u is a generator of QRn, which is true with
non-negligible probability for random instances):

1. First, we check if GCD(u, n) = 1. If it’s not, then we have one of the factors of
n, and can easily calculate a solution to the flexible RSA problem. Therefore,
in the following we assume that GCD(u, n) = 1, so u ∈ Z∗

n.
2. We pick random prime numbers s1, s2, . . . , sk with the required scope range,

i.e., si ∈ (0, X − 2l), and compute

r = s1s2...sk,

g = ur = us1s2...sk (mod n).

Note that since the si values are primes with the appropriate length (con-
strained to be smaller than the lengths of p′ and q′), it must be the case that
GCD(r, |QRn|) = 1, so Property 2 says that g is a generator of QRn if and
only u is a generator of QRn.

3. Next, we create k group member keys, using the si values and Ei values
calculated as follows:

E1 = us2...sk (mod n)

E2 = us1s3...sk (mod n)

...

Ek = us1s2...sk−1 (mod n)

Note that for all i = 1, . . . , k, Esi

i = us1s2···sk = ur = g (mod n).
4. We use the algorithm for creating new group member key to calculate (s, E),

where s is in the required scope and Es = g = ur (mod n).
5. If the forgery algorithm succeeded, then s will be different from all the si’s,

but will have the same length. Therefore, it is impossible for s to be an integer
multiple of any of the si’s, and since the si’s are prime then it follows that
GCD(s, s1s2 · · · sk) = 1, i.e., GCD(s, r) = 1. Due to lemma 1, we can find a
pair (y, s) such that

ys = u (mod n),

which is a solution to our flexible RSA problem instance.

We now analyze the probability that the above algorithm for solving the flexible
RSA problem succeeds. The algorithm succeeds in Step 1 if GCD(u, n) 6= 1, so let
P1 represent the probability of this event, which is negligible. When GCD(u, n) =
1, the algorithm succeeds when the following three conditions are satisfied: (1)
u ∈ QRn, which happens with probability 1

4 , (2) u is a generator of QRn, which
fails for only a negligible fraction of elements of QRn, due to Property 1, and
(3) the key forgery algorithm succeeds, which happens with probability p(σ).
Putting this together, the probability that the constructed algorithm succeeds
is P1 + (1 − P1)

1
4 (1 − negl(σ)) p(σ), which is non-negligible.

⊓⊔

Next, we address the security of our DAA scheme which is described as following
theorem.

Theorem 3. Under the strong RSA assumption, the direct anonymous attes-
tation protocol is a statistical zero-knowledge honest-verifier proof of a keypair
(E, s) such that Es = g (mod n) and s lies in the correct interval.

Proof (Sketch). Our protocol uses the standard building blocks to accomplish
direct anonymous attestation.

In the protocol, (g, T2, T10; T7, T8, T9) are used to prove the equality of the
discrete logarithms of T2 with base g, and T8 with base T7. This is the statistical
honest-verifier zero-knowledge protocol that its security has been proved in the
literature under the strong RSA assumption.

(T1, T2, T3; T4, T5, T6) are used to prove the equality of the discrete logarithms
of T2 with base T1, and T5 with baser T 2

4 . Also, they are served to prove this
discrete logarithm s ∈ [X−2l, X +2l]. The squaring computation (T 2

4 (mod n))
forces T 2

4 to be the elements in QRn. Therefore we can use the generalized
statistical honest-verifier zero-knowledge protocol in [15] to complete the proof.
The protocol is also secure under the strong RSA assumption.

Since T5T8 = h (mod n), following theorem 1, the discrete logarithms of
T5, T8, s and b, respectively, are co-prime.

Putting above together, the TPM demonstrates it knows s, b such that T s
1 =

gb (mod n), and s, b are relatively prime. Due to lemma 1, the TPM can solve
this equation and obtain Es = g (mod n), which is a valid keypair. ⊓⊔

Finally, we address the anonymity property of the scheme. The transaction-
unlinkability of a TPM in our scheme relies on the decisional Diffie-Hellman
assumption. We propose the following theorem.

Theorem 4 (Anonymity). Under the decisional Diffie-Hellman assumption
over subset of QRn, the protocol implement anonymous authentication such that
it is infeasible to link the transactions by a TPM.

Proof (Sketch). Since b, b′ are randomly selected by TPM with sufficiently large
size, it is infeasible to extract b, b′ from T2, T

′

2 due to discrete logarithm over
QRn. Therefore, to link two arbitrary transactions, one needs to decide whether
following equations are produced from the same E.

T1, T2 = T s
1 = gb (mod n),

T ′

1, T ′

2 = T ′s′

1 = gb′ (mod n)

without the knowledge of b, b′. T1, T
′

1 are the generators of QRn due to the
property of QRn. Then the problem of linking these two equations reduces to
decide the equality of discrete logarithms of logT1

T2, and logT ′

1
T ′

2. The choice
of b in the scheme makes it infeasible to extract the discrete logarithms of T ′

1

with base T1, and T ′

2 with base T2, respectively. Therefore, it is impossible to
make such decision under the decisional Diffie-Hellman assumption over subset
of QRn [15]. The same arguments can be applied to following equations

T1, T2 = T s
1 (mod n),

T ′2
4 , T ′

5 = (T ′2
4)s′

(mod n).

Therefore, it is infeasible to link the transactions by a TPM. ⊓⊔

7 Conclusion

In this paper, we have presented a simple and efficient construction to imple-
ment anonymous authentication in Trusted Computing Platform. Our protocol
is proved secure under the strong RSA assumption and the decisional Diffie-
Hellman assumption over subset of QRn.

Theorem 1 is an interesting result in the paper. It is an elegant corollary of
the strong RSA assumption. Based on this result, we devised a novel knowledge
proof of co-primality of the discrete logarithms. We believe the theorem could
be used in other cryptographic construction.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology —

Crypto, pages 255–270, 2000.
2. N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature

schemes without trees. In Advances in Cryptology — Eurocrypto, pages 480–494,
1997.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient procotols. In First ACM Conference On computer and Communication

Security, pages 62–73. ACM Press, 1993.
4. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In ACM

Conference on Computer and Communications Security, pages 132–145, 2004.
5. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In

SCN’02, LNCS 2576, pages 268–289, 2002.
6. J. Camenisch and M. Michels. A group signature scheme based on an RSA-variants.

Technical Report RS-98-27, BRICS, University of Aarhus, Nov. 1998.
7. J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is the

product of two safe prime. In Advances in Cryptology — EUROCRYPT’99, LNCS

1592, pages 107–122, 1999.
8. J. Camenisch and M. Stadler. A group signature scheme with improved efficiency.

In Advances in Cryptology — ASIACRYPT’98, LNCS 1514, pages 160–174, 1998.
9. A. Chan, Y. Frankel, and Y. Tsiounis. Easy come - easy go divisible cash. In K.

Yyberg, editor, Advances in Cryptology – Eurocrypt’98, LNCS 1403, pages 561 –
574. Sringer-Verlag, 1998.

10. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Rrnest F.

Brickell, editor, Advances in Cryptology — CRYPTO’92, LNCS 740, pages 89–
105. Springer-Verlag, 1993.

11. D. Chaum and E. van Heyst. Group signature. In Advances in Cryptology —

Eurocrypt, pages 390–407, 1992.
12. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification

and signature problems. In Advances in Cryptology — CRYPTO’86, LNCS 263,
pages 186–194. Springer-Verlag, 1987.

13. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology — Crypto, pages 16–30, 1997.

14. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for pub-
licly verifable secret sharing and its applications. In Advances in Cryptology –

EUROCRYPTO’98, pages 32–46, 1998.
15. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Advances in

Cryptology—Eurocypt, LNCS 3027, pages 571–589. Springer-Verlag, 2004.
16. A. Shamir. On the generation of cryptograpically strong psedorandom sequences.

ACM Transaction on computer systems, 1, 1983.
17. TCG. http://www.trustedcomputinggroup.org.
18. TCG. TPM Main: Part 1 design principles, 2005.

