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Abstract. We present a new signature whose security is reducible to
a new assumptions about subgroups, the Computational Conjugate Sub-
group Members (CCSM) Assumption, in the random oracle model.

1 Introduction

Boneh, Goh, and Nissim [3] introduced a new trapdoor structure. Groth,
Ostrovsy, and Sahai [10] presented an instantiation as follows: Find a
GDH (Gap Diffie-Hellman) group G1 of prime order q. Find its sub-
group G of order N = q1q2 where N is the product of two primes q1

and q2 of roughly the same size. Necessarily N |(q − 1). The Decisional
Subgroup Membership Problem is as follows: Given G1, G, N as above
and an element h ∈ G which has half-half probability of having order N
or q1, determine which is the case. The Decisional Subgroup Membership
Assumption is that no PPT algorithm can solve the problem with prob-
ability non-negligible over half. For more details about various subgroup
intractability assumptions and their applications, see [4, 6, 5, 3, 10, 1].

In this paper, we present a signature whose security is reducible to
a new assumption about subgroups. The Computational Conjugate Sub-
group Members (CCSM) Problem is as follows: Given G1, G, N as above
in the Decisional Subgroup Membership Problem, compute two elements
h1 and h2 of G satisfying order(h1) = q1 and order(h2) = q2. The Com-
putational Conjugate Subgroup Members (CCSM) Assumption is that no
PPT algorithm can compute a random instance of the CCSM Problem
with non-negligible probability.

Our signature is existentially unforgeable against adaptive-chosen-
plaintext attackers provided the CCSM Assumption holds in the random
oracle (RO) model.

We use textbook security model for signatures, specifically existential
unforgeability against adaptive-chosen-plaintext attackers. See, for exam-
ple, Goldreich [7, 8].
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2 The signature construction

Let N = q1q1 be the product of two primes q1 and q2. Let ê : G1 ×G1 →
GT be a pairing. Note in a pairing, we have ê(ga, hb) = ê(g, h)ab. Let
G ⊂ G1 be a GDH group of order N . Let g, h1, h2 ∈ G, order(g) = n,
order(g1) = q1, order(g2) = q2. Signer sk-pk pair is ((h1, h2), (ê, g, N))

Assume all discrete logarithm bases are faily generated. LetH be a
full-domain cryptographically secure hash function. The identity element
of G is denoted as 1. Our signature scheme is as follows:

Protocol Signcsm: Randomly generate s0, r0, r1 ∈ Z∗
n, compute s1 =

−s2
0 and compute commitments

T0 = gs0
0 , T1 = h1g

s0
1 , T2 = h2g

s0
2 , (1)

D0 = gr0
0 , D3 = [ê(T1, g2)ê(g1, T2)]r0 ê(g1, g2)r1 , D4 = T r1

0 gr1
0 (2)

Note

ê(T1, T2)ê(g, 1)−1 = [ê(T1, g2)ê(g1, T2)]s0 ê(g1, g2)s1 , 1 = T s0
0 gs1

0 (3)

Compute the challenge

c = H(M,T0, T1, T2, D0, D3, D4) (4)

where M is the message. Compute responses

z0 = r0 − cs0, z1 = r1 − cs1 (5)

The signature is

σ = (T0, T1, T2, c, z0, z1) (6)

The signature verification algorith is Protocol Vfcsm: Given a signa-
ture of the format (6), parse then compute

D3 = [ê(T1, g2)ê(g1, T2)]z0 ê(g1, g2)z1 [ê(T1, T2)ê(g, 1)−1]c, (7)
D0 = gz0

0 T c
0 , D4 = T z0

0 gz1
0 (8)

Verify the received challenge c equals to that computed from Equation
(4), and verify the following before outputting 1 (i.e. verified):

T0, T1, T2 ∈ G ∧ ê(T0, g1) 6= ê(T1, g0) ∧ ê(T0, g2) 6= ê(T2, g0) (9)
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Reductinist security theorem

Theorem 1. Signature Signcsm is existentially unforgeable against adaptive-
chosen-plaintext attackers provided the Computational Conjugate Sub-
group Members (CCSM) Assumption holds in the random oracle (RO)
model.

Proof Sketch: The simulation of the Signing Oracle is by the special
HVZK simulation in the RO model. Using rewind (forking) simulation,
we extract a witness (ĥ1, ĥ2, ŝ0, ŝ1) satisfying

T0 = gŝ0
0 , ĥ1 = T1g

−ŝ0
1 , ĥ2 = T2g

−s0
2 , 1 = T ŝ0

0 gŝ1
0 (10)

ê(T1, T2)ê(g, 1)−1 = [ê(T1, g2)ê(g1, T2)]ŝ0 ê(g1, g2)ŝ1 (11)

The last relation implies ê(ĥ1, ĥ2) = ê(g, 1)−1, and ĥ1 = gα, ĥ2 = gβ

for some α, β ∈ Z∗
N , αβ = 0 (mod N). Then Relation (9) implies that

α 6= 0, β 6= 0 (mod N). Therefore, α and β are the two prime factors of
N and (ĥ1, ĥ2) violates the CCSM Assumption. ut

Remark: It has been shown that zero-knowledge cannot be achieved
using the Fiat-Shamir paradigm [9, 2]. Therefore, our signature Signcsm

is not likely to have (plain) zero-knowledge. However, a proof in the RO
model is better than no proof at all, and it is an open problem to construct
signatures from the CCSM Assumptions without random oracles.
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