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Abstract. In this paper, we suggest solutions to the key exposure prob-
lem in ring signature. In particular, we propose the first forward secure
ring signature scheme and the first key-insulated ring signature schemes.
Both constructions allow a (t, n)-threshold setting. That is, even t secret
keys are compromised, the validity of all forward secure ring signatures
generated in the past is still preserved. In the other way, the compromise
of up to all secret keys does not allow any adversary to generate a valid
key-insulated ring signature for the remaining time periods.
All our proposed schemes are proven secure in the random oracle model.
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1 Introduction

Ring Signatures. A ring signature scheme [21, 9, 4, 24, 8, 18, 14] allows mem-
bers of a group to sign messages on behalf of the group without revealing their
identities. Different from a group signature scheme [11, 10, 6], the formation of
a group is spontaneous and there is no group manager to revoke the identity
of the signer. The anonymity of the actual signer is protected unconditionally
or computationally. Under the assumption that each user is already associated
with a public key of some standard signature scheme, a user can form a group
by simply collecting the public keys of all the group members including his own.
These diversion group members can be totally unaware of being conscripted into
the group.

Ring signatures could be used for whistle blowing [21], anonymous member-
ship authentication for ad hoc groups [9] and many other applications which do
not want complicated group formation stage but require signer anonymity. For
example, in the whistle blowing scenario, a whistleblower gives out a secret as
well as a ring signature of the secret to the public. From the signature, the public



2 Joseph K. Liu, and Duncan S. Wong

can be sure that the secret is indeed given out by a group member while cannot
figure out who the whistleblower is. At the same time, the whistleblower does
not need any collaboration of other users who have been conscripted by him into
the group of members associated with the ring signature. Hence the anonymity
of the whistleblower is ensured and the public is also certain that the secret is
indeed leaked by one of the group members associated with the ring signature.

In 2002, Bresson et al. [9] extended the notion of ring signature schemes to a
threshold setting and proposed the first threshold ring signature scheme. Later
on, some other threshold ring signature schemes [23, 18] have been proposed. A t-
out-of-n threshold ring signature scheme is defined as a ring signature scheme of
which at least t corresponding private keys of n public keys are needed to produce
a signature. The setup-free and signer anonymity properties of a conventional
ring signature scheme are preserved in the threshold setting.

Key Exposure Problem in Ring Signature. Ordinary digital signatures
have a fundamental limitation: If the secret key of a signer is compromised, all
the signatures of that signer become worthless. This may become quite a real-
istic threat since if the secret key is compromised, any message can be forged.
All future signatures are invalidated as a result of such a compromise, and more
importantly, no previously issued signatures can be trusted. Once a leakage has
been identified, there may exist some key revocation mechanism to be involved
immediately in order to prevent the generation of any signature using the com-
promised secret key. However, this does not solve the problem of forgeability
for past signatures. It is not possible to ask the signer to re-issue all previous
signatures due to many physical and practical limitations.

The problem of key exposure in a ring signature scheme is more serious.
In ring signature schemes, if a user’s secret key is exposed to an adversary, the
adversary can generate not only odinary digital signature for any documents, but
he can also sign any documents on behalf of the group. More worse, the group
can be defined by the adversary due to the spontaneity property of ring signature
schemes. The exposure of one user’s secret key not only requires changing the
public key pairs for the whole group, but also renders all previously obtained
ring signatures invalid, because one cannot distinguish whether a signature is
generated by an adversary after it has obtained one of the secret keys or by the
legitimate user before the adversary got the secret key.

Solutions:

1. Forward Secure Signature.
Forward-secure signature schemes are designed to resolve the key explosure
fundamental limitation of digital signature. The goal of a forward-secure
signature scheme is to preserve the validity of past signatures even if the
current secret key has been compromised. The concept was first suggesed
by Anderson [5], and solutions were designed by Bellare and Miner [7]. The
idea is that even a compromise of the present secret key does not enable an
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adversary to forge signatures pertaining to the past. This can be achieved
by the key evolution paradigm: by dividing the total time of the validity
of the public key into T time periods, and using a different secret key in
each time period while the public key remains the same. Each subsequent
secret key is computed from the current secret key via an update algorithm,
while any past secret key cannot be computed by the current one. The time
period during which a message is signed becomes part of the signature as
well. Forward security property means that even if the current secret key
is compromoised, a forger cannot forge signatures for past time periods. In
other words, the forger can only forge signatures for documents pertaining to
time periods after the exposure but not before. The integrity of documents
signed before the exposure remains intact.

Forward Secure Ring Signature. We propose to use the concept of for-
ward security to reduce the damage of exposure of any secret key of users in
ring signature. That is, even when a secret key is compromised, previously
generated ring signatures remain valid and do not need to be re-generated.
We are the first in the literature to propose the concept of forward secure
ring signature.

2. Key-Insulated Signature. The notion of key-insulated cryptosystems, which
was first introduced in [12], generalizes the concept of forward-secure cryp-
tography. Similiar to forward security, in key-insulated cryptosystems, life-
time of secret keys is also divided into discrete periods. In the case of signa-
ture, they are supposed to be generated under an insecure environment. In
the model of key-insulated signature, the secret associated with a public key
is shared between the user and a physically secure device. At the beginning
of each time period, the user obtains a partial secret key from the device.
By combining this partial secret key with the secret key for the previous
period, the user renews the secret key for the current time period. Exposure
of the secret key at a given period will not enable any adversary to derive
the secret key for the remaining period, since the adversary is not able to
break into the physically secure device. Thus he cannot renew the secret key
for the next period.

Key-Insulated Ring Signature. In addition to forward secure ring sig-
nature, we also propose the concept of key-insulated in ring signature. It
reduces the risk of key exposure in ring signature. That is, even a secret key
is comproised, the adversary cannot generate any valid ring signature in all
future time period using the compromised secret key. Thus it is not neces-
sary to renew public key pairs of all users even some of the corresponding
secret key is compromised. We are also the first in the literature to propose
this concept in ring signature.
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1.1 Our Contributions

We suggest solutions to the key exposure problem in ring signature. We propose
two new concepts, namely forward secure ring signature and key-insulated ring
signature. We give rigorous security model and concrete implementations on
these two concepts respectively. Both our constructions allow a threshold setting.
That is, a valid signature is generated by t-out-of-n users of a spontaneously
formed group while the anonymity of the t acutal signers is preserved. Both
schemes are proven secure in the random oracle model. We are also the first in
the literature to propose forward secure ring signature scheme and key-insulated
ring signature scheme.

1.2 Organization

The paper is organized as follows: Some related works will be given in Sec. 2.
We define our security mode in Sec. 3. A construction of forward secure ring
signature scheme is presented in Sec. 4. It is followed by another construction of
key-insulated ring signature scheme in Sec. 5. We conclude the paper in Sec. 6.

2 Related Works

The concept of forward secure signatures was first proposed by Anderson [5] for
traditional signatures. It was formalized by Bellare and Miner [7]. The basic idea
is to extend a standard digital signature algorithm with a key update algorithm,
so that the secret key can be changed frequently while the public key stays the
same. The resulting scheme is forward secure if the knowledge of the secret key
at some point in time does not help forge signatures relative to some previous
time period. The challenge is to design and efficient scheme of this concept.
In particular the size of the secret key, public key and signatures should not
be dependent on the number of time period during the lifetime of the public
key. Several schemes have been proposed by traditional signatures and threshold
signatures that satisfy this efficiency property in [2, 17, 1, 16, 19]. In addition, a
forward secure group signature scheme is proposed in [22].

The notion of key-insulated cryptosystems was first introduced by Dodis et
al. [12], in the context of public key encryption. Later they proposed a key-
insulated signature scheme in [13]. A more efficient scheme was proposed in [15].
In their scheme, the key length is constant and independnt of the number of
insulated time periods.

3 Security Model

We give our security model and define relevant security notions.
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3.1 Definition of Forward Secure Threshold Ring Signature Scheme

Syntax. A forward secure (threshold) ring signature, (FSRS) scheme, is a tuple
of five algorithms (Key-Gen, Init, Sign, Verify and Update).

– (ski,0, pki) ← Key-Gen(1λi) is a PPT algorithm which, on input a security
parameter λi ∈ N, outputs a private/public key pair (ski,0, pki) such that
the private key is valid for time t = 0.3 We denote by SK and PK the
domains of possible secret keys and public keys, respectively. When we say
that a public key corresponds to a secret key or vice versa, we mean that
the secret/public key pair is an output of Key-Gen.

– param← Init(λ) is a PPT algorithm which, on input a security parameter λ,
outputs the set of security parameters param which includes λ.

– ski,t+1 ← Update(ski,t, t) is a deterministic algorithm which, on input a
private key for a certain time period t and t, outputs a new private key for
the time period t+ 1.

– σ′t=(n,d,Y,σ)← Sign(t, n, d,Y,X ,M) is a PPT algorithm which, on input a
certain time period t, group size n, threshold d ∈ {1, . . . , n}, a set Y of n
public keys in PK, a set X of d private keys whose corresponding public keys
are all contained in Y, and a message M , produces a signature σ′t.

– 1/0← Verify(M,σ′t, t) is a deterministic algorithm which, on input a message-
signature pair (M ,σ′t) and a time t returns 1 or 0 for accept or reject, resp.
If accept, the message-signature pair is valid.

Notions of Security. Security of FSRS schemes has three aspects: correctness,
forward security and anonymity. Before giving their definition, we consider the
following oracles which together model the ability of the adversaries in breaking
the security of the schemes.

– pki ← JO(⊥). The Joining Oracle, on request, adds a new user to the
system. It returns the public key pk ∈ PK of the new user.

– ski,t ← CO(pki, t). The Corruption Oracle, on input a public key pki ∈ PK
that is a query output of JO and a time t, returns the corresponding secret
key ski,t ∈ SK for the time t.

– σ′t ← SO(t, n, d,Y,V,M). The Signing Oracle, on input a time t, a group
size n, a threshold d ∈ {1, . . . , n}, a set Y of n public keys, a subset V of Y
with |V| = d, and a message M , returns a valid signature σ′t for time t.

Remark: An alternative approach to specify the SO is to exclude the signer
set V from the input and have SO select it according to suitable random distri-
bution. We do not pursue that alternative further.

Correctness. Signatures signed according to specification are accepted during
verification.
3 We denote ski,t to be the secret key of user i at time t.
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Forward-Security. Forward-security for FSRS schemes is defined in the fol-
lowing game between the Simulator S and the Adversary A in which A is given
access to oracles JO, CO and SO:

1. S generates and gives A the system parameters param.
2. A chooses a time t, a group size n ∈ N, a threshold d ∈ {1, . . . , n}, a set Y

of n public keys in PK and a message M .
3. A may query the oracles according to any adaptive strategy.
4. A outputs a signature σt.

A wins the game if: (1) Verify(M ,σt,t)=1, (2) all of the public keys in Y are
query outputs of JO, (3) at most (d − 1) of the public keys in Y have been
input to CO with time t′ < t to be the time input parameter, (4) unlimited
query to CO with time t′′ ≥ t to be the time input parameter, and (5) σt is not
a query output of SO on any input containing M . We denote by Advfs

A (λ) the
probability of A winning the game.

Remarks. In this game, we do not limit the number of queries made to CO
that are corresponding to the public keys in Y. We only require the number of
queries to CO of the public keys in Y with time input parameter less than t,
should be at most (d− 1).

Definition 1 (forward-secure). An FSRS scheme is forward-secure if for all
PPT adversary A, Advfs

A (λ) is negligible.

Anonymity. Anonymity for FSRS schemes is defined in the following game
between the Simulator S and the Adversary A in which A is given access to
oracles JO, CO and SO.

1. S generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives S a time t, group size n, threshold d ∈ {1, . . . , n}, message M , a set
Y of n public keys all of which are query outputs of JO, and none of which
has been queried to CO.
S randomly selects a subset V ⊂ Y, |V| = d, to obtain the d corresponding
secret keys by quering CO. S signs with these secret keys and gives the
signature to A.

4. A queries the oracles adaptively, except that any member public key of Y
cannot be queried to CO.

5. A gives S a publc key p̃k ∈ Y.

A wins the game if p̃k ∈ Y. Define the advantage of A as

AdvFS−Anon
A (λ) = Pr[A wins]− d/n.

for security parameter λ.

Definition 2 (FS-Anonymity). A FSRS scheme is anonymous if for any PPT
adversary A, AdvFS−Anon

A (λ) is zero.

Remarks. For anonymity, we require unconditional anonymous.
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3.2 Definition of Key-Insulated Threshold Ring Signature Scheme

Syntax. A Key-Insulated secure (threshold) ring signature, (KIRS) scheme, is
a tuple of six algorithms (Key-Gen, Init, Sign, Verify, Device-Update and User-
Update).

– (mski, uski,0, pki) ← Key-Gen(1λi) is a PPT algorithm which, on input a
security parameter λi ∈ N, outputs a public key pki, a master secret key
mski, and a user’s initial secret key uski,0 such that this key is valid for
time t = 0.4 We denote by PK, MSK and USK the domains of possible
public keys, master secret keys and user secret keys, respectively.

– param← Init(λ) is a PPT algorithm which, on input a security parameter λ,
outputs the set of security parameters param which includes λ.

– pski,t ← Device-Update(mski, t) is a deterministic algorithm which, on input
the master secret key mski and the index of the current time period t,
outputs the a partial secret key pski,t for the time period t.

– (uski,t, ski,t) ← User-Update(uski,t−1, t) is a deterministic algorithm which,
on input the user secret key uski,t−1 and the partial secret key pski,t−1 for a
certain time period t− 1 and the index of the current time period t, outputs
the user secret key uski,t and the secret key ski,t for the time period t.

– σ′t=(n,d,Y,σ)← Sign(t, n, d,Y,X ,M) which, on input a certain time period
t, group size n, threshold d ∈ {1, . . . , n}, a set Y of n public keys in PK, a
set X of d private keys whose corresponding public keys are all contained in
Y, and a message M , produces a signature σ′t.

– 1/0 ← Verify(M,σ′t, t) is an algorithm which, on input a message-signature
pair (M ,σ′t) and a time t returns 1 or 0 for accept or reject, resp. If accept,
the message-signature pair is valid.

Notions of Security. Security of KIRS schemes has three aspects: correctness,
key-insulated and anonymity. Before giving their definition, we consider the fol-
lowing oracles which together model the ability of the adversaries in breaking
the security of the schemes.

– pki ← JO(⊥). The Joining Oracle, on request, adds a new user to the
system. It returns the public key pk ∈ PK of the new user.

– ski,t ← KEO(pki, t). The Key Exposure Oracle, on input a public key pki ∈
PK that is a query output of JO and a time t, returns the corresponding
user secret key uski,t ∈ USK and the secret key ski,t ∈ SK for the time t.

– σ′t ← SO(t, n, d,Y,V,M). The Signing Oracle, on input a time t, a group
size n, a threshold d ∈ {1, . . . , n}, a set Y of n public keys, a subset V of Y
with |V| = d, and a message M , returns a valid signature σ′t for time t.

Correctness. Signatures signed according to specification are accepted during
verification.
4 We denote uski,t to be the user secret key of user i at time t.
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Key-Insulated. Key-Insulated for KIRS schemes is defined in the following
game between the Simulator S and the Adversary A in which A is given access
to oracles JO, KEO and SO:

1. S generates and gives A the system parameters param.
2. A chooses a time t, a group size n ∈ N, a threshold d ∈ {1, . . . , n}, a set Y

of n public keys in PK and a message M .
3. A may query the oracles according to any adaptive strategy.
4. A outputs a signature σt.

A wins the game if: (1) Verify(M ,σt,t)=1, (2) all of the public keys in Y are
query outputs of JO, (3) at most (d − 1) of the public keys in Y have been
input to KEO with time t to be the time input parameter, and (4) σt is not a
query output of SO on any input containing M . We denote by AdvKI

A,τ (λ) the
probability of A winning the game, for security parameter λ, if A is allowed to
submit at most τ key exposure requests.

Definition 3 (Key-Insulated). An KIRS scheme is key-insulated if for all
PPT adversary A, AdvKI

A,τ (λ) is negligible.

Strong Key-Insulated. It is also possible for an adversary to compromise the
physical secure device completely. In this case, the adversary does not query the
key exposure oracle here in our model, but the adversary master is allowed to
choose at most d − 1 master secret keys, denoted by MSKd−1 which is simply
given to him instead. We denote by AdvSKI

A,τ (λ,MSKd−1) the probability of A
winning the game.

Definition 4 (Strong Key-Insulated). An KIRS scheme is strong key-insulated
if for all PPT adversary A, AdvSKI

A,τ (λ,MSKd−1) is negligible.

Anonymity. Anonymity for KIRS schemes is defined in the following game
between the Simulator S and the Adversary A in which A is given access to
oracles JO, KEO and SO.

1. S generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives S a time t, group size n, threshold d ∈ {1, . . . , n}, message M , a set
Y of n public keys all of which are query outputs of JO, and none of which
has been queried to KEO.
S randomly selects a subset V ⊂ Y, |V| = d, to obtain the d corresponding
secret keys by quering KEO. S signs with these secret keys and gives the
signature to A.

4. A queries the oracles adaptively, except that any member public key of Y
cannot be queried to CO.

5. A gives S a publc key p̃k ∈ Y.
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A wins the game if p̃k ∈ Y. Define the advantage of A as

AdvKI−Anon
A (λ) = Pr[A wins]− d/n.

for security parameter λ.

Definition 5 (KI-Anonymity). A KIRS scheme is anonymous if for any PPT
adversary A, AdvKI−Anon

A (λ) is zero.

Remarks. For anonymity, we require unconditional anonymous.

4 A Forward Secure Threshold Ring Signature Scheme

In this section, we give a concrete construction of an FSRS scheme. We then
show that such a construction is secure under the security model defined in the
previous section.

– Key-Gen. First, we assume that the public key pairs are valid into T time
periods and makes the time intervals public. For user i, where i = 1, . . . , n, on
input a security parameter ki, `i, the algorithm randomly picks two distinct
primes pi, qi such that pi = 3 mod 4, qi = 3 mod 4, 2ki−1 ≤ (pi − 1)(qi − 1)
and piqi < 2ki . Sets Ni ← piqi. Let Qi denote the set of non-zero quadratic
residues modulo Ni.
It then picks random generators si,0 ∈R Z∗

Ni
and computes ui ← 1/s2

`i(T+1)

i,0 mod
Ni. It sets the public key to pki ← (Ni, ui, T ), and the secret key to ski,0 ←
(Ni, T, 0, si,0). Finally it outputs (ski,0, pki).
Let ρ be twice the bit length of the largest Ni, for 1 ≤ i ≤ n and let
G : {0, 1}∗ → {0, 1}ρ and Hi : {0, 1}∗ → {0, 1}`i , for i = 1, . . . , n, be some
hash functions which behave like a random oracle.

– Update. On input a secret key ski,j = (Ni, T, j, si,j) for time period j, output
the secret key for time period j + 1 as ski,j+1 ← (Ni, T, j + 1, s2

`i

i,j mod Ni)
if j < T , otherwise output ⊥ meaning the secret key has expired.

– Sign. On input a group size n ∈ Z, security parameters (k1, `1, . . . , kn, `n), a
time period j, a threshold d ∈ {1, . . . , n}, a public key set L = {pk1, . . . , pkn},
where each pki = (Ni, ui, T ), a private key set X = {skπ1,j , . . . , skπd,j},
where each skπi,j = (Nπi

, T, j, sπi,j) (for time period j) corresponds to pkπi
∈

L, 1 ≤ π1, . . . , πd ≤ n, and a message m ∈ {0, 1}∗. Define N = {1, . . . , n}
and I = {π1, . . . , πd} ⊆ N , the algorithm does the following:
1. For i ∈ N \I, pick ci ∈R {0, 1}ρ and zi ∈R ZNi

. Compute

yi = z2`i(T+1−j)

i u
Hi(ci)
i mod Ni

2. For i ∈ I, pick ri ∈R ZNi
and compute

yi = r2
`i(T+1−j)

i mod Ni
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3. Compute c0 = G(L, d, j,m, y1, · · · , yn) and construct a polynomial f
over GF (2ρ) such that deg(f) = n − d, f(0) = c0 and f(i) = ci, for
i ∈ N \I.

4. For i ∈ I, compute ci = f(i) and

zi = ris
Hi(ci)
i,j mod Ni

5. Output the d-out-of-n forward secure threshold ring signature for mes-
sage m, time period j and a public key list L as σ = (z1, · · · , zn, f, j).

– Verify. On input a message m, a list of public key L, a signature σ, the
algorithm runs as follow:

1. Check if deg(f) = n−d. If yes, proceed. Otherwise, reject.
2. For i = 1, · · · , n, compute ci = f(i) and

y′i = z2`i(T+1−j)

i u
Hi(ci)
i mod Ni

3. Check whether f(0) ?= G(L, d, , j,m, y′1, · · · , y′n). If yes, accept. Other-
wise, reject.

Security Analysis.

Theorem 1. The scheme proposed in this section is unconditional anonymous.

Proof. The polynomial f , with degree n−t, is determined by cd+1, · · · , cn and c0.
cd+1, · · · , cn are randomly generated and c0 is the output of the random oracle
G. Thus f can be considered as a function chosen randomly from the collection
of all polynomials over GF (2ρ) with degree n−d. Then the distributions of
c1, · · · , cd are also uniform over the underlying range.

For i = d+ 1, · · · , n, zi are chosen independently and distributed uniformly
over ZNi . For i = 1, · · · , t, ri are chosen independently and distributed uniformly
over ZNi

. Since ri are independent of ci and the private keys, zi, 1 ≤ i ≤ d, are
also uniformly distributed.

In addition, for any fixed message m and fixed set of public keys L, we can
see that (z1, · · · , zn) has exactly ∏

1≤i≤n

Ni

possible solutions. Since the distribution of these possible solutions are indepen-
dent and uniformly distributed no matter which t participating signers are, an
adversary, even has all the private keys and unbound computing resources, has
no advantage in identifying any one of the participating signers over random
guessing. ut
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Theorem 2. Let A be a PPT forger. For some message m and a set of n public
keys L corresponding to n signers, suppose A on inputs the security parameter
ki, `i, for 1 ≤ i ≤ n, the private keys of any t−1 signers among the n signers,
queries a signing oracle SO for qS times, random oracle G for qG times and
random oracles {Hi}1≤i≤n for qH times combined, and outputs a forged signa-
ture σ (i.e. 1 ← Vt,n(L,m, σ)), with non-negligible probability ε. Then we can
factorize Blum integer with probability at least ε′ in polynomial time, where

ε′ =

(
ε− qS(qH23−k + qG/2ρ)

)2

2nT 2qG
− ε− qS(qH23−k + qG/2ρ)

2`+1nT

where k = min{k1, . . . , kn}, ρ = 2max{k1, . . . , kn}, ` = max{`1, . . . , `n}.

The proof is in Appendix A.

5 A Key-Insulated Threshold Ring Signature Scheme

In this section, we are going to propsoe a Key-Insulated Threshold Ring Signa-
ture scheme, in which a user is associated with a tamper-resistance device such
that key updating process can be only taken place inside this device together
with the secret input from the owner of this device.

– Key-Gen. For i = 1, . . . , n, on input security parameters ki, `i, the algorithm
randomly picks two distinct safe primes p′i, q

′
i and compute pi = 2p′i +1, qi =

2q′i + 1, Ni = piqi such that Ni is a ki-bit modulus. Choose another (`i + 1)-
bit prime number vi. Let κ = min{k1, . . . , kn}. We assume that the public
key pairs are valid into T time periods, where T = ξ(κ) for some polynomial
ξ, and makes the time intervals public.
Device i randomly chooses si, ti, ui ∈R Z∗

Ni
, such that s2i 6= s2

8+1

i mod Ni,
t2i 6= t2

8+1

i mod Ni, u2
i 6= u28+1

i mod Ni. Compute αi = s−vi
i mod Ni, βi =

t−vi
i mod Ni and γi = u−vi

i mod Ni and sets and outputs the public key to
pki ← (αi, βi, γi, vi, Ni). It also computes δi = s2i mod Ni, µi = t2i mod Ni

and sets the master secret key mski ← (δi, µi). It also computes ψi,0 =
u20+1

i mod Ni and sets and outputs the user’s secret key uski,0 ← ψi,0. Then
it deletes ψi from its memory.
Let ρ be twice the bit length of the largest Ni, for 1 ≤ i ≤ n and let
G : {0, 1}∗ → {0, 1}ρ and Hi : {0, 1}∗ → {0, 1}`i be some hash functions
that behave like a random oracle.

– Device-Update. Device i, on input master secret key mski = (δi, µi), com-
putes the partial secret key for the j-th time period as follow:

pski,j = δ2
j

i · µ2T−j

i mod Ni = s2
j+1

i · t2
T+1−j

i mod Ni

– User-Update. User i, on input user’s secret key uski,j−1 for time period j−1,
he computes the user’s secret key for time period j as follow:

uski,j = ψ2
i,j−1 mod Ni = u2j+1

i mod Ni
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and the corresponding secret key ski,j to be

ψ′i,j = pski,j · uski,j mod Ni = s2
j+1

i · t2
T+1−j

i · u2j+1

i mod Ni

– Sign. On input a group size n ∈ Z, security parameters (k1, `1, . . . , kn, `n), a
time period j, a threshold d ∈ {1, . . . , n}, a public key set L = {pk1, . . . , pkn},
where pki = (αi, βi, γi, vi), a private key set X = {skπ1,j , . . . , skπd,j} (for
time period j) corresponds to pkπi ∈ L, 1 ≤ π1, . . . , πd ≤ n, where ski,j = ψ′i,
and a message m ∈ {0, 1}∗. Define N = {1, . . . , n} and I = {π1, . . . , πd} ⊆
N , the algorithm does the following:
1. For i ∈ N \I, pick ci ∈R {0, 1}ρ and zi ∈R ZNi

. Compute

yi = zvi
i (α2j+1

i β2T+1−j

i γ2j+1

i )Hi(ci) mod Ni

2. For i ∈ I, pick ri ∈R ZNi
and compute

yi = rvi
i mod Ni

3. Compute c0 = G(L, d, j,m, y1, · · · , yn) and construct a polynomial f
over GF (2ρ) such that deg(f) = n − d, f(0) = c0 and f(i) = ci, for
i ∈ N \I.

4. For i ∈ I, compute ci = f(i) and

zi = ri(ψ′i,j)
Hi(ci) mod Ni

5. Output the d-out-of-n forward secure threshold ring signature for mes-
sage m, time period j and a public key list L as σ = (z1, · · · , zn, f, j).

– Verify. On input a message m, a list of public key L, a signature σ, the
algorithm runs as follow:
1. Check if deg(f) = n−d. If yes, proceed. Otherwise, reject.
2. For i = 1, · · · , n, compute ci = f(i) and

y′i = zvi
i (α2j+1

i β2T+1−j

i γ2j+1

i )Hi(ci) mod Ni

3. Check whether f(0) ?= G(L, d, j,m, y′1, · · · , y′n). If yes, accept. Otherwise,
reject.

Security Analysis.

Theorem 3. The scheme proposed in this section is unconditional anonymous.

The proof is similar to the proof of Theorem 1 and we skip it.

Theorem 4. Let A be a PPT forger. For some message m and a set of n public
keys L corresponding to n signers, suppose A on inputs the security parameter
k, all n master secret keys and any t−1 user secret keys among the n signers,
queries a signing oracle SO for qS times, random oracle G for qG times and
random oracles {Hi}1≤i≤n for qH times combined, and outputs a forged signature
σ (i.e. 1 ← Vt,n(L,m, σ)), with non-negligible probability ε. Then we can solve
the strong RSA problem with non-negligible probability in polynomial time.

The proof is in Appendix B.
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6 Conclusion

In this paper, we have suggested a some solutions to the key exposure problem in
ring signature. We propose the first forward secure ring signature scheme and the
first key-insulated ring signature scheme. Both of them allow a (t, n) threshold
setting. We have proven their security in the random oracle model.

However, the size of the signature in both scheme grows linear with the
number of users. It is an interesting open problem to construct a forward secure
ring signature scheme or key-insulated ring signature scheme with a constant
size to the number of users.
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A Proof of Theorem 2

Proof. Let A be a PPT adversary who can forge signatures with non-negligible
probability at least ε when given , n public keys and strictly less than t of
the corresponding private key. Assume A makes qG queries to G, qS queries to
the signing oracle SO, and a total of qH queries to H1, · · · , Hn combined. We
constrct another PPT M from A to factorize a given a Blum integer N .

In order to factor its input N , M randomly selects x ∈ Z∗
η, computes v =

x2 mod N , and attempt to use A to find a square root y of v. Because v has
four square roots and x is random, with probability 1/2 we have x 6= ±y mod N ,
thenM is able to find a factor of N by computing the gcd of x− y and N .

We define T to be the breakin period such that A is allowed to query SO to
obtain at most d− 1 private key with time input parameter t′ < T while there
is no limitation for time input parameter t′′ ≥ T . A is also allowed to choose
any T ≤ T . M provides the corresponding private key as a reply to the query
to the SO made by A.
M needs to guess the breakin period T chosen by A.M randomly chooses t,

1 < t ≤ T , hoping that the breakin period falls at t or later, so that the forgery
will be for a time period earlier than t.
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M also needs to assign N to be the public key of one of the n users and
provide all public key to A. M just randomly chooses π ∈R {1, . . . , n} and sets
uπ ← 1/v2`π(T+1−t)

, Nπ ← N . The other n− 1 public keys are generated in the
normal way.M provides these n public keys to A.

Besides, M also simulates A’s point of view by constructing the random
oracle G and the signing oracle SO. We first describe the construction of the
signing oracle SO. On input a time b, a group size n, a threshold d ∈ {1, . . . , n},
a set Y of n public keys, a subset V of Y with |V| = d, and a message M , the
answer is simulated as follow:

1. Randomly generate c0, cd+1, · · · , cn ∈R {0, 1}ρ.
2. Construct f over GF (2ρ) such that deg(f) = n− d and f(0) = c0, f(i) = ci,

for i = d+ 1, · · · , n.
3. Compute c1 = f(1), · · · , cd = f(d).
4. Randomly generate zi ∈R ZNi for i = 1, · · · , n.
5. Compute yi = z2`i(T+1−j)

i u
Hi(ci)
i mod Ni for i = 1, · · · , n.

6. Assign c0 as the value of G(L, d, j, ,m, y1, · · · , yn).
7. Output (z1, · · · , zn, f, b).

The simulation fails if step 6 causes collision, that is, the value of c0 has been
assigned before. This happens with probability at most qG/2ρ where qG is the
number of times that the random oracle G is queried by A.

Let Θ, Ω be the random tapes given to the signing oracle and A such that
A outputs a forged signature. Notice that the success probability of A is taken
over the space defined by Θ, Ω and the random oracle G.

Assume A chooses a breakin period T ≥ t. That is, the forged signature σj is
valid for time period j < t. The forged signature σj = (z1, · · · , zn, f, j) contains a
polynomial f where f(0) = G(L, d, j, m, y1, · · · , yn) for yi = z2`i(T+1−j)

i u
Hi(ci)
i mod

Ni, 1 ≤ i ≤ n. With probability at least 1−2−ρ, there exists a queryG(L, d, j, ,m, y1, · · · , yn)
due to the assumption of ideal randomness of G. Split G as (G−, c0) where G−

corresponds to the answers to all G-queries except for c0. Rewind A to this par-
ticular point and by invoking A with (Θ,Ω,G−) and randomly chosen another
value c′0 (6= c0) as the reply to the random oracle query, A outputs at least one
forged signature σ′j = (z′1, · · · , z′n, f ′, j) with non-negligible probability, due to
the heavy-row lemma [20].

Since the random tape is the same for both forged signature, we have yπ in
σj should be equal to y′π in σ′j . That is,

z2`i(T+1−j)

π uHπ(f(π))
π ≡ z′2

`i(T+1−j)

π uHπ(f ′(π))
π (mod Nπ)⇒(

v−2`π(T+1−t)
)Hπ(f(π))−Hπ(f ′(π))

≡ (z′π/zπ)2
`π(T+1−j)

(mod Nπ)⇒

vHπ(f(π))−Hπ(f ′(π)) ≡ (zπ/z
′
π)2

`π(t−j)
(mod Nπ)

By applying Lemma A.1 in [3],M can easily compute a square root of v, by
stting α = Hπ(f(π)) − Hπ(f ′(π)), X = zπ/z

′
π and λ = `π(t − j). We stay the

lemma below, without proof.
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Lemma 1. Given α 6= 0, λ > 0, v ∈ Qπ and X ∈ Z∗
Nπ

such that vα = X2λ

mod
Nπ and α < 2λ, one can easily compute y such that v = y2 mod Nπ.

Next we are going to analysis the successfuly probability.
First we consider the probability that collision to the hash query occurs. Let

Q = min{|Q1|, . . . , |Qn|}. The probability of collision occur in the same execution
of A is at most qH/Q + qG/2ρ. Thus, the probability of M failure to simulate
the signing oracle is at most qS(qH/Q + qG/2ρ) ≤ qS(qH23−k + qG/2ρ), where
k = min{k1, . . . , kn}. Let

δ = ε− qS(qH23−k + qG/2ρ)

Let εt be the probability that A produces a successful forgery such that the
break-in query occurs in time period t. Observe that δ =

∑T
t=1 εt. Assume M

picked a specific t as the time period for v. The probability is 1/T .
Let ph,t be the probability that, in one run, A produces a valid forgery based

on hash query number h after break-in query in time period t. We have

εt =
qG∑

h=1

ph,t

The probability that A produces a valid forgery based on the hash query number
h after break-in query in time period t in both runs is p2

h,t. This is reduced to
ph,t(ph,t − 2−`) due to the collision probability.

At this stage, we have to apply another lemma, lemma A.2 from [3]:

Lemma 2. Let a1, . . . , aλ be real numbers. Let a =
∑λ

µ=1 aµ. Let s =
∑λ

µ=1 a
2
µ.

Then s ≤ a2/λ.

Now we have the probability that A outputs a valid forgery based on the
same hash query both times and that the hash query was answered differently
in the second run and the break-in query occured in time period t to be

qG∑
h=1

p2
h,t −

qG∑
h=1

2−`ph,t ≥
ε2t
qG
−

qG∑
h=1

2−`ph,t =
ε2t
qG
− 2−`εt

(by using Lemma 2.)
Finally, we sum up all time period t to obtain

ε′ ≥ 1
T

T∑
t=1

(
ε2t
qG
− 2−`εt

)
≥ δ2

T 2qG
− δ

2`T

(by using Lemma 2.)
Finally we divide the result by 2 because only half of the choice for x that

can be used to factorize N and also divide by n since M has to guess which of
the user that A is going to participate for the forgery. ut
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B Proof of Theorem 4

Proof. Let A be a PPT adversary who can forge signatures with non-negligible
probability at least ε when given , n public keys, n corresponding master secret
keys and strictly less than t of the corresponding user private keys. Assume
A makes qG queries to G, qS queries to the signing oracle SO, and a total of
qH queries to H1, · · · , Hn combined. We constrct another PPT M from A to
solve the strong RSA problem. That is, given a number N , which is the product
of two primes, and a number λ ∈ Z∗

N , outputs φ ∈ Z∗
N and ω > 1 such that

φω = λ mod N .
M needs to assign N to be the public key of one of the n users and provide

all public key to A. M just randomly chooses π ∈R {1, . . . , n} and does the
following: απ, βπ, γπ, vπ such that

1. Choose απ, βπ, γπ such that λ = απ · βπ · γπ.
2. Randomly choose j ∈R {1, T}.
3. Choose vπ such that gcd(vπ, 2j+1− 1, 2T+1−j − 1) = vπ. That is, 2j+1− 1 =
vπK1 and 2T+1−j − 1 = vπK2 for some integers K1,K2.

4. If no such vπ exists, repeat step 3.

The total running time should be in polynomial of κ, the system security pa-
rameter, since T = ξ(κ) for some polynomial ξ.

The other n − 1 public keys and n master secret keys are generated in the
normal way.M provides these n public keys to A.

Besides, M also simulates A’s point of view by constructing the random
oracle G and the signing oracle SO. We first describe the construction of the
signing oracle SO. On input a time b, a group size n, a threshold d ∈ {1, . . . , n},
a set Y of n public keys, a subset V of Y with |V| = d, and a message M , the
answer is simulated as follow:

1. Randomly generate c0, cd+1, · · · , cn ∈R {0, 1}ρ.
2. Construct f over GF (2ρ) such that deg(f) = n− d and f(0) = c0, f(i) = ci,

for i = d+ 1, · · · , n.
3. Compute c1 = f(1), · · · , cd = f(d).
4. Randomly generate zi ∈R ZNi for i = 1, · · · , n.
5. Compute y′i = zvi

i (α2j+1

i β2T+1−j

i γ2j+1

i )Hi(ci) mod Ni.
6. Assign c0 as the value of G(L, b, j, ,m, y1, · · · , yn).
7. Output (z1, · · · , zn, f, b).

The simulation fails if step 6 causes collision, that is, the value of c0 has been
assigned before. This happens with probability at most qG/2ρ where qG is the
number of times that the random oracle G is queried by A.

Let Θ, Ω be the random tapes given to the signing oracle and A such that
A outputs a forged signature. Notice that the success probability of A is taken
over the space defined by Θ, Ω and the random oracle G.

Assume A chooses a period j. That is, the forged signature σj is valid for time
j. The forged signature σj = (z1, · · · , zn, f, j) contains a polynomial f where
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f(0) = G(L, d, j, ,m, y1, · · · , yn) for yi = zvi
i (α2j+1

i β2T+1−j

i γ2j+1

i )Hi(ci) mod Ni,
1 ≤ i ≤ n. With probability at least 1 − 2−ρ, there exists a query G(L, d, j,
m, y1, · · · , yn) due to the assumption of ideal randomness of G. Split G as
(G−, c0) where G− corresponds to the answers to all G-queries except for c0.
Rewind A to this particular point and by invoking A with (Θ,Ω,G−) and ran-
domly chosen another value c′0 (6= c0) as the reply to the random oracle query, A
outputs at least one forged signature σ′j = (z′1, · · · , z′n, f ′, j) with non-negligible
probability, due to the heavy-row lemma [20].

Since the random tape is the same for both forged signature, we have yπ in
σj should be equal to y′π in σ′j . That is,

zvπ
π (α2j+1

π β2T+1−j

π γ2j+1

π )Hπ(f(π)) = z′
vπ

π (α2j+1

π β2T+1−j

π γ2j+1

π )Hπ(f ′(π))

(mod Nπ)⇒(
zπ

z′π

)vπ

= (α2j+1

π β2T+1−j

π γ2j+1

π )Hπ(f ′(π))−Hπ(f(π))

(mod Nπ)

Since vπ is a prime number, we have gcd
(
vπ, Hπ(f ′(π))−Hπ(f(π))

)
= 1.

Thus we can find two integers a and b such that

avπ + b

(
Hπ(f ′(π))−Hπ(f(π))

)
= 1

and compute

α2j+1

π β2T+1−j

π γ2j+1

π = (α2j+1

π β2T+1−j

π γ2j+1

π )avπ

· (α2j+1

π β2T+1−j

π γ2j+1

π )b(Hπ(f ′(π))−Hπ(f(π))) (mod Nπ)⇒
= (α2j+1

π β2T+1−j

π γ2j+1

π )avπ

·
(
zπ

z′π

)b(Hπ(f ′(π))−Hπ(f(π)))

(mod Nπ)⇒

=
(

(α2j+1

π β2T+1−j

π γ2j+1

π )a ·
(
zπ

z′π

)b)vπ

(mod Nπ) (1)

Let

λ′ = α2j+1

π β2T+1−j

π γ2j+1

π (2)

From equation (2), equation (1) becomes

λ′ =
(
λ′a ·

(
zπ

z′π

)b)vπ

(mod Nπ) (3)
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From equation (2), we also have

λ′ = (απα
2j+1−1
π )(βπβ

2T+1−j−1
π )(γπγ

2j+1−1
π )

= (απβπγπ)(α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π )

= λ(α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π )

∴ λ =
λ′

α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π

We multiply 1

α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π

to both sides of equation (3), to get

λ =

(
λ′a ·

(
zπ

z′π

)b
)vπ

α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π

(mod Nπ)

=

(
λ′a ·

(
zπ

z′π

)b
)vπ

αK1vπ
π βK2vπ

π γK1vπ
π

(mod Nπ)

=

(
λ′a ·

(
zπ

z′π

)b
)vπ

(αK1
π βK2

π γK1
π )vπ

(mod Nπ)

=
( λ′a ·

(
zπ

z′π

)b

αK1
π βK2

π γK1
π

)vπ

(mod Nπ) (4)

From equation (4), by letting φ =
λ′a·

(
zπ
z′π

)b

α
K1
π β

K2
π γ

K1
π

and ω = vπ, M can solve the
strong RSA problem for λ. ut


