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Abstract
On an elliptic curve, the degree of an isogeny corresponds essentially

to the degrees of the polynomial expressions involved in its application.
The multiplication�by�` map [`] has degree `2, therefore the complexity
to directly evaluate [`](P ) is O(`2). For a small prime ` (= 2, 3) such
that the additive binary representation provides no better performance,
this represents the true cost of application of scalar multiplication. If an
elliptic curves admits an isogeny ϕ of degree ` then the costs of com-
puting ϕ(P ) should in contrast be O(`) �eld operations. Since we then
have a product expression [`] = ϕ̂ϕ, the existence of an `-isogeny ϕ on an
elliptic curve yields a theoretical improvement from O(`2) to O(`) �eld
operations for the evaluation of [`](P ) by naïve application of the de�n-
ing polynomials. In this work we investigate actual improvements for
small ` of this asymptotic complexity. For this purpose, we describe the
general construction of families of curves with a suitable decomposition
[`] = ϕ̂ϕ, and provide explicit examples of such a family of curves with
simple decomposition for [3]. Finally we derive a new tripling algorithm to
�nd complexity improvements to triplication on a curve in certain projec-
tive coordinate systems, then combine this new operation to non-adjacent
forms for `-adic expansions in order to obtain an improved strategy for
scalar multiplication on elliptic curves.

Keywords. Elliptic curve cryptography, fast arithmetic, e�ciently computable
isogenies, e�cient tripling, `-adic NAFw.
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1 Introduction

Given an elliptic curve E/K, together with a point P ∈ E(K) and an integer k,
the e�cient computation of the scalar multiple [k]P is central in elliptic curve
cryptography. Many ways to speed up this computation have been actively
researched. For instance, one can cite

• the use of alternative representations for the scalar multiple k (non-adjacent
forms [MO90, CMO97, TYW04], ternary/binary approach [CJLM05], Dual
Base Number System [DJM99]).

• the improvement of existing operations by use of other systems of coor-
dinates (projective , weighted projective [CMO98]) and the introduction
of new basic operations like [2]P ±Q, [3]P , [3]P ±Q, [4]P , [4P ]±Q, cf.
[CJLM05, DIM05].

• the use of endomorphisms (�rst on a singular curve that appeared to be
insecure [MV90], later with Koblitz curves [Kob92, Sol00, Lan05] and GLV
curves [GLV01, CLSQ03]).

See [ACD+05, chaps. 9, 13, and 15] and [HMV03] for a more comprehensive
description of all the techniques involved.

The purpose of this article is to investigate new and more e�cient ways to
compute the multiplication�by�` map. Indeed, given an integer ` > 2, it is
possible in some cases and for well chosen families of curves to split the map
[`] as the product of two isogenies. A direct computation of [`]P involves the
evaluation of rational polynomials of degree `2. The interest of this approach is
that the isogenies ϕ and ϕ̂ such that [`] = ϕ̂ϕ will be both of degree `. Therefore
it should be possible to obtain more e�cient formulas to compute [`] this way.
We investigate this idea for small values of `, especially 2 and 3 and obtain a
more e�cient tripling leading to a very fast scalar multiplication algorithm.

2 Splitting Multiplication by `

In this section we describe the de�nitions and background results for existence
and construction of an `-isogeny ϕ such that [`] = ϕ̂ϕ.

2.1 Subgroup (schemes) de�ned over K.

Let E be an elliptic curve over K, with de�ning equation

F (x, y) = y2 + (a1x+ a3)y − (x3 + a2x
2 + a4x+ a6) = 0.

We give an elementary background on concepts and conditions for torsion sub-
groups to be de�ned over the base �eld K.

De�nition 2.1 Let N be an integer greater than 1 and let E[N ] be the group
of N -torsion points in K. A torsion subgroup G of E[N ] is said to be de�ned
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over K or to be K-rational if G\{O} is the zero set of a �nite set of polynomials
{f1(x, y), . . . , fn(x, y)} in K[x, y]/

(
F (x, y)

)
.

A torsion subgroup can be speci�ed by two polynomials, one of which is the
polynomial ψG(x) whose roots are the x-coordinates of the points P = (x, y)
in G. If N is odd, then this polynomial su�ces to de�ne the torsion subgroup.
If N is even, then the full ideal of polynomials which have zeros on G cannot
be speci�ed as a single polynomial in x. As an example, if G = {O, (x0, y0)},
where (x0, y0) is a 2-torsion point, then G is determined as the zero set of the
polynomial x − x0, but both y − y0 and 2y + a1x + a3 are zero on {(x0, y0)},
but are not in the ideal (x− x0).

From the odd case, the condition for a subgroup to be K-rational is not that
the points have coe�cients in K, but that the symmetric functions in these
coe�cients must lie in K. Since every �nite subgroup G of E

(
K

)
is the kernel

of an isogeny ϕG : E → E′, the question of whether the subgroup can be de�ned
over K, is related to the K-rationality of the isogeny ϕG. The following classical
theorem states that these concepts are equivalent.

Theorem 2.1 A �nite subgroup G of E is K-rational if and only if G is the
kernel of an isogeny ψ : E → E′ de�ned over K.

Since the subgroup E[N ] of E
(
K

)
is the kernel of the scalar multiplication

[N ], which is de�ned over K, we obtain:

Corollary 2.1 Every torsion subgroup E[N ] is K-rational.

The de�ning polynomials for the N -torsion subgroups are the division polyno-
mials ψN (x, y), which are computable by explicit recursive formulas.

Corollary 2.2 Let G and H be two �nite K-rational subgroups of E. Then
G ∩H and G+H are K-rational subgroups of E.

Proof 2.1 The intersection property holds immediately since if G and H are
the zero sets of S = {g1, . . . , gr}, and T = {h1, . . . , hs}, respectively, then G∩H
is the zero set of S∪T . To prove that G+H is K-rational we apply the theorem
to the isogeny ϕH′ ◦ ϕG where H ′ = ϕG(H).

Combining the previous two corollaries we obtain:

Corollary 2.3 Suppose that E admits an isogeny E → E′ with cyclic kernel of
order N . Then E[`] contains a rational subgroup of order ` for every ` dividing
N .

These corollaries permit us to �nd a product decomposition for any isogeny,
or its de�ning kernel subgroup, into scalar multiplications [`] (determined by
E[`]) and isogenies of prime degree (given by a rational subgroup G of order `),
for primes ` dividing the degree of the isogeny. Since e�cient algorithms for
scalar multiplication [`] by small primes have been well-investigated, in the
next section we focus on prime order isogenies ` which �split� the isogeny [`]
into a product of isogenies ϕ and ϕ̂.
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2.2 Parameterizations of cyclic `-torsion subgroups

The theory of modular curves gives a means of achieving explicit parameteri-
zations of families of elliptic curves with the structure of an isogeny of degree
`. We describe the general background to this construction to motivate the
examples.

It is well-known that the j-invariant of an elliptic curve E over any �eld K
determines the isomorphism class of that curve over K. Conversely, any value
j 6= 0, 123 is the j-invariant of an elliptic curve

Ej : y2 + xy = x3 − 36
j − 123

x− 1
j − 123

·

The j-invariant can be identi�ed with a generator of the function �eld K
(
X(1)

)
of the modular curve X(1), classifying elliptic curves up to isomorphism. We
view the above equation Ej as a family of elliptic curves over the �j-line�
X(1)\{0, 1,∞} ∼= A1\{0, 1}.

In order to determine similar models for elliptic curves which admits an
`-isogeny, or equivalently a K-rational cyclic subgroup G of E[`], we use the
modular curves X0(`) covering X(1).

For the values ` = 2, 3, 5, 7, and 13 the curve X0(`) has genus 0, which means
that there exists a modular function u on X0(`) such that K

(
X0(`)

)
= K(u).

The covering X0(`) → X(1) is determined by an inclusion of function �elds
K

(
X(1)

)
→ K

(
X0(`)

)
, which means that we can express j as a rational function

in u.
For the above values of `, we may use quotients of the Dedekind η function

on the upper half plane

u(q) =
(
η(τ)
η(`τ)

)r

= q−1
∞∏

n=1

(
1− qn

1− qn`

)r

where r = 24/ gcd(12, ` − 1) and q = exp(2πiτ), to �nd a relation with the
q-expansion j(q) for the j-function to solve for the expression for the j-function.
Substituting into the above equations we then twist the curve or make a change
of variables to simplify the resulting equation to obtain the models for which
the `-torsion contains a parameterized rational subgroup of order ` (over K(u)
or over K for any particular value of u in K). The models used in the isogeny
decompositions which follow may be derived by this technique, with the ker-
nel polynomial determined by factorization of the `-division polynomial of this
curve.

2.3 Parameterized models

Applying these ideas, we have build families of curves for which [2] or [3] splits
into 2 isogenies of degree respectively 2 and 3. For instance, an elliptic curve
de�ned over a �eld of characteristic di�erent from 2 and 3 with a rational 3-
torsion subgroup can be expressed in the form (up to twists):

E : y2 = x3 + 3u(x+ 1)2
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with the 3-torsion subgroup de�ned by x = 0; we note that the curve E does not
necessarily have a point of order 3. The image curve is de�ned by an equation:

Et : y2 = x3 − u(3x− 4u+ 9)2.

Note that the same thing holds in characteristic 2. In fact, an elliptic curve
with a rational 3-torsion subgroup can be expressed in the form (up to twists):

E : y2 + (x+ u)y = x3.

It has a rational 3-torsion subgroup de�ned by x = 0. The image curve is
de�ned by an equation:

Et : y2 + (x+ u+ 1)y = x3 + x2 + (u+ 1)(x+ u+ 1).

Explicit formulas of the curves and isogenies to split [2] in characteristic
greater than 2 and to split [3] in characteristic greater than 3 can be found in
Section 3.

2.4 On special versus generic elliptic curves

Since we propose curves of a particular form, it is relevant to make a distinction
between curves of a special form and generic curves.

A family of elliptic curves is a parameterized equation of di�erent elliptic
curves E/K(u1, . . . , ut) in indeterminates u1, . . . , ut. We say that a family of
elliptic curves is geometrically special if, for (u1, . . . , ut) ∈ K

n, there exists a
�nite set of j-invariants of curves in the family. Otherwise, we say that the
family is geometrically general. Standard examples of families are the family of
elliptic curves y2 = x3 = ax + b, over K(a, b) which is geometrically general,
or the family of Koblitz curves y2 + xy = x3 + ax2 + 1 over F2(a) which are
geometrically special.

Any family of curves obtained by the CM construction are geometrically
special because there exists only a �nite set of j-invariants for each �xed dis-
criminant D. Even if D is allowed to vary, in practice there are only a �nite set
of candidates D with |D| bounded by the time to compute a class polynomial for
D. Similarly, any family of supersingular elliptic curves is geometrically special,
since there are only �nitely many j-invariants of supersingular elliptic curves.

The curves that we introduce lie in geometrically general families because
their invariants give in�nitely many j-invariants j = j(u), and conversely, every
j-invariant arises as j(u) for some u in K.

We say that a family is arithmetically special if the properties of the curves
in the family are in some way special with respect to a random curve over K.
This is more imprecise, but to make it more precise one should speak of an
arithmetic invariant, like group order or discriminant of the endomorphism ring
which can distinguish curves in the family and those outside of it. Every special
construction will be arithmetically special. For instance, Jao et al. [JMV05]
observe that curves produced by CM construction are arithmetically special and
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distinguished by properties of the discriminant of their endomorphism rings. By
construction we build curves that are arithmetically special, since they all have
a cyclic `-isogeny. In contrast, a curve over a �nite �eld has a 50% chance of
such a rational `-isogeny, and a curve with such a rational isogeny over a number
�eld is exceptional. Supersingular elliptic curves are arithmetically special with
respect to existence of rational isogenies: over a �nite degree extension L/K,
all `+ 1 cyclic `-isogenies for all ` become simultaneously L-rational.

Despite the fact that our families have arithmetically special `-torsion, by
virtue of the criterion by which they are constructed, for any prime n 6= `, the
n-torsion and n-isogenies follow the general behavior, and we have no reason
to expect any special properties of the group orders |E(K)| for curves in our
families, apart from the potential factors of ` which arise.

3 E�ciently Applicable Isogenies

Let us investigate at present how the multiplications by [2] and [3] can be
e�ciently split as a product of 2 isogenies in practice.

3.1 Elliptic curves with degree 2 isogenies

An elliptic curve de�ned over a �eld Fq of characteristic 6= 2 with a rational
2-torsion subgroup can be expressed in the form (up to twists):

E : y2 = x3 + ux2 + 16ux

with a 2-torsion point (0, 0). The corresponding isogeny of degree 2 is:

(x1, y1) 7→ (xt, yt) =
(
x1 + u

(
1 +

16
x1

)
, y1

(
1− 16u

x2
1

))
,

to an image curve de�ned by an equation:

Et : y2 = x3 − 2ux2 + u(u− 64)x.

The isogeny dual to the �rst isogeny is given by

(xt, yt) 7→ (x2, y2) =
(

1
22

(
xt − 2u+

u(u− 64)
xt

)
, 1

23
yt

(
1− u(u− 64)

x2
t

))
·

The compositum of these maps gives the multiplication�by�2 map on E.

To take advantage of this splitting, let us introduce a new system of coordi-
nates. Since they are similar to López-Dahab coordinates (LD) introduced in
characteristic 2, cf. [LD98], let us call them modi�ed López-Dahab coordinates
(LDm). A point (x1, y1) in a�ne coordinates (A) on the elliptic curve E will be
represented by (X1, Y1, Z1, Z

2
1 ) where x1 = X1/Z1 and y1 = Y1/Z

2
1 . It is a sim-

ple exercise to check that (X2, Y2, Z2, Z
2
2 ) corresponding to (x2, y2) = [2](x1, y1)
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is given by

A = X2
1 , B = X2

1 − 16uZ2
1 , Yt = Y1 ×B,

X2 = B2, Z2 = 4Y 2
1 , C = X2

1 × uZ2
1 ,

D = Z2
2 , E = u(Z2 − 4C), Y2 = Yt

(
2X2 + E + 256C

)
.

The number of elementary operations needed to obtain (X2, Y2, Z2, Z
2
2 ) is thus

5M+4S, where M and S respectively denotes a multiplication and a squaring in
the �eld Fq. However, if u is chosen so that a multiplication by u is negligible,
the costs for a doubling drop to 3M + 4S. Note that it is su�cient to choose u
to �t in a word, or to have a low Hamming weight representation in order to
achieve this property. Clearly, the number of suitable values of u for a given p is
extremely large and therefore this assumption has a limited impact on the rest
of the system.

Note also that the fastest system of coordinates for doubling corresponds to
modi�ed Jacobian coordinates Jm (see for instance [CMO98]) where a point
(x1, y1) is represented by (X1, Y1, Z1, aZ

4
1 ) with x1 = X1/Z

2
1 and y1 = Y1/Y

3
1 .

Indeed, to perform a double on the curve y2 = x3+ax+b, one needs only 4M+4S.
It is to be noted that choosing a special value for a does not change the overall
complexity. The addition Jm + Jm = Jm needs 13M + 6S whereas the mixed
addition Jm +A = Jm only 9M + 5S. Again this complexity is independent of
the value of the parameters so that no advantage can be obtained from a special
choice of a curve in modi�ed Jacobian coordinates.

Now, let us give addition formulas for LDm. We will only address the mixed
coordinates case, since it is the most important in practice. So let (X1, Y1, 1) in
A and (X2, Y2, Z2, Z

2
2 ) in Jm be two points on E. Again it is a simple exercise

to check that (X3, Y3, Z3, Z
2
3 ) is given that:

A = Y1 × Z2
2 − Y2, B = X1 × Z2 −X2, C = B × Z2,

Z3 = C2, D = X1 × Z3, E = A2,

F = X2 ×B × C, X3 = E − uZ3 −D − F, G = Z2
3 ,

H = A× C, Y3 = H × (D −X3)− Y1 ×G.

These computations require 9M + 3S if a multiplication by u is negligible. So,
choosing a special value for u provides an improvement and makes modi�ed
López�Dahab coordinates faster than modi�ed Jacobian coordinates. At present
let us generalize the concept to the multiplication�by�[3] map.

3.2 Elliptic curves with degree 3 isogenies

As mentioned earlier, an elliptic curve de�ned over a �eld of characteristic dif-
ferent from 2 and 3 with a rational 3-torsion subgroup can be expressed in the
form (up to twists):

E : y2 = x3 + 3u(x+ 1)2
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with the 3-torsion subgroup de�ned by x = 0; we note that the curve E does
not necessarily have a point of order 3. The corresponding isogeny of degree 3
is:

(x1, y1) 7→ (xt, yt) =
(
x1 + 4u+ 12u

x1 + 1
x2

1

, y1
(

1− 12u
x1 + 2
x3

1

))
·

The image curve is de�ned by an equation:

Et : y2 = x3 − u(3x− 4u+ 9)2

which subsequently has a 3-torsion subgroup de�ned by x = 0, de�ning the
kernel of the dual isogeny. This isogeny takes form

(xt, yt) 7→ (x3, y3) =
(

1
32

(
xt − 12u+

12u(4u− 9)
xt

− 4u(4u− 9)2

x2
t

)
,

1
33
yt

(
1− 12u(4u− 9)

x2
t

+
8u(4u− 9)2

x3
t

))
·

The compositum of these maps gives the multiplication�by�3 map on E.

Again, to take advantage of this splitting, we will use weighted projective
coordinates. More precisely let us represent the a�ne point P1 = (x1, y1) by
(X1, Y1, Z1, Z

2
1 ) where x1 = X1/Z

2
1 and y1 = Y1/Z

3
1 . These coordinates are

called new Jacobian and are denoted by J n. We will also describe doublings
and mixed additions for this system. The term Z2

1 will contribute to make
the mixed addition more e�cient. First let us give the formulas to compute
[3]P1 = (X3, Y3, Z3, Z

2
3 ):

A = (X1 + 3Z2
1 )2, B = uZ2

1 ×A, Xt = Y 2
1 +B,

Yt = Y1 × (Y 2
1 − 3B), Zt = X1 × Z1, C = Z2

t ,

D =
(
(4u− 9)C −Xt

)2
, E = −3uC ×D, X3 = (Y 2

t + E),

Y3 = Yt(X3 − 4E), Z3 = 3Xt × Zt, Z2
3 .

It is easy to see that 6M + 6S are needed to obtain [3]P1 in J n when u is
suitably chosen so that a multiplication by u is negligible. Otherwise, 8M + 6S
are necessary.

Now let us see how a doubling can be e�ciently obtained in that system.
In fact, it is su�cient to slightly modify the formulas existing for Jacobian
coordinates. We have:

A = Y1 × Z1, Z2 = 2A, B = 4Y 2
1 ×X1,

C = B + 6uA2, Z2
2 = 4A2, D = 3X2

1 ,

E = D + 6uZ2
1 × (Z2

1 +X1), X2 = −2B + E2, Y2 = −8Y 4
1 + E × (B −X2).

Thus a doubling in J n requires 4M + 5S as long as we neglect multiplications
by u, otherwise a doubling can be obtained with 6M + 4S.
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Finally, let us detail the addition of an a�ne point (X1, Y1, 1) and a point
(X2, Y2, Z2, Z

2
2 ) in J n. Again, they slightly di�er from the ones for the addition

in Jacobian coordinates, see [ACD+05].

A = X1 × Z2
2 , B = Y1 × Z2

2 × Z2, C = X2 −A,
D = Y2 −B, Z3 = Z2 × C, E = Z2

3 ,

F = C2, G = C × F, H = A× F,
X3 = −G− 3uE − 2H +D2, Y3 = −B ×G+D × (H −X3).

In total, one needs 8M+3S to compute an addition. If u is a random element
in the �eld, then an extra multiplication is required. Note that the extra element
Z2

2 in J n allows to save one squaring in the addition above.

3.2.1 Comparison with other systems.

Direct tripling formulas have been introduced by Ciet et al. [CJLM05]. The
general idea is to avoid computing intermediate values for the doubling. This
allows to get rid of one inversion at the cost of more multiplications. Recently,
Dimitrov et al. succeeded in totally avoid using inversions [DIM05]. Usually,
no special value for the parameters of the curve is considered, probably because
this has a limited impact anyway on the complexity of the operations. In our
case, important savings can be made if the parameter u of the curve is specially
chosen, as suggested by the next table comparing the complexities of di�erent
operations in di�erent coordinate systems. Note that we only require that a
multiplication by u is trivial so that a very large scope of values are still available,
like a small u or more generally u with a low Hamming weight expansion.

System This work [DIM05] [CJLM05]

Equation y2 = x3 + 3u(x+ 1)2 y2 = x3 + ax+ b y2 = x3 + ax+ b

Coordinates New Jacobian J n Jacobian J A�ne A

Tripling 8M + 6S 10M + 6S I + 7M + 4S

special u or a 6M + 6S 9M + 6S �

Doubling 6M + 4S 4M + 6S I + 2M + 2S

special u or a 4M + 5S 4M + 5S �

a = −3 NA 4M + 4S �

Mixed Addition 9M + 3S 8M + 3S I + 2M + S

special u or a 8M + 3S � �

Note also that there exist formulas to directly compute [2]P ±Q and [3]P ±Q
with respectively I + 9M + 2S and 2I + 9M + 3S; see [CJLM05] for details.
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Since we have a very e�cient tripling algorithm, it is natural to consider
the expansion of k in base 3 leading to a �triple and add algorithm� as well as
other generalizations, like expansions in non-adjacent form. We discuss this at
present.

4 Non-adjacent forms for `-adic expansions

Given two integers k and ` > 2, it is well-known that k can be expressed in a
unique way in base `. For computer applications, ` is usually chosen to be 2
or a power of 2. In the context of multiplication and of exponentiation/scalar
multiplication other representations have been considered, for instance the bi-
nary non-adjacent form and width-w non-adjacent form, respectively denoted
by NAF and NAFw, see [ACD+05].

Recently, Takagi et al. [TYW04] have generalized the concept of width-w
non-adjacent form to any radix ` and introduced an `-NAFw.

De�nition 4.1 Let ` and w be two integers greater than 1. Then every positive
integer k has a signed-digit expansion

k =
m∑

i=0

ki`
i

where

• each ki is zero or coprime with `,

• |ki| < `w/2,

• among any w consecutive coe�cients at most one is nonzero.

An expansion of this particular form is called width-w non-adjacent form in
basis `, `-NAFw for short, and is denoted by (km . . . k0)`-NAFw .

It is trivial to derive an algorithm to compute the `-NAFw generalizing the
one existing for the NAFw.

Algorithm 1. `-NAFw representation
Input: A positive integer k, a radix ` > 2 and a parameter w > 1.
Output: The `-NAFw representation (km . . . k0)`-NAFw of k.

1. i← 0

2. while k > 0 do
3. if k 6≡ 0 (mod `) then
4. ki ← k mod `w

5. if ki > `w/2 then ki ← ki − `w
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6. k ← k − ki

7. else ki ← 0

8. k ← k/` and i← i + 1

9. return (km . . . k0)`-NAFw

Remarks.

• The classical NAF corresponds to the choice ` = w = 2.

• It can be shown that this expansion is unique and that it has the smallest
Hamming weight among all signed representations for k having digits ki's
such that |ki| < `w/2, see [TYW04].

It is well-known that the density of the classical NAFw is 1/(w + 1). This
result can be generalized to `-NAFw, as shown in [TYW04]. See also [HT05]
for further results.

Proposition 4.1 The average density of the `-NAFw is equal to
`− 1

(`− 1)w + 1
·

Proof 4.1 For that matter, we compute the average length E(`, w) of running
0's between two nonzero coe�cients. From the de�nition, it is clear that there
are at least w − 1 consecutive zeroes between two nonzero coe�cients in the
`-NAFw expansion.

Assuming that k 6≡ 0 (mod `) then ki 6= 0 and k ← k − ki is now a multiple
of `w. Let t = k/`w. There are di�erent possibilities for the integer t which can
take any value. If t is not a multiple of `, there will be exactly w−1 consecutive
zeroes until the next nonzero coe�cient is found. Now the probability that t is
not a multiple of ` is (`− 1)/`. In the same way, there will be exactly w− 2 + i
consecutive zeroes until the next nonzero coe�cient is found if and only if t is
a multiple of `i−1 but not a multiple of `i. This event occurs with a probability
equal to (` − 1)/`i, namely ` − 1 choices (`i−1, 2`i−1, . . . , (` − 1)`i−1) out of `i

possible residues. This implies that the average length of running zeroes is

E(`, w) = w − 2 +
∑
i≥1

i(`− 1)/`i

and a simple computation gives E(`, w) = w − 2 + `/(`− 1). Since the average
density of the `-NAFw is 1/

(
E(`, w) + 1

)
, we obtain the expected result.

5 Experiments

In the following, we count the number of elementary operations needed to per-
form a scalar multiplication on an elliptic curve (with generic or special param-
eters) de�ned over a �nite �eld Fp of size respectively 160 and 200 bits with
various methods. More precisely we investigate
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• the double and add, also known as the binary method and denoted by
Bin.

• the `-NAFw for ` = 2 and w = 2, 3, 4, and 5

• the triple and add, also known as the ternary method and denoted by
Tern.

• the 3-NAF2

• the sextuple and add method, denoted by Sext.

• the 6-NAF2

• the ternary/binary approach [CJLM05], denoted by Tern./bin.

• the Dual Base Number System (DBNS) as explained in [DIM05]. Note
however that we did not try to tune the values of bmax and tmax, i.e. the
biggest possible values for the powers of 2 and 3 in the expansion of k.
This would certainly lead to big improvements.

In each case, we give the number #P of precomputations needed to compute
[k]P when combined with a left-to-right approach. The density δ of the obtained
expansion is also given. The di�erent situations under scrutiny are:

A. Curve: y2 = x3 + u(x+ 1)3 de�ned over a �nite �eld Fp of odd character-
istic.
Operations:

• tripling map [3] obtained as the composition of 2 isogenies expressed
in new Jacobian coordinates

• doubling and addition in new Jacobian coordinates

B. Curve: y2 = x3 +ax+ b de�ned over a �nite �eld Fp of odd characteristic.
Operations:

• direct tripling formulas explained in [DIM05]
• direct [2]P ± Q and [3]P ± Q explained in [CJLM05] whenever it is
possible.

C. Same curve and same operations as in B. except that the direct tripling
formulas come from [CJLM05].

We assume that the cost of a squaring is 0.8M. This allows us to express the
complexity only in terms of inversions and multiplications. All the complexities
are obtained in a theoretical way except for the ternary/binary and the DBNS
approaches. In these cases, an average over 104 exponents has been computed.
In each case, we provide the ratio between a multiplication and an inversion
so that the complexities of this work and [DIM05] (resp. [CJLM05]) are equal.
Thus, if I/M is bigger than the indicated value, our method will be more e�cient.
See Tables 1, 2, 3, and 4 for details.
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6 Conclusion

We have described a family of elliptic curve de�ned over a prime �eld of large
characteristic for which the multiplication�by�3 map, can be decomposed into
the product of 2 isogenies. Explicit formulas indicate that a tripling can be
done with 8M + 6S, and even 6M + 6S if the parameter of the curve is suitably
chosen. Since 3 plays an major role, we also tested generalizations of the width-
w NAF expansion to deal with `-adic expansions. We then tested our new
tripling algorithm in di�erent situations. When there is no memory constraints,
the 3-NAF2, 6-NAF2, and 3-NAF3 give excellent results for respectively only
2, 6 and 8 precomputed values and outclass their binary counterparts. Also,
this system performs better than those described in [CJLM05] and [DIM05] for
most methods under very realistic assumptions concerning the ratio I/M.

Of course, it would be desirable to extend this work and di�erent directions
are of interest. Indeed, the same study should be carried out in characteristic 2
and bigger values of ` should be investigated, the �rst candidate being 5. Also,
the Dual Base Number System (DBNS) when combined with this new tripling
method should give very good results with appropriate settings that need to
be found. Also, designing direct formulas for [2]P ± Q and [3]P ± Q in new
Jacobian coordinates would lead to further improvements.
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Method #P δ A. B. I/M C. I/M

Bin. � 1/2 2384M 80I + 1552M 10.4 160I + 1136M 7.8

NAF � 1/3 2076M 53I + 1503M 10.8 160I + 947M 7.1

NAF3 2 1/4 1928M 40I + 1480M 11.2 160I + 856M 6.7

NAF4 4 1/5 1837M 32I + 1466M 11.6 160I + 800M 6.5

NAF5 8 1/6 1780M 27I + 1457M 12 160I + 765M 6.3

Tern. � 2/3 2057M 134I + 1321M 5.5 168I + 1164M 5.3

3-NAF2 2 2/5 1749M 80I + 1391M 4.5 141I + 1110M 4.5

3-NAF3 8 2/7 1623M 58I + 1419M 3.5 130I + 1088M 4.1

Sext. � 5/6 1957M 52I + 1557M 7.7 124I + 1220M 5.9

6-NAF2 6 5/11 1683M 28I + 1514M 6.1 124I + 1052M 5.1

Tern./bin. � � 1773M 36I + 1507M 7.4 127I + 1067M 5.6

DBNS � � 1883M 45I + 1519M 8.1 129I + 1113M 6

Table 1: Complexities with a 160bit size for a random curve

Method #P δ A. B. I/M C. I/M

Bin. � 1/2 2112M 80I + 1424M 8.6 160I + 1136M 6.1

NAF � 1/3 1831M 53I + 1332M 9.4 160I + 947M 5.5

NAF3 2 1/4 1696M 40I + 1288M 10.2 160I + 856M 5.2

NAF4 4 1/5 1613M 32I + 1261M 11 160I + 800M 5.1

NAF5 8 1/6 1561M 27I + 1244M 11.7 160I + 765M 5

Tern. � 2/3 1788M 134I + 1287M 3.7 168I + 1164M 3.7

3-NAF2 2 2/5 1507M 80I + 1330M 2.2 141I + 1110M 2.8

3-NAF3 8 2/7 1392M 58I + 1347M 0.8 130I + 1088M 2.3

Sext. � 5/6 1706M 52I + 1479M 4.4 124I + 1220M 3.9

6-NAF2 6 5/11 1457M 28I + 1397M 2.1 124I + 1052M 3.3

Tern./bin. � � 1541M 36I + 1394M 4.1 127I + 1067M 3.7

DBNS � � 1643M 45I + 1415M 5 129I + 1113M 4.1

Table 2: Complexities with a 160bit size for a special curve
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Method #P δ A. B. I/M C. I/M

Bin. � 1/2 2980M 100I + 1940M 10.4 200I + 1420M 7.8

NAF � 1/3 2604M 67I + 1881M 10.8 200I + 1189M 7.1

NAF3 2 1/4 2410M 50I + 1850M 11.2 200I + 1070M 6.7

NAF4 4 1/5 2296M 40I + 1832M 11.6 200I + 1000M 6.5

NAF5 8 1/6 2216M 33I + 1819M 12 200I + 951M 6.3

Tern. � 2/3 2570M 168I + 1646M 5.5 210I + 1453M 5.3

3-NAF2 2 2/5 2183M 100I + 1735M 4.5 176I + 1385M 4.5

3-NAF3 8 2/7 2023M 72I + 1771M 3.5 162I + 1357M 4.1

Sext. � 5/6 2424M 64I + 1932M 7.7 154I + 1511M 5.9

6-NAF2 6 5/11 2093M 35I + 1880M 6.1 154I + 1308M 5.1

Tern./bin. � � 2221M 45I + 1887M 7.4 159I + 1337M 5.6

DBNS � � 2378M 58I + 1905M 8.1 162I + 1403M 6

Table 3: Complexities with a 200bit size for a random curve

Method #P δ A. B. I/M C. I/M

Bin. � 1/2 2640M 100I + 1780M 8.6 200I + 1420M 6.1

NAF � 1/3 2297M 67I + 1668M 9.4 200I + 1189M 5.5

NAF3 2 1/4 2120M 50I + 1610M 10.2 200I + 1070M 5.2

NAF4 4 1/5 2016M 40I + 1576M 11 200I + 1000M 5.1

NAF5 8 1/6 1943M 33I + 1552M 11.8 200I + 951M 5

Tern. � 2/3 2234M 168I + 1604M 3.7 210I + 1453M 3.7

3-NAF2 2 2/5 1881M 100I + 1659M 2.2 176I + 1385M 2.8

3-NAF3 8 2/7 1735M 72I + 1681M 0.7 162I + 1357M 2.3

Sext. � 5/6 2113M 64I + 1835M 4.4 154I + 1511M 3.9

6-NAF2 6 5/11 1812M 35I + 1736M 2.2 154I + 1308M 3.3

Tern./bin. � � 1933M 45I + 1743M 4.2 159I + 1332M 3.8

DBNS � � 2077M 58I + 1777M 5.1 162I + 1404M 4.2

Table 4: Complexities with a 200bit size for a special curve
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