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Abstract. In 1982, Chaum [21] pioneered the anonymous e-cash which finds many applications in
e-commerce. In 1993, Brands [8-10] and Ferguson [30, 31] published on single-term offline anonymous e-
cash which were the first practical e-cash. Their constructions used blind signatures and were inefficient
to implement multi-spendable e-cash. In 1995, Camenisch, Hohenberger, and Lysyanskaya [12] gave the
first compact 2%-spendable e-cash, using zero-knowledge-proof techniques. They left an open problem
of the simultaneous attainment of O(1)-unit wallet size and efficient coin tracing. The latter property
is needed to revoke bad coins from over-spenders. In this paper, we solve [12]’s open problem, and thus
enable the first practical compact e-cash. We use a new technique whose security reduces to a new
intractability assumption: the Decisional Harmonically-Tipped Diffie-Hellman (DHTDH) Assumption.

1 Introduction

In 1982, Chaum|21] pioneered the anonymous (untraceable) e-cash, which finds many applications in e-
commerce and m-commerce. In 1993, Brands[8-10] and Ferguson [31,30] published on single-term offline
anonymous e-cash which has at least the following properties:

1. unforgeability of the e-cash;

2. offtine verifiability and ” after-the-fact” tracing of over-spenders;

3. irrevocable anonymity: An honest user who does not over-spend cannot have his anonymity revoked by
any authority;

4. single-term, i.e. efficiency of computation (resp. storage, bandwidth, tracing) is O(1) unit, where each
unit is A; bits and A; is the security parameter.

The offline-ness correspond to the following application design scenario: The system is by design, or
stressed by traffic, to an offline state such that e-coins are verified without reference to past coins in any
online database or concurrent coins. Then a necessary deterrent against over-spending is to compute the
identity of the over-spender after the system eventually returns online with access to all past and concurrent
coins. The nonce technology often plays an ultimate role in securing offline anonymous e-cash.

Most existing e-cash implementations used blind signatures [21] and were difficult to achieve 2¢-spendable
e-cash with good efficiencies [12]. The compact 2°-spendable e-cash possesses at least the following properties:

1. security and efficiency properties of the single-term offline anonymous e-cash listed above.

2. compactness, i.e. it can be computed (resp. stored, transmitted, traced) in O(1) units, independent of the
number of allowed usages 2.

. reductionist security proofs;

. anonymity (i.e. zero-knowledge) of both the spender’s identity and the usage (spending) count;

5. efficient coin tracing.

B~

In coin tracing, Bank seeks to revoke unspent e-coins from an over-spender by maintaining an online coin
revocation list. Alternative revocation technologies such as the dynamic revocation in [14] is not suitable
because it requires all honest users to alter their e-coins in order to revoke each over-spent e-coin. There are
simply too many e-coins. In this paper, we focus on a solution where all coins from an over-spender are traced
and added to a coin revocation list. An efficient coin tracing algorithm to update this list is essential.
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An example slow over-spender detection system is to compare the spending at hand against every past
spending. The resulting complexity is proportional to the number of all past spendings, which could be an
extremely large number. An example fast over-spender detection is to implement a coin serial number which is
a one-to-one mapping of the tuple (coin, counten), i.e. the coin and its usage counter. To detect over-spender,
merely query a hash table containing all past serials. A match triggers the tracing of the over-spender. The
average time of a hash table search query is constant, independent of , or very weakly dependent on, the
number of past spendings. The hash table can be filled to a high constant percentage.

Recently, Camenisch, Hohenberger, and Lysyanskaya [12] presented the literature’s first compact e-cash
scheme which satisfies all but one of the above properties. Their System One achieved all but efficient coin
tracing. Their System Two achieved all but O(1) compactness — its storage (resp. computation, bandwidth)
is O(¢) units. Their System One combined CLO02 [15]’s signature, Dodis-Yampolskiy [29]’s verifiable random
function (VRF), and an innovative system of serial number and security tag. Their System Two also used
Ateniese, Fu, Green, and Hohenberger [2]’s re-encryption, Camenisch and Damgard [11)’s generally applicable
verifiable encryption.

In this paper, we improve upon [12]’s result by achieving all security and efficiency properties listed
above, including the simultaneous achievement of efficient (in fact O(1)-time) coin tracing and compact (in
fact O(1)-unit) wallet size. In details, our contributions are

1. We construct the literature’s first practical compact e-cash scheme satisfying all properties listed above,
including the simultaneous achievement of efficient (in fact O(1)-time) coin tracing and compact (in fact
O(1)-unit) wallet size. We combined [12]’s techniques, with a new technique to trace the spender’s secret
key, in our construction. The security is reduced to a new and strong intractability assumption, the
Decisional Harmonically-Tipped Diffie-Hellman (DHTDH) Assumption.

2. Using the same new technique, we construct an even more efficient solution but with a slightly weaker
anonymity, bout-wise anonymity where an e-coin spending is only zero-knowledge about its spender,
but the number of usages of a 2’-spendable coin is revealed. Bout-wise anonymity actually has its own
applications where the above compact e-cash is not suitable. For example, bout-wise e-cash is more
suitable in multi-round spendings where users are limited to a certain amount of purchases per round
(bout) and surpluses from one round cannot be used to increase the spending ceiling of another round.

. We also adapt [12]’s result and [44]’s result from a Strong RSA setting to a pairings setting.

4. We provide the most thorough security model of compact e-cash to date.

w

Organization: Section 2 reviews intractability assumptions. Section 3 presents the security model. Sec-
tion 4 contains the constructions and reductionist security proofs. Section 5 contains discussions, applications,
and conclusions.

Related literatures.

There are mainly two approaches to implement offline anonymous e-cash: by blind signatures [21,8-10,
31,30, 46] or by zero-knowledge proofs [37,13,14,45,39]. In either approach, there are mainly three stages:
Withdraw, Spend, and Deposit. The two approaches differ in which stage the spender’s identity is hidden. In
the former, user obtains a blind signature from Bank which serves as an e-coin. The identity hiding starts
in the first stage, Withdraw. In the latter, user obtains a certificate (i.e. certified public key) from Bank in
Withdraw which serves as an e-coin. Then in Spend, user presents a zero-knowledge proof-of-knowledge of a
certificate/coin and of its corresponding user secrete key. The hiding of the spender identity is in the second
stage, Spend, by virtue of the zero-knowledge.

Literatures on e-cash from blind signatures included at least the following. Brands[8-10] presented single-
term offline anonymous e-cash. Ferguson[31,30] also published on single-term offline anonymous e-cash.
Chaum|[23] studied e-checks. Chaum, Fiat, and Naor [24] studied untraceable e-cash. Chaum [22]’s blind
signature was a pivotal technology for implementing most previous e-cash schemes. Chaum and Pedersen [25]
presented transferred e-cash which grew in size. Chaum and Pedersen [26] presented wallet with observers,
Chan, et al. [20] constructed a kind of divisible e-cash. Franklin and Yung [32] studies security notions of
e-cash. Okamoto and Ohta [43] studies zero-knowledge for e-cash. Tsiounis [46]’s PhD dissertation on e-cash
provides a wealth of information on e-cash. Okamoto’s divisible e-cash [42].

The core mechanism in the latter approach, zero-knowledge proof-of-knowledge of a certificate, is also
the core mechanism of group signatures, e.g. [27,3,4, 1,15, 6,35, 36]. The fact that an e-cash scheme can be
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viewed as a certain kind of group signatures, and a certain kind of e-cash schemes can be constructed from
almost any group signature has been observed in the literature at least since [37,13,14,28,45,39] and [38,
40,17,16]. In the above e-cash from group signature, the identity of the spender is required to be escrowed
to an Open Authority (OA). Then it relies on linkability to detect a double spending and then it relies on
OA to trace its identity. Unfortunately, OA also has the unnecessary power to trace spenders who have not
over-spent. These e-cash schemes do not have irrevocable anonymity for the honest spenders, and therefore
do not match the security properties of the 1993 e-cash of [8-10, 31, 30]. Jarecki and Shmatikov [33] proposed
a good escrow scheme. Kiayias, et al. [34]’s traceable group signature allows the OA who is also the Bank to
publish a coin revocation list.

Recently, Teranish, et al. [44] constructed a group authentication scheme which can be turned into a
group signature and then into an e-cash scheme with the following properties: There is no OA, and an honest
spender has irrevocable anonymity. Over-spenders can be traced without any trapdoor. In fact, [44]’s result
implies a bout-wise compact e-cash even though the authors did not observe this explicitly.

The compact e-cash of [12] first achieved 2‘-spendable e-cash that is not bout-wise anonymous. It used
techniques similar to [44] to achieve irrevocable anonymity for honest signers and efficient tracing of double
spenders. However, [12] surpassed previous results by using [29]’s Verifiable Random Function (VRF) to
achieve zero-knowledge of both the spender identity and the coin usage counter value.

Intuitions of our result. Our main result improves [12] by adding a harmonic relation between two
user secret keys. In [12], the e-coin spending is the following signature proof-of-knowledge:

SPK{(A,e,x1, 70,33, ) : ART A% = hg € QRy A S =gi/ V™) € Gg
AT =h"hUH) c QR A ap=al A 1< <20 A Je—20] < 2%2}(M) (1)

The first relation is the well-known proof-of-knowledge of a certificate (A, e, 21, x2, x3) using CLO02 [15]’s group
signature, (z1,x2,x3) and (hi*, h3?, h3®) form the user sk-pk pair, N is the product of two safe primes of
similar length, and e is a prime in a suitable range[l, 15]. The coin serial number S and the coin security tag
T are [29]’s VRF (Verifiable Random Functions) which reveals zero-knowledge about the certificate or the
coin usage count J'. The group Gg is a known-order group satisfying hte ¢-DHHI Assumption [29]. When
the 2¢-spendable coin/certificate is over-spent, a value J', 1 < J' < 2¢ is used twice, resulting in identical
serials S and two corresponding tags T' = hflh??/(fﬂg') T = hflh:?/(‘],er‘“*). Then TRT ™ = R R which
can be used to trace the user public key k' and then trace the user. But it cannot easily compute the user
secret key, resulting in inefficient coin tracing. Further efforts in [12] achieved coin tracing in their System
Two by using the general VE (Verifiable Encryption) of [11], but at an at least ¢-fold increase in complexity.

We note that [44] used S = u® and T' = ¢g®%v®. Double spenders are detected by duplicated S and traced
by T-'T = (¢*)~%#+%. The user sk-pk pair is (z,¢%). Note it is difficult to implement 2‘-spendable e-cash
which keeps both the spender identity and the coin usage count zero-knowledge. E-cash solutions adapted
from the original group authentication in [44] is 2%-size for 2‘-spendable, or a straightforward modification
(see our Appendix) achieves O(1)-unit size but loses zero-knowledge of the coin usage count.

Our new result modifies [12] to the following:

SPI{(A,e,01,22, ') : AhSThe? = ho € QRy A S =gy ") € G
ANag=ah AN1T<J <28 A Je—20]<22 A (J +a0) = cay!t + 2} (M) (2)

where c is the challenge of the SPK proof system. The last relation is the crucial new technique. Over spending
is detected by duplicated S and traced by solving x; and x5 in the linear system:

(J +x) P =cay' +2 (3)
(J +mo) P =cryt + 2 (4)
In essence, over-spending results in a kind of forking simulation of the spender to extract two of its secret

keys x1 and x5. Note the user secret key is traced directed, while [12,44] traced the user public key. The
consequence is the simultaneous achievement of efficient coin tracing (which is an implication of efficient
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tracing of user secret key) and compactness. The down side is that a new and quite strong intractability
assumption is needed, the Decisional Harmonically-Tipped Diffie-Hellman (DHTDH) Assumption. Details
below.

2 Preliminaries: Intractability assumptions

For preliminaries on bilinear maps, zero-knowledge proofs, pseudorandom functions, CL02 signatures [15]
that we will need, readers are referred to [12]’s Section 3, Preliminaries. Below, we review old and new
intractability assumptions that we will need.

Convention: Unless otherwise noted, the XYZ Assumption is that no PPT algorithm can solve a random
instance of the XYZ Problem with non-negligible probability over random guessing. Below, G, G, G, are
arbitrary groups of known or unknown orders..

The co-Decisional Diffie-Hellaman Problem in G, X Gy, denoted co-DDH(G,,Gp), is, given random
91,97 € G, and g2 € Gy, to distinguish g5 from random. When G, = Gy, it becomes the Decisional
Diffie-Hellman Problem in G, denoted DDH(G, ). When there is a pairing & : G, x G, — Gy, it becomes
the DDHV Problem, V=Variant [41].

The ¢-DHI(G,,G4) (Diffie-Hellman Inverted) (resp. ¢-DDHI(G,,Gy) (Decisional Diffie-Hellman Inverted)
Problem) is: Given g,g?" € Gq, 0 <i < ¢, h € Gy, to compute h'/7 (resp. to distinguish A'/7 from random).
When there is a pairing & : G, x G, — Gb, then it becomes the ¢-DHIV (resp. ¢-DDHIV) Problem.

The Decisional Linear (resp. Inverted, Harmonic) Diffie-Hellaman Problem in G, x Gy X G, denote
DLDH(G,, Gy, G.) (resp. DIDH(G,,Gy,G.), DHDH(G,,Gy,G.) ) is, given random g1, ¢7* € Gq, 92,952 € Gp,
h € G, to distinguish h*17%2 (resp. h"’”1+$2‘_1, h$1_1+I2_1) from random. When G, = Gy = G, it becomes the
DLDH (resp DIDH, DHDH) Problem in G,[6], denoted DLDH(G,,) (resp DIDH(G,,), DHDH(G,,)) [6]. When
there is a pairing & : G, X Gy, — G, then it becomes the DLDHV Problem, with V=Variant [41].

The Decisional Linearly-Tipped (resp. Inversely-Tipped, Harmonically-Tipped) Diffie-Hellaman Problem,
denoted DLTDH(G,, Gy) (resp. DITDH(G,, Gy), DHTDH(G,, G}) ) is given random g1, ¢7* € Gq, g2 € Gy,
order(G,) = order(Gy), and ¢, z satisfying x5 = cxy + 2 (resp. w2 = cxy ' +2, x5 = cay '+ 2), to distinguish
g5? from random.

The Strong RSA Assumption There exists no PPT algorithm which, on input a random A-bit safe product
N and a random z € QR(N), returns v € Z} and e € N such that e > 1 and u® = z(modN), with non-
negligible probability and in time polynomial in A. Let e : G5 x G2 — G3 be a bilinear mapping.

The ¢-SDH Assumptions The q-Strong Diffie-Hellman Problem (q-SDH) is the problem of computing a

2
pair (gi/(’Y‘Fﬂi),x) given g1 S G17 and g2, 937 g; y Ty g;q € G2~

Several of the above DDH-assumptions are believable even in GDH groups (where the DDH Assumption
fails and the CDH Assumption hold) relative to contemporary technology, include DLDH, DLDHV, DHTDH,
DHHI, DHHIV. Note the DLTDH(G, G) Assumption (resp. the DITDH(G1,G2) Assumption) implies the
DDH(G,G) Assumption (resp. the co-DDH(G1,G2) Assumption), and therefore it fails in GDH groups.

3 Security Model

We follow mainly the security model of [4,12].

3.1 Syntax and correctness

Syntax: An offline 2°-spendable e-cash is a tuple (Init, BKeygen, UKeygen, Withdraw, Spend = (Sign, V¥),
Link, Trace, RevoCoin) where

1. Init: Upon input a security parameter \g, output system parameters param which includes at least a
pairing & : g1 X Gy — G, the number of usages per e-coin 2, hashing functions, discrete logarithm bases,
group orders, lengths and ranges, Ag, the archive of all past spendings Archive, the online coin-spending
revocation list CoinRevolist, the database of all legitimate customers with their public keys and coins
withdrawal transactions CustomerDB. Below, we assume param is included in each Protocol’s input by
default unless specified explicitly otherwise.



w

10.

More Compact E-Cash with Efficient Coin Tracing 5

. BKeygen(B): outputs bank key pair (bskg, bpks) and insert bpky to param.
. UKeygen(U): outputs user key pair (sky, pky).
. Withdraw is a pair of interactive protocols (U(bpk, sk), B(pk, bsk)) where, in the end, User obtains fresh

e-coins coin; Bank updates User’s account balance and CustomerDB.

. Spend = (Sign, Vf) is a pair of interactive protocols (Sign(sky, coiny,;, county,;), Vf(c)). At the conclu-

sion of interactions, either (i) Merchant outputs 0 and aborts; or (ii) Merchant outputs 1 and re-
ceives e-coin spendings o and User obtains purchases and increments county; by one, where o =
Sign(sky, coing ;, county ;).

. Deposit is a pair of interactive protocols (M(msk, o, bpk), B(mpk, bsk)) : Merchant deposits o. Bank inserts

the spending o to Archive, and updates Merchant’s account balance.

. Link(o, Archive): Verify Vf(c) = 1, the output 0 for no over-spending non-detection; or 1 and o’ € Archive

for overspending detected between ¢ and o’.

. Trace(o, o', CustomerDB): Verify Link(o, Archive) = (1, "), then output a user public key pk € CustomerDB.
. RevoCoin(o, o', CoinRevolList): Verify Link(o, Archive) = (1,0”), then output 2¢ coin serial numbers and

insert them to CoinRevolist.
OnlineVf(c, CoinRevolist): Output Vf(o, Archive). In addition, when Vf(o, Archive) = 1, output revoked if
o € CoinRevolList or not-revoked otherwise.

We assume the three online databases CustomerDB, Archive, CoinRevolist are honestly maintained. Each

usage of a 2¢-spendable e-coin is called a spending. typically denoted o in this paper.

Correctness An e-cash scheme has the following correctnesses

Withdraw Correctness: Honest Bank and User with legitimate key pairs, following Withdraw Protocol,
will output correct results.

Spend Correctness: Honest User, with legitimately obtained coins and not over-spending, and Merchant
with legitimate key pairs, following Protocol Spend, will output correct results, i.e. coin acceptance.
Deposit Correctness: Honest Merchant, with legitimately obtained (untainted) coins from some user who
have obtained the coins legitimately before and not over-spending, and Bank with legitimate key pairs,
following Protocol Deposit, will output correct results.

Linking Correctness: An honest user with honestly obtained coins but over-spending them, will be detected
by Protocol Link.

Tracing Correctness: An honest user with honestly obtained coins but over-spending them, will be traced
by Protocol Trace.

Coin-Tracing Correctness: An honest user with honestly obtained coins but over-spending them, the coin
will be be coin-traced by Protocol RevoCoin; and the spending of the coin will cause OnlineVf to output
revoked after RevoCoin’s insertion to CoinRevolist.

In summary, an e-cash scheme is correct if it has all the above correctnesses.

3.2 Attacker tools: Oracles

. Corrupt Bank Oracle CBO(B): obtain Banks secrete key. We assume the Bank remains honest in carrying

out Protocol Withdraw. The secret key is stolen and the Adversary can observe the Bank, but it cannot
control or alter Bank’s operations.

Corrupt User Oracle: CUO(U): obtain user’s secrete key.

Bout Decisional Oracle BDO(coin, J): returns 1 for yes that coin is in bout (coin usage count) .J; or 0 for
no.

Spend Oracle SO(U, coin): Upon inputs user U, one of its coins coin which has not been completely spent,
output a valid coin spending o.

Bout-Wise Spend Oracle SOBW(U, coin, J): Upon inputs user U, one of its coins coin, which has not
been depleted, and the coin’s usage count J, 0 < J < 2<, output a valid coin spending o.
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Unless otherwise stated explicitly, all queries to SO must have (U, coin) that are contained in the list of valid
user and coins; there cannot be queries to SO that duplicates a previous query input (U, coin, J); the number
of SO queries with the same (U, coin) cannot exceed 2¢, and lower in some specific security experiments.

Also, we do not allow the attacker to query SO and CUUO with the same user U ever. This effectively rules
out adaptive attackers [19] for the simplicity of the present presentation. The topic of adaptive attackers and
the topic of universal composability[18] for the current protocols are left for future research.

3.3 Security notions and attack games
3.3.1 Irrevocable anonymity and bout-wise irrevocable anonymity

Experiment TA (Irrevocable Anonymity)

1. (Initialization Phase): Simulator S initializes one bank, a number of users, and a number of coins for

these users.

(Probe-1 Phase): Adversary A queries CBO CUO, BDO, SO, SOBW, H in arbitrary interleaf.

3. (Gauntlet Phase): A sends two tuples (Us, pky, , coin;, count;), where (U;, pk; ;, coin;) € CustomerDB and
BDO(coiny, J1) = BDO(coiny, J3) = BDO(coing, J;) = BDO(coing, J2) =0 at this time, i = 1,2, t0 S. S
confirms entries in CustomerDB and BDO query results, flips a fair coin b € {0, 1}, computes a spending
oy for (Uy, pkyy, , coing, county,) and sends oy to A.

4. (Probe-2 Phase): Adversary A queries CBO CUO, BDO, SO, SOBW, H in arbitrary interleaf.

5. (End Game): A makes its estimate b on b.

N

Subsequently, Uy, (resp. coing, Jp) is called the gauntlet user (resp. gauntlet coin, gauntlet bout).
In order to win, these prerequisites must be satisfied by A:

1. The user U; (resp. Us) has not been queried to CLUO. Oracle SOBW has never been queried.

2. The number of SO queries with coin; (resp. coiny) does not exceed 2¢ — 2.

3. The pairs (coiny, Jy), (coiny, J3), (coing, J1), and BDO(coing, J2) have not been queried to BDO in the
Probe-2 Phase.

After satisfying the prerequisites, A wins Experiment IA-U if b= b, Uy # Uz and J; = Ja. It wins Experiment
TA-Cif b=b, Uy = Uy, Cy # Cs, J1 = Jo. It wins Experiment [A-J if b=b, Uy = Uy, C1 = Cso, J1 # Jo. A’s
advantage in Experiment TA-U (resp. IA-C, TA-J) is his probability, minus 1/2, of winning that Experiment.

Definition 1. An offline 2¢-spendable e-cash is irrevocably anonymous if no PPT algorithm has a non-
negligible advantage in any of Experiments IA-U, I1A-C, IA-J.

Remark: Experiment TA allows the corruption of Bank. Were there an OA (Open Authority) or other
related authorities in the Syntax, their corruption would be also allowed for experimenting irrevocable
anonymity.

Experiment Boutwise-IA (BIA) is the same as Experiment IA except A is allowed to query SOBW
but not SO, and query SOBW at most once for each triple (U, coin, J). A’s advantage is his probability of
winning the modified Experiment BIA-U or BIA-C. There is no requirement to win Experiment BIA-J.

Definition 2. An offline 2¢-spendable e-cash is bout-wise irrevocably anonymous if no PPT algorithm has
a non-negligible advantage in either Experiment BIA-U or BIA-C.

3.3.2 Full Traceability

Experiment FT (Full Traceability)

1. (Initialization Phase): Simulator S initializes one bank, a number of users, and a number of coins for
these users.

2. (Probe Phase): Adversary A makes qp (resp. qu, 9B, qs, qu) queries to CBO (resp. CUO, BDO, SO, H)
in arbitrary interleaf.

3. (Delivery Phase): A delivers coin-spendings o;, 1 < i < gok + 1, none of which is an output of SO.
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Let gc be the total number of e-coins issued to the gy users corrupted by A. A wins Experiment FT if
the following all hold:

1. Vf(o;) =1 and Link(o;, Archive) =0, for all ¢ and j, 1 <i < j < gck +1;
2. g =0, i.e. Banks is not corrupted;

A’s advantage is his probability of winning Experiment FT.

Definition 3. An offline 2¢-spendable e-cash is fully traceable provided no PPT algorithm has a non-
negligible advantage in Ezperiment FT(2°).

3.3.3 Strong non-frameability

Experiment SNF

1. (Initialization Phase): Simulator S initializes one bank, a number of users, and a number of coins for
these users.

2. (Probe Phase): Adversary A makes qp (resp. qu, ¢B, qs, qu) queries to CBO (resp. CUO, BDO, SO, H)
in arbitrary interleaf.

3. (Delivery Phase): A delivers a user identity U which has never been queried to CLUO, one of U’s coin coin
in CustomerDB which has never been queried to SO, and a spending o which is not an output of SO.

Let Archive’ be the result of inserting any 2¢ honest spending of the coin coin by user U to Archive
(at the end of the game). A wins Experiment SNF-U if Link(c, Archive’) = (1,0’) for some o’ € Archive’
and Trace(o, o', CustomerDB) = pk;. A’s advantage in Experiment SNF-U is his probability of winning
Experiment SNF-U. A wins Experiment SNF-C if Link(o, Archive’) = (1,0’) for some o’ € Archive’ and
RevoCoin(a, o', CoinRevoList) outputs Archive’\ Archive. A’s advantage in Experiment SNF-C is his probability
of winning Experiment SNF-C.

Definition 4. An offline 2°-spendable e-cash is strongly user non-frameable (resp. strongly coin non-frameable)
provided no PPT algorithm has a non-negligible advantage in Experiment SNF-U (resp. SNF-C). It is strongly
non-frameable provided it is both strongly user non-frameable and strongly coin non-frameable.

Remark: There exists a scenario where a user can be indicted by Trace, but the user can vindicate
himself in a public trial overseen by a judge [4,12]. In this scenario, the user remains "non-frameable”. We
have constructed pedagogical e-cash which instantiates this scenario. However, indictment and vindication
remains a hassle and a vulnerability to DoS (Denial-of-Service) attacks. In this paper, we restrict ourselves to
the higher goal of strong non-frameability where Trace indict the truly guilty with overwhelming probability.

3.3.4 Security. In summary

Definition 5. An offline 2°-spendable e-cash is secure provided it is correct, irrevocably anonymous, fully
traceable, and strongly non-frameable. It is bout-wise secure it it is correct, bout-wise irrevocably anonymous,
fully traceable, and strongly non-frameable.

3.4 Efficiency goals

The storage of each 2°-spendable coin should be O(\, + ¢) bits, where ¢ < \,. The complexity of Link (resp.
Trace) should be O(1). Protocol CoinTrace should output 2¢ coin traces in time O(2¢), or O(1) per spending
traced.

3.5 Comparing security notions with [12]

[12]’s Balance means coalition-resistant unforgeability which is included in our full traceability. Their identifi-
cation of double-spenders, tracing of double-spenders, and exculpability are included in our linking correctness,
tracing correctness and strong non-frameability.
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4 New Constructions of Offline 2%-Spendable E-Cash

We construct offline 2¢-spendable e-cash schemes with efficient size, bandwidth, computation, and coin tracing,
and reduct its security to intractability assumptions. Section 4.1 contains a generic construction. Section 4.2
contains an instantiation in pairings. Section 4.3 contains another instantiation in a Strong RSA setting.
Section 4.4 contains a different construction: a bout-wise secure offline 2¢-spendable e-cash.

4.1 Generic Constructions

Following the intuitions at the end of Section 1, we construct our offline 2‘-spendable e-cash with the pre-
scribed efficiency and we reduct their security to intractability assumptions.

Protocol CEC-HT: Protocols Init, BKeygen, UKeygen: Let € : G; X Go — G3 be a pairing with
order(G;)=order(Gz)=order(G3)=¢:. The Bank’s sk-pk pair is (v € Z;,, (u,u”) € Gz x Gg2). The user
sk-pk pair is ((z1,720), (h]', h5>°) € G1 x G1). Assume all system discrete logarithm bases are fairly gen-
erated: e.g. g; = H('g',i) € Gy, hy = H('W,i) € Gy, vy = H('V,i) € Ga, g; = H('g',i) € G3. Sampling
a random element of G3 directly may cost time, but we can afford such in generating a system parameter.
Assume ¢ is sufficiently large but sufficiently smaller than A;. We have in mind ¢ = ©(),).

Withdraw Protocol: User present its public key and proof knowledge of its corresponding secret key. Bank
verifies, and then randomly generates x2 1 and a certificate (A, e) certifying the user public keys (h7*, h3?),
where 3 = 220 + 22,1.

Spend = (Sign, Vf): Protocol Sign(sk, coin, count) accepts inputs user secret key sk = (x1,z2), an e-coin
(a.k.a. certificate) coin = (A, e) corresponding to it, the number of times the 2‘-spendable coin has been
spent before, count = J, 0 < J < 2¢. For each coin coin, Protocol Spend generates a prime peoin of length
close to ¢ to be used in all spendings of coin. Let J' = peoin(J + 1) mod 2¢. Then Sign sends the following
non-interactive proof-of-knowledge to Vf:

o=SPK{(A,e,x1,22,J) : (A,e) is cert for user public key (h{*, h3?)
A1<JT<2° A S= gg/(JHZ) A a7t = ce(J +x2) 7t + 2} (param, nonce) (5)

where c is the challenge of the above proof system.

Protocol Vf verified the proof-of-knowledge. Protocol Link links two signatures with the same serial S,
which is bound to happen when a coin is spent more than 2¢ times. When that happens, Protocol Trace obtains
the following two equations from the two spendings corresponding to the repeated .J, xl_l =c(J+z2) "t +2
and acfl = ¢(J+m2) "1+ 2, and solve for z1 to obtain a user public key h{*. Protocol CoinTrace then computes
J and x5 and traces all 2¢ spendings of the over-spent coin.

Below, we instantiate in a pairings setting and in a Strong RSA setting respectively.

4.2 Instantiation in pairings: Protocol CEC-HT-SDH

Our instantiation of offline 2¢-spendable e-cash CEC-HT in pairings has the following details. The user public
key (h{',h3?) € G1 x G1. Bank’s public key u” is in G5. The certificate (4, e) satisfies A°TYh7*h3? = hg € G;.
Protocol Sign is the following signature proof-of-knowledge
o =SPK{(A,e,x1,29,J) : A“TTh]'h?* = hg € Gy
AN1<JT<28 A S= gls/(‘]/erZ) €Gs A x7' =c(J +a9)™t + 2 € Z,, }(param, nonce) (6)

where ¢ is the challenge of the above proof system. Further detailed instantiation of the proof system is as
follows: Protocol Sign randomly generates s1, s2, S5.2, 6,2, S, and computes the commitments

ty = Agit A to =t5hT RS2 952 Aty = é(hy Mo, w)é(ty, u)gs T = é(gr, u)* (g1, u)* gy T
Aty = g}5/(‘] +x2) A ts = ggl){l(J +m2)g;?é2 €Gy A tg= tg/-‘,—xggé/lgg?éz

56,2 1S9

— ’ 1 5
A tr=tegs1 = 981965 952 N ls=ds = 95,/1IIS’5T>,2'2 A tg =1g5'gg
A tip = tgggj =g5895° N1<T <28 N Tt =e(J +a) + 2 (7)
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where
s3=s16, sa=(J +x2)7, s51=(J +x2)7", s60=12 S61=,
s7=s52(J + @), ss1=Ta=a, S32 =752, S10 =571 = 58271 (8)
Select sg; = r4 = 27" as per the new technique. Additional commitments are (We omit range check [7] on
J' for simplicity)
di = Zagi" N do =t h" e hy™gh? A ds = é(g1,u)e(gr,uY) gyt
Adi=gg A ds =57 055 N ds =157 961" 965 A dr = 955 965 952, (9)
A dg = g5 g5’ A do =15 g5° A dio = 955 99°

The challenge is
¢ = H(param, nonce, all t;’s but t3,t7,t19, all d;’s). (10)

where param=(&,H, nonce algorithm, all discrete logarithm bases g;’s and h;’s and g,’s, u,y*). The responses
are Z4 = RyA™¢, z; = r; — cs; for all index i. The signature/spending is

o = H(param, nonce, all t;’s but t3,t7,t10,¢, Za, all z;’s). (11)

Protocol Vf(o): Upon receiving a spending o, parses o, computes

t3 = é(halt27u)é(t17Uv)g§1+527 t7 - t6957&a tl() - t9.g57&7 (12)
di = Zagi'ts, do = ti°hi" ha"*hy™° g52ts, d3 = é(ghu)zi"é(gl,u'y)zlg?“th, (13)
di = g3'ty, ds =957 955 15, do = 157" 0551 Gos 6 dr = o1 Yo' I5at5s (14)

__ . ?5,1 _252,¢c __ 4Rz,1 _Z9yc __ 210 %9 4C
ds =951 955 s, do =15" g5°t5, dio = g5:395° 150

Verify that the received challenge ¢ equals to that computed from Equation (10). If OK, output 1; else output
0.

Protocol Link(o, Archive): If Vf(o) = 0, output NULL and abort. Else parse o to obtain its serial S.
Make a search query to Archive for S. If found a match o/, output (1,0')1, else output 0. Note that Archive
is implemented as a hash table data structure, so the search query cost a small constant number of data
accesses.

Protocol Trace(o, &, CustomerDB): Verify Link(c, Archive) = (1,5). Parse o (resp. sigma) to obtain ¢ and
24 (resp. ¢ and Z4). Compute § = —(¢—¢) 1 (24 — 24) and 21 = 24 + 3. If t4 # gg/s then output NULL and
abort. Else output user public key h{*.

Protocol RevoCoin(c,d, CoinRevolist): Verify Link(o, Archive) = (1,5) and Trace(o, &, CustomerDB) #

NULL. Computes as in Trace, then append these steps: For each J/, —2¢ < J' < 2, test g . gés_J/ until
success at J*. If success at J* then insert the serial numbers gf{‘l*f‘]’, 1 < J'J <2 to CoinRevolist.

Reductionist security proof

Theorem 1. Let € : G1 X G1 — G3 be a pairing, order(G1) = order(Gs) = q1, and qu (resp. qu) be the
number of Corrupt User (resp. Random) Oracle queries by the Adversary. Assume the random oracle (RO)
model and assume the Discrete Logarithm Problem is hard. Protocol CEC-HT-SDH is an offfine 2¢-spendable
e-cash with the following security reductions:

1. It is correct;

2. It is irrevocably anonymous provided the following assumptions all hold: the DLDH(G1,G3) Assumption,
the qu-DDHI(G,G3) Assumption, the DHTDH(G1,G1) Assumption.

3. It is fully traceable provided the qu-SDH Assumption holds and 2£q[2j/q1 is negligible. More specifically, if
there exists an algorithm A which completes in time T and has advantage € in Experiment F'T, then the qu -
SDH Problem can be solve in time T' and probability ¢ satisfying T' < 2T and ¢’ > (e — 2T qZ.q; ") 2qy"
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4. It is strongly non-frameable provided the quy-DHI(G1,G3) Assumption holds.

In summary, Protocol CEC-HT-SDH is a secure offline 2°-spendable e-cash provided 22q[2]/q1 is negligible, and
the following assumptions all hold in the RO model: the DLDH(G,,G3) Assumption, the qu-DDHI(G1,G3)
Assumption, the DHTDH(G1,G1) Assumption, and the qu-SDH Assumption.

Proof Sketch in Appendix A.

4.3 Instantiation in Strong RSA: Protocol CEC-HT-SRSA

Let N =pq, p=2p' +1, ¢ =2¢ + 1, where p, q, p', ¢ are primes of similar lengths. Let G be a group
with known order order(Gg) > N. Protocols Withdraw is the same as in Section 4.1. The user sk-ps pair is
((z1,72), (R, h3?) € QR%). The certificate/e-coin is (A, e) satisfying A°hT'h3? = hy, e is a prime within a
suitable interval, |e—2%| < 2% with ¢; and /5 selected according to [1]. Our instantiation of the CEC-DLTDH
in the strong RSA setting is:

SPK{(A,G,JJl,.’L‘Q, J) : Aeh:flh;w =hy € QRN
ANait=cll +a) P2z A 1< T <29 A S= gé/(‘]urm) € Ggs} (15)

where c is the challenge of the above proof system. A further-detailed instantiation is below: The commitments
are

ty = Agit A to = t5h RS2 g5 Aty = hyttagy T = gitgste (16)
Aty = g‘ls/(J +x2) €Gs A ts = gé,/l(J -‘rwz)g;:f)zz A tg = téf/+wzgé]7’1ggfs2,2 (17)

— /' Se 1/x 5
A tr=togst = Gdr005 95 A ts =ds = g\ Aty = 1313 (18)
A tip = tgggj =g5895° N1<T <28 N aTh =l Han) T 42 (19)

where

sa=(J +x) Y, s51= (] +x2)7, se0=2a2, se1=21, (20)
st =s52(J +T2), Ss1=T4=2]", Ss2=T52, Si0=T52T1 = SgaT1. (21)

Select sg1 =14 = xfl as per the new technique. The rest is similar to Protocol CEC-HT-SDH and is omitted.
The security analysis is in the following Theorem.

Theorem 2. Assume the random oracle (RO) model. Let N be the product of two safe primes. Let qu (resp.
qm ) be the number of Corrupt User (resp. Random) Oracle queries. Protocol CEC-DLTDH-SRSA is an offline
2¢_spendable e-cash such that:

1. It is correct;

2. It is irrevocably anonymous provided the qu-DDHI(QRy,Gs) Assumption, the DLDH(QRyN,QRN) As-
sumption, and the DHTDH(QRN,QRyN ) Assumption all hold.

3. It is fully traceable provided the Strong RSA Assumption holds and 2°q%(N/4)~! is negligible. More
specifically, if there exists an algorithm A which completes in time T and has advantage € in Experiment
FT. then the Strong RSA Assumption can be solve in time T’ and probability € satisfying T' < 2T and
¢ > (e — 201 g3 (N/4) ;).

4. It is strongly non-frameable provided the qu-DHI(QRN,Gs) Assumption holds.

In summary, Protocol CEC-HT-SRSA is a secure offline 2°-spendable e-cash provided the qi-DDHI(QRN,G's)
Assumption, the DLDH(QRN,QRN) Assumption, the DHTDH(QRyN,QRy) Assumption, and the Strong
RSA Assumption all hold in the RO model.

Proof is in Appendix B of the full version.
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4.4 New constructions of bout-wise secure offline 2¢-spendable e-cash

We construct new compact e-cash satisfying all properties listed at the beginning of this paper, except it has
only bout-wise irrevocable anonymity. The tradeoff is higher efficiency. We present a generic construction
with two instantiations in pairings setting and in a strong RSA setting, respectively.

4.4.1 E-cash Protocol CEC-BW. Using the same parameters as in Section 4.1, our generic bout-wise
scheme has the same Init, Withdraw, and the following Spend protocol:

o=SPK{(A,e,x1,22) : (4,e) is cert for user public key (hi', h3?)
A S=g% A xy! =c(x1)"" + z}(param, nonce) (22)

where c is the challenge of the above proof system. Protocol Vf verifies the above proof system. Protocol
Link(c, Archive) search queries the hash table Archive for a match to the serial S, denoted o’. Protocols
Trace(o, o', CustomerDB) and CoinTrace(o, o', CoinRevolist) are similar to those in Section 4.1 and omitted.

The biggest difference is now the usage count (i.e. bout) J is transmitted, i.e. included in . The e-cash
scheme has only bout-wise security, in exchange for better efficiency by a constant factor.

4.4.2 E-cash protocol CEC-BW-SDH Using parameters from Section 4.2, we instantiate e-cash Protocol
CEC-BW in a pairings setting. The core Spend Protocol is shown below. Other protocols are straightforward
and omitted.

SPK{(A, e, x1,73) : A“TYh7{*hi? = hg mod N
A S=hi' €Gs ANay' =cay' + 2} (23)

where c is the challenge of the proof system. Its security analysis is in the following Theorem.

Theorem 3. Let é : G1 X G1 — G3 be a pairing, order(G1) = order(Gs) = q1, and qu (resp. qu) be the
number of Corrupt User (resp. Random) Oracle queries by the Adversary. Assume the random oracle (RO)
model and assume the Discrete Logarithm Problem is hard. Protocol CEC-BW-SDH is an offline 2°-spendable
e-cash with the following security reductions:

1. It is correct;

2. It is bout-wise irrevocably anonymous provided the following assumptions all hold: the DLDH(G1,G3)
Assumption, the DHTDH(G1,G1) Assumption.

3. It is fully traceable provided the qu-SDH Assumption holds and ZZQ%,/ql is negligible. More specifically, if
there exists an algorithm A which completes in time T and has advantage € in Experiment F'T, then the qu -
SDH Problem can be solve in time T' and probability ¢ satisfying T' < 2T and ¢ > (e — 271 q?q; ") gy

4. It is strongly non-frameable provided the co-CDH(G1,G3) Assumption holds.

In summary, Protocol CEC-BW-SDH is a bout-wise secure offline 2¢-spendable e-cash provided QZqE, /a1
is negligible, and the following assumptions all hold in the RO model: the DLDH(G,,G3) Assumption, the
DHTDH(G1,G1) Assumption, and the qu-SDH Assumption.

4.4.3 E-cash protocol CEC-BW-SRSA Using parameters from Section 4.3, we instantiate e-cash Pro-
tocol CEC-BW in a strong RSA setting: The core Spend Protocol is shown below. Other protocols are
straightforward and omitted.

SPK{(A,e,x1,22) : A°hT7*h3? = ho € QRN
Aol =clJ +a) 4z A S =gV e gg (24)

where c is the challenge of the above proof system. Its security analysis is in the following Theorem.
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Theorem 4. Assume the random oracle (RO) model. Let N be the product of two safe primes. Let qu (resp.
qm) be the number of Corrupt User (resp. Random) Oracle queries. Protocol CEC-BW-SRSA is an offline
20 _spendable e-cash such that:

1. It is correct;
2. It is bout-wise irrevocably anonymous provided the DLDH(QRN, QRy ) Assumption, and the DHTDH(QRy,

QRy) Assumption all hold.

3. It is fully traceable provided the Strong RSA Assumption holds and 2€q(2J(N/4)_1 s negligible. More
specifically, if there exists an algorithm A which completes in time T and has advantage € in Experiment
FT. then the Strong RSA Assumption can be solve in time T’ and probability € satisfying T' < 2T and
¢ > (- 21 g3 (N/4) 125 .

4. It is strongly non-frameable provided the co-CDH(QRy, Gs) Assumption holds.

In summary, Protocol CEC-BW-SRSA is a bout-wise secure offline 2-spendable e-cash provided the DLDH(QRy,
QRyN ) Assumption, the DHTDH(QRyN, QRN ) Assumption, and the Strong RSA Assumption all hold in the
RO model.

5 Discussions, Applications, and Conclusions

Instantiating [12]’s System One to a pairings setting

Using parameters and Init, Withdraw protocols from 4.2, we instantiate [12]’s System One to a pairings
setting. The original paper only instantiated it to a strong RSA framework. The core Spend protocol is
presented below. Other protocols are straightforward and omitted.

CEC-CHL-SDH-Spend :  SPK{(A,e,z1,29,J): 1< J < 2°
ATV RE2RES = hg € Gy A S =g/ A T =e(gh g0)gh/ VT A 1< T <2 (25)

Theorem 5. Let é : G1 X G1 — G3 be a pairing, order(G1) = order(Gs) = q1, and qu (resp. qu) be the
number of Corrupt User (resp. Random) Oracle queries by the Adversary. Assume the random oracle (RO)
model and assume the Discrete Logarithm Problem is hard. Protocol CEC-CHL-SDH is an offline 2°-spendable
e-cash with the following security reductions:

1. It is correct;

2. It is irrevocably anonymous provided the following assumptions all hold: the DLDH(G1,G5) Assumption,
the qu-DDHI(G1,G3) Assumption.

3. It is fully traceable provided the qu-SDH Assumption holds and 2€q(2]/q1 is negligible. More specifically, if
there exists an algorithm A which completes in time T and has advantage € in Experiment F'T, then the qy -
SDH Problem can be solve in time T' and probability €' satisfying T' < 2T and € > (e — 2Z+1q2Uq1_1)2q;11.

4. It is strongly non-frameable provided the qu-DHI(G1,G3) Assumption holds.

In summary, Protocol CEC-CHL-SDH is a secure offline 2%-spendable e-cash provided 26q2U/(I1 s negligible,
and the following assumptions all hold in the RO model: the DLDH(G1,G3) Assumption, the qu-DDHI(G1,G3)
Assumption, and the qu-SDH Assumption.

Note e-cash scheme CEC-CHL-SDH does not have an efficient CoinTrace protocol, just like [12]’s System
One it instantiates.

Efficiency discussions In comparison to [12]’s System One, our e-cash scheme CEC-HT-SRSA (resp.
CEC-BW-SRSA) has a similar complexity, CEC-HT-SDH (resp. CEC-BW-SRSA, CEC-CHL-SDH) has a
higher complexity in Vf’s online computation of two pairings. Schemes CEC-HT-SRSA and CEC-HT-SDH
solve [12]’s open problem of simultaneous achievement of efficient coin tracing and compact wallet size.
Schemes CEC-BW-SDH and CEC-BW-SRSA also do so, but with a slightly weaker anonymity: the bout-
wise irrevocable anonymity.

Conclusion: We solve SDH solve [12]’s open problem in compact e-cash of simultaneous achievement of
efficient coin tracing and compact wallet size. Our main tool is a new technique in zero-knolwedge proofs which
extracts user secret keys when over-spending occurs. The complexity of our scheme is similar to the more
efficient System One of [12]. The security of our compact e-cash schemes is reduced to a new intractability
assumption.
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A Proof Sketch of Theorem 1

Intuition of the proof: Our scheme can be viewed as modified from [6]’s group signatures by deleting Open Au-
thority implementation and then adding more relations. Therefore, our full traceability and non-frameability
tend to be enhanced from those of [6], and our irrevocable anonymity faced more pressure than the anonymity
of [6]. Note the probability that J' + x5 = J + %, must be figured in, where zo and Ty belong to two users
corrupted by Adversary. This scenario attacks the validity of Protocol Link where Link(c, Archive) = (1,0”)
but Trace(o, o/, CustomerDB) outputs NULL. This attack probability is upper bounded by 2/*1¢% /q;.

A.1 Proof sketch of full traceability

Intuition: Compared to the attacker to the group signature of Boneh, et al. [6], our attacker .4 must do more.
[6]’s full traceability attacker must solve a gy-SDH Problem instance. Our attacker .4 must do at least that
much. We sketch the two most crucial parts of the proof only: How to simulating the oracles and how to set
up and extract the witness.

1.

2.
3.

In order to win Experiment FT, the Adversary A must be able to forge all three parts:

The proof-of-knowledge of certificate (A, e) which certifies the user public key (hi',h3?) and proof-of-
knowledge of its corresponding user secret key (x1,x2); These involve ¢y, ta, 3.

ta.

The remaining t;’s.

Below, we sketch a proof which shows A’s forgery of Item 1 above reduces to the Theorem assumption on
full traceability, even if it is assisted by oracles to forge the other two Items. Note Simulator S enjoys the

same Assisting Oracle. The Assisting Oracles can, upon input J and h3? (resp. hi'), output g
1/(J +a2) ( 1/,
5,1

}9/(]/+x2) and

resp. gs'y ). The Assisting Oracles can also compute some limited number of CDH queries, to

compute 52, tg'.

Stmulating the attack oracles. We sketch how to simulate the toughest attack oracle to simulate, SO. The

simulation of other oracles is relatively easy. SO queries not involving users who are ever corrupted by CLUO
are simulated by the method of special HVZK (honest-verifier zero-knowledge) simulation, with a twist to
accommodate the relation xfl = c(J" + 22) 7! + 2. SO queries involving any of the gy corrupted users are
simulated by the typical method such as in [6] to simulate for the ¢y-SDH Assumption. Details below.

Denote U’s public key as (h{*, h3?), and coin = (A, e). Simulator computes the oracle query SO(U, coin),

where U was never queried to CUO, as follows:

1.

ot

Randomly generate the challenge c. In simulating special HVZK proofs, ¢ is generated first, and back-
patched last by the random oracle.

. Randomly generate s1, s2, s52, Sg,2, S, J, 1 < J < 2¢, J has not been simulated for this coin before.

Compute the other s;’s by Equation (8).

. Compute all commitments ¢;’s in Equation (7), using Assisting Oracle if necessary. Except tg = d5 will

be computed later.

. Randomly generate all responses z;’s.
. Compute all d;’s according to Equation (9). Except ds because the needed tg is not ready.
. Now set tg = d5. Compute dg according to Equation (9). Backpatch ¢ to Equation (10).

To simulate SO(U, coin) queries where U has been queried to CLUO, S computes as follows:

1. S received a qy-SDH Problem instance to solve: g'Yi € Gy, 0 <i < qu, compute (g"/0+9) ).

(@ .

2. Randomly generate ¢;, z;’, z5’, 1 <14 < gy. Randomly generate avp ; and backpatch the random oracle

Qrpt

to hl = H(/hl,i) = hO . Note Qrpr 0 = 1.

- Let f(7) = TT1<s<q, (7+e€:). Backpatch to hg = g/, For 1 <i < g, let A; = g/ e T A—an 1z —an p2) ™

RORNE!
note ASTVRT hy? = hg.
S outputs certificate/coin (A;, e;) and user secret key (z1,x2) upon query CUO(U;).
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5. § simulates the query SO(U;, coin) for corrupted user U; by knowing user secret keys.

Witness Extraction: Assume A wins Experiment FT. S sets up as above in order to solve a given ¢y-SDH
Porblem instance as follows: Rewind A to extract secrets A, €, 1, T2, hatsy, 2, and §3 satisfying

th = Agf17
t2 = 11hT h5 5%,
ty = &(hy 'ta, u)e(t1, y")gs T
= é&(g1, u)§3é(g1, u7)§1g§1+§2
and then we have

~E4y

AT R g = gf (30)

~ 5
where ' = 83 — §;1€. Backpatch the random oracle to g; = hoag'l. Let A=A, &1 = 10, T2 = &20, where
§ = (8'ay1)7 !, then we have

A _ hglfah,lilfah,2i2)/(v+é) (31

~—

— gf(V)(lfah,,lh7ah‘2i2)/(”/+é) (32

~

— gz f’i’Yigf—l/(é"F'Y) (33

~

O

Then compute ¢g*/(¢+?) which, together with €, solved the gy-SDH Problem instance.

A.2 Proof sketch of strong non-frameability

We prove for Trace only. The other case, CoinTrace is similar and omitted. Assume Adversary A has a non-
negligible advantage in Experiment SNF. Among other things, A can compute t4 = g}s/ (S H22) fom given

h3?, after corrupting gy other users and corrupting Bank.

Given a qu-DHI Problem instance: gVi, 0 <i<qu, S computes as in the above proof of full traceability

as follows: Randomly generate e;, a:gi), a:gi), 1 < < gy and use these to answer the gy queries to the Corrupt

User Oracle CUUO. Eventually A delivers t; = gls/ '+22) fom an uncorrupted user public key h32. which
solves the gqy-DHI Problem. a

A.3 Proof sketch of irrevocable anonymity

Intuitions on Irrevocable Anonymity: A wins Experiment TA if it distinguishes via any of the ¢-type commit-
ments. Distinguishing via t1, to, t3 is stopped by the DLDH(G1,G3) Assumption. The proof is very similar
to [6] which pioneered the DLDH(G1, G1) Assumption, called LDA (Linear Decisional Assumption) in their
paper. Our first three ¢-type commitments are essentially the same as their ¢-type commitments, except two
things:

1. We omitted to prove the relation s3 = es;. Therefore we omitted some t-type commitments from [6].
The consequence should be enhanced anonymity and pressured soundness than [6]. Indeed we had to use
more proof techniques in our full traceability (concurrent soundness) in the previous subsections.

2. We modified [6] so the reduction is to DLDH(G1,G3) instead of to DLDH(G1,G1). The former assumption
is generally believed to be at least at good as the latter assumption.

Distinguishing via S is stopped by the qy-DDHI(G1,G3) Assumption. The proof is essentially identical
to that in [12], which used exactly the same design of serial S. In [12], the user public key h3?, and the serial
S = gi«/ ('+22) are in the same group QRy where N is the product of two safe primes. The anonymity of
their serial reduces to the qu-DDHI(QRN,QRy) Assumption. In our case, the user public key h3? is in Gy
and the serial S is in G3. Our anonymity, in this part, reduces to the qy-DDHI(G;, G3) Assumption.

To distinguish via the special relation x7' = ¢(J' 4+ 1)~ + z: With the secretes s;’s in the remaining

t-type commitments t5 through ¢1¢ generated anew each spending, the only real threat to anonymity is to

®
use the special relation and distinguish user public keys (hglCl ,h? ), b = 1,2. But this is stopped by the
DHTDH Assumption. a





