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Abstract. We deal with the radix-r representation used for the scalar multipli-
cation of pairing-based cryptosystems with characteristic r. Our goal of this paper
is to present some invariant properties about the signed radix-r representation;
(1) approximation formulae for the average significant length and the average
hamming weight of gNAF and wrNAF representation, (2) some classification for-
mulae of equivalent classes called as Cutting Lemma, Collision Lemma, and Search
Space Theorem. We also analyze the security of signed radix-r representations in
the sense of side channel attacks, and to this end we propose a secure counter-
measure.
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1 Introduction

The bilinear pairings such as Weil pairing or Tate pairing have recently been used for
applications in cryptography, for example Joux’s three-party key agreement [Jou00], ID-
based encryption [BF01], short signature [BLS01], and so on. In general, main operations
in these systems using secret information are as follows;

(1) a bilinear pairing computation e(Q,R),
(2) a scalar multiplication dP ,

where P,Q,R are points on the underlying elliptic curve and d is an integer scalar. Either
the point Q of e(Q,R) or the scalar d of dP is used for the secret key.

These two operations are computationally expensive, specially the pairing computa-
tion is time and memory consuming. Thus Barreto et al. and Galbraith et al. showed
efficient pairing and scalar multiplication algorithms over supersingular elliptic curves
[BKL+02,GHS02] with characteristic three. Several efficient scalar multiplications of ellip-
tic curves with characteristic three have been investigated [BGK+03,HPS02,PS02,SW02].
In addition, Duursma and Lee proposed a closed formula for the Tate pairing on the hy-
perelliptic curve in characteristic r [DL03]. The variants of Duursma-Lee algorithm is
currently one of the fastest schemes [BGhE+04]. In this case, the radix-r representation
is utilized for the efficient implementation of the pairing-based cryptosystems. Recently,
Takagi et al. proposed non-adjacent form of width-w radix-r representation (wrNAF)
and efficient algorithms for generating wrNAF to achieve faster scalar multiplication of
the pairing-based cryptosystems [TYW04].

Since pairing-based cryptosystems are considered as an ideal partner for identity
aware devices which have scarce computational resources (like Smart cards or RFID) we
have to make an effort to optimize the memory and efficiency. These memory and power
constraint devices will be carried into and used in hostile environments and often house
sensitive information, for example identity related tokens or financial information, the
threat of attack is significant. This threat is magnified by both the potential pay-off and
level of anonymity that side channel attacks (SCA) allow. Recently, side channel attacks
on pairing e(Q,R) was discussed by Page and Vercauteren [PV04]. They analyzed the
security of Boneh-Franklin encryption scheme [BF01] and gave some countermeasures.



One of their countermeasures is to use the concept of point blinding to randomize the
points, e.g. e(aQ, bR) for randomly chosen integer a, b with ab = 1 mod q, where q is
the order of underlying elliptic curve. However, its security depends on that of scalar
multiplication aQ or bR. Thus it is important to investigate how to securely and efficiently
implement the scalar multiplication dP for pairing-based cryptosystems.

1.1 Our Achievements

We assume that the standard radix-r scalar multiplication is utilized for computing dQ,
which satisfies following conditions;

- if the associated digit is zero then only elliptic curve r-th powering is calculated,
- else both elliptic curve r-th powering and elliptic addition are both calculated.

This algorithm is called Standard Radix-r Method in this paper. We investigate the effi-
ciency and security of some encoding algorithms of a input integer d.

Precise Estimation of Efficiency: We propose approximation formulae for the av-
erage significant length and the average Hamming weight of the radix-r generalized
non-adjacent form (gNAF) [CL73] and wrNAF representation [TYW04]. Note that Co-
hen investigated some approximation formulae of the width-w NAF, namely in the case
w2NAF [Coh05]. He assumed that the integer d used as a scalar in scalar multiplication
ranges uniformly among the integers having exactly n bits, in other words 2n−1 ≤ d < 2n.
In this paper, we assume that the radix-r gNAF or wrNAF is generated from the ran-
domly chosen n digits radix-r representation of d, i.e., 0 ≤ d < rn, this is more natural
assumption in the application of cryptography.

– In the case of radix-r gNAF representation, the average significant length and the

average number of non-zero digits are n− 1
(r−1)(r+1) and n r−1

r+1 + r2+5r−4
r(r+1)2 for non-small

n, respectively.

– In the case of wrNAF representation, those are n − w(w−2)(r−1)2+(w−1)(r−1)+1
2(w(r−1)+1)(r−1) and

n r−1
w(r−1)+1 + w2(r−1)2+w(3(r−1))−(r−1)+1

2(w(r−1)+1)2 for non-small n, respectively.

In order to confirm these estimation formulae we show simulation results for the practi-
cally used security level, e.g., 160 bits. Our simulation results match with the theoretical
estimation for randomly chosen one million scalars. These experiment results are con-
tained in Section 4.

Some Invariant Properties: Given an n-digit integer d with radix-r representation
if the digit set is allowed to have a redundancy, the integer d can be expanded in dif-
ferent signed radix-r representations. In this paper, we assume the used digit set is

{0,±1, . . . ,±(r − 1)}. Suppose that ε(1) =
∑n

j=0 ε
(1)
j rj and ε(2) =

∑n

j=0 ε
(2)
j rj are two

different signed radix-r representations of d. We prove the following invariant properties.

– (Cutting Lemma) We propose cutting conditions among signed radix-r representa-

tions; if ε
(1)
t = ε

(2)
t = 0 or ε

(1)
t and ε

(2)
t are all non-zero for 0 < t < n, then

t−1∑

j=0

ε
(1)
j rj =

t−1∑

j=0

ε
(2)
j rj and

n∑

j=t

ε
(1)
j rj =

n∑

j=t

ε
(2)
j rj .

– (Collision Lemma) We can find collision pairs between the representations of unsigned
radix-r and that of signed radix-r when we cut these two representations in (t + 1)-

digit position, e.g.
∑t

j=0 ε
(i)
j rj is exactly same to one of

{∑t

j=0 djr
j ,
∑t

j=0 djr
j −

rt+1
}
.
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– (Search Space Theorem) Assume that we have m signed radix-r representations {ε(i)}
of an original integer d and know only the position of zero digit in ε(i). Our interest is
to find the search space order to detect the exact value d. We propose a novel formula
computing the exact search space order only with the information of the position of
zero digit in ε(i). If we utilize Cutting Lemma then the required memory to find the

search space is on average (n+1
x

) ·
{
{2(r − 1)}

r−1
r

n+1
x · x · m

}
length digits if the

original {ε(i)} is cut into x parts. However, if Cutting Lemma is not used, i.e. we use

the exhaustive search method (ESM), then (n + 1) ·
{
{2(r− 1)}

r−1
r

(n+1) ·m
}

length
digits memory is required. Roughly saying, the memory complexity of the proposed
one is x-th root of that of ESM.

These results are contained in Section 5.

Security against Side Channel Attacks: By using the above proposed properties we
can conclude that Standard Radix-r Method with random recoding technique is analyzed
by simple power analysis (SPA). Moreover, even though SPA countermeasure is added
to the target algorithm it is proved that that is not secure either. Note that these conse-
quences are very natural extension of [HOK+04,FMPV04,SPL04]. Last, we propose an
optimal countermeasure against SCA.

This paper is organized as follows: In Section 2 we shortly review pairing-based cryp-
tosystems. In Section 3 we review some properties related to the radix-r representation
and define some notations. In Section 4 we precisely analyze the efficiency of radix-r
gNAF and wrNAF. In Section 5 we investigate some invariant properties related to the
signed radix-r representation and security analysis of Standard Radix-r Method against
side channel attacks. In Section 6 we present an optimal countermeasure against SCA.

2 Pairing-Based Cryptosystems

Positive cryptographic applications based on pairings arose from the work of Joux [Jou00],
who gave a simple one round tripartite Diffie-Hellman protocol on supersingular curves.
Curve based pairings, such as the Weil pairing and Tate pairing, provide a good setting
for the so called bilinear Diffie-Hellman problem. Many cryptographic schemes based on
the pairings have been developed recently, such as Joux’s three-party key agreement,
ID-based encryption [BF01], short signature [BLS01], and so on.

Let G1, G2 be two groups of the same prime order q. We view G1 as an additive group
and G2 as a multiplicative group. Let P be an arbitrary generator of G1 and a mapping
e : G1 ×G1 → G2 be a cryptographic bilinear map.

In general, main operations in pairing-based cryptosystems using secret information
are as follows;
(1) e(Q,R) for Q,R ∈ G1: a bilinear pairing computation,
(2) dP for d ∈ Z∗

q : a scalar multiplication in an additive group.
Since pairings and scalar multiplication underpin cryptographic protocols such as

Identity Based Encryption [BF01] and Short Signature [BLS01], one might see them as
an ideal application for the same identity aware, ubiquitous computing devices that are
vulnerable to side channel attacks. For example,

- e(SID, U) where SID is the private key used in decryption step and U is a public
data in ID-Based Encryption scheme [BF01],

- dP where d is a secret key for a signer in Boneh-Lynn-Shacham short signature
scheme [BLS01].

Recently, side channel attacks on pairings was first proposed by Page-Vercauteren
[PV04]. They analyzed the security of pairing e(P,Q) in Boneh-Franklin encryption
scheme [BF01] and gave some countermeasures. One of their countermeasures is to use
the concept of point blinding to randomize the points fed into the pairings. By using

3



the relationship e(aP, bQ) = e(P,Q)ab they randomized the points P and Q by selecting
random values for a and b such that ab = 1 mod q. But the security of this counter-
measure depends on that of scalar multiplication because if a or b is revealed during
the computation of aP and bQ then the computation of e(aP, bQ) is also no more secure
against the Messerges style differential power analysis proposed in [PV04]. Thus, in order
to achieve secure implementation of pairing-based cryptosystems, we have to investigate
how to securely implement the scalar multiplication.

Therefore, in this paper we are mainly concerned with efficiency and security of the
scalar multiplication of pairing-based cryptosystems over characteristic r. The following
algorithm is a standard method to compute elliptic scalar multiplication.

Standard Radix-r Method

Input: A point P and d =
∑n−1

j=0 djr
j , dj in digit set D

Output: Q = dP

1. precompute |a|P for all positive a ∈ D.

2. Q← O (point of infinity),

3. for j = n− 1 downto 0

3.1. Q← rQ
3.2. if dj > 0 Q← Q + djP
3.3. if dj < 0 Q← Q− |dj |P

4. Return Q

In general elliptic curves defined over fields with characteristic r have an efficient
formula for computing rP [SW02]. Therefore, the scalar multiplication with the stan-
dard radix-r algorithm above is usually more efficient than that using a double-and-add
method from binary representation [HPS02,PS02].

3 Efficient Signed Radix-r Representation

In this section we shortly review some efficient signed radix-r representation.

First we want to define a precise meaning of radix-r representation of n digits. If a
positive integer d is called as the radix-r representation of n digits (or n-digit radix-r
representation), then it satisfies following two conditions;
(1) d distributes uniformly in {0, 1, 2, ..., rn − 1}, in other words 0 ≤ d < rn,

(2) d =
∑n−1

j=0 djr
j := (dn−1, . . . , d0)r, for dj ∈ {0, 1, ..., r − 1}.

This representation is unique and the density of non-zero digits of the radix-r repre-
sentation is 1

r
. In this paper we are interested in cryptographic applications of the radix-r

representation, so that we assume that n is not small and n� r.

If the digit set of the radix-r representation is allowed to have a redundancy, the
integer d can be expanded in different signed radix-r representations. Assume we use the
digit set Γr = {0,±1,±2, ...,±(r − 1)}. When we consider the radix-r representation of
an integer d as one of its signed radix-r representations, different signed radix-r represen-
tations of d can be obtained by using following local replacing rules of two consecutive
digits;

(0, 1)r ⇔ (1, r − 1)sr (0, 1)sr ⇔ (1, r−1)sr

(0, 2)r ⇔ (1, r − 2sr 0, 2)sr ⇔ (1, r−2)sr

...
...

(0,r−1)r ⇔ (1, 1)sr (0, r − 1)sr ⇔ (1, 1)sr
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For example, consider d = (0, 0, 0, 1, 0, 2, 0, 2, 0, 2)3 which is one of radix-3 representa-
tions of 10 digits. The different signed radix-3 representations of d are: (1, 0, 2, 0, 2, 1, 1)s3,
(1, 0, 2, 1, 1, 1, 1)s3, (1, 0, 2, 1, 0, 2, 1)s3, (1, 2, 2, 2, 0, 2, 1, 0, 2, 1)s3, and so forth. By using
the above replacing rules we can make any signed radix-3 representations which has a
wanted length of digits, e.g., if we want l (> 7) digits representation for (1, 0, 2, 0, 2, 0, 2)3

then the most simple way is (1, 2, 2, · · · , 2, 2,
︸ ︷︷ ︸

l−7 times

0, 2, 0, 2, 0, 2)s3.

If the used digit set is changed, then the replacing rules and generated signed radix-r
representations are changed.

3.1 rSD Representation and Radix-r gNAF Form

We define radix-r signed digit (rSD) representation in the following.

Definition 1. For a given n-digit radix-r representation d = (dn−1, . . . , d1, d0)r, a
signed radix-r representation ε of d is called (n+1)-digit radix-r signed digit (rSD) rep-
resentation if it satisfied the following conditions.
(1) ε is represented within length n + 1, i.e., ε = (εn, . . . , ε1, ε0)rSD,
(2) εj ∈ Γr = {0,±1,±2, ...,±(r − 1)}.

There exist infinitely many rSD representations of d if the length of extension is not
fixed. In the definition of rSD we consider only the rSD representation of n + 1 bits for
a given n-digit integer d.

In general rSD representation is not unique, however, the generalized non-adjacent
form (gNAF) is known as a class whose hamming weight is minimal in all rSD represen-
tations and can uniquely represent each integer [CL73]. Clearly, radix-r gNAF is one of
rSD representations, which satisfies the following two conditions:

|γi + γi+1| < r for all i, |γi| < |γi+1| if γiγi+1 < 0.

The radix-r gNAF is generated by the following algorithm [TYW04].

Integer to radix-r gNAF

Input: integer d and radix r.

Output: the radix r gNAF of d: = (..., γ1, γ0)gNAF .

1. i← 0

2. while d > 0 do the following

2.1. v ← d mod r2; let v0 ← v mod r, v1 ← (v − v0)/r,
2.1.1. if v mod r = 0 then γi ← 0, d← d/r, i← i + 1,
2.1.2. else if v < r then γi+1 ← 0, γi ← v, d← (d− γi)/r2, i← i + 2,
2.1.3. else if r < v < r2 − r

2.1.3.1. if (v0 + v1) ≥ r then γi ← v0 − r, d← (d− γi)/r, i← i + 1,
2.1.3.2. else γi ← v0, d← (d− γi)/r, i← i + 1,

2.1.4. else if r2 − r < v then γi+1 ← 0, γi ← v0 − r, d← (d− γi)/r2, i← i + 2,

3. Return (..., γ1, γ0)gNAF .

The average density of the non-zero digit of the radix-r gNAF is equal to r−1
r+1 for

non-small n and n� r.
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3.2 wrNAF Form

Another efficient class of the signed radix-r representation is the radix-r width-w non-
adjacent form (wrNAF) [TYW04]. wrNAF is defined by
(1) there is at most 1 non-zero digit among any w adjacent digits

(2) δj ∈ Dw,r = {0,±1,±2, ...,±b rw
−1
2 c} \ {±1r,±2r, ...,±b rw−1

−1
2 cr}.

(3) the most non-zero digit is positive.
Every integer can be uniquely represented using wrNAF. The hamming weight of wrNAF
representation is minimal among all signed representations using digit set Dw,r. An
algorithm for generating wrNAF is as follows:

Integer to wrNAF

Input: integer d, radix r, and width w.
Output: the wrNAF of d: = (..., δ1, δ0)wrNAF .

1. i← 0

2. While d > 0 do the following

2.1. v ← d mod rw,
2.1.1. if v mod r = 0 then δi ← 0,
2.1.2. else if v < rw/2 then δi ← v, d← d− δi,
2.1.3. else δi ← v − rw, d← d− δi,

2.2. d← d/r, i← i + 1,

3. Return (..., δ1, δ0)wrNAF .

The average density of the non-zero digit of wrNAF is r−1
w(r−1)+1 for non-small n and

n� r, w.

4 Precise Efficiency of Radix-r gNAF and wrNAF

In this section we analyze precisely the behavior of Standard Radix-r Method with a scalar
using radix-r gNAF or wrNAF.

As we remarked previous section, every integer can be uniquely represented using
gNAF or wrNAF. The hamming weight of gNAF or wrNAF representation is minimal
among all signed representations using digit set Γr or Dw,r. We want to estimate the av-
erage significant length and the average number of non-zero digits for gNAF and wrNAF.
The following notations are used in this section. We assume that the radix-r gNAF or
wrNAF is generated from the randomly chosen radix-r representation of n digits, i.e. the
range of original input integer d is 0 ≤ d < rn.

– Let Lg(r, n) and Wg(r, n) be the average significant length and the average number
of non-zero digits for gNAF converted from the radix-r representation of n digits,
respectively.

– Let Lr(r, n, w) andWr(r, n, w) be the average significant length and the average num-
ber of non-zero digits for width-w rNAF converted from the radix-r representation
of n digits, respectively.

If we compute the scalar multiplication using Standard Radix-r Method of gNAF (or
wrNAF), then the number of underlying elliptic curve addition and r-th powering is equal
toWg(r, n)−1 (orWr(r, n, w)−1) and Lg(r, n)−1 (or Lr(r, n, w)−1), respectively. Cohen
investigated some approximation formulae of the width-w NAF, namely Lr(2, n, w) and
Wr(2, n, w) with restricted condition 2n−1 ≤ d < 2n [Coh05].

We present other approximation formulae for general r, i.e to the arbitrary radix r.
We can prove the following propositions. Their proofs can be found in the appendix.
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Proposition 1. The average significant length and the average number of non-zero digits
for gNAF converted from the radix-r representation of n digits are

Lg(r, n) = n−
1

(r − 1)(r + 1)
,

Wg(r, n) = n
r − 1

r + 1
+

r2 + 5r − 4

r(r + 1)2
,

for non-small n and n� r.

Proposition 2. The average significant length and the average number of non-zero digits
for width-w rNAF converted from the radix-r representation of n digits are

Lr(r, n, w) = n−
w(w − 2)(r − 1)2 + (w − 1)(r − 1) + 1

2(w(r − 1) + 1)(r − 1)
,

Wr(r, n, w) = n
r − 1

w(r − 1) + 1
+

w2(r − 1)2 + w(3(r − 1))− (r − 1) + 1

2(w(r − 1) + 1)2
,

for non-small n and n� r, w.

In order to confirm the estimation in the propositions above we show simulation re-
sults for the practically used security level, namely 160 bits. We randomly generate one
million radix-r integers with digit length 160, 101, 60, 57, 46 for r = 2, 3, 5, 7, 11, respec-
tively. In our experiment each digit of the radix-r representation is uniformly distributed,
namely with probability 1/r. Table 1 and Table 2 demonstrate that the theoretical esti-
mations match the simulation results for the practical security size.

r = 2, n = 160 r = 3, n = 101 r = 5, n = 69 r = 7, n = 57 r = 11, n = 46

Lg(r, n) 159.67 100.88 68.96 56.98 45.99
Simulation 159.67 100.88 68.96 56.98 45.99
Wg(r, n) 53.89 50.92 46.26 42.93 38.44

Simulation 53.77 50.88 46.27 42.97 38.48

Table 1. Experiment for gNAF

r = 2, n = 160 r = 3, n = 101 r = 5, n = 69 r = 7, n = 57 r = 11, n = 46

Lr(r, n, 2) 159.67 100.85 68.93 56.96 45.97
Simulation 159.67 100.85 68.93 56.96 45.97
Wr(r, n, 2) 53.89 40.94 31.19 26.83 22.42
Simulation 53.77 40.86 31.14 26.79 22.39

Lr(r, n, 3) 159.25 100.39 68.45 56.47 45.48
Simulation 159.25 100.39 68.45 56.46 45.53
Wr(r, n, 3) 40.56 29.40 21.75 18.52 15.35
Simulation 40.44 29.32 21.71 18.48 15.34

Lr(r, n, 4) 158.80 99.92 67.96 55.98 44.99
Simulation 158.80 99.92 67.95 55.93 45.26
Wr(r, n, 4) 32.56 22.98 16.76 14.19 11.73
Simulation 32.44 22.91 16.71 14.15 11.78

Lr(r, n, 5) 158.33 99.43 67.47 55.48 44.49
Simulation 158.33 99.43 67.57 55.72 44.81
Wr(r, n, 5) 27.22 18.90 13.66 11.54 9.53
Simulation 27.11 18.83 13.64 11.57 9.58

Lr(r, n, 6) 157.86 98.94 66.98 54.98 43.99
Simulation 157.86 98.93 67.24 55.64 43.75
Wr(r, n, 6) 23.41 16.07 11.56 9.75 8.05
Simulation 23.31 16.01 11.57 9.84 7.99

Table 2. Experiment for wrNAF
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5 Security Analysis of General rSD Representation

In this section we show and prove some classification formulae of equivalent classes called
as Cutting Lemma, Collision Lemma, and Search Space Theorem, and investigate the se-
curity of Standard Radix-r Method using rSD representation against side channel attacks.

5.1 Summary of Notations

In this section we define some notations used for this paper. Assume that d is an original
input integer, which ranges uniformly among the integers having n digits, in other words
0 ≤ d < rn. We denote it as (dn−1, . . . , d0)r.

– ε = (εn, . . . , ε0)rSD : a recoded (n+1)-digit rSD representation of d.

– ε(i) := (ε
(i)
n , . . . , ε

(i)
0 )rSD : the i-th1 (n+1)-digit rSD representation of d. Say ε(1) = ε.

Clearly d = ε(1) = ε(2) = · · · = ε(i) = · · · .

– ε(i)(s, t) := (ε
(i)
t , ε

(i)
t−1, . . . , ε

(i)
s+1, ε

(i)
s )rSD where 0 ≤ s ≤ t ≤ n. s = t implies ε(i)(s, t)

is the s-th digit ε
(i)
s of ε(i). Thus we can see that ε(i) = ε(i)(t, n) · rt + ε(i)(0, t− 1).

– N : set {0, 1, ..., n}.

– Zε(i) = {j ∈ N |ε
(i)
j = 0} : set of indices whose digit is zero in ε(i).

– Zc
ε(i) = N −Zε(i) = {j ∈ N |ε

(i)
j 6= 0} : set of indices whose digit is non-zero in ε(i).

– [ε(i)]? : ? representation of ε(i) such that the information of digit whose index is
contained in Zc

ε(i) is hidden by a symbol ?.

– [ε(i)]List
? : a set of all possible rSD representations from [ε(i)]?. Thus #[ε(i)]List

? =

{2(r − 1)}#Z
c

ε(i) . Here, for a set A, #A denotes the number of the elements in A.

Example Consider original radix-3 representation d = (1, 0, 2, 0, 2, 0, 2)3 with 7 digits.
ε = (0, 1, 0, 2, 1, 0, 2, 1) is one of the 3SD representations of d. Then Zε = {2, 5, 7} and
Zc

ε = {0, 1, 3, 4, 6}. Then [ε]?=(0,?,0,?,?,0,?,?). As the symbol ? ∈ {±1,±2}, [ε]List
? =

{±505,±506, . . . ,±1682} and #[ε]List
? = 4#Z

c
ε = 45 = 1024.

5.2 Previous Results of BSD representation

In this section we introduce the previous results of side channel attacks (SCA) on some
countermeasures using Binary Signed Digit (BSD) representation in elliptic curve cryp-
tosystems (ECC). In ECC, a dominant computation is a scalar multiplication and an
attacker’s goal is to detect the secret scalar during scalar multiplication. Thus construct-
ing an efficient computation method of scalar multiplication secure against SCA on ECC
and analyzing its security are important research topics.

For this purpose, many countermeasures against SCA have been proposed. In partic-
ular, the countermeasure that utilizes several BSD representations of the secret scalar is
a popular one. Its digit set is {0,±1}. This type of countermeasure encodes the secret
integer into BSD representation, then computes the scalar multiplied point using the
representation. In addition, a different representation is used for each scalar multiplica-
tion. This thwarts the attacker’s guess. This type of countermeasures includes Ha-Moon’s
countermeasure [HM02], Ebeid-Hasan’s countermeasure [EH03], and the countermeasure
of Agagliate et al [AGO03]. Note that the BSD representation is a special case of rSD
representation when r = 2.

Whereas many countermeasures using BSD representations were proposed, unfortu-
nately most of them have been broken under following assumptions.
1 The order of rSD representation has no special meaning. We just give indexes to rSD repre-

sentations of d for simplicity of the description of the following proposed properties.
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1. Scalar multiplication dP is computed by using Standard Radix-r Method where r = 2
and digit set D = {0,±1}. First the original input scalar d is recoded into BSD
representation ε(i) and then ε(i)P is computed. Of course, it is also possible that
the recoding and scalar multiplication are both operated simultaneously. Actually
dP = ε(i)P .

2. Elliptic addition and doubling are distinguishable by a single measurement of power
consumption, whereas elliptic addition and subtraction are indistinguishable.

3. We can repeat to obtain the measurement of power consumption at the same device,
all using same secret key d.

4. We know the plaintext-ciphertext pair (P, dP ).

We call some countermeasures satisfying the first assumption above as BSD type
countermeasure. Han et al. [HOK+04] proposed sophisticated simple power analysis
(SPA) against BSD type countermeasure. Since their sophisticated attacks are based on
SPA, BSD type countermeasure should be combined with some SPA countermeasures
such as Coron’s dummy method [Cor99]. However, Fouque et al. [FMPV04] and Sim
et al. [SPL04] proposed a collision-based attack and a usual differential power analysis
(DPA), respectively, against BSD type countermeasure with dummy operation as a SPA
countermeasure. Therefore, the security of BSD type countermeasure is very controver-
sial.

Han et al.’s analysis utilized a relation among BSD representations. Even though
Fouque et al. and Sim et al.’s analysis techniques are totally different, their main idea
used in their analysis was exactly same. That is a relation between BSD representations
and an original input integer.

Thus it is very natural motivation to extend those properties generated from BSD
representation, i.e. 2SD representation, to rSD representation, for arbitrary prime r.
Because if we can prove those properties used in the analysis of BSD type countermeasure
is extended to rSD representation, then we can show that the security of rSD type
countermeasure is also controversial.

5.3 Some Invariant Properties of rSD representation

We first propose some relations among rSD representations. Assume that d =
(dn−1, . . . , d0)r is an original input integer, which ranges uniformly among the integers
having n digits, and ε(1) and ε(2) are rSD representations of d. Clearly d = ε(1) = ε(2).

Lemma 1 (Cutting Lemma). For t ∈ (Zε(1) ∩Zε(2))\{0, n} or t ∈ (Zc
ε(1) ∩Z

c
ε(2))\{0},

we have

ε(1)(0, t− 1) = ε(2)(0, t− 1) and ε(1)(t, n) = ε(2)(t, n).

By using this lemma we can cut rSD representations into two parts such that each
left and right part are all same integers if the digits of cutting position are all zero or all
non-zero. We call this as Cutting Lemma according to the digits of cutting position. It is
an extended generalization of Proposition 1 in [HOK+04] which is just Non-Zero Cutting
Lemma when the radix r = 2.

We can make a lot of rSD representations from a given integer d represented by
radix-r. However, there is an invariant relation between a rSD and the original radix-r
representation. Note that ε(i) is the i-th rSD representation of d. Then we can prove the
following lemma for any index 0 ≤ t ≤ n− 1:

Lemma 2 (Collision Lemma). For any i, ε(i)(t, n) is either d(t, n−1) or d(t, n−1)+1.
This implies ε(i)(0, t) is either d(0, t) or d(0, t)− rt+1.
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This lemma shows that the collection of {ε(i)(t, n) | 1 ≤ i ≤ m} for any integer m is sepa-
rated into two parts which have the same value d(t, n−1) and d(t, n−1)+1. In other words,
for any i, the value of ε(i)(t, n) is exactly same to one of

{
d(t, n−1), d(t, n−1)+1

}
. We call

it as Collision Lemma. The case when radix r = 2 was discussed in [FMPV04,SPL04].

Motivation: Let d = (1, 0, 2, 0, 2, 0, 2)3 be an original radix-3 representation with 7
digits. Consider following three 3SD representations; ε(1) = (0, 1, 1, 1, 0, 2, 0, 2)3SD, ε(2) =
(1, 2, 0, 2, 1, 0, 2, 1)3SD, and ε(3) = (1, 2, 1, 0, 2, 0, 2, 1)3SD. Then

[ε(1)]? = (0, ?, ?, ?, 0, ?, 0, ?) and Zc
ε(1) = {0, 2, 4, 5, 6},

[ε(2)]? = (?, ?, 0, ?, ?, 0, ?, ?) and Zc
ε(2) = {0, 1, 3, 4, 6, 7},

[ε(3)]? = (?, ?, ?, 0, ?, 0, ?, ?) and Zc
ε(3) = {0, 1, 3, 5, 6, 7}.

Assume that we only have the information of [ε(1)]?, [ε(2)]?, and [ε(3)]?. What we want
to do is to find the integer d with those information [ε(i)]?. The simplest way is as follows;
first calculate ∩3

i=1[ε
(i)]List

? = {±547,±548,±910,±911, ±1276,±1277,±1639,±1640} and
then check all elements in ∩3

i=1[ε
(i)]List

? . The search space order is 16.
We want to find a relation between #

(
∩3

i=1 [ε(i)]List
?

)
and the information of Zε(i) or

Zc
ε(i) for 1 ≤ i ≤ 3. Interestingly

#(∩3
i=1[ε

(i)]List
? ) = {2(r − 1)}#[∩3

i=1Z
c

ε(i) ] = 42 = 16

because ∩3
i=1Z

c
ε(i) = {0, 6} and r = 3.

We can prove that the search space order can be calculated with the information of
radix-r and Zc

ε(i) .

Theorem 1 (Search Space Theorem). For given m rSD representations of d, if x =
#(∩m

i=1Z
c
ε(i)), then the search space order l is as follows:

l = #(∩m
i=1[ε

(i)]List
? ) = {2(r − 1)}x.

This theorem show that we can find the search space order without actual construct-
ing [ε(i)]List

? , all possible rSD representations of [ε(i)]?. We can drastically reduce the
required memory of the search space if Cutting Lemma is utilized. Its detail description
is contained in the next section. It is a generalization of Theorem 1 in [HOK+04] which
is the case that radix r = 2.

5.4 Side Channel Attacks on rSD Type Countermeasure

In this section we briefly describe the main idea of generic analysis technique accord-
ing to the target algorithms. Assume that d = (dn−1, . . . , d0)r is an original input
integer, i.e. secret key, which ranges uniformly among the integers having n digits.

ε(i) = (ε
(i)
n , . . . , ε

(i)
0 )rSD is the i-th rSD representation of d

Sophisticated SPA on Standard Radix-r Method with rSD representation: To make
the proposed analysis success we need some assumptions like as the analysis of BSD
type countermeasure described in Section 5.2. We call some countermeasure as rSD type
countermeasure if the first assumption below is satisfied.

1. Scalar multiplication dP is computed by using Standard Radix-r Method where the
digit set D = Γr. First the original input scalar d is recoded into rSD representation
ε(i) and then ε(i)P is computed.

10



2. Elliptic addition and r-th powering are distinguishable by a single measurement of
power consumption, whereas elliptic addition and subtraction are indistinguishable.

3. We can repeat to obtain the measurement of power consumption at the same device,
all using same secret key d.

4. We know the plaintext-ciphertext pair (P, dP ).

Remark 1. Since the standard implementation of elliptic addition is different from r-th
powering [SW02] and elliptic subtraction of (Q,P ) is usually implemented as elliptic ad-
dition of (Q,−P ), the second assumption is realistic. The third assumption is applicable
to Boneh-Lynn-Shacham short signature scheme [BLS01] because the same secret key is
used in the generation of signature.

Under Assumption 3, an attacker obtains recoded m rSD representations, say
{ε(i) | 1 ≤ i ≤ m}, generated from the original input integer d. Under Assumption 1
and 2, he/she can know the position of zero digit of ε(i), in other words he/she can

determine ε
(i)
j is zero or not, where 0 ≤ j ≤ n.

Attack Algorithm based on Cutting Lemma

1. Find [ε(i)]? and Zc
ε(i) for 1 ≤ i ≤ m: under above assumptions an attacker can deter-

mine ? representation and the set of indices whose digit is non-zero in ε(i).
2. Novel method for computing ∩m

i=1[ε
(i)]List

? : this step is to find all possible keys using
Cutting Lemma.
2.1. Compute ∩m

i=1Z
c

ε(i) . Assume ∩m
i=1Z

c

ε(i) = {t1, . . . , tx} where 0 ≤ t1 ≤ . . . ≤ tx ≤ n.

2.2. By using Cutting Lemma, he/she splits [ε(i)]? into x parts, those are as follows;
- [ε(i)(tj , tj+1−1)]? if 1 ≤ j ≤ x− 1,
- [ε(i)(tj , n)]? if j = x.

2.3. For j = 1 to x make
- ∩m

i=1[ε
(i)(tj , tj+1−1)]List

? for 1 ≤ j ≤ x− 1,
- ∩m

i=1[ε
(i)(tj , n)]List

? for j = x.
2.4. Re-construct ∩m

i=1[ε
(i)]List

? with the results of split parts of Step 2.3.

3. Key testing: Using the known pair of plaintext and ciphertext, the attacker checks
all possible keys obtained from Step 2.4.

The proposed attack method can be simplified by directly calculating ∩m
i=1[ε

(i)]List
?

without using Cutting Lemma, i.e. the exhaustive search method (ESM). In this case to

compute ∩m
i=1[ε

(i)]List
? on average we require a memory for (n + 1) ·

{
{2(r− 1)}

r−1
r

(n+1) ·

m
}

length digits under assumption the average density of the non-zero digit of rSD
representation of n+1 digits is equal to (r − 1)/r. But if we use Cutting Lemma the

required memory is reduced to on average (n+1
x

) ·
{
{2(r − 1)}

r−1
r

n+1
x · x · m

}
under

assumption that

– #Zc
ε(i)(tj , tj+1 − 1) = r−1

r
· n+1

x
and tj+1 − tj = n+1

x
for 1 ≤ j ≤ x− 1,

– #Zc
ε(i)(tj , n) = r−1

r
· n+1

x
and n− tx + 1 = n+1

x
for j = x,

in other words we assume each separated part has same length and same hamming
weight. Roughly the memory complexity of Step 2. of the proposed algorithm is x-th
root of that of ESM. The exact time complexity of Step 3. can be derived from the
result of Theorem 1. Note that as the non-zero most significant digit is positive in the
application of cryptography the search space of the last block ∩m

i=1[ε
(i)(tx, n)]List

? can be
reduced to half.

Analysis of rSD type countermeasure with SPA countermeasure: We assume
that the Coron’s dummy method [Cor99] or indistinguishable type operation method
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[BJ02] is used as SPA countermeasure. Suppose an attacker already knows the highest
bits dn−1, . . . , dt+1 of the secret key d. His/her goal is to recover the next bit dt.

From Collision Lemma, the point which is actually calculated at the Step 3.1. after
j = t digit (dt) calculation for the r-th execution is as follows;

(
r2 · d(t + 1, n− 1)

)
· P or

(
r2 · d(t + 1, n− 1) + r

)
· P if dt = 0,

(
r2 · d(t + 1, n− 1) + r

)
· P or

(
r2 · d(t + 1, n− 1) + 2r

)
· P if dt = 1,

...
...

...
(
r2 · d(t + 1, n− 1) + l · r

)
· P or

(
r2 · d(t + 1, n− 1) + (l + 1) · r

)
· P if dt = l,

...
...

...
(
r2 · d(t + 1, n− 1) + (r − 1) · r

)
· P or

(
r2 · d(t + 1, n− 1) + r2

)
· P if dt = r−1,

Thus, the number of possible output after Step 3.1 is always two. It is a drawback of rSD
representation. This property of r = 2 was used as main idea in the attack algorithms
on BSD type countermeasure with dummy operation [FMPV04,SPL04]. Therefore we
can conclude that the security of rSD type countermeasure with SPA countermeasure is
controversial.

6 A Radix-r SPA Countermeasure with Fixed Pattern

In the previous section, we discussed the security of rSD type countermeasure which
uses rSD representation as a countermeasure against SCA. But, unfortunately it was not
secure against even SPA. Also the security of rSD type countermeasure with SPA coun-
termeasure was controversial. Thus in order to make SCA-resistant scalar multiplication
dP for pairing-based cryptosystems which is suitable to scarce computational resources
devices, we need efficient secure countermeasure against SCA.

In ECC with characteristic 2, it is believed that Okeya-Takagi countermeasure against
SPA is an optimal scheme in the trade-off between memory and efficiency [OT03]. The
main idea is to generate a fixed pattern of signed radix-2 digits for a given integer.
Thus the power consumption is independent from the secret bit information, and thus
SPA becomes infeasible. As the immunity against DPA is easily obtained by combining
with countermeasure of the data randomization technique such as randomized projective
coordinates method [Cor99] we mainly consider the countermeasure against SPA in this
section. Note that Okeya-Takagi countermeasure requires no dummy operation.

We explain how to extend Okeya-Takagi scheme to the radix-r representation in the
following. We scan from the least significant digits. If we find a zero digit, the following
conversion is performed: (0, ..., 0

︸ ︷︷ ︸

k

, x)r = (1, r − 1, ..., r − 1
︸ ︷︷ ︸

k−1

, r − x)rSD for positive integer

k and x = 1, 2, ..., r − 1. If we apply the width-w right-to-left sliding window method to
this chain, we obtain the radix-r analogue of Okeya-Takagi scheme, which has the fixed
pattern

| 0, ..., 0
︸ ︷︷ ︸

w−1

, y| 0, ..., 0
︸ ︷︷ ︸

w−1

, y|...| 0, ..., 0
︸ ︷︷ ︸

w−1

, y| (1)

for y ∈ {±1,±2, ...,±(rw − 1)} \ {±r,±2r, ...,±(rw − r)}. The size of non-trivial digits is
equal to (r − 1)rw−1, and this size is minimal among all signed radix-r representations
with fixed pattern (0, ..., 0

︸ ︷︷ ︸

w−1

, z) for some z.

The generation algorithm of this fixed pattern is as follows:

Integer to radix-r Fixed Pattern Representation

Input: integer d (d mod r 6= 0), radix r, width w

12



Output: the radix r fixed pattern representation of d: = (..., γ1, γ0).
1. i← 0
2. While d > 1 do the following

2.1. γi+w−1 ← 0, ..., γi+1 ← 0, and v ← d mod rw

2.1.1. if v < rw/2 then γi ← v,
2.1.2. else γi ← v − rw,

2.2. d← (d− γi)/r
w,

2.3. if d mod r = 0 then γi ← γi − rw, d← d + 1
2.4. i← i + w

3. Return (..., γ1, γ0).

Note that this algorithm works only for the integer d which is not divisible by r. If
d mod r = 0 holds, we need an additional treatment in order to achieve a fixed pattern,
e.g., randomization by addition a multiplier of the order of underlying elliptic curve.
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A Some Proofs of Section 4

Before starting the proof, we define some notations and describe some properties of the
radix-r gNAF recoding algorithm.

Notation: Let (v1, v0)j be the j-th input of Step 2.1. in the radix-r gNAF recoding
algorithm. Here, v0 = v mod r, v1 = (v − v0)/r, where v = d mod r2 in Step 2.1.

Assume that with input {(v1, v0)j−1, . . . , (v1, v0)0} all i digits (γi−1, . . . , γ0) are de-
termined. Thus the next recoded digit(s) γi or (γi+1, γi) is determined according to the
condition of (v1, v0)j . From the radix-r gNAF recoding algorithm we can derive the
following property.

Property 1. The result of Step 2.1.3.1. and 2.1.4. can cause a carry +1 or carry propaga-
tion to the next step input (v1, v0)j+1. However, only the result of Step 2.1.4. can cause
an (n + 1)-digit recoded number from an n-digit input integer.

In more detail, if 1 ≤ v2 ≤ r−2 and v2 +v1 ≥ r then Step 2.1.3.1. is operated and the
recoded digit γi = v0 − r with a carry +1 to the next digit v1. Because of the required
condition of Step 2.1.3.1. if Step 2.1.3.1. is the final step of the recoding algorithm then
(n+1)-digit length can not be occurred. In the case that (v1, v0)j = (r− 1, x) where x ∈
{1, . . . , r− 1} then Step 2.1.4. is operated. Its recoded outputs are (γi+1, γi) = (0, x− r)
and a carry +1 influences on the next input digit v0 of (v1, v0)j+1. In this case, if v0 is r−1
then the previous carry +1 causes a carry propagation, i.e., (v1, v0)j+1 = (v1 + 1, 0)j+1

with a carry +1 to v1.

Proposition 1. The average significant length and the average number of non-zero digits
for gNAF converted from the radix-r representation of n digits are

Lg(r, n) = n−
1

(r − 1)(r + 1)
,

Wg(r, n) = n
r − 1

r + 1
+

r2 + 5r − 4

r(r + 1)2
,

for non-small n.
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Proof. From the assumption, each digit of the original n-digit radix-r representation
distributes (i) for i = 0, 1, ..., r − 1 with probability 1/r.

Under the above assumption and notation, the next input digits (v1, v0)j of gNAF
are classified to the following five categories.

– (0)n : denotes v0 = 0 and there is no carry +1 to the next digit v1,
– (r−1)c : denotes v0 = r−1 and there is a carry +1 to the next digit v1,
– (0, x)n : denotes v1 = 0 and v0 = x, and there is no carry +1 to the next digit v0 of

the next step (v1, v0)j+1,
– (r−1, x)c : denotes v1 = r−1 and v0 = x, and there is a carry +1 to the next digit

v0 of the next step (v1, v0)j+1,
– (x) : denotes v0 = x, and there may or may not be a carry +1 to the next digit v1.

Here, x ∈ Γ+
r where Γ+

r stands for the positive integers in Γr. The state transitions for
the radix-r gNAF are as follows;

– (0)n : the recoded digit γi = 0. If v1 = 0 then go to state (0)n, (n) otherwise.
– (r−1)c : the recoded digit γi = 0. If v1 = r−1 then go to state (r−1)c, (n) otherwise.
– (0, x)n : the recoded digit (γi+1, γi) = (0, x). If v0 = 0 of the next step (v1, v0)j+1

then go to state (0)n, (n) otherwise.
– (r−1, x)c : the recoded digit (γi+1, γi) = (0, x − r). If v0 = r − 1 of the next step

(v1, v0)j+1 then go to state (r−1)c, (n) otherwise.
– (x) : There are three cases;

• If v1 = 0 then go to the next state (0, x)n.
• If v1 = r − 1 then go to the next state (r − 1, x)c.
• v1 ∈ Γr\{0, r − 1}. If v1 + v0 ≥ r then the recoded digit γi = x − r and go to

the next state (n), else (v1 + v0 < r) the recoded digit γi = x and go to the next
state (n).

Note that the type (r−1, x)c is generated after Step 2.1.4. and the type (r−1)c is
generated when (v1, v0)j−1 is calculated at Step 2.1.4. and the next digit v0 = r − 1 in
(v1, v0)j .

Here we simulate the next input digits (v1, v0)j of gNAF as Markov chain with these
five statuses. The transit matrix of the Markov chain is as follows:








(0)n : 1
r

0 0 0 r−1
r

(r − 1)c : 0 1
r

0 0 r−1
r

(0, x)n : 1
r

0 0 0 r−1
r

(r − 1, x)c : 0 1
r

0 0 r−1
r

(x) : 0 0 1
r

1
r

r−2
r








,

The stationary distribution of each status for non-small n is as follows:

((0)n, (r − 1)c, (0, x)n, (r − 1, x)c, (x))) =

(
1

r(r + 1)
,

1

r(r + 1)
,

r − 1

r(r + 1)
,

r − 1

r(r + 1)
,
r − 1

r + 1

)

.

Now we estimateWg(r, n) in the following. From the assumption, the average non-zero
density of lower bits from these statuses is p(r) = r−1

r+1 for large n. As the last statuses in

recoding algorithm is one of above five statuses we can estimate Wg(r, n) which depends
on the last utilized statuses. We then know thatWg(r, n) = (n−1)p(r) for statuses (0)n.
There is a carry +1 at statuses (r − 1)c and the number of non-zero digit increases one,
namely Wg(r, n) = 1 + (n − 1)p(r). Status (0, x)n contains one non-zero digit and the
lower (n− 2) digit has the density p(r), namely Wg(r, n) = 1 + (n− 2)p(r). Similarly we
know Wg(r, n) = 2+ (n− 2)p(r) and Wg(r, n) = 1+ (n− 1)p(r) for status (r− 1, x)c and
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(x), respectively. From this observation we obtain the following relationship for non-small
n.

Wg(r, n) =

(

(n− 1)
r − 1

r + 1

)
1

r(r + 1)
+

(

1 + (n− 1)
r − 1

r + 1

)
1

r(r + 1)

+

(

1 + (n− 2)
r − 1

r + 1

)
r − 1

r(r + 1)
+

(

2 + (n− 2)
r − 1

r + 1

)
r − 1

r(r + 1)

+

(

1 + (n− 1)
r − 1

r + 1

)
r − 1

r + 1

= n
r − 1

r + 1
+

r2 + 5r − 4

r(r + 1)2
.

Next we estimate Lg(r, n). We know that Lg(r, n) = n + 1 for status (r − 1)c and
(r−1, x)c, Lg(r, n) = n−1 for status (0, x)n, and Lg(r, n) = n for status (x), respectively.

In the case of (0)n, we should consider the case that the most k bits of gNAF become
consecutive zeros for k = 2, 3, ..., n−1. Define Pr[A y B] as the probability that B event
occurred before the event A whenever A event occurred. For example, Pr[(0)n y (x)] is
zero and Pr[(0, x)n y (x)] = 1. From the proposed transit matrix of the Markov chain, we
can see that Pr[(0)n y (0)n]+Pr[(0)n y (0, x)n] = 1 and Pr[(0)n y (0)n] = 1/r. Clearly
Pr[(0)n y (0, x)n] = (r − 1)/r. Thus depending on the number of consecutive zeros the
probability that the most k bits of gNAF becomes consecutive zeros is as follows;

– k = 2: Pr[(0)n]·Pr[(0)n y (0, x)n] = 1
r(r+1)

· r−1
r

,

– k = 3: Pr[(0)n]·Pr[(0)n y (0)n]·Pr[(0)n y (0, x)n] = 1
r(r+1)

· 1
r
· r−1

r
,

– · · ·
– k = n− 1: Pr[(0)n]·Pr[(0)n y (0)n]k−2·Pr[(0)n y (0, x)n] = 1

r(r+1)
· ( 1

r
)k−2 · r−1

r
.

Thus Lg(r, n) =
∑n−1

k=2(n− k)
(

1
r

)k−2 r−1
r

for status (0)n.
Consequently we have obtained the following equation for non-small n.

Lg(r, n) =

(
n−1∑

k=2

(n− k)

(
1

r

)k−2
r − 1

r

)

1

r(r + 1)
+ (n + 1)

1

r(r + 1)

+(n− 1)
r − 1

r(r + 1)
+ (n + 1)

r − 1

r(r + 1)
+ n

r − 1

r + 1

= n−
1

(r − 1)(r + 1)
. ut

The proof of Proposition 2 is similar to that of Proposition 1. We first define
some notations. Let (vw−1, . . . , v0)j be the j-th input of Step 2.1. in the wrNAF
recoding algorithm, i.e v = vw−1r

w−1 + . . . + v1r + v0. Assume that with input
{(vw−1, . . . , v0)i−1, . . . , (vw−1, . . . , v0)0} all i digits (δi−1, . . . , δ0) are determined. Thus
the next recoded digit δi is determined according to the condition of (vw−1, . . . , v0)i. The
wrNAF recoding algorithm has the following property.

Property 2. Only the result of Step 2.1.3. can cause a carry +1 or carry propagation to
the next step input (vw−1, . . . , v0)i+1.

Thus if (vw−1, . . . , v0)i satisfies v ≥ rw/2 then δi = v − rw and a carry +1 influences
on the next input digit v0 of (vw−1, . . . , v0)i+1. In this case, if v0 is r−1 then the previous
carry +1 causes a carry propagation to v1.

Proposition 2. The average significant length and the average number of non-zero digits
for width-w rNAF converted from the radix-r representation of n digits are

Lr(r, n, w) = n−
w(w − 2)(r − 1)2 + (w − 1)(r − 1) + 1

2(w(r − 1) + 1)(r − 1)
,

Wr(r, n, w) = n
r − 1

w(r − 1) + 1
+

w2(r − 1)2 + w(3(r − 1))− (r − 1) + 1

2(w(r − 1) + 1)2
,
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for non-small n.

Proof. We give a sketch of the proof. In the generation algorithm of wrNAF the next
input (vw−1, . . . , v0)i are classified to the following (w + 3) statuses.

– (0)n : denotes v0 = 0 and there is no carry +1 to v1,

– (r − 1)c : denotes v0 = r − 1 and there is a carry +1 to v1,

– (0...0x
︸ ︷︷ ︸

w

)n : denotes v = vw−1r
w−1 + . . . + v0 6= 0, v < rw/2, and there is no carry +1

to v0 of the next step (vw−1, . . . , v0)i+1, actually x = v,

– (0...0x
︸ ︷︷ ︸

w

)c : denotes v = vw−1r
w−1 + . . . + v0 6= 0, v ≥ rw/2, and there is a carry +1

to v0 of the next step (vw−1, . . . , v0)i+1, actually x = v,

– (0...0y
︸ ︷︷ ︸

w−1

)n : denotes v = vw−2r
w−2 + . . . + v0 6= 0 and there is no carry +1 to vw−1 of

(vw−1, . . . , v0)i, actually y = v,

–
...

– ( 0y
︸︷︷︸

2

)n : denotes v = v1r + v0 6= 0 and there is no carry +1 to v2 of (vw−1, . . . , v0)i,

actually y = v,

– (y)n : denotes v = v0 6= 0 and there is no carry +1 to v1 of (vw−1, . . . , v0)i, actually
y = v.

Here, x ∈ D+
w,r and y ∈ D+

w,r with y < rw−1 where D+
w,r stands for the positive

integers in Dw,r. Then the transit matrix of the Markov chain for these statuses is as
follows:























(0)n : 1
r

0 0 0 0 . . . r−1
r

(r − 1)c : 0 1
r

0 0 0 . . . r−1
r

(0...0x
︸ ︷︷ ︸

w

)n : 1
r

0 0 0 0 . . . r−1
r

(0...0x
︸ ︷︷ ︸

w

)c : 0 1
r

0 0 0 . . . r−1
r

(0...0y
︸ ︷︷ ︸

w−1

)n : 0 0 1
2

1
2

0 . . . 0

(0...0y
︸ ︷︷ ︸

w−2

)n : 0 0 0 0 1 . . . 0

. . . . . . 1 . . .

. . . . . . . 1 . .
(y)n : 0 0 0 0 0 . . 1 0























.

The stationary distribution of each status is as follows:
( 1
2(w(r−1)+1) ,

1
2(w(r−1)+1) ,

r−1
2(w(r−1)+1) ,

r−1
2(w(r−1)+1) ,

r−1
w(r−1)+1 , . . . , r−1

w(r−1)+1 )
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The average non-zero density of lower bits from these statuses is p(r) = r−1
(w−1)r+1

for non-small n [TYW04]. Therefore, Lr(r, n, w) and Wr(r, n, w) can be estimated as we
have done in Proposition 1.

Wr(r, n, w) =

(

(n− 1)
r − 1

w(r − 1) + 1

)
1

2(w(r − 1) + 1)

+

(

1 + (n− 1)
r − 1

w(r − 1) + 1

)
1

2(w(r − 1) + 1)

+

(

1 + (n− w)
r − 1

w(r − 1) + 1

)
r − 1

2(w(r − 1) + 1)

+

(

2 + (n− w)
r − 1

w(r − 1) + 1

)
r − 1

2(w(r − 1) + 1)

+

(

1 + (n− w + 1)
r − 1

w(r − 1) + 1

)
r − 1

w(r − 1) + 1

+

(

1 + (n− w + 2)
r − 1

w(r − 1) + 1

)
r − 1

w(r − 1) + 1
...

+

(

1 + (n− 1)
r − 1

w(r − 1) + 1

)
r − 1

w(r − 1) + 1

= n
r − 1

w(r − 1) + 1
+

w2(r − 1)2 + w(3(r − 1))− (r − 1) + 1

2(w(r − 1) + 1)2
.

In order to estimate Lr(r, n, w), the relationships Pr[(0)n y (0)n]+Pr[(0)n y

(0...0x
︸ ︷︷ ︸

w

)n] = 1 and Pr[(0)n y (0)n] = 1/r are used. We can obtain the following for-

mula.

Lr(r, n, w) =

n−w∑

k=1

(n− k − w + 1)

(
1

r

)k−1 (

1−
1

r

)
1

2(w(r − 1) + 1)

+(n + 1)
1

2(w(r − 1) + 1)

+(n− w + 1)
r − 1

2(w(r − 1) + 1)

+(n + 1)
r − 1

2(w(r − 1) + 1)

+(n− w + 2)
r − 1

w(r − 1) + 1
...

+n
r − 1

w(r − 1) + 1

= n−
w(w − 2)(r − 1)2 + (w − 1)(r − 1) + 1

2(w(r − 1) + 1)(r − 1)
.

ut

B Some Proofs of Section 5

Lemma 1 (Cutting Lemma). For t ∈ (Zε(1) ∩Zε(2))\{0, n} or t ∈ (Zc
ε(1) ∩Z

c
ε(2))\{0},

we have

ε(1)(0, t− 1) = ε(2)(0, t− 1) and ε(1)(t, n) = ε(2)(t, n).
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Proof. We know ε(1) = ε(1)(t, n) · rt + ε(1)(0, t−1) and ε(2) = ε(2)(t, n) · rt + ε(2)(0, t−1).
- The case t ∈ (Zε(1) ∩ Zε(2))\{0, n};
Without loss of generality (WLOG), assume ε(1)(0, t−1) > ε(2)(0, t−1). As ε(1) = ε(2),

ε(1)(0, t− 1)− ε(2)(0, t− 1) = rt+1 · (ε(2)(t + 1, n)− ε(1)(t + 1, n)) (2)

because of ε
(1)
t = ε

(2)
t = 0. Then the maximum of left hand side (LHS) of (2) is 2(rt − 1)

and rt+1 divides right hand side (RHS) of (2). It’s a contradiction. Therefore, the assertion
is true.

- The case t ∈ (Zc
ε(1) ∩ Z

c
ε(2))\{0};

WLOG assume ε(1)(0, t− 1) > ε(2)(0, t− 1). Then

ε(1)(0, t− 1)− ε(2)(0, t− 1) = rt · (ε(2)(t, n)− ε(1)(t, n)). (3)

If r = 2 then the maximum of LHS of (3) is 2t+1 − 2 and 2t+1 divides RHS of (3). It’s a
contradiction. If r ≥ 3 then the maximum of LHS of (3) is 2(rt − 1) and rt divides RHS
of (3). It’s a contradiction. Therefore, the assertion is true. ut

Lemma 2 (Collision Lemma). For any i, ε(i)(t, n) is either d(t, n−1) or d(t, n−1)+1.
This implies ε(i)(0, t) is either d(0, t) or d(0, t)− rt+1.

Proof. ε(i) = ε(i)(i, n) · ri + ε(i)(0, i− 1) and d = d(i, n− 1) · ri + d(0, i− 1). As ε(i) = d,
(
ε(i)(i, n)− d(i, n− 1)

)
· ri = d(0, i− 1)− ε(i)(0, i− 1).

As −ri <
(
− (ri − 1) <

)
d(0, i − 1) − ε(i)(0, i − 1)

(
< 2 · (ri − 1)

)
< 2 · ri,

−1 < d(0,i−1)−ε(i)(0,i−1)
ri < 2. Here, d(0,i−1)−ε(i)(0,i−1)

ri must be an integer since it is equal

to ε(i)(i, n) − d(i, n − 1). Thus ε(i)(i, n) − d(i, n − 1) is 0 or 1, i.e., ε(i)(i, n) is either
d(i, n− 1) or d(i, n− 1) + 1. ut

Theorem 1. For given m rSD representations of d, if x = #(∩m
i=1Z

c
ε(i)), then the search

space order l is as follows:

l = #(∩m
i=1[ε

(i)]List
? ) = {2(r − 1)}x.

rSD representations of d is represented within n+1 because the original input integer
d is radix-r representation of n digits. We call n + 1 as the length of rSD representation
of n digits integer d and denote it L, i.e. L = n + 1.

Proof of Theorem 1: We argue by induction on L.
(0) When L = 0: This is the case that the integer d is zero, so it is trivial.

(1) When L = 2: This is the case that d has only one digit representation. Thus
#(∩m

i=1Z
c
ε(i)) = 1 or 2 and clearly #(∩m

i=1[ε
(i)]List

? ) = 2(r−1) or {2(r−1)}2, respectively.

(2) Suppose when L ≤ s, the assertion is true: That is, if ε(i) is the i-th rSD
representation with length L = t digits, where for any t ≤ s, then the search space is

{2(r − 1)}#(∩m
i=1Z

c

ε(i) ).

(3) We must prove the assertion is true when L = s + 1: Let ε(i) be the i-th rSD
representation with length s + 1 digits and x = #(∩m

i=1Z
c
ε(i)). We will prove that

#(∩m
i=1[ε

(i)]List
? ) = {2(r − 1)}x.

We will consider the following three cases;
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1. When s ∈ ∩m
i=1Zε(i) :

2. When s ∈ ∩m
i=1Z

c
ε(i) :

3. When s ∈ Zε(i1) and Zc
ε(i2) for some 1 ≤ i1, i2 ≤ m : in this case there are only

the following two sub-cases. By re-indexing if necessary, we assume that
3.1. – s− 1 ∈ Zε(i) for 1 ≤ i ≤ t1,

– s− 1 ∈ Zc
ε(i) for t1 + 1 ≤ i ≤ m,

– s ∈ Zc
ε(i) for 1 ≤ i ≤ t2 − 1,

– s ∈ Zε(i) for t2 ≤ i ≤ m, where 1 ≤ t1 < t2 ≤ m. Refer to Fig. 1.
3.2. – s− 1 ∈ ∩m

i=1Z
c
ε(i) for 1 ≤ i ≤ m,

– s ∈ Zε(i) for 1 ≤ i ≤ t,
– s ∈ Zc

ε(i) for t + 1 ≤ i ≤ m, where 1 ≤ t < m. Refer to Fig. 2.

s
s-1
 0
1


)
2
(
e


)
1
(
e


)
(
1
t
e


)
(
m
e


)
(
 2
t
e

.

.
.


.

.
.


 


Fig. 1.
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[Proof of Case 1.] As s ∈ ∩m
i=1Zε(i)

#(∩m
i=1[ε

(i)]List
? ) = #(∩m

i=1[ε
(i)(0, s− 1)]List

? ).

Thus by induction assumption #(∩m
i=1[ε

(i)(0, s−1)]List
? ) = {2(r − 1)}x because

ε(i)(0, s−1) can be regarded as i-th rSD representation with length s digits and
#(∩m

i=1Z
c
ε(i)(0,s−1)

) = x.

[Proof of Case 2.] From Lemma 1, especially Cutting Lemma, ε
(1)
s = . . . = ε

(m)
s and

ε(1)(0, s− 1) = . . . = ε(m)(0, s− 1). Thus

#(∩m
i=1[ε

(i)]List
? ) = 2(r − 1) ·#(∩m

i=1[ε
(i)(0, s− 1)]List

? ).

As ε(i)(0, s−1) can be regarded as i-th rSD representation with length s digits and
#(∩m

i=1Z
c
ε(i)(0,s−1)) = x − 1, #(∩m

i=1[ε
(i)(0, s − 1)]List

? ) = {2(r − 1)}x−1 by induction
assumption. Thus the assertion is true.

[Proof of Case 3.1.] From the recoding rule of rSD representation,

ε(1)
s = . . . = ε(t2−1)

s =

{

1 if ε
(t2)
s−1 > 0,

−1 otherwise.
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Then we can make new m rSD representations with length s.

– When ε
(1)
s = 1,

• for 1 ≤ i ≤ t2 − 1, ε(i)(0, s− 1),

• for t2 ≤ i ≤ m, (ε
(i)
s−1 − r) · rs−1 + ε(i)(0, s− 2), denote it ε(i)′(0, s− 1),

• then ε(1)(0, s−1) = . . . = ε(t2−1)(0, s−1) = ε(t2)
′

(0, s−1) = . . . = ε(m)′(0, s−1).
Note that we can easily obtain above equation by subtracting rs from rs+ε(1)(0, s−

1) = . . . = rs + ε(t2−1)(0, s − 1) = ε
(t2)
s−1 · rs−1 + ε(t2)(0, s − 2) = . . . = ε

(m)
s−1 · rs−1 + ε(t2)(0, s − 2).

– When ε
(1)
s = −1,

• for 1 ≤ i ≤ t2 − 1, ε(i)(0, s− 1),

• for t2 ≤ i ≤ m, (ε
(i)
s−1 + r) · rs−1 + ε(i)(0, s− 2), denote it ε(i)′(0, s− 1),

• then ε(1)(0, s−1) = . . . = ε(t2−1)(0, s−1) = ε(t2)
′

(0, s−1) = . . . = ε(m)′(0, s−1).

From above conversion, we can easily check that ∩m
i=1[ε

(i)]List
? =

(

∩t2−1
i=1 [ε(i)(0, s −

1)]List
?

)
⋂
(

∩m
i=t2

[ε(i)′(0, s− 1)]List
?

)

. As ε(i1)(0, s−1) and ε(i2)
′

(0, s−1) can be regarded

as ij-th rSD representation with length s digits, 1 ≤ i1 ≤ t2 − 1, t2 ≤ i2 ≤ m, and

#
((
∩t2−1

i=1 Z
c
ε(i)(0,s−1)

)⋂ (
∩m

i=t2
Zc

ε(i)′ (0,s−1)

))

= x the assertion is proved by using in-

duction assumption.

[Proof of Case 3.2.] From the recoding rule of rSD representation,

ε(t+1)
s = . . . = ε(m)

s =

{

1 if ε
(1)
s−1 > 0,

−1 otherwise.

Then we can make new m rSD representations with length s.

– When ε
(m)
s = 1,

• for 1 ≤ i ≤ t, ε(i)(0, s− 1),

• for t + 1 ≤ i ≤ m, (ε
(i)
s−1 + r) · rs−1 + ε(i)(0, s− 2), denote it ε(i)′(0, s− 1),

• then clearly ε(1)(0, s − 1) = . . . = ε(t)(0, s − 1) = ε(t+1)′(0, s − 1) = . . . =
ε(m)′(0, s− 1).

– When ε
(m)
s = −1,

• for 1 ≤ i ≤ t, ε(i)(0, s− 1),

• for t + 1 ≤ i ≤ m, (ε
(i)
s−1 − r) · rs−1 + ε(i)(0, s− 2), denote it ε(i)′(0, s− 1),

• then ε(1)(0, s− 1) = . . . = ε(t−1)(0, s− 1) = ε(t)′(0, s− 1) = . . . = ε(m)′(0, s− 1).

From above conversion, we can easily check that ∩m
i=1[ε

(i)]List
? =

(

∩t
i=1 [ε(i)(0, s −

1)]List
?

)
⋂
(

∩m
i=t+1 [ε(i)′(0, s−1)]List

?

)

. As ε(i1)(0, s−1) and ε(i2)
′

(0, s−1) can be regarded

as ij-th rSD representation with length s digits, 1 ≤ i1 ≤ t, t + 1 ≤ i2 ≤ m, and

#
((
∩t

i=1 Z
c
ε(i)(0,s−1)

)⋂ (
∩m

i=t+1 Z
c
ε(i)′ (0,s−1)

))

= x the assertion is proved by using

induction assumption. ut
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