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Abstract. We examine the popular proof models for group key estab-
lishment of Bresson et al. [BCPQ01,BCP01] and point out missing secu-
rity properties addressing malicious protocol participants. We show that
established group key establishment schemes from CRYPTO 2003 and
ASIACRYPT 2004 do not fully meet these new requirements. Next to
giving a formal definition of these extended security properties, we prove
a variant of the explored proposal from ASIACRYPT 2004 secure in this
stricter sense. Our proof builds on the Computational Diffie Hellman
(CDH) assumption and the random oracle model.
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1 Introduction

Group key establishments allow n ≥ 2 principals to agree upon a common
secret key. It turns out that the design of such schemes faces some qualita-
tively new challenges that in this form do not arise in the two-party case. An
excellent introduction and survey of the subject is given by Boyd and Math-
uria [BM04]. To allow a rigorous security analysis, a framework for modelling
group key establishments has been developed [BCP01,BCPQ01,KY03] going
back on [BR93,BR95,BCK98,CK01,Sho99,BPR00]. A recent overview of those
indistinguishability-based models is given in [CBH05].

An issue that compared to the two-party case becomes much more relevant
is the protocol behavior in the presence of malicious participants: For groups
with n � 2 participants, assuming all participants to strictly follow the protocol
specification can be a a rather strong assumption. Thus the question of security
guarantees in the presence of malicious insiders naturally arises. Unfortunately,
so far for the quite popular security models [BCP01] and [BCPQ01] extensions
to malicious participants have hardly been explored and analyzed. In this type
of model, security analysis typically restricts to the case of honest participants
(see, e. g., [BN03,KY03,CBHM05]).



Our contribution. We examine two group key establishment protocols put for-
ward in [KY03,KLL04] and point out insider attacks that are not covered by the
model [BCPQ01] in which they are proven secure. We give a formal definition
of some security notions motivated by these attacks. We put forward a notion
of session integrity that can be seen as a correctness guarantee in the presence
of malicious insiders. Further on, we suggest a way to formalize an agreement
property in the style of [BCPQ01]. In a sense, these new notions round off the
model [BCPQ01] and cover most known attacks that can be carried out in the
presence of malicious insiders. In the model we consider, a long term key is as-
sociated with a principal Ui, i. e., it is identical for all protocol instances Πsi

i

run by Ui. Once Ui’s long term key gets compromised through a corruption, we
consider Ui as dishonest and do not try to establish security guarantees for indi-
vidual protocol instances of Ui. In particular, we do not discuss key-compromise
impersonation attacks where knowledge of a principal Ui’s long term secret is
exploited to impersonate principals Uj 6= Ui towards Ui.

To give a flavor of how to design secure protocols in the new strict sense
that we suggest, in Section 4.1 a “hidden” security feature in a proposal from
[KY03] is proven. Finally, in Section 4.2 we present a modification of [KLL04] and
prove it secure in our model—using the Computational Diffie Hellman (CDH)
assumption as well as the random oracle model.

Related work. While we are not aware of a formal treatment of malicious insiders
in the frameworks of [BCP01,BCPQ01], the issue of malicious insiders in group
key establishment protocols has been addressed by several authors already. In
particular, Saeednia and Safavi-Naini put forward several security classes for
group key establishments [SSN98], and their class D.2 imposes that it is infeasible
for any coalition of malicious insiders to break the authenticity of the conference
key without no insider detecting the fraud. Also Cheng et al.’s list of attacks in
[CVC04] mentions insider attacks, and the work of Tzeng [Tze00], for instance,
shows that it is feasible to derive protocols with well-specified security guarantees
even if a subset of the protocol participants acts maliciously.

Frameworks guaranteeing universal composability provide another approach
to model key establishment protocols [Ste02] where insider attacks or failures
are already considered [CS04,KS05a]. Katz and Shin [KS05a] in particular point
out that their definition of insider impersonation attacks is stronger than the
numerous varieties of insider attacks considered in [SSN98,CVC04] and present
a protocol compiler to obtain protocols that are secure in this model. On the
other hand, no efficient two-round protocol as [KLL04] is available in the UC
framework and the protocol we give in Section 4.2 cannot be obtained by the
protocol compiler of Katz and Shin. The formulation of key agreement in this
setting is also unclear [HMQS03]. The definition of agreement in [KS05a] differs
from the one we give below, and in particular does not quantify the influence
maliciously acting protocol participants have on the session key. Another signifi-
cant difference between the approach in [KS05a] and the one below is the role of
the session identifier. Unlike [KS05a] we do not assume a session identifier to be
available from a protocol-external context, but take it as a goal of the group key
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establishment to come up with a session identifier that can serve as non-secret
identifier for the established key.

2 Security Model and Security Goals

As indicated already, our basic security model is the proof model [BCPQ01] in
the way it is used by Katz and Yung in [KY03]. Before we motivate and describe
our extensions we give a short summary of the model:

Participants. We model the (potential) protocol participants as a finite set U
of fixed size with each Ui being a probabilistic polynomial time (ppt) Turing
machine. Each protocol participant Ui ∈ P (⊆ U) may execute a polynomial
number of protocol instances in parallel. We will refer to instance si of principal
Ui as instance Πsi

i (i ∈ N). Each such instance may be taken for a process
executed by Ui and has assigned seven variables statesi

i , sidsi
i , pidsi

i , sksi
i , termsi

i ,
usedsi

i and accsi
i :

usedsi
i indicates whether this instance is or has been used for a protocol run.

The usedsi
i flag can only be set through a protocol message received by the

instance due to a call to the Send-oracle (see below);
statesi

i keeps the state information during the protocol execution;
termsi

i shows if the execution has terminated;
sidsi

i denotes a (non-secret) session identifier that can serve as identifier for the
session key sksi

i ;
pidsi

i stores the set of identities of those principals that Πsi
i aims at establishing

a key with—including Ui himself;
accsi

i indicates if the protocol instance was successful, i. e., the principal ac-
cepted the session key;

sksi
i stores the session key once it is accepted by the instance Πsi

i . Before
acceptance, it stores a distinguished null value.

For more details on the usage of the variables see [BPR00]. We suppose that an
instance Πsi

i must accept the session key constructed at the end of the corre-
sponding protocol instance if no deviation from the protocol specification occurs.

Communication network. We assume arbitrary point-to-point connections among
the principals to be available. As connections are potentially under adversarial
control (cf. the adversarial model below) the network is non-private and fully
asynchronous.

Adversarial model. The adversary A is modeled as a ppt Turing machine and
considered to be active: A has full control of the communication network and
may delay, eavesdrop, suppress, alter and insert messages at will. To make the
adversary’s capabilities explicit, the subsequently listed oracles are used that can
be executed by A.
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Send(Ui, si,M) This sends the message M to the instance Πsi
i . If Πsi

i sends a
message in the protocol right after receiving M , then the Send-oracle returns
this message to the adversary. If the oracle is called with an unused instance
Πsi

i and M = {U1, . . . , Un} with Ui ∈ {U1, . . . , Un}, then Πsi
i ’s pidsi

i -value is
initialized to M , the usedsi

i -flag is set and Πsi
i processes the first step of the

protocol. This means that in this session, Ui aims at establishing a common
key with the principals specified in M .

Reveal(Ui, si) yields the session key sksi
i provided that it is defined , i. e., if

accsi
i = true and sksi

i 6= null. Otherwise the distinguished null-value is
returned.

Corrupt(Ui) reveals the long term secret key SKi of Ui to the adversary. Given
a concrete protocol run, involving instances Πsi

i of principals U1, . . . , Un, we
say that principal Ui0 ∈ {U1, . . . , Un} is honest if and only if no query of the
form Corrupt(Ui0) has ever been made by the adversary.

Test(Ui, si) Only one query of this form is allowed for the adversary A. Provided
that sksi

i is defined, (i. e. accsi
i = true and sksi

i 6= null), A can execute this
oracle query at any time when being activated. Then with probability 1/2
the session key sksi

i and with probability 1/2 a uniformly chosen random
session key is returned.

As the session identifier sidsi
i is intended to serve as public identifier for the

session key sksi
i , we also grant the adversary access to any session identifiers of

her choice.

Initialization. Before the actual key establishment protocol is executed for the
first time, an initialization phase takes place where for each principal Ui ∈ P a
public key/secret key pair (SKi, PKi) is generated1, SKi is revealed to Ui only,
and PKi is given to all principals and the adversary.

Correctness. This property basically expresses that the protocol will establish a
good key without adversarial interference and allows us to exclude “useless” pro-
tocols. We take a group key establishment protocol for correct if in the absence
of attacks a common key along with a common identifier is established:

Definition 1. A group key establishment protocol P is called correct if upon
honest delivery of all messages and no Corrupt-queries being made, a single
execution of the protocol for establishing a key among U1, . . . , Un involves n
instances Πs1

1 , . . . ,Πsn
n and ensures that with overwhelming probability all in-

stances:

– accept, i. e., accs1
1 = · · · = accsn

n = true.
– obtain a common session identifier sids1

1 = · · · = sidsn
n which is globally

unique.
1 For the sake of simplicity we assume these key pairs to be generated by a trusted

party, i. e., we do not consider malicious parties who try to generate incorrect key
pairs. Also, we do not consider scenarios where only low-entropy secrets, like pass-
words, are available for authentication.
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– have accepted the same session key sks1
1 = · · · = sksn

n 6=null associated with
the common session identifier sids1

1 .
– know their partners pids1

1 = pids2
2 = · · · = pidsn

n = {U1, . . . , Un}.

Partnering. For detailing the security definition, we will have to specify under
which conditions a Test-query may be executed. To do so we fix the following
notion of partnering.

Definition 2. Two instances Πsi
i , Π

sj

j are partnered if sidsi
i = sid

sj

j , pidsi
i =

pid
sj

j and accsi
i = acc

sj

j = true.

Freshness. A Test-query should only be allowed to those oracles holding a key
that is not for trivial reasons known to the adversary. An instance Πsi

i is called
fresh if none of the following two conditions hold:

– For some Uj ∈ pidsi
i a Corrupt(Uj) query was executed before a query of the

form Send(Uk, sk, ∗) has taken place where Uk ∈ pidsi
i .

– The adversary A queried Reveal(Uj , sj) with Πsi
i and Π

sj

j being partnered.

The idea here is that revealing a session key from an oracle Πsi
i trivially yields the

session key of all oracles partnered with Πsi
i , and hence this kind of “attack” will

be excluded in the security definition. While the second condition seems pretty
natural, imposing the first condition might look too restrictive. It is adopted
from [BGVS05] and aims at precluding (insider) attacks where, once a subset of
the principals has computed the session key, this subset is corrupted and the last
outgoing messages are altered and correctly signed so that some honest protocol
participants end up with a different session identifier but identical session key.
Then the honest participants are not partnered with the corrupted ones, and
breaking the security of the protocol becomes trivial. In the next section, we will
discuss such a scenario for a protocol of Katz and Yung.

Security. The security definition of [BCPQ01] can be summarized as follows. As
a function of the security parameter k we define the advantage AdvA(k) of a ppt
adversary A in attacking protocol P as

AdvA := |2 · Succ− 1|

where Succ is the probability that the adversary queries Test on a fresh instance
Πsi

i and guesses correctly the bit b used by the Test oracle.

Definition 3. We call the group key establishment protocol P secure if for any
ppt adversary A the function AdvA = AdvA(k) is negligible.

3 Extended Security Properties

Unfortunately, established protocols that are proven secure in the above model
can be vulnerable to annoyingly simple attacks if one considers a slightly broader
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scenario. In this section we explore the protocol of Katz and Yung [KY03] that
goes back to Burmester and Desmedt [BD95] and a very efficient protocol from
Kim, Lee and Lee [KLL04]. We present new attacks on these protocols, but we
stress that these attacks were not considered in the security model where they
are proven secure: Hence our discussion does not invalidate the security proofs
given by the authors. Nevertheless we think such vulnerabilities are relevant and
should indeed be prevented.

3.1 Attacks on a Proposal of Katz and Yung

At CRYPTO 2003, Katz and Yung put forward a three round group key agree-
ment [KY03] building on the protocol of [BD95]. In an initialization phase a
finite cyclic group G of prime order q and a generator g of G is chosen such
that the Decisional Diffie Hellman (DDH) assumption holds. We summarize the
fundamentals of the protocol for establishing a key among {U1, . . . , Un}, where
indices are to be taken in a cycle. A detailed overview of the exchanged messages
is given in Figure 1. Arbitrary point to point connections among participants are
available, and a broadcast is understood as simultaneous point to point delivery
of messages to all intended recipients. The participants exchange nonces in the
first round to get a unique session. In the following, the participants broadcast
zi = gri and compute a Diffie-Hellman key with each of their neighbors. In the
third round, the participants compute the quotient of the keys shared with their
two neighbors Xi = (zi+1/zi−1)ri and broadcast this value. It is now possible for
all participants to compute the key sksi

i = (zi−1)nri ·Xn−1
i ·Xn−2

i+1 · · ·Xi+n−2.
Using a model close to the one outlined in Section 2, in [KY03] this protocol

is shown to be secure. At this, it is assumed that the signature scheme used is not
only secure against existential forgeries under adaptive chosen message attacks,
but with overwhelming probability also prevents an attacker from producing a
different signature for an already signed message.

Violating the integrity of a session. Let us assume the adversarial goal is now
to prevent a certain session unnoticeably from succeeding, forcing some involved
principals to obliviously compute a different session key with the same session
identifier. (In Definition 4 we will formalize resilience against this type of attack
as integrity.) Say n > 3 and ord(g) are coprime, then the adversary A can mount
the following (insider) attack:

1. A corrupts U1 and U3 (henceforth blocking any communication from and to
these parties).

2. In the the 3rd protocol round, A computes X1, X3 as specified, but then sets
X̃1 := X3, X̃3 := X1. Now A signs (U1‖2‖X̃1‖t) with U1’s signing key, signs
(U3‖2‖X̃3‖t)’s with U3’s signing key and then broadcasts (U1‖2‖X̃1‖σII

1 ) and
(U3‖2‖X̃3‖σII

3 ). In other words, A swaps the Xi-contributions of U1 and U3.

Now all protocol participants compute the same session identifier, all of them
receive the same messages, but with overwhelming probability the (honest) par-
ticipants U2 and U4 will have derived different session keys: With the notation
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Round 1:
Broadcast Each Ui chooses a random nonce ti ∈ {0, 1}k and broadcasts

(Ui‖0‖ti).
Computation Each Ui waits until messages (Uj‖0‖tj) for all Uj arrived and

sets t := t1‖ . . . ‖tn.
Round 2:

Computation Each Ui chooses a random ri ∈ Zq and computes zi = gri and
a signature σI

i of (1‖zi‖pidsi
i ‖t).

Broadcast Each Ui broadcasts (Ui‖1‖zi‖σI
i).

Check Each Ui waits for all incoming messages (Uj‖1‖zj‖σI
j) and checks all

signatures σI
j .

Round 3:
Computation Each Ui computes Xi = (zi+1/zi−1)

ri and a signature σII
i of

(2‖Xi‖pidsi
i ‖t).

Broadcast Each Ui broadcasts (Ui‖2‖Xi‖σII
i ).

Check Each Ui waits for all incoming messages (Uj‖2‖Xj‖σII
j ) and checks all

signatures σII
j .

Key computation: Each participant Ui computes the session key sksi
i =

(zi−1)
nri · Xn−1

i · Xn−2
i+1 · · ·Xi+n−2. The session identifier sidsi

i is the con-
catenation of all messages that were sent and received.

Fig. 1. A group key establishment protocol from CRYPTO 2003 [KY03].

from Figure 1 a simple computation shows that the quotient of U2’s and U4’s
session keys is Xn

3 · (z2/z4)
r3n = 1G without and Xn

1 · (z2/z4)
r3n with U1 and U3

swapping their Xi-contributions in the 3rd protocol round. Thus, in the latter
case the keys derived by U2 and U4 coincide with negligible probability only. This
actually violates the correctness of [KY03] where matching keys are required for
all instances that accepted in the same session. As this is a non-trivial attack
we restricted the correctness explicitly to honest executions and will introduce
a broadened requirement—named integrity—in Section 3.3.

Moreover it is now easy to see that in the above scheme not every participant
contributes to the session key. In fact, the key can be completely determined by
an adversary corrupting two neighboring principals Ui, Ui+1. In Section 4.1 we
prove that corrupting only one principal does not suffice for successfully attacking
this scheme in a similar fashion.

3.2 Attacks on a Proposal of Kim, Lee and Lee

At ASIACRYPT 2004, Kim, Lee and Lee presented an efficient authenticated
group key agreement protocol [KLL04], which is claimed to take precautions
against “illegal members or system faults”. No formal definition or security proof
for this is provided, however, and below we will see that the protocol does not
meet strong security guarantees as one malicious participant is sufficient to vio-
late integrity and to mount an impersonation attack.

Figure 2 outlines Kim, Lee and Lee’s proposal for establishing a key among
{U1, . . . , Un}, where again indices are to be taken in a cycle. Similarly as in the
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proposal of Katz and Yung, during an initialization phase a cyclic group G of
prime order q along with a generator g is chosen such that the CDH assumption
holds; the hash function H(·) is modelled as random oracle and again broadcast
is understood as simultaneous point to point delivery of messages. The protocol
begins with the participants broadcasting yi = gxi , again to establish Diffie-
Hellman keys tLi , tRi with their two neighbored participants. In the second round
the participants broadcast the XOR sum Ti = tLi ⊕ tRi of their two keys to allow
all participants to compute all shared keys. Moreover they broadcast a nonce ki

as contribution to the session key, though one participant broadcasts his nonce
encrypted kn⊕ tRn . Now all participants can compute the nonces and the session
key sksi

i = H(k1‖ . . . ‖kn‖0).

Round 1:
Computation Each Ui chooses ki ∈ {0, 1}k, xi ∈ Z∗q and computes yi = gxi ,

only Un computes additionally H(kn‖0). Each Ui except Un sets M I
i = yi

and Un sets M I
n = H(kn‖0)‖yn. Each Ui computes a signature σI

i on
M I

i ‖pidsi
i ‖0.

Broadcast Each Ui broadcasts (M I
i ‖σI

i).
Check Each Ui checks all signatures σI

j of incoming messages (M I
j‖σI

j).

Round 2:
Computation Each Ui computes tL

i = H(yxi
i−1‖pidsi

i ‖0), tR
i =

H(yxi
i+1‖pidsi

i ‖0) and Ti = tL
i ⊕ tR

i , only Un computes additionally kn⊕ tR
n .

The participants U1, . . . , Un−1 set M II
i = ki‖Ti, Un sets M II

n = kn⊕ tR
n ‖Tn

and each Ui computes a signature σII
i of M II

i ‖pidsi
i ‖0.

Broadcast Each Ui broadcasts (M II
i ‖σII

i ).
Check Firstly, each Ui checks all signatures σII

j of incoming messages. Then
each Ui checks if T1 ⊕ · · · ⊕ Tn = 0, computes tR

n to obtain kn from Un’s
message and checks the commitment H(kn||0) for kn.

Key computation: Each participant Ui computes the session key sksi
i =

H(k1‖ . . . ‖kn‖0).

Fig. 2. A group key establishment protocol from ASIACRYPT 2004 [KLL04].

Attacks on the security and integrity. In [KLL04] it is not specified how to
generate the session identifier sidsi

i , and it turns out that the standard method
of concatenating all messages an oracle sent and received is not enough to prove
it secure: For n > 3, an adversary A could proceed as follows to provoke a
situation where U1 and U3 end up with different session identifiers (hence not
being partnered) but identical session key sks1

1 = sks3
3 :

1. A executes a complete protocol run and eavesdrops the message (M I
1‖σI

1)
broadcast by U1 in Round 1.

2. A initiates another protocol execution, but in Round 1 replaces the message
sent from U1 to U3 with the old (M I

1‖σI
i)-value eavesdropped in the previous

protocol run.
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Because of U3 not being a neighbor of U1, this message substitution does not
affect the computation of the session key, but with overwhelming probability U3

ends up with a session identifier different from the session identifier computed by
U1 and the respective oracles of U1 and U3 will not be partnered. Therefore, the
key of U1 can be revealed but U3 remains fresh. Also the attack from Section 3.1
aiming at a different session key under the same session identifier applies here
in an analogous way.

To avoid this kind of “trivial” problems, subsequently we assume the session
identifier sidsi

i to be derived as

sidsi
i = H(k1‖ . . . ‖kn−1‖H(kn||0)),

so that identical session identifiers with overwhelming probability correspond
with identical session keys. However, this session identifier still allows a single
protocol run ending up with different session identifiers. This can be provoked by
simply having a malicious participant U1 in Round 2 sending different k1-values
to the other protocol participants (instead of broadcasting one k1-value).

An impersonation attack Independent from the choice of the session identifier
and potentially more severe is the following impersonation attack. For n > 2
participants an adversary A can impersonate participants as follows:

1. First, she gets herself a protocol transcript of a successful key establish-
ment among principals U1, . . . , Un. Next, A reveals U1’s long term secret by
querying Corrupt(U1).

2. Now A initializes unused oracles of U3, . . . , Un with pid
sj

j = {U1, . . . , Un}.
3. In Round 1 she replays the message that U2 sent in the previously eaves-

dropped key establishment and participates honestly for U1.
4. In Round 2, A again replays U2’s message from the eavesdropped protocol

run. On behalf of U1 the adversary computes

T1 := T2 ⊕ · · · ⊕ Tn

and broadcasts the signed message (M II
1 ‖σII

1 ) with M II
1 = k1‖T1.

Now all participants can compute the session key and will accept it as common
secret key among U1, . . . , Un although the honest principal U2 never took part
in the session.

3.3 Definition of Extended Security Goals

The model in [BR93] goes further in its definition of security than the model in
[BCPQ01]: Building on the notion of a matching session, a protocol is called se-
cure if besides the usual negligible advantage in guessing the session key it also
holds, that a matching session results in the participants accepting the same
key. In a group key establishment protocol it is more appropriate to identify
matching sessions via a session identifier. So in analogy to the two-party case,
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a matching session identifier should result in matching session keys. In the case
of n � 2 protocol participants, there is significant potential for insider attacks,
however, and malicious insiders indeed matter in group key establishment pro-
tocols: Even if several principals are dishonest, there can still remain numerous
honest protocol participants.

Granted, in the presence of malicious participants the adversary always learns
the session key, for honest participants the situation can still differ. For some
applications it could even be more relevant to prevent the case in which hon-
est principals share mismatching keys than the case where the correct key is
shared with unintended principals. For instance, if the keys serve as access con-
trol passwords for shared data, then the above attacks result in situations in
which principals assume others to have access rights which they may actually
not have. We therefore propose the following notions to extend the security of
group key establishments.

Session integrity. Motivated by the security definition of [BR93] and [CK01]
we introduce an integrity property also for group key establishments to prevent
sessions to mix up under adversarial influence. This property will basically be
an extension of the correctness to active adversaries and malicious insiders.

We have seen an attack in Section 3.1 on the protocol of Katz and Yung
where a malicious participant could run a protocol where two honest participants
ended up with the same session identifier but different session keys. Such a
situation possibly invalidates vital assumptions on the application level without
the participants having a chance to detect it.

Recall also that the notion of correctness of a key establishment prevents
partners from accepting when they have different pidsi

i -values—i.e. they aim at
establishing the key with different sets of users. We want to keep this prop-
erty also in the presence of malicioius insiders. For instance, assume a group
key establishment, where a malicious U1 could convince U2 to have partners
{U1, U2, U3} and U3 to have partners {U1, U2, U3, U4} when indeed only U1, U2

and U3 have a common key. Then the honest principals U2 and U3 will not agree
whether the subsequent application is confidential with respect to U4 or not. To
avoid such situations, in our definition of integrity we impose that a matching
session identifier should also result in a matching partner identifier.

Definition 4. We say a correct group key establishment protocol fulfills in-
tegrity if with overwhelming probability all instances of honest principals that
have accepted with the same session identifier sid

sj

j hold identical session keys
sk

sj

j and associate this key with the same principals pid
sj

j .

Strong entity authentication. Entity authentication is a relevant issue for key
establishment even excluding the possibility of corrupted participants. It is con-
sidered in the model [BR93] and in the models for password-based key estab-
lishment following [BPR00]. Again malicious insiders are significantly stronger
in violating this property, as seen in the attack scenarios in Section 3.2. An
approach to define entity authentication formally was made in [JG04]. For our
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security model dealing with group key establishment we rephrase this definition
as follows.

Definition 5. Strong entity authentication to an oracle Πsi
i is provided if both

accsi
i = true and for all honest Uj ∈ pidsi

i with overwhelming probability there
exists an oracle Π

sj

j with sid
sj

j = sidsi
i and Ui ∈ pid

sj

j .

For the two-party case, the above definition is close to the mutual authentication
requirements in [JG04], but instead of imposing exchanged messages seen by
instances Πsi

i and Π
sj

j to be equal, we require equality of the session identifiers.
Key agreement. Clearly, key freshness can never be guaranteed in the pres-

ence of malicious participants if some incomplete subset of principals is able to
predetermine the key. However, if the key establishment is contributory, that is,
if all parties must be involved in the construction of the key, we can at least
provide some freshness guarantees. This kind of contributory key establishment
protocols is usually referred to as key agreement protocols; however, some cau-
tion has to be taken here, as different notions of key agreement exist and not all
of them suit our purposes. Before defining the type of key agreement we have in
mind, it is worth to motivate this type of requirement:

– A protocol participant could be a program embedded in an environment that
prevents protocol-external communication. In such a situation controling
(parts) of the session key may still be feasible, even if communicating a
learned value is not.

– Even partial control over the session key can be useful, if on the application
level only parts of the established session key are actually used for a specific
purpose, say symmetric encryption. Another part of the established session
key could be used for a purpose that is less relevant for the adversary.

The notion of key agreement we use is motivated by the discussion in [MWW98]
and imposes a quantitative restriction on the influence principals have on the
derived session key. To express this security requirement, we split the adversarial
action into two parts A1, A2. This separation is only for the ease of explanation,
and we allow A1 and A2 to freely exchange state information a. In a precompu-
tation phase, A1 tries to identify a favorable subset κ of the key space K and a
protocol participant Ui that seems likely to accept a key from κ. For instance, κ
could be the set of all potential session keys with the most significant half of the
bits being 0. The algorithm A2 controls the malicious participants during the
actual protocol run and tries to establish a session key that is contained in κ.

Definition 6. Let t ∈ {1, . . . , |P|}, P a key establishment protocol, and for a
fixed pair of ppt algorithms (A1,A2) consider the following game:

1. The initialization phase of P establishing the long term keys is executed.
2. Having access to the public keys, the Send and Reveal-oracle and being al-

lowed up to t−1 calls to the Corrupt oracle, A1 outputs a quadruple (i, si, χκ, a)
with state information a and such that
– Ui is honest with usedsi

i = false;
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– χκ is a boolean-valued ppt algorithm with κ := {sk ∈ K : χκ(sk) = true}
such that |κ|/|K| is negligible in the security parameter.

3. Upon input of the state information a, A2 tries to make Πsi
i accept a session

key sksi
i ∈ κ; for this, A2 has access to the Send and Reveal-oracle, but may

call the Corrupt-oracle only with an argument 6= Ui and as long as the total
number of Corrupt-queries of A1 and A2 is ≤ t− 1.

If there is no such pair (A1,A2) with A2 succeeding with non-negligible probabil-
ity, then we refer to P as being t-contributory. Moreover, by a key agreement,
we mean a |P|-contributory key establishment.

Summarizing, we take a group key establishment protocol for secure if it is
correct, a proper subset of dishonest principals cannot predetermine the key, and
it provides the “usual” confidentiality guarantees, integrity, and strong entity
authentication:

Definition 7. We say a group key establishment protocol is secure against t
malicious participants if it is a correct (t+1)-contributory protocol in the sense of
Definition 1 and Definition 6, secure in the sense of Definition 3, and assuming
at most t principals are dishonest, it offers integrity in the sense of Definition 4
and provides strong entity authentication to all participating instances in the
sense of Definition 5. A group key establishment secure against |P|−1 malicious
participants is referred to as a secure group key agreement.

4 Secure Authenticated Group Key Agreement

4.1 Looking back to Katz and Yung

To illustrate our extended model we show that the protocol of Katz and Yung is
partially secure in this sense. The generation of the session identifier has to be
modified, though. We moreover assume that all participants check for

∏
i Xi = 1

before accepting the key.

Proposition 1. Suppose that in the protocol of Katz and Yung described in
Figure 1 all participants check for

∏
i Xi = 1 before accepting the key. Then,

with session identifier sidsi
i = pidsi

i ||t (in this point diverging from [KY03]), we
obtain a key establishment protocol secure against one malicious participant.

Proof. For correctness and security according to Definition 3 the proof of [KY03]
applies. In the sequel, we assume only one participant in the key establishment
is allowed to act maliciously.

Integrity. Let us suppose an adversary A aims at violating integrity as defined
in Definition 4, however, she is only able to make a corrupt call to, say, principal
Ui. The adversarial goal is to make two honest principals that accept a fixed
session sid

sj

j have either different session keys or hold an incorrect pid
sj

j value.
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Though, once the session is fixed its sid
sj

j contains pid
sj

j , shared thus to all honest
principals.

Let us see why she cannot violate integrity either, by forcing honest principals
that have accepted to share different keys. Here are the concrete messages A can
alter:

(i) the messages in the first round, especially since they are not authenticated.
Anyway sending an invalid message at this stage will result in blocking of a
particular connection, and not have influence on accepting principals.

(ii) the value zi that Ui broadcasts in the second round. The latter is actually
only used by Ui−1 and Ui+1. Obviously, the protocol is still correct if Ui

sends different values zi and z′i to its neighbors, sending the same one is
rather to save an exponentiation.

(iii) the value Xi that Ui broadcasts in the third round. However, the message
is implicitly fixed by the values Xj of the honest participants as Xi =
(
∏

j 6=i Xj)−1.

Entity authentication. The concatenation of the nonces t computed in the first
round is fresh as long as one honest oracle is involved. Since all participants
compute the signature over the message (1||zi||pidsi

i ||t), it is assured that at
the end of the second round all honest instances have knowledge of the session
identifier if it is chosen as sidsi

i = pidsi
i ||t, and in particular they hold the same

pidsi
i .

2-Contributory. Note that the adversary cannot influence the key by a dedicated
choice of one principal’s “random” choices in the first two rounds. Obviously, the
random nonce in the first round does not influence the key. In the second round
the adversary chooses values for a Diffie-Hellman key exchange. Assumed it is
not allowed to choose the exponent ri = 0 the probability that the resulting key
is included in the negligible fraction of the key space specified by the adversary
is negligible; this is also true, even allowing exponent 0, for n ≥ 3. ut

4.2 A Secure Two-Round Protocol

As shown in Section 3.2, the proposal of Kim, Lee and Lee in Figure 2 does
not offer the discussed security guarantees. In Figure 3 we present—with the
notation from Section 3.2—a variant of the protocol that again consists of two
rounds, but in the presence of malicious participants offers the security guaran-
tees from Definition 7. We changed the protocol so that all participants Ui except
Un send their contribution ki to the session key already in the first round. Thus
the session key is fixed by the messages of the first round. This allows the par-
ticipants in the second round to send a confirmation of the key material, namely
H(pidsi

i ‖k1‖ . . . ‖kn−1‖H(kn)), to certify that all of them will compute the same
session key. Therewith, the attacks from Section 3.2 are effectively defeated.

The protocol allows Un a rushing attack, waiting in the first round until
k1, . . . , kn−1 are known and then choosing kn depending on these. This attack is
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Round 1:
Computation Each Ui chooses ki ∈ {0, 1}k, xi ∈ Z∗q and computes yi = gxi ,

Un computes additionally H(kn). Each Ui except Un sets M I
i = ki‖yi and

Un sets M I
n = H(kn)‖yn. Each Ui computes a signature σI

i of M I
i .

Broadcast Each Ui broadcasts (M I
i ‖σI

i).
Check Each Ui checks all signatures σI

j of incoming messages (M I
j‖σI

j).

Round 2:
Computation Each Ui computes tL

i = H(yxi
i−1), tR

i = H(yxi
i+1), Ti = tL

i ⊕ tR
i

and sidsi
i = H(pidsi

i ‖k1‖ . . . ‖kn−1‖H(kn)), only Un computes additionally
kn ⊕ tR

n . The participants U1, . . . , Un−1 set M II
i = sidsi

i ‖Ti, Un sets M II
n =

kn ⊕ tR
n ‖sidsn

n ‖Tn and each Ui computes a signature σII
i of M II

i .
Broadcast Each Ui broadcasts (M II

i ‖σII
i ).

Check Firstly, each Ui checks all signatures σII
j of incoming messages. Then

each Ui checks if T1 ⊕ · · · ⊕ Tn = 0 and sidsi
i = sid

sj

j (j = 1, . . . , n).
Moreover, each Ui (i < n) checks the commitment H(kn) for kn.

Key computation: Each participant Ui computes the session key sksi
i =

H(pidsi
i ‖k1‖ . . . ‖kn).

Fig. 3. A secure group key agreement protocol.

also possible in the protocol of Kim et al., however in the second round and only
for the participants except Un. One may argue that stronger security require-
ments on the key agreement property of the protocol should be imposed, so that
the adversary cannot predetermine any bit of the session key (cf. [MWW98]).
Transforming the above protocol accordingly is possible for the price of slightly
increasing the computational effort of the involved parties: Instead of broad-
casting the ki-values in Round 1, in the first round only commitments H(ki) are
sent and the ki values are transmitted in the second round. However, the present
protocol fulfills the requirements according to Definition 6.

Proposition 2. Suppose that the CDH assumption holds for (G, g), H(·) is a
random oracle and the underlying signature scheme is existentially unforgeable
under adaptive chosen message attacks. Then the protocol in Figure 3 is a secure
group key agreement in the sense of Definition 7.

Proof. Let qs and qro be polynomial bounds for the number of the adversary’s
queries to the Send respectively the random oracle. We begin by defining three
events that will occur in several places throughout the proof, and we give bounds
for the probability of these events that are negligible in k.

Forge is the event that the adversary succeeds in forging an authenticated mes-
sage MU‖σU for participant U without having queried Corrupt(U) and where
MU was not output by any of U ’s instances. An adversary A that can reach
Forge can be used for forging a signature for a given public key: This key is
assigned to one of the n principals and A succeeds in the intended forgery
with probability ≥ 1

n ·P (Forge). Thus, using A as black box we can derive an
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attacker defeating the existential unforgeability of the underlying signature
scheme S with probability

Advcma
S ≥ 1

n · P (Forge)
⇐⇒ P (Forge) ≤ n · Advcma

S .

Here Advcma
S denotes the advantage of the adversary in violating the exis-

tential unforgeability under adaptive chosen message attack of the signature
scheme, which is negligible by assumption. Thus, the event Forge occurs with
negligible probability only.

Collision is the event that the random oracle produces a collision. A Send query
causes at most 3 random oracle calls. Thus, the total number of random
oracle queries is bounded by 3qs + qro and the probability that a collision of
the random oracle occurs is

P (Collision) ≤ (3qs + qro)2

2k
,

which is negligible in k.
Repeat is the event that an uncorrupted participant chooses a nonce ki that

was previously used by an oracle of some principal. There are at most qs

used oracles that may have chosen a nonce ki and thus Repeat happens with
a probability

P (Repeat) ≤ q2
s

2k
,

again negligible in k.

Security. To prove the security according to Definition 3, we consider a sequence
of games. In these games we let the adversary A interact with a simulator, that
in Game 0 offers the original protocol environment to A, and subsequently we
change the simulator’s behavior in several small steps without affecting A’s suc-
cess probability significantly. Keeping track of the changes between subsequent
games, in the last game we will be able to derive the desired negligible upper
bound on AdvA.
Game 0: In this game the protocol participants’ instances are faithfully simu-
lated for the adversary, i. e., the adversary’s situation is the same as in the real
model.

AdvGame 0
A = AdvA.

Game 1: This game is aborted if one of the events Forge, Collision or Repeat

occurs. Otherwise the game is identical with Game 0 and the adversary cannot
detect the difference. Thus, for adversary A’s advantage we have

|AdvGame 1
A − AdvGame 0

A | ≤ P (Forge) + P (Collision) + P (Repeat).

Game 2: This game differs from Game 1 in the simulator’s response in Round 2.

If the simulator has to output the message of an instance Πsi
i and none of the
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neighbors Ui−1 or Ui+1 is corrupted, then the simulator chooses random values
from {0, 1}k for tLi = tRi−1 and tRi = tLi+1 instead of querying the random oracle.
To keep consistent, the same values have to be used in the neighbored instances
subsequently. By the random oracle assumption, the adversary can only detect
the difference by querying the random oracle for yxi

i−1 = y
xi−1
i . The adversary

cannot know xi or xi−1 because Ui and Ui−1 are uncorrupted and the messages
cannot have been forged by the adversary through the modification in Game 1.

An adversary A that distinguishes Game 1 and Game 2 can be used as
black box to solve a CDH instance. Two instances Πsi

i and Π
sj

j are selected
by randomly choosing two different users Ui, Uj ∈ P and two numbers si, sj ∈
{1, . . . , qs}. A given CDH instance (ga, gb) is then assigned to Πsi

i and Π
sj

j such
that these instances will use ga respectively gb as their message for the first
round. Then a random index z ∈ {1, . . . , qro} is chosen and the adversary’s z-th
query to the random oracle is taken for the answer to the CDH challenge. The
answer to the CDH challenge is correct if A distinguished the games and si, sj

and z were determined correctly. So we have

|AdvGame 2
A − AdvGame 1

A | ≤ SuccCDH
(G,g) · qro · q2

s ,

where Succ(G,g) is an—under the CDH assumption existing—negligible upper
bound for the success probability of the above algorithm to solve CDH.

Game 3: In this game the simulator changes the computation of the session
key. Having received all messages of Round 2 for an instance Πsi

i , the simulator
checks if all Uj ∈ pidsi

i are uncorrupted. If so, then the simulator chooses a
session key sksi

i ∈ {0, 1}k at random instead of querying the random oracle.
For consistency the simulator will later assign the same key to all partnered
instances.

The only way for the adversary to detect the difference is by querying the
random oracle for H(pidsi

i ‖k1‖ . . . ‖kn). However, about kn only H(kn) is known
to the adversary. Thus, the adversary can only guess a random value for kn and
query the random oracle at most qro times. This results in:

|AdvGame 3
A − AdvGame 2

A | ≤ qro

2k
.

None of the partners of the adversary’s Test-instance are allowed to be cor-
rupted or revealed (see Definition 3). Thereby, those instances were affected in
Game 3 and use a random value as session key. Therefore, the adversary has
only a probability of 1

2 for guessing the bit of Test, yielding AdvGame 3
A = 0.

Putting the probabilities together we recognize the adversary’s advantage in the
real model as negligible:

AdvA ≤ P (Forge) + P (Collision) + P (Repeat) + SuccCDH
(G,g) · qro · q2

s +
qro

2k
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Integrity. Let NoIntegrity be the event that some instance violates the condition
imposed in Definition 4. To determine the probability of NoIntegrity let Ui and Uj

be any two honest principals whose instances Πsi
i and Π

sj

j accept (accs
i = true)

with a matching session identifier sid := sidsi
i = sid

sj

j . The session identifier sid is
unique if uncorrupted principals contributed fresh nonces ki (unless Repeat) and
the random oracle is collision-free (unless Collision). Moreover the messages of
uncorrupted principals cannot be forged (unless Forge) by the adversary. Thus
Πsi

i and Π
sj

j must have received each other’s message sidsi
i ‖Ti‖σII

i respectively
sid

sj

j ‖Tj‖σII
j , where necessarily sid := sidsi

i = sid
sj

j matched due to the check
phase.

The construction of sid assures that Πsi
i and Π

sj

j hold the same pid :=
pidsi

i = pid
sj

j (obtained in the respective instance’s initialization) and know the
same values k1, . . . , kn−1 and H(kn). Again by collision-freeness of the random
oracle, Πsi

i and Π
sj

j have received the same kn and therewith compute the same
session key sksi

i = sk
sj

j . Thus, putting things together we obtain the desired
negligible upper bound

P (NoIntegrity) ≤ P (Collision) + P (Repeat) + P (Forge).

Entity authentication. Let EntAuthFail be the event that strong entity authenti-
cation fails. We consider entity authentication in Game 1. Let Ui be any principal
with an instance Πsi

i that has accepted. It is easy to see that entity authentica-
tion is provided to Πsi

i : Since Πsi
i has accepted, in Round 2 it received messages

including the session identifier sid from all principals U ∈ pidsi
i (unless Forge). As

above, in absence of Collision, Repeat and Forge, the session identifier is unique
and the message cannot be replayed from a past session. Thus every honest part-
ner holds the same session identifier sid and for the reasons stated above also
the partner identifiers pidsi

i and pid
sj

j match. Therewith entity authentication is
violated with a probability

P (EntAuthFail) ≤ P (Collision) + P (Repeat) + P (Forge).

Key Agreement. The values relevant for deriving the session key are only the
values ki that participant Ui chooses in the first round. An honest participant
chooses a fresh value with probability 1 − P (Repeat). Thus a corrupted partic-
ipant Un, who can know the inputs of U1, . . . , Un−1 can only choose between a
polynomial set of keys, bounded by the number of random oracle queries qro.

Finally, correctness of the protocol in Figure 3 is straightforward, and hence
the proposition follows.

ut

5 Conclusion

Building on established models for analyzing group key establishment protocols,
the tools suggested in this paper offer a possibility to explore security properties
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of group key establishment protocols in the presence of malicious participants.
The introduced framework in particular allows to show that a protocol proposed
by Katz and Yung in [KY03] offers security guarantees against a single malicious
participant “for free”, whereas a proposal of Kim, Lee and Lee [KLL04] fails to do
so. However, as shown in the last section, security against malicious participants
is achievable in two rounds: without sacrificing efficiency, the discussed proposal
of [KLL04] can be modified to offer rather strong security guarantees even in the
presence of malicious participants.
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