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Abstract. Identity-based (ID) cryptosystems avoid the necessity of cer-
tificates to authenticate public keys in a digital communications system.
This is desirable, specially for these applications which involve a large
number of public keys in each execution. For example, any computation
and verification of a ring signature, where a user anonymously signs a
message on behalf of a set of users including himself, requires to authen-
ticate the public keys of all the members of the set.

We use bilinear pairings to design a new ID-based ring signature scheme.
We extend to the ID-based scenario some known results about the secu-
rity of generic ring signature schemes. This allows us to formally prove
the security of our scheme, under the assumption that the Computational
Diffie-Hellman problem is hard to solve.

1 Introduction

In a ring signature scheme, a user forms a set (or ring) of users which contains
himself, and anonymously computes a signature on behalf of the whole ring.
Any verifier must be convinced that the signature has been computed by some
member of this ring, but he has no information about who is the actual author
of the signature.

In real applications, however, the public keys of the users are authenticated
via a Public Key Infrastructure (PKI) based on certificates. Therefore, the signer
must first verify that the public keys of the ring correspond to the identities of
the users that he wants to include on the ring. Later, the verifier must first check
the validity of the certificates of all the public keys of the members of the ring.

This necessary management of digital certificates substantially increases the
cost of both generation and verification of a ring signature. Thus, any possible
alternative which avoids the necessity of digital certificates is welcome in order
to design efficient ring signature schemes in particular, and efficient public key
cryptosystems in general.

Shamir introduced in 1984 the concept of identity-based cryptography (from
now on, ID-based) [14]. The idea is that the public key of a user can be publicly
computed from his identity (for example, from a complete name, an e-mail or
an IP address). Then, the secret key is derived from the public key. In this way,



digital certificates are not needed, because anyone can easily verify that some
public key PKy corresponds in fact to user U.

The process that generates secret keys from public keys must be executed by
an external entity, known as the master. Thus, the master knows the secret keys
of all the users of the system. A way to relax this negative point could be to
consider a set of master entities which share the secret information. A different
approach is that of Certificateless Public Key Cryptography [2], which avoids
this key escrow property, but loosing in some way the ID-based property.

In this work we present a provably secure ID-based ring signature scheme,
based on bilinear pairings. Let us do a brief overview of some works related to
ring signatures.

The first proposals of ring signature schemes are previous to the formal defi-
nition of this concept. They can be found in [6, 5] and they are used as a tool to
construct group signature schemes. They use zero-knowledge proofs and witness
indistinguishable proofs of knowledge for disjunctive statements (introduced in
[7,8]).

In [13], Rivest, Shamir and Tauman formalize the concept of ring signature
schemes, and propose a scheme which they prove existentially unforgeable un-
der adaptive chosen-message attacks, in the ideal cipher model, assuming the
hardness of the RSA problem.

Bresson, Stern and Szydlo give in [4] a simpler proof of the security of the
scheme in [13], under the strictly weaker assumption of the random oracle model.
They propose as well a threshold ring signature scheme, in which a set of ¢ users
sign a message on behalf of a ring that contains themselves, in such a way that
the verifier is convinced of the participation of ¢ users in the generation of the
signature, but he does not obtain any information about which ¢ users have in
fact signed the message.

In [1], Abe, Ohkubo and Suzuki design some general ring signature schemes
where the public keys of the users can be totally independent: different sizes,
different types of keys (RSA keys, discrete logarithm keys...).

Herranz and Saez [11] give some security results for generic ring signature
schemes, and they design a new specific scheme based on Schnorr’s signature
scheme.

Finally, the only ID-based ring signature scheme proposed until now (as far
as we know) is the one by Zhang and Kim [15]. Their scheme is also based on
pairings. Although the authors do not provide a formal proof of the existential
unforgeability of their scheme, such a proof can be found in [10].

We extend to the ID-based scenario the results of Herranz and Séez in [11]
(the so called ring forking lemmas). We propose then a new ID-based ring signa-
ture scheme. Since this scheme is generic, we can use these results to provide a
formal proof of the existential unforgeability of our scheme under chosen message
attacks in the ID-based model, assuming that the Computational Diffie-Hellman
problem is hard to solve.

The paper is organized as follows. In Section 2 we explain the mathematical
background that we need for designing our scheme. In Section 3 we review the



properties that a ring signature scheme must satisfy, and we recall some known
results about generic ring signature schemes. Then, we present our ID-based
ring signature in Section 4. We prove the security of this scheme in Section 5,
by using a new ring forking lemma for the ID-based scenario. The conclusions
of the work are presented in Section 6.

2 ID-Based Schemes from Pairings

Let Gy be an additive group of prime order g, generated by some element P. Let
Go be a multiplicative group with the same order gq.
A pairing is amap e : G x Gy — Gy with the following three properties:

1. It is bilinear, which means that given elements A, Ay, A3 € Gy, we have
that €(A1 +A2, Ag) = e(Al, Ag) '6(A27 Ag) and G(Al, A2 + A3) = 6(1417 A2) .
e(A1, A3). In particular, for all a,b € Z,, we have e(aP,bP) = e(P, P)* =
e(P,abP) = e(abP, P).

2. The map e can be efficiently computed for any possible input pair.

3. The map e is non-degenerate: there exist elements Ay, Ay € Gy such that

e(Al, AQ) ;é ].(;,2 .

Combining properties 1 and 3, it is easy to see that e(P, P) # 1g, and that
the equality e(A;, P) = e(A,, P) implies that A; = A,.

The typical way of obtaining such pairings is by deriving them from the Weil
or the Tate pairing on an elliptic curve over a finite field. The interested reader
is referred to [16] for a complete bibliography of cryptographic works based on
pairings.

Let Hy : {0,1}* — G1 — {0} be a hash function. The most usual way to
design an ID-based cryptosystem is the following. The master has a secret key
T € Zy, and he publishes the value Y = zP € G .

Every user U of the ID-based system has an identifier IDy € {0,1}*, that
can be an IP address, a telephone number, an e-mail address, etc. The public key
of U is then defined to be PKy = H1(IDy) € Gy — {0}. In this way, everybody
can verify the authenticity of a public key without the necessity of certificates.

The user U needs to contact the master to obtain his secret key SKy =
xPKy € Gy . The drawback of this approach, as mentioned in the Introduction,
is that the master must be completely trusted, because he knows the secret keys
of all the users.

2.1 The Computational Diffie-Hellman Problem

We consider the following well-known problem in the group G, of prime order
q, generated by P:

Definition 1. Given the elements P, aP and bP, for some random values a,b €
Ly, the Computational Diffie-Hellman (CDH) problem consists of computing the
element abP.



The Computational Diffie-Hellman Assumption asserts that, if the order of
Gy is ¢ > 2%, then any polynomial time algorithm that solves the CDH problem
has a success probability pr which is negligible in the security parameter k. In
other words, for all polynomial f(), there exists an integer kq such that py < ﬁ,
for all k& > kq.

The security of the ID-based ring signature scheme that we propose in this

work is based on the CDH Assumption.

3 Ring Signatures

The idea of a ring signature is the following: a user wants to compute a signature
on a message, on behalf of a set (or ring) of users which includes himself. He
wants the verifier of the signature to be convinced that the signer of the message
is in effect some of the members of this ring. But he wants to remain completely
anonymous. That is, nobody will know which member of the ring is the actual
author of the signature.

These two informal requirements are ensured, if the scheme satisfies the fol-
lowing properties:

1. Anonymity: any verifier should not have probability greater than 1/n to
guess the identity of the real signer who has computed a ring signature on
behalf of a ring of n members. If the verifier is a member of the ring distinct
from the actual signer, then his probability to guess the identity of the real
signer should not be greater than 1/(n — 1).

2. Unforgeability: among all the proposed definitions of unforgeability (see
[9]), we consider the strongest one: any attacker must have negligible prob-
ability of success in forging a valid ring signature for some message m on
behalf of a ring that does not contain himself, even if he knows valid ring
signatures for messages, different from m, that he can adaptively choose.

3.1 Forking Lemmas for Generic Ring Signature Schemes

Herranz and Séez define in [11] a class of ring signature schemes that they call
generic. Consider a security parameter k, a hash function which outputs k-bit
long elements, and a ring Y = {Uy,...,U,} of n members. Given the input mes-
sage m, a generic ring signature scheme produces a tuple (U, m, Ry, ..., Ry, hq,...

The elements Ry, ..., R, (randomness) take their values randomly in some
large set in such a way that R; # R; for all ¢ # j; h; is the hash value of
(U, m, R;), for 1 <4 < n; and the value o is fully determined by Ry,..., R, h,...
and the message m.

Another required condition is that no R; can appear with probability greater
than 2/2%, where k is the security parameter.

These generic ring signature schemes are the natural extension of the generic
signature schemes considered by Pointcheval and Stern in [12]. The last authors
invented the forking lemmas in order to prove the security of generic signature
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schemes. In [11], these lemmas are extended to the ring’s scenario, in order to
show the security of generic ring signature schemes.

We mention here the basic ring forking lemma. This lemma is also extended
in [11] to the chosen message attacks’ scenario. Analogously, we will extend it,
in Section 5.1, to a chosen message ID-based scenario, suitable for proving the
security of generic ID-based ring signature schemes.

Theorem 1. (Basic Ring Forking Lemma, [11]) Consider a generic ring sig-
nature scheme with security parameter k, and let i be the mazimum number of
members of a possible ring. Let the forger A be a probabilistic polynomial time
Turing machine whose input only consists of public data and which can ask Q
queries to the random oracle, with () > 1. We denote as Vg 5 the number of
fi-permutations of Q) elements, that is, Vogn = Q(Q —1)-...- (Q —n + 1).
We assume that, within time bound T, A produces, with probability of success
e> 1 ‘2/,?’;‘ , a valid ring signature (U, Ry, ..., Ry, h1,..., hpn,0).
Then, within time T' < M, and with probability ¢' > %, a replay of
this machine outputs two valid ring signatures (U, Ry,...,Rp,h1,-..,hy,0) and
(U,Ry,... ... s Ry, by, oo, by, 0') such that hy # by, for some j € {1,...,n} and
hi =h} for alli=1,...,n such that i # j.

The idea in the proof of this theorem is to execute many times the machine
A, with the same random tape but with different random oracles for the hash
function. After a certain number of executions and with a certain probability, we
obtain a new valid ring signature of the same message, with the same randomness
but with a different random oracle which has the same outputs than the first one
for all the inputs {(U,m, R;) }1<i<n,iz; except one, (U, m, R;), for which they
have different outputs.

In [11] the authors propose a specific generic ring signature scheme. They
use the ring forking lemmas to show that this scheme is secure, assuming that
the discrete logarithm problem in subgroups of prime order is hard to solve.

In next section, we present an ID-based ring signature scheme which is also
generic. Therefore, we could use a new ID-oriented ring forking lemma to show
that this new scheme is secure, assuming that the Computational Diffie-Hellman
problem is hard to solve.

4 Our ID-Based Ring Signature Scheme

In this section we present a new ID-based ring signature scheme. As the one
proposed by Zhang and Kim in [15], our scheme is based on bilinear pairings.
However, the design of the scheme follows the idea of the Schnorr ring signature
scheme, not ID-based, proposed in [11].

Setup: let G; be an additive group of prime order g, generated by some element
P. Let Gy be a multiplicative group with the same order q. We need ¢ > 2,
where k is the security parameter of the scheme. Let e : Gy x Gi — Go be a
pairing as defined in Section 2. Let H; : {0,1}* — G} and Hs : {0,1}* = Z, be



two hash functions (in the proof of security, we will assume that they behave as
random oracles [3]).

The master entity chooses at random his secret key « € Zj and publishes the
value Y = zP.

Secret key extraction: a user U, with identity I Dy, has public key PKy =
H,(IDy). When he requests the master for his matching secret key, he obtains
the value SKy = zPKy.

Ring Signature: consider a ring U = {Uy,...,U,} of users; for simplicity we de-
note PK; = PKy, = Hi1(IDy,). If some of these users Uy, where s € {1,...,n},
wants to anonymously sign a message m on behalf of the ring U/, he acts as
follows:

1. Foralli € {1,...,n}, i # s, choose A; uniformly and at random in G}, pair-
wise different (for example, by choosing a; € Zj at random and considering
A; = a;P). Compute R; = e(A;,P) € Gs and h; = Hy(U,m, R;), for all

2. Choose a random A € G;.

3. Compute R; = e(A,P)-e(-Y, > h;PK;). If R, = 1g, or R, = R; for some

1£S8
i # s, then go to step 2. g
4. Compute hy = Hy(U, m, Ry).
5. Compute 0 = hySK; + A+ Y A;.
i#s

6. Define the signature of the message m made by the ring Y = {Uy,..., Uy}

to be U, m,Ry,...,Ru, h1,...,hn,0).

In fact, the values h; can be publicly computed from the ring I/, the message m
and the values R;. We include them in the signature for clarity in the treatment
of the security of the scheme.

Verification: the validity of the signature is verified by the recipient of the mes-
sage by checking that h; = Hy(U, m, R;) and that

n
e(0,P)=Ry-...-Ry-e(Y,) hiPK;) .
i=1
4.1 Correctness and Unconditional Anonymity

The property of correctness is satisfied. In effect, if the ring signature has been
correctly generated, then:

Rl'. . Rne(Y, i thKz) = 6(A+Z A,’, P)-e(—Y, Z h,PKz)e(Y, i h,PK,) =
i=1 i#£s i£s i=1



=e(A+ > Ay, P)-e(Y,h,PK,) =e(A+ Y A;,P)-e(P,hyaPK,) =
i#£s i#£s
=e(A+ ) Ai+h.SK, P)=¢(o,P) .
i#s

The unconditional anonymity of the scheme is also easy to prove. Intuitively,
the scheme is completely symmetric. Therefore, for a valid ring signature on
behalf of a ring U, the probability that a specific user in I/ is the actual author
of the signature is the same for all the members of /. Specifically, if the ring has
n. members, this probability is

1 1 1 1
g—1 ¢g—2 7 g—-n+1 g—n

which does not depend on the considered member of U.

So we can conclude that any attacker outside a ring of n possible users has
probability 1/n to guess which member of the ring has actually computed a
given signature on behalf of this ring.

5 Security Analysis

We must consider the most powerful attack against an ID-based ring signature
scheme, that we call chosen message and identities attack. Such an attacker A
is allowed to:

— make @); queries to the random oracle H; and @2 queries to the random
oracle Hs;

— ask for the secret key of (). identities of its choice (extracting oracle);

— ask @), times for valid ring signatures, on behalf of rings of its choice, of
messages of its choice (signing oracle).

The total number of queries must be polynomial in the security parame-
ter. The attacker is successful if it outputs, in polynomial time and with non-
negligible probability, a valid ring signature (U, m, Ry,...,Rp, h1,...,hy,o) for
some message m and some ring of users U = {Uy,..., Uy} such that:

— the attacker has not asked for the secret key of any of the members of the
ring U;

— the attacker has not asked for a valid ring signature, on behalf of the ring
U, of message m.

5.1 A New Ring Forking Lemma

In this section we introduce a new ring forking lemma that considers attack-
ers, with the capabilities listed above, against ID-based generic ring signature
schemes. We consider that public key of any user U is PKy = H:(IDy). Now
the hash function inherent to the generic ring signature scheme is Hsy. In the
security proof, we consider that both H; and H» behave as random oracles.



Theorem 2. (ID-Oriented Chosen Message Ring Forking Lemma). Consider
a generic, and ID-based, ring signature scheme with security parameter k, and
let . be the mazimum number of members of a ring. Suppose that both wvalid
ring signatures and consistent pairs of secret-public keys can be simulated, with
a polinomially indistinguishable distribution of probability and without knowing
the master secret key.

Let A be a probabilistic polynomial time Turing machine. We denote by
Q1,Q2,Q. and Qs the number of queries that A can ask to the random or-
acles Hy and Hy and to the extracting and signing oracles, respectively. As-

sume that, within time bound T, A produces, with probability of success € >
12 Vo, at 10(Q1+Q )+ 10(Q2+7Q,)*

such that A has not asked for the secret key of any of the members of U, and
has not asked for a valid ring signature of m on behalf of the ring U.

Then there is another probabilistic polynomial time Turing machine B which
produces, with probability &' > % and in time T' < M, two wvalid ring
signatures (U, Ry,...,Rn,h1,...,hpn,0) and (U, Ry, ..., Rn,h},...,hl,0") such
that hj # h);, for some j € {1,...,n} and h; = h; for all i =1,...,n such that

i3]

Proof. We consider a machine B that executes the machine 4, in such a way that
B simulates all the environment of A. Therefore, B must simulate the interactions
of A with the random, extracting and signing oracles. Then we could see B as a
machine performing a no-message attack against the ring signature scheme.

When A asks the extracting oracle for the secret key corresponding to some
identity ID, the machine B runs the extracting simulator to obtain consistent
pairs SKrp and PKrp. He sends the value SK;p to A. Furthermore, B con-
structs a random oracle H; by storing in a “random oracle list” the relations
H,(ID) = PKip.

When 4 makes a query ID to the random oracle H;, B looks for the value
ID in this random oracle list. If the value is already in the list, then B returns to
A the corresponding H; (ID). Otherwise, B chooses a random value PK, sends
it to A and stores the relation H; (ID) = PK in the list.

There is some risk of “collisions” of queries to the random oracle H;. Here we
must have that the outputs of H; belong to a group with order greater than 2%,
where k is the security parameter. As well, the public keys PK obtained from
the extracting simulator must be uniformly distributed in this group. Therefore,
a determined PK appears with probability less than 1/2.

Three kinds of collisions can happen:

— A value PKp that the extracting simulator outputs, has been already given
to A as the answer of some previous query to the random oracle H;. In this
case, it is quite unlikely that the relation H;(ID) = PKp corresponding
to the values output by the simulator matches with the relation previously
stored in the random oracle list. The probability of such a collision is, how-

ever, less than Q1 - Q. - 5 < 5.

, a valid ring signature (U,m, Ry, ..., Ry, h1,...

Jhnaa);



— A value PK;p, that the extracting simulator outputs is exactly equal to
another value PKp, also output by this simulator. The probability of this
2
collision is less than Q2 cae < £
— Two answers PK; and PK, of the random oracle H; chosen at random by

B are exactly equal, while the two corresponding inputs ID; and ID, are

2

different. The probability of such an event is less than % . 2% < 55

On the other hand, when A asks for a valid ring signature for some message
m{9) and some ring of n; < f users Y ) (possibly repeated), B uses the signature
simulator and sends to A the resulting tuple (4, m(), jo), e, R%), hgj), e, h%jj), o).
Then B constructs another random oracle Hy by storing in a different list the
relations Hg(u(j),m(j),Rz(j)) = hgj).

When A makes a query (U4, m, R) to the random oracle Hy, B looks for the
value (U, m, R) in the random oracle list. If the value is already in the list, then
B returns to A the corresponding Ho (U, m, R). Otherwise, B chooses a random
value h, sends it to A and stores the relation Ho (U, m, R) = h in the list.

Analogously to what happens with random oracle H;, there can be collisions
in the management of the random oracle Hs by the machine B. Recall that we
made the assumption that no R; can appear with probability greater than 2/2*
in a generic ring signature. If the simulator outputs ring signatures which are
indistinguishable of the ones produced by a real signer of the ring, then we have
that no Rz(]) can appear with probability greater than 2/2F in a simulated ring

signature, too. Since the values hgj )

we have that a determined hl(j)
with probability less than 1/2F.

Again, three kinds of collisions can occur:

are the outputs of the random oracle, then

appears in a ring signature (real or simulated)

— A tuple (U(j),m(j),Rz(j)) that the signing simulator outputs, as part of a
simulated ring signature, has been asked before to the random oracle Hy by
A. The probability of such a collision is less than Q2 - Q)5 - 2% <15

— A pair (L{(jl),m(jl),Rgl)) that the simulator outputs, as part of a sim-

ulated ring signature, is exactly equal to another pair (Z/{(ﬁ),m(”),Rgf))
also output by the simulator. The probability of this collision is less than
(an) L2 < £

2F = 10
— Two answers hy and hg of the random oracle Hy chosen at random by B
are exactly equal, while the two corresponding inputs (4, m™) R;) and

U, m? Rz) are different. The probability of such an event is less than

(Q2 +nQ ) <
2 —

Altogether, the probability of collisions is less than 8¢/20 = 2¢/5. Now we
can compute:

Pr[B succeeds] = Pr[no-collisions in the simulations and A succeeds] >



2
> Pr[A succeeds | no-collisions ] — Prcollisions] > ¢ — EE = % .

Summing up, we have a machine B that performs a no-message attack against
the ring signature scheme with time bound 7' (plus the execution time of the

extracting and signing simulators, that we consider negligible with respect to T")
and with probability of success greater than 3{ > 7V2Q,3’ﬁ . So we can use Theorem
1 applied to the machine B, and we will obtain, with probability greater than
1/9 and in time bounded by wzg%ﬁr[ < ZVe2nT 416 two desired valid ring
signatures. O

5.2 TUnforgeability of the Scheme

We prove that the existence of a successful attack against our scheme could
be used to solve the Computational Diffie-Hellman problem in G; (a proof by
reduction). Since this problem is assumed to be hard, we conclude that there
does not exist such an attack. In this way, our scheme is proved to be existentially
unforgeable under chosen message and identities attacks.

Theorem 3. Let k be a security parameter, and let the order of Gy be g > 2F.
Let A be a probabilistic polynomial time Turing machine attacking our ID-based
ring signature scheme. We denote by QQ1,Q2,RQ. and Qs the number of queries
that A can ask to the random oracles Hy and Hs and to the extracting and
signing oracles, respectively. We denote by 7 the mazimum cardinality of the
rings for which A asks for a valid signature.

Assume that A produces, within time bound T' and probability of success € >
12 Vg,.at 10(Q14Q.)°+ 10(Q247Q.)°
k

2
such that A has not asked for the secret key of any of the members of U, and
has not asked for a valid ring signature of m on behalf of the ring U.

Then the Computational Diffie-Hellman problem in Gy can be solved with

probability ' > 55~ and in time T' < W

Proof. The first comment to be noted is that, since we are in the random oracle
model, with overwhelming probability, the attacker .4 has asked the random
oracle H; for the identities of all the members of the ring U.

Note also that our ID-based scheme is a suitable generic ring signature
scheme, satisfying that any randomness value R; € G appears in a ring sig-
nature with probability less than q%l < 2%, as required.

The simulation of an ID-based ring signature for a message m and a ring
U={U,...,Up,} goes as follows:

1. Choose at random an index s € {1,...,n}.

2. For all i € {1,...,n}, i # s, choose A; at random in G}, pairwise different.
Compute R; = e(4;, P), for all i # s.

Choose independently and at random hy, ho, ..., h, in Z,.

4. Choose at random o € Gy .

@

, a valid ring signature (U,m,Ry,..., Ry, h1,...



n
5. Compute R; =e(oc— Y A;, P)-e(-Y, Y hiPK;). If Ry =1 or R, = R; for
iZs i=1
some i # s, then go to step 4.
6. Return the tuple (U, Ry,...,Rn,h1,...,hy,0).

It is easy to see that this simulation runs in polynomial time. If we impose
Hy(m, R;) = h; (we are in the random oracle model), for all ¢ € {1,...,n}, then
the returned tuple is a valid ring signature of the message m.

Furthermore, the distribution of ring signatures generated by using the pro-
tocol explained in Section 4, and the distribution of ring signatures simulated as
above are polynomially indistinguishable.

On the other hand, to simulate consistent pairs of secret-public keys to answer
the Q. extraction queries {ID;}1<;j<q. of the attacker, one chooses random
elements z; € Z; and computes, for all 1 < j < @, the values PK; = z;P
and SK; = z;Y, where Y is the master public key. If we impose H;(ID;) =
PKj, then the resulting pairs are consistent. Furthermore, the values PK; are
uniformly distributed in G}, which has order > 2F, as required in the proof of
Theorem 2.

Recall that we are assuming that our scheme is not secure: there exists some
chosen message and identities attack .A with non-negligible probability of success.
Then we can apply Theorem 2 to our ID-based ring signature scheme. The idea
is to guess which will be the identity ID; corresponding to the only member of
the ring U such that h; # h;- in the two ring signatures obtained from applying
Theorem 2. If the guess is correct, we will be able to solve the CDH problem.

In effect, let (P,aP,bP) be the input of an instance of the CDH problem in
Gy . We set Y = aP. We choose at random a value £ € {1,2,...,Q1}. When the
attacker A makes his ¢-th query to the random oracle H;, with some identity
ID,, we impose PKy, = H,(ID;) = bP, and send this value to the attacker.

Later, if the attacker would ask for the secret key of I.D,, then the algorithm
solving the CDH problem outputs “fail”. For the rest of identities, one can
simulate consistent answers to the secret key extraction queries, as explained
above.

With probability 1/Q);, our guess is correct, and the public key PK, cor-
responds to the only member U; € U such that h; # h;- in the two obtained
ring signatures. In particular, this means that the attacker has not asked for the
secret key matching with PK,, and so the CDH-solver has not output “fail”.

Summing up, with probability &’ > %-&, we obtain two valid ring signatures
(U,Rl,. ..,Rn,hl,. ..,hn,O') and (U,Rl,.. .,Rn,hll,.. .,h’n,a’) such that hj 7é
h;, for some j € {1,...,n} and h; = h; for all i = 1,...,n such that i # j.
Furthermore, the public key PK; of user U; is equal to PK; = bP. Then we
have that

e(6,P)=Ry-... Ry -e(Y,hiPK}) - ... e(Y,h,PK,)

e(o',P)=Ry ... R, -e(Y,h,PK;) - ...-e(Y,h,PK,)



Dividing these two equations, we obtain e(c — o', P) = e(Y, (h; — h};) PK;) =
e(aP, (hj — h})bP) = e(ab(h; — h})P, P). Since the pairing is non-degenerate,
this implies that o — o' = ab(h; — h);)P. Therefore, we find a solution of the
CDH problem by computing

1

abP = m(a—a’) .

6 Conclusions and Future Work

We have proposed in this work a new ID-based ring signature scheme, based on
bilinear pairings. Our scheme is a generic ring signature scheme, according to
the definition given in [11]. This allows us to use some security results provided
in [11] for this kind of ring schemes.

More specifically, we adapt their results (known as ring forking lemmas, fol-
lowing the work of [12]) to an ID-based scenario. Therefore, we can apply this
extended result to our proposed scheme. In this way we prove that it is existen-
tially unforgeable under chosen message and identities attacks, assuming that
the Computational Diffie-Hellman problem is hard to solve.

The reduction of this proof is not quite efficient; that is, the relation between
both the success probabilities and the execution times of the forger and the
CDH-solver algorithms is far to be tight. This is a consequence of the use of the
ring forking lemmas. Any improvement in this direction will be very positive
from both theoretical and practical points of view.

Another possible line of future research is to design and analyze ring signature
schemes in the Certificateless Public Key model, recently introduced in [2].
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