

Analysis of Implementation of HIEROCRYPT–3 algorithm
(and its comparison to CAMELLIA algorithm)

using ALTERA devices.

Marcin ROGAWSKI
Military University of Technology

Institute of Mathematics and Cryptology
Faculty of Cybernetics

mailto:mrogawski@poczta.onet.pl

June 2003

mailto:mrogawski@poczta.onet.pl

Table of contents:

Introduction... 3
1. Short description of the HIEROCRYPT-3 cipher ... 3

1.1 Round of encryption... 4
1.2.1 Intermediate key generation procedure .. 5
1.2.2 Round key generation procedure.. 6
1.2.3 Table of key schedule (128 – bit main key) ... 7

1.3 Encryption .. 9
1.4 Decryption.. 9

2. Analysis of the HIEROCRYPT-3 main components ... 10
2.1 Round of encryption and decryption.. 10

2.1.1 Substitution boxes .. 10
2.1.2 MDS lower level .. 11
2.1.3 MDS higher level ... 12

2.2 Key schedule ... 12
2.2.1 P(n) – function ... 12
2.2.2 M5E – function .. 12
2.2.3 MB3 – function.. 12
2.2.4 Fσ – function .. 13

3. Implementation of the HIEROCRYPT-3 algorithm... 14
3.1 Designing criteria – main assumptions of implementation... 14
3.2 TOSHIBA Corp. project and its results .. 15
3.3 Implementation of HIEROCRYPT-3 with short setup ... 16
3.4 Implementation of HIEROCRYPT-3 with long setup .. 16
3.5 Implementation of HIEROCRYPT-3 with very long setup .. 17
3.6 Extensive implementation of HIEROCRYPT-3 ... 18
3.7 Summary of HIEROCRYPT-3 cipher implementation. .. 19

4. CAMELLIA algorithm and its implementation... 20
4.1 Structure of CAMELLIA algorithm.. 20

4.1.1 Encryption and decryption round.. 20
4.1.2 Key Schedule.. 22

4.2 Analysis of the CAMELLIA main components... 25
4.2.1 Substitution boxes .. 25
4.2.2 P – function ... 25
4.2.3 FL – function... 25
4.2.4 FL-1 - function ... 25

4.3 Implementation of the CAMELLIA and its results.. 26
4.3.1 Performance of CAMELLIA (Hardware Performance).. 26
4.3.2 Proposition of implementation of CAMELLIA. .. 26

5. Conclusions... 27
Acknowledgements... 29
Bibliography: .. 29

 2

Introduction

 Alghoritms: HIEROCRYPT-3, CAMELLIA and ANUBIS, GRAND CRU,

NOEKEON, NUSH, Q, RC6, SAFER++128, SC2000, SHACAL were requested for the

submission of block ciphers (high level block cipher) to NESSIE (New European Schemes for

Signatures, Integrity, and Encryption) project. The main purpose of this project was to put

forward a portfolio of strong cryptographic primitives of various types. The NESSIE project

was a three year long project and has been divided into two phases. The first was finished in

June 2001r. CAMELLIA, RC6, SAFER++128 and SHACAL were accepted for the second

phase of the evaluation process.

HIEROCRYPT-3 had key schedule problems [5, 7], and there were attacks for up to

3,5 rounds out of 6 [1, 3, 7], at least hardware implementations of this cipher were extremely

slow [12]. HIEROCRYPT-3 was not selected to Phase II.

CAMELLIA was selected as an algorithm suggested for future standard [10].

In the paper we present the hardware implementations these two algorithms with 128-

bit blocks and 128-bit keys, using ALTERA devices and their comparisons.

1. Short description of the HIEROCRYPT-3 cipher

 The HIEROCRYPT-3 block cipher algorithm was designed by TOSHIBA Corporation

and its detailed specification is given in [11]. We have implemented the version of the

algorithm with 128 bit blocks and 128 bit main key. The HIEROCRYPT-3 has 6 rounds and

each round needs two 128 bit subkeys and one 128 bit subkey is necessary to EXOR with the

text block at the end of the encryption process.

Structure of HIERCORYPT-3 cipher is based on “wide trail strategy” described by

Joan Deamen in his PhD in 1995 [4]. This paper suggested design strategies based on linear

and differential cryptoanalysis. In HIEROCRYPT-3: non-linearlity is represented by two

layers (2x16 simultaneously working sboxes) and linear layers are represented by matrices:

MDSL(operating on 4x32-bit word) and MDSH (operating on 128-bit block of data). In this

strategy, obviously, each round of encryption and decryption process is dependent on subkeys

(In HIEROCRYPT-3: twice EXOR with 2x128-bit subkey).

 3

1.1 Round of encryption

Fig. 1.1: Round of encryption

K1(128) – first 128-bit round key

K2(128) – second 128-bit round key

S – substitution box

mdsL – MDS lower level

MDSH – MDS higher level

XS – last round of encryption process (without MDSH).

 4

1.2 Key Schedule
The main part of key scheduling consists of the intermediate key generation part and

the round key generation part, preceded by the intermediate key initialization. The

intermediate key part recursively generates intermediate key outputs Z(t)
(256) (t = 1, 2,..., T+1),

and the round key generation part generates round keys K(t)
(256) (t = 1, 2,..., T+1) from the

corresponding intermediate keys.

Notations:

K – main key,

Z – intermediate key,

G(t)
(64) – constant for n-round,

X(n) – input binary value of size n,

Y(n) – output binary value of size n,

K1(64) || K2(64) || K3(64) || K4(64) = K(128) (Main key consists of four 64-bits values),

Z1(64) || Z2(64) || Z3(64) || Z4(64) = Z(128) (Intermediate key consists of four 64-bits values),

tturn – 4 for 128/192 bit main key, 5 for 256 bit key,

t – round number.

1.2.1 Intermediate key generation procedure

Iterative update of the intermediate key σ (1<= t <= tturn)

Z(t)
(256) = σ(Z(t-1)

(256) , G(t)
(64)),

definition of function:

W(t-1)
1(64) || W(t-1)

2(64) = P(32) (Z(t-1)
1(64) || Z(t-1)

2(64))

Z(t)
1(64) = Z(t-1)

2(64),

Z(t)
2(64) = Z(t-1)

1(64)⊕ Fσ (Z(t-1)
2(64)⊕ Z(t)

3(64)),

Z(t)
3(64) = M5E(W(t-1)

1(64)) ⊕ G(t)
(64),

Z(t)
4(64) = M5E(W(t-1)

2(64)).

 5

Iterative update of the intermediate key σ-1 (tturn +1<= t <= T+1)

Z(t)
(256) = σ-1(Z(t-1)

(256) , G(t)
(64)),

definition of function:

Z(t)
1(64) = Z(t-1)

2(64)⊕ Fσ (Z(t-1)
1(64)⊕ Z(t-1)

3(64)),

Z(t)
2(64) = Z(t-1)

1(64),

W(t)
1(64) = MB3(Z(t-1)

3(64) ⊕ G(t)
(64)),

W(t)
2(64) = MB3(Z(t-1)

4(64)),

Z(t)
3(64)|| Z(t)

4(64) = P(32) -1 (W(t-1)
1(64) || W(t-1)

2(64)).

1.2.2 Round key generation procedure

Key generation procedure for 1 ≤ t ≤ tturn.

V(t)
(64) = Fσ (Z(t-1)

2(64) ⊕ Z(t-1)
3(64)),

K(t)
1(64) = Z(t-1)

1(64) ⊕ V(t)
(64),

K(t)
2(64) = Z(t)

3(64) ⊕ V(t)
(64),

K(t)
3(64) = Z(t)

4(64) ⊕ V(t)
(64),

K(t)
4(64) = Z(t-1)

2(64) ⊕ Z(t)
4(64),

Key generation procedure for tturn+1 ≤ t ≤ T+1.

V(t)
(64) = Fσ (Z(t-1)

1(64)⊕ Z(t)
3(64)),

K(t)
1(64) = Z(t)

1(64)⊕ Z(t-1)
3(64),

K(t)
2(64) = W(t)

1(64)⊕ V(t)
(64),

K(t)
3(64) = W(t)

2(64)⊕ V(t)
(64),

K(t)
4(64) = Z(t-1)

1(64)⊕ W(t)
2(64),

 6

1.2.3 Table of key schedule (128 – bit main key)

t operacja G(t)
(64)

- -1 (PAD) - H3|| H2

- 0 (PW) σ0 G0(5)

K(1)
(256) 1 σ G0(0)

K(2)
(256) 2 σ G0(1)

K(3)
(256) 3 σ G0(2)

K(4)
(256) 4 σ G0(3)

K(5)
(256) 5 σ-1 G0(3)

K(6)
(256) 6 σ-1 G0(2)

K(7)
(256) 7 σ-1 G0(1)

Table 1.1: Key Schedule

PAD – padding, this operation extends various length main keys to the 256-bit size.

PW – key pre-whitening.

K(1)
(256) - K(6)

(256) – subkeys for rounds of encryption

K(7)
(256) – subkey for AK operation.

 7

Fig. 1.2: Key schedule

 8

1.3 Encryption

The T-round encryption of Hierocrypt–3 consists of (T-1) operations of round function

ρ, an operation of XS-function, and the final key addition (AK).

T is 6,7, or 8 for 128-, 192-, or 256-bit, respectively.

The 128-bit value X(i)
(128) is the output of the i-th operation of round function ρ

(i = 1, 2,..., T-1). The plaintext P(128) is assigned to the 0-th value X(0)
(128). The value X(t)

(128) is

the output of the t-th operation of ρ-function for the input X(t-1)
(128) and the round key K(t)

(256).

Similarly, X(T)

(128) is the output of XS-function for the input X(T-1)
(128) and the final key

K(T)
(256).

The ciphertext C(128) is given as the addition (XOR, exclusive or) between the T-th round

output X(T)
(128) and the first half of the final key K(T+1)

1(128).

1.4 Decryption

The decryption of Hierocrypt–3 is the inverse of encryption, and consists of the final

key addition, the inverse of XS-function (XS-1), and (T-1) inverse operations of round

function (ρ-1).

The plaintext P(128) is given as the final output X(0)
(128).

P(128) = X(0)
(128).

 9

2. Analysis of the HIEROCRYPT-3 main components

The analysis presented in this section concerns the ability of implementing

HIEROCRYPT-3 using ALTERA FPGA devices. In the following section we will discuss: all

basic functions used in the algorithm, and the way of implementing them in ALTERA FPGA.

These basic functions include:

- s-boxes,

- MDS lower level,

- MDS higher level,

- P(n) – function,

- M5E – function,

- MB3 – function,

- Fσ – function.

2.1 Round of encryption and decryption

2.1.1 Substitution boxes

Basically, there are two possible ways of implementing s-boxes:

- as a direct logic implementation, or

- as a 2048-bit configured embedded array block (EAB).

We analyzed both solutions (there are 40 sboxes in the HIEROCRYPT-3: 32 in round

of encryption or decryption and 8 in key schedule and FLEX10KE have only 24 EABs).

The best solution seems to be the implementation:

- one layer of sboxes from round of encryption (16 sboxes) and 8 sboxes from key

schedule implemented in EABs (24 sboxes together),

- one layer of sboxes from round of encryption (16 sboxes) implemented as a direct

logic implementation. We used DAMAIN tool [13], developed at Warsaw University

of Technology, for the functional decomposition of sbox (it provides more efficient

and faster implementation than Max PLUS optimalisation methods).

 10

2.1.2 MDS lower level

Implementation of the MDS matrix can seem very difficult, but closer analysis of

operation performed in this matrix leads us to different conclusion.

Y1(8)

Y2(8)

Y3(8)

Y4(8)

=

C4 65 C8 8B

8B C4 65 C8

C8 8B C4 65

65 C8 8B C4

*

x1(8)

x2(8)

x3(8)

x4 8) (

Table 2.1: MDS lower level

y1(8) = C4*x1(8) ⊕ 65*x2(8) ⊕ C8*x3(8) ⊕ 8B*x4(8)

y2(8) = 8B*x1(8) ⊕ C4*x2(8) ⊕ 65*x3(8) ⊕ C8*x4(8)

y3(8) = C8*x1(8) ⊕ 8B*x2(8) ⊕ C4*x3(8) ⊕ 65*x4(8)

y4(8) = 65*x1(8) ⊕ C8*x2(8) ⊕ 8B*x3(8) ⊕ C4*x4(8)

primitive polynomial for this field x8 + x6 + x5 + x + 1.

Each 32-bit input value consists of four 8-bit values. Each 8-bit value is multiplied by

a vector from the matrix and the results of all multiplication in each row of the MDS matrix

are finally XORed bit by bit.

Implementation of multiplication by C4h:

OUT[7..0] = C4 * IN[7..0]

IN[7..0] – input 8-bit value from GF(28),

(IN[7] is the most significant bit in input value, IN[0] is the less significant bit in input value)

OUT[7..0] – output 8-bit value from GF(28)

(OUT[7] is the most significant bit in output value, OUT[0] is the less significant bit in output

value)

 11

OUT[7] = IN[7] ⊕ IN[2] ⊕ IN[1] ⊕ IN[0];

OUT[6] = IN[6] ⊕ IN[1] ⊕ IN[0];

OUT[5] = IN[5] ⊕ IN[2] ⊕ IN[1];

OUT[4] = IN[7] ⊕ IN[4] ⊕ IN[2];

OUT[3] = IN[6] ⊕ IN[3] ⊕ IN[1];

OUT[2] = IN[5] ⊕ IN[2] ⊕ IN[0];

OUT[1] = IN[4] ⊕ IN[1];

OUT[0] = IN[3] ⊕ IN[2] ⊕ IN[1];

We implement the rest of multiplication (by C8h, 65h, 8Bh) in the same way.

2.1.3 MDS higher level

 This kind of operation is easily implemented in hardware. This linear transformation

operates on 128-bit block. It consists of sixteen input 8-bit values. The only thing we have to

do is to XOR correct 8-bit values. In this way we receive all of sixteen output 8-bit values.

2.2 Key schedule

2.2.1 P(n) – function

This kind of operation is easily implemented in hardware, too. This linear

transformation operates on n-bit block. It consists of four input n-bit values. The only thing

we have to do is to XOR correct n-bit values. In this way we receive four output n-bit values.

We executed this transformation similarly to MDS higher level operation.

2.2.2 M5E – function

This kind of operation is easily implemented in hardware. This linear transformation

operates on 64-bit block. It consists of eight input 8-bit values. The only thing we have to do

is to XOR correct 8-bit values. In this way we receive eight output 8-bit values. We

implemented this transformation similarly to MDS higher level operation.

2.2.3 MB3 – function

This transformation is very similar to M5E. We implemented this in the same way.

 12

2.2.4 Fσ – function

We described the ways of implementation of each part of this transformation in

previous units. Sboxes in 2.1.1 and P(n) – function in 2.2.1.

Fig 2.1: Fσ – function

 13

3. Implementation of the HIEROCRYPT-3 algorithm

3.1 Designing criteria – main assumptions of implementation

 TOSHIBA Corp. prepared hardware implementation in ALTERA Max+Plus II using

Flex 10K devices. This FPGA family is considered to be correct for dedicated cryptographic

solutions. In this paper we will also try to present the realisation of HIEROCRYPT-3 using

these ALTERA products (Max+plus II and Flex 10 KE).

 There are various approaches to the realisation block ciphers. Some papers suggest

that the generation of the subkeys and the round calculations should be parallely executed. In

the first order the subkey to the round number one is calculated. Then the round is executed

and the subkey to the next round is calculated. The main adventage of this design is the fact

that we do not need to store the subkeys, they are currently calculated [6].

Another proposition is to implement the key generation algorithm in other units of the

cipher. In the first phase (called key setup) all necessary subkeys are generated and they are

stored in the internal implemented registers (or memory). There is in the second phase

encryption or decryption process only [2].

Both realisations have got lots of advantages and disadvantages and both are most

suitable for algorithms presented in these papers [2, 6]. Many other implementations of

algorithms [14] presented in these papers [2, 6] proved correctness of the choices made.

Conclusion: The best realisation of LOOP (iterative) architecture depends on special

features of every symmetric algorithm.

 Our proposals of HIEROCRYPT-3 implementation use the features of both

realisations. There are two phases of working FPGA circuit: key setup phase and encryption

(decryption) phase. In the first order we realise the precomputation of some parts of subkeys

algorithm generation (details are described in the units concerning the implementation of each

project). This phase is finished when “high state” (logical one) appears on the output

READY. Logical one remains on the output READY till there is a rising edge on the input

RESET. If logical zero is on the output READY, every rising edge on the input START is

ignored. If logical one is on the output READY, the first rising edge on the input START

begins the work of the unit. During the work of the unit logical one is on the output WORK.

After the end of the encryption (decryption) process on the output WORK appears logical

zero.

 14

CONTROL
UNIT

ENCRYPTION
(DECRYPTION)

ROUND

KEY
ROUND

INTERMEDIATE
STORAGE

KEY
PRECOMPUTATION

MAIN KEY
REGISTER

SUBKEY
BUFFER

RESULT
REGISTER

INPUT
REGISTER

START

RESET

SETUP

CLOCK

READY WORK

INPUT
DATA MAIN KEY

OUTPUT
DATA

Fig. 3.1: The encryption (decryption) unit.

3.2 TOSHIBA Corp. project and its results

 TOSHIBA Corp. presented the performance of their FPGA projects in the paper “Self

evaluation: HIEROCRYPT-3” [12]. They prepared two different solutions: High Speed

Implementation and Small Area Implementation.

 Logic elements Throughput Datails

High speed 22700 52,6 Mb/s 5 devices !!!

Small area 6300 4,1 Mb/s

Table 3.1: Results of implementation of HIEROCRYPT-3 by TOSHIBA Corp.

 15

3.3 Implementation of HIEROCRYPT-3 with short setup

 In the first order we present a solution with short setup. In the phase of key setup, we

realise the operation of main key pre-whitening and calculation of the subkey to the round

number one. Next, in the external register from INTERMEDIATE STORAGE (Fig. 3.1) there

is the first intermediate subkey. The subkey for round number one is in SUBKEY BUFFER.

Encryption (decryption) unit is ready (READY – logical one) for working. During the work

(WORK – logical one) of encryption (decryption) unit the generation of the subkeys and the

round calculations are parallely executed. After the end of encryption (decryption) process,

there is the first intermediate subkey in the external register from INTERMEDIATE

STORAGE and subkey for round number one. In the last clock cycle of encryption

(decryption) process there is an operation which writes these values from other registers. The

unit is ready (READY is logical one, until the rising edge on the input RESET shows) to

encrypt (decrypt) next 128-bit block.

 The first feature of all implemented projects (3.3, 3.4, 3.5) is the way of sbox

realisation. It is described in 2.1.1 and it is caused by technology of Flex 10 KE (There are 24

blocks of EAB). For the first time of the implementation process the whole project fits to the

one FPGA circuit. Its resources (logic elements and memory bits) are enough for all project

elements.

This project executes correct encryption (decryption) process during 8 clock cycles.

Frequency of the clock could be 8,05 MHz and the throughput of this project is 115 Mb/s.

 The key round is the critical path.

3.4 Implementation of HIEROCRYPT-3 with long setup

 The next feature of algorithm HIEROCRYPT-3 considered in the project with long

setup is symmetry in the intermediate part of the key schedule (table 1.1). Using iterative

update of intermediate key σ described in section 1.2.1. we can compute 1600 bits (5x256-bit

intermediate subkeys and five 64-bit outputs of Fσ - function for corresponding intermediate

subkeys), which are the critical data to the computation of all round subkeys. These 1600 bits

are stored in external registers in INTERMEDIATE STORAGE. In this case we do not need

to implement some parts of the algorithm (for example: σ-1 operation). These pre-

computations are executed in the setup. Logical one appears on the output READY, FPGA

circuit is ready to encryption (decryption) process.

 16

During the work (WORK – logical one) of encryption (decryption) unit the generation

of the subkeys and the round calculations are parallely executed. Subkeys for the next round

are calculated using the 1600 bits from INTERMEDIATE STORAGE. These stored bits are

on the input to the key round (described in 1.2.2).

This project executes correct encryption (decryption) process during 8 clock cycles.

Frequency of the clock could be 11,91 MHz and throughput of this project is 190 Mb/s.

The computation of Fσ - function output data is critical path.

3.5 Implementation of HIEROCRYPT-3 with very long setup

 Two very important changes in project with long setup were made and these are the

main features of this project.

Firstly, two operations from separated clock cycles became one: operation of XS-

function from 7th clock cycle and AK-operation from 8th clock cycle (encryption process

takes only 7 clock cycles, instead of 8 from the previous project) are executed in 7th clock

cycles.

Second change caused the setup to become longer and encryption (decryption)

become shorter. Each iterative update of intermediate key σ is executed in three clock cycles.

First clock cycle:

 W(t-1)
1(64) || W(t-1)

2(64) = P(32) (Z(t-1)
1(64) || Z(t-1)

2(64))

Second clock cycle:

Z(t)
3(64) = M5E(W(t-1)

1(64)) ⊕ G(t)
(64),

Z(t)
4(64) = M5E(W(t-1)

2(64)).

Third clock cycle:

Z(t)
1(64) = Z(t-1)

2(64),

Z(t)
2(64) = Z(t-1)

1(64)⊕ Fσ (Z(t-1)
2(64)⊕ Z(t)

3(64)),

All these operations have almost the same delay – about 28 ns.

This division of this procedure provide that the round of encryption (decryption) is the critical

path.

This project executes correct encryption (decryption) process during 7 clock cycles.

Frequency of the clock could be 15,64 MHz and throughput of this project is 304 Mb/s.

 17

3.6 Extensive implementation of HIEROCRYPT-3

 We implement this implementation in STRATIX circuit available in QUARTUS II,

because it was not possible to implement it in Flex 10 KE (too much resources necessary).

Only one change was executed in the last project. This change was mathematical and it

resulted from flexibility of HIEROCRYPT-3 algorithm.

 Sbox in HIEROCRYPT-3 is 8x8 size and it is the bijective function, that means it is

permutation of GF(28) elements. Multiplication by MDS lower level matrix is executed in this

way:

y1(8) = C4*x1(8) ⊕ 65*x2(8) ⊕ C8*x3(8) ⊕ 8B*x4(8)

y2(8) = 8B*x1(8) ⊕ C4*x2(8) ⊕ 65*x3(8) ⊕ C8*x4(8)

y3(8) = C8*x1(8) ⊕ 8B*x2(8) ⊕ C4*x3(8) ⊕ 65*x4(8)

y4(8) = 65*x1(8) ⊕ C8*x2(8) ⊕ 8B*x3(8) ⊕ C4*x4(8)

(primitive polynomial for this field x8 + x6 + x5 + x + 1).

 Each element from GF(28) is firstly multiplied by four constants: C4h, 8Bh, C8h, 65h, and

then they are EXORed. Multiplication of all elements from GF(28) by constant causes

permutation of the elements from GF(28).

Hence, we can consider sbox as a permutation. We can consider the multiplication by

MDS lower level matrix as a four permutation of each 8 bit value (there are 16 these values in

128 bit block). It is possible to connect sbox with each multiplication and to receive one

bijective sbox. MDS lower level matrix is circulant and this feature gives us four classes of

new sboxes. Each class is represented by sixteen sboxes (implication from 16 eight bit

values). This connection cause that the operation of round encryption (decryption) take only

46ns.

This project execute correct encryption (decryption) process during 7 clock cycles.

Frequency of the clock could be 21,73 MHz and throughput of this project is 397 Mb/s.

 18

3.7 Summary of HIEROCRYPT-3 cipher implementation.

 Efficiency throughput

Our proposal: Project with short setup 8599 LE / 48kb EAB 115 Mb/s

Our proposal: Project with long setup 9497 LE / 48kb EAB 190 Mb/s

Our proposal: Project with very long setup 9758 LE / 48kb EAB 304 Mb/s

Our proposal: Extensive solution 25811 LE 397 Mb/s

TOSHIBA Corp.:high speed 22700 LE 52,6 Mb/s

TOSHIBA Corp.:small area 6300 LE 4,1 Mb/s

Table 3.2: Summary of implementation of cipher HIEROCRYPT-3.

 19

4. CAMELLIA algorithm and its implementation

The CAMELLIA block cipher algorithm was designed by NTT Corporation and

Mitsubishi Electric Corporation and its detailed specification is given in [8].We have

implemented the version of the algorithm with 128 bit blocks and 128 bit main key. The

CAMELLIA has 18 rounds and each round needs one 64 bit subkey. Four 64 bit subkeys are

necessary to pre-whitening and post-whitening operations at the beginning and end of the

encryption process.

4.1 Structure of CAMELLIA algorithm

4.1.1 Encryption and decryption round

The data randomizing part has an 18-round Feistel structure with two FL/FL-1-function

layers after the 6-th and 12-th rounds and 128-bit XOR operations before the first round and

after the last round. The key schedule part generates subkeys kwt(64) (t = 1, 2, 3, 4), ku(64) (u =

1, 2, . . . , 18) and klv(64) (v = 1, 2, 3, 4) from the secret key K. Section 4.1.2 describes in detail

the key schedule part.

In the data randomizing part, first the plaintext M(128) is XORed with kw1(64)||kw2(64)

and separated into L0(64) and R0(64) of equal length,

M(128) ⊕ (kw1(64)||kw2(64)) = L0(64)||R0(64).

Then, the following operations are perfomed from r = 1 to 18, except for r = 6 and 12;

Lr = Rr-1 ⊕ F(Lr-1, kr),

Rr = Lr-1.

For r = 6 and 12, the following is carried out;

L’r = Rr-1 ⊕ F(Lr-1, kr),

R’r = Lr-1,

Lr = FL(L’r, kl2r/6-1),

Rr = FL-1(R’r, kl2r/6).

Lastly, R18(64) and L18(64) are concatenated and XORed with kw3(64)||kw4(64). The resultant

value is the ciphertext, i.e.,

C(128) = (R18(64)||L18(64)) ⊕ (kw3(64)||kw4(64)).

 20

Fig. 4.1: Encryption procedure of CAMELLIA version 128-bit main key.

Fig. 4.2: F-function

 21

 Fig. 4.3: FL – function Fig. 4.4: FL-1 - function

4.1.2 Key Schedule

In the key schedule part of Camellia, we introduce two 128-bit variables KL(128),

KR(128) and four 64-bit variables KLL(64), KLR(64), KRL(64) and KRR(64), which are defined in the

way that the following relations are satisfactory:

K(128) = KL(128) KR(128) = 0

 for 128-bit key,

Using these variables, we generate two 128-bit variables KA(128) and KB(128), as shown

in Figure 8, where KB(128) is used only if the length of the secret key is 192 or 256 bits. First K

= KL(128) is XORed with KR(128) and “encrypted” by two rounds using the constant values

Σ1(64) and Σ2(64) as “keys”. The result is XORed with KL(128) and again encrypted by two

rounds using the constant values Σ 3(64) and Σ 4(64). The resultant value is KA(128). Lastly KA(128)

is XORed with KR(128) and encrypted by two rounds using the constant values Σ 5(64) and Σ6(64),

the resultant value is KB(128).

The subkeys kwt(64), ku(64), and klv(64) are generated from (left-half or right-half part of)

rotate shifted values of KL(128), KR(128), KA(128), and KB(128).

 22

Fig. 4.5 : Key Schedule

Table 4.1: Constants

 23

Table 4.2: Generation of subkeys

 24

4.2 Analysis of the CAMELLIA main components

4.2.1 Substitution boxes
One round of CAMELLIA has got only 8 sboxes and it is possible to implement max.

three rounds in one clock cycle, if we want 24 sboxes in EABs. It is possible to prepare

implementations:

- 1 clock cycle – 1 round of encryption,

- 1 clock cycle – 2 rounds of encryption,

- 1 clock cycle – 3 rounds of encryption,

when we implement sboxes in EABs.

 It turned out that the best solution is the third case.

4.2.2 P – function

 This kind of operation is similar to operations described in section 2.1.3 (MDS higher

level in HIEROCRYPT-3) in implementation (Fig. 4.2).

4.2.3 FL – function

FL – function is defined as follow (Fig.4.3):

detailed:

There are four kind of operations:

- logical AND,

- logical OR,

- shift by 1 bit left,

- EXOR.

All of these operation are hardware oriented and implementation of FL-function is very

simple.

4.2.4 FL-1 - function

Implementation of this operation is as easy as the previous (Fig.4.3).

 25

 4.3 Implementation of the CAMELLIA and its results

4.3.1 Performance of CAMELLIA (Hardware Performance)

 Performance of CAMELLIA algorithm is given in [9]. The table is from this paper and

it describes architectures and its throughput.

Architecture Design library Throughput

Xilinx XC4000XL 77,34 Mb/s

Xilinx VirtexE 199,46 Mb/s

Xilinx VirtexE 211,90 Mb/s

Loop

Xilinx VirtexE 227, 42 Mb/s

Unrolled Xilinx VirtexE 401,89 Mb/s

Pipeline Xilinx VirtexE 6749,99 Mb/s

Table 4.3: FPGA hardware performance of CAMELLIA.

4.3.2 Proposition of implementation of CAMELLIA.

The most satisfactory results of implementation of CAMELLIA algorithm are

achieved using loop-unrolled architecture. It means that in one clock cycle we execute 3

rounds of encryption (decryption).

We used the same interface as in HIEROCRYPT-3 projects. It is shown Figure 3.1.

SETUP phase – executed in 2 clock cycles:

1st clock cycle:

key schedule – part I. (execution of 2 rounds and the output of these two rounds is EXORed

with KL(128)),

2nd clock cycle:

key schedule – part II (execution of 2 next rounds).

WORK phase – executed in 6 clock cycles:

1st clock cycle:

encryption (decryption) – part I (execution of pre-whitening operation and 3 rounds),

 26

2nd clock cycle:

encryption (decryption) – part II (execution of 3 rounds and FL, FL-1 operation),

3rd clock cycle:

encryption (decryption) – part III (execution of 3 rounds),

4th clock cycle:

encryption (decryption) – part IV (execution of 3 rounds and FL, FL-1 operation),

5th clock cycle:

encryption (decryption) – part V (execution of 3 rounds),

6th clock cycle:

encryption (decryption) – part VI (execution of 3 rounds and post-whitening operation),

The division of this procedure provides that the round of encryption (decryption) is

critical path. Frequency of the clock could be 13,15 MHz and throughput of this project is 240

Mb/s. Full LOOP – architecture achieved 227 Mb/s, Full UNROLLED – architecture 401

Mb/s. Some papers [14] prove the theorem that the solution called LOOP-UNROLLED –

architecture achieves the results of throughput between the best result of LOOP and

UNROLLED – architectures. Our results confirm this theorem.

The efficiency of CAMELLIA implementation is 2973 logic elements and 49152

memory bits.

 5. Conclusions

 The implementation of HIEROCRYPT-3 is not simple. The optimal implementation

of this algorithm is achieved when all conditions from section 3.5 are taken seriously. This

implementation has a very high operation speed 304 Mb/s and it is almost 6 times faster than

the fastest implementation proposed by the authors. This proposition of implementation needs

only 9758 logic elements and 48 kb of EAB (embedded array block) - additional memory, it

is twice more efficient than that proposed by the authors and it fits to one FPGA circuit.

 HIEROCRYPT-3 is a very flexible algorithm. It is possible to connect substitution

layer with MDS lower level layer and replace them by one substitution layer with 64 sboxes

and few xor-operations. This project needs a lot of logic elements (more than 25000 logic

elements), but it is still a practical implementation and its performance is 397 Mb/s.

 It is easy to implement CAMELLIA in hardware. We achieve the best result of

throughput when we execute three rounds in one clock cycle (240 Mb/s). We call this project

LOOP-UNROLLED architecture.

 27

Both ciphers seem to be very suitable for hardware implementation, but, surprisingly,

we achieved better results of throughput for HIEROCRYPT-3. However, as to efficiency

CAMELLIA is still better.

Our work suggests that possibilities of the algorithm’s implementation

(HIEROCRYPT-3) should not be evaluated by authors only who very often have not enough

knowledge about optimalisation in designing.

 At the end of our paper we present comparison of presented implementation by the

authors of the primitives: HIEROCRYPT-3 and CAMELLIA and our projects.

HIEROCRYPT-3:

 efficiency throughput

Our proposal: Project with short setup 8599 LE / 48kb EAB 115 Mb/s

Our proposal: Project with long setup 9497 LE / 48kb EAB 190 Mb/s

Our proposal: Project with very long setup 9758 LE / 48kb EAB 304 Mb/s

Our proposal: Extensive solution 25811 LE 397 Mb/s

TOSHIBA Corp.:high speed 22700 LE 52,6 Mb/s

TOSHIBA Corp.:small area 6300 LE 4,1 Mb/s

Table 5.1:Results of implementation of HIEROCRYPT-3

It is difficult to compare the results of efficiency in CAMELLIA implementation

because of the differences in technology between Xilinx and ALTERA circuits.

CAMELLIA:

 efficiency throughput

Our proposal 2973 LE / 48kb EAB 240 Mb/s

NTT & Mitshubishi EC: Loop 1296 LE 77,34 Mb/s

NTT & Mitshubishi EC: Loop 1816 LE 199,46 Mb/s

NTT & Mitshubishi EC: Loop 1816 LE 211,90 Mb/s

NTT & Mitshubishi EC: Loop 1780 LE 227, 42 Mb/s

NTT & Mitshubishi EC: Unrolled 9426 LE 401,89 Mb/s

Table 5.2: Results of implementation of CAMELLIA.

 28

Acknowledgements

 I would like to thank Piotr BORA for valuable comments and discussions on the

implementation of the ciphers: Hierocrypt-3 and Camellia.

Bibliography:

1. BARRETO P., RIJMEN V. - “Improved SQUARE attacks against reduced-round

HIEROCRYPT”, 2001r.,

2. BORA P., CZAJKA T. – „Implementation of SERPENT algorithm using ALTERA

devices”, 2000r.,

3. CHEON H. - “Differential cryptanalysis of Hierocrypt-3 reduced to 3 rounds” –

2001r.,

4. Deamen J.– „Cipher and hash function design strategies based on linear and

differential cryptanalysies” – PhD Thesis, K.U. Lueven, 03.1995r.,

5. FURUYA T., RIJMEN V. - “Observations on Hierocrypt-3/L1 key scheduling

algorithms” – 2001r.,

6. MROCZKOWSKI P. – “Implementation of the block cipher Rijndael using ALTERA

FPGA” – 2000r.,

7. NESSIE public reports – 2000-2003 – http://www.cryptonessie.org/,

8. Nippon Telegraph and Telephone Corporation, Mitsubishi Electric Corporation –

„Specification of Camellia – a 128-bit block cipher”,

9. Nippon Telegraph and Telephone Corporation, Mitsubishi Electric Corporation –

“Performance of Camellia” (http://info.isl.ntt.co.jp/camellia/Publications/Camellia_

Performance .pdf),

10. “Portfolio of recommended cryptographic primitives”, NESSIE joury –

(https://www.cosic.esat.kuleuven.ac.be/nessie/ decision-final.pdf),

11. TOSHIBA Corp. – “Specification on a Block Cipher: Hierocrypt –3”, 09.2001r.,

12. TOSHIBA Corp. – “Self Evaluation: Hierocrypt –3”, 10.2001r.,

13. WARSAW UNIVERSITY of TECHNOLOGY - http://wwwzpt.tele.pw.edu.pl/,

14. WORCHESTER POLYTECHNIC INSTITUTE – “An FPGA - based performance

evaluation of the AES block cipher candidate algorithm finalists”, 2001r.

 29

