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Introduction  

 Alghoritms:  HIEROCRYPT-3, CAMELLIA and ANUBIS, GRAND CRU, 

NOEKEON, NUSH, Q, RC6, SAFER++128, SC2000, SHACAL were requested for the 

submission of block ciphers (high level block cipher) to NESSIE (New European Schemes for 

Signatures,  Integrity, and Encryption) project. The main purpose of this project was to put 

forward a portfolio of strong cryptographic primitives of various types. The NESSIE project 

was a three year long project and has been divided into two phases. The first was finished in 

June 2001r.  CAMELLIA, RC6, SAFER++128 and SHACAL were accepted for the second 

phase of the evaluation process.  

HIEROCRYPT-3 had key schedule problems [5, 7], and there were attacks for up to 

3,5 rounds out of 6 [1, 3, 7], at least hardware implementations of this cipher were extremely 

slow [12]. HIEROCRYPT-3 was not selected to Phase II.  

CAMELLIA was selected as an algorithm suggested for future standard [10].  

In the paper we present the hardware implementations these two algorithms with 128-

bit blocks and 128-bit keys, using ALTERA devices and their comparisons.  

 

1.  Short description of the HIEROCRYPT-3 cipher 

 The HIEROCRYPT-3 block cipher algorithm was designed by TOSHIBA Corporation 

and its detailed specification is given in [11]. We have implemented the version of the 

algorithm with 128 bit blocks and 128 bit main key. The HIEROCRYPT-3 has 6 rounds and 

each round needs two 128 bit subkeys and one 128 bit subkey is necessary to EXOR with the 

text block at the end of the encryption process. 

 

Structure of HIERCORYPT-3 cipher is based on “wide trail strategy” described by 

Joan Deamen in his PhD in 1995 [4]. This paper suggested design strategies based on linear 

and differential cryptoanalysis. In HIEROCRYPT-3: non-linearlity is represented by two 

layers (2x16 simultaneously working sboxes) and linear layers are represented by matrices: 

MDSL(operating on 4x32-bit word) and MDSH (operating on 128-bit block of data). In this 

strategy, obviously, each round of encryption and decryption process is dependent on subkeys 

(In HIEROCRYPT-3: twice EXOR with 2x128-bit subkey). 
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1.1 Round of encryption 

   

Fig. 1.1: Round of encryption 

 

 

K1(128) – first 128-bit round key 

K2(128) – second 128-bit round key 

S – substitution box 

mdsL – MDS lower level 

MDSH – MDS higher level  

XS – last round of encryption process (without MDSH). 
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1.2  Key Schedule 
The main part of key scheduling consists of the intermediate key generation part and 

the round key generation part, preceded by the intermediate key initialization. The 

intermediate key part recursively generates intermediate key outputs Z(t)
(256) (t = 1, 2,..., T+1), 

and the round key generation part generates round keys K(t)
(256) (t = 1, 2,..., T+1) from the 

corresponding intermediate keys. 

 

Notations: 

K – main key, 

Z – intermediate key,  

G(t)
(64) – constant for n-round, 

X(n) – input binary value of size n, 

Y(n) – output binary value of size n, 

K1(64) || K2(64) || K3(64) || K4(64) = K(128) (Main key consists of four 64-bits values), 

Z1(64) || Z2(64)  || Z3(64) || Z4(64) = Z(128)  (Intermediate key consists of four 64-bits values), 

tturn – 4 for 128/192 bit main key, 5 for 256 bit key, 

t – round number.  

 

1.2.1 Intermediate key generation procedure 

 

Iterative update of the intermediate key σ (1<= t <= tturn) 

Z(t)
(256) =  σ(Z(t-1)

(256) , G(t)
(64)), 

definition of function: 

W(t-1)
1(64) || W(t-1)

2(64) = P(32) (Z(t-1)
1(64) || Z(t-1)

2(64)) 

Z(t)
1(64) = Z(t-1)

2(64),  

Z(t)
2(64) = Z(t-1)

1(64)⊕ Fσ (Z(t-1)
2(64)⊕ Z(t)

3(64)), 

Z(t)
3(64) = M5E(W(t-1)

1(64)) ⊕ G(t)
(64), 

Z(t)
4(64) = M5E(W(t-1)

2(64)). 
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Iterative update of the intermediate key σ-1 (tturn +1<= t <= T+1) 

Z(t)
(256) =  σ-1(Z(t-1)

(256) , G(t)
(64)), 

 

definition of function: 

Z(t)
1(64) = Z(t-1)

2(64)⊕ Fσ (Z(t-1)
1(64)⊕ Z(t-1)

3(64)), 

Z(t)
2(64) = Z(t-1)

1(64), 

W(t)
1(64) = MB3(Z(t-1)

3(64) ⊕ G(t)
(64)), 

W(t)
2(64) = MB3(Z(t-1)

4(64)), 

Z(t)
3(64)|| Z(t)

4(64) = P(32) -1 (W(t-1)
1(64) || W(t-1)

2(64)). 

 

1.2.2 Round key generation procedure 

 

Key generation procedure for 1 ≤ t ≤ tturn.  

 

V(t)
(64) = Fσ (Z(t-1)

2(64) ⊕ Z(t-1)
3(64)), 

K(t)
1(64) = Z(t-1)

1(64) ⊕ V(t)
(64), 

K(t)
2(64) = Z(t)

3(64) ⊕ V(t)
(64), 

K(t)
3(64) = Z(t)

4(64) ⊕ V(t)
(64), 

K(t)
4(64) = Z(t-1)

2(64) ⊕ Z(t)
4(64), 

 

Key generation procedure for tturn+1 ≤ t ≤ T+1.  

 

V(t)
(64) = Fσ (Z(t-1)

1(64)⊕ Z(t)
3(64)), 

K(t)
1(64) = Z(t)

1(64)⊕ Z(t-1)
3(64), 

K(t)
2(64) = W(t)

1(64)⊕ V(t)
(64), 

K(t)
3(64) = W(t)

2(64)⊕ V(t)
(64), 

K(t)
4(64) = Z(t-1)

1(64)⊕ W(t)
2(64), 
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1.2.3  Table of key schedule (128 – bit main key)  

 

t  operacja G(t)
(64) 

- -1 (PAD) - H3|| H2 

- 0 (PW) σ0 G0(5) 

K(1)
(256) 1 σ G0(0) 

K(2)
(256) 2 σ G0(1) 

K(3)
(256) 3 σ G0(2) 

K(4)
(256) 4 σ G0(3) 

K(5)
(256) 5 σ-1 G0(3) 

K(6)
(256) 6 σ-1 G0(2) 

K(7)
(256) 7 σ-1 G0(1) 

 

Table 1.1: Key Schedule 

 

PAD – padding, this operation extends various length main keys to the 256-bit size.    

PW – key pre-whitening. 

K(1)
(256)  - K(6)

(256) – subkeys for rounds of encryption 

K(7)
(256) – subkey for AK operation. 
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Fig. 1.2: Key schedule 
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1.3   Encryption 

The T-round encryption of Hierocrypt–3 consists of (T-1) operations of round function 

ρ, an operation of XS-function, and the final key addition (AK). 

 
T is 6,7, or 8 for 128-, 192-, or 256-bit, respectively. 

The 128-bit value X(i)
(128) is the output of the i-th operation of round function ρ  

(i = 1, 2,..., T-1). The plaintext P(128) is assigned to the 0-th value X(0)
(128). The value X(t)

(128)  is 

the output of the t-th operation of ρ-function for the input X(t-1)
(128) and the round key K(t)

(256). 

 
Similarly, X(T)

(128) is the output of XS-function for the input X(T-1)
(128) and the final key 

K(T)
(256). 

 
The ciphertext C(128) is given as the addition (XOR, exclusive or) between the T-th round 

output X(T)
(128) and the first half of the final key K(T+1)

1(128). 

 

 
 

1.4   Decryption 

The decryption of Hierocrypt–3 is the inverse of encryption, and consists of the final 

key addition, the inverse of XS-function (XS-1), and (T-1) inverse operations of round 

function (ρ-1). 

 
 

The plaintext P(128) is given as the final output X(0)
(128). 

P(128) = X(0)
(128). 
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2.  Analysis of the HIEROCRYPT-3 main components 

The analysis presented in this section concerns the ability of implementing 

HIEROCRYPT-3 using ALTERA FPGA devices. In the following section we will discuss: all 

basic functions used in the algorithm, and the way of implementing them in ALTERA FPGA. 

These basic functions include: 

- s-boxes, 

- MDS lower level, 

- MDS higher level, 

- P(n) – function, 

- M5E – function, 

- MB3 – function, 

- Fσ – function. 

    

2.1 Round of encryption and decryption 

2.1.1  Substitution boxes 

Basically, there are two possible ways of implementing s-boxes: 

- as a direct logic implementation, or 

- as a 2048-bit configured embedded array block (EAB). 

We analyzed both solutions (there are 40 sboxes  in the HIEROCRYPT-3: 32 in round 

of encryption or decryption and 8 in key schedule and FLEX10KE have only 24 EABs). 

The best solution seems to be the implementation: 

- one layer of sboxes from round of encryption (16 sboxes) and 8 sboxes from key 

schedule implemented in EABs (24 sboxes together), 

-  one layer of sboxes from round of encryption (16 sboxes) implemented as a direct 

logic implementation. We used DAMAIN tool [13], developed at Warsaw University 

of Technology, for the functional decomposition of sbox (it provides more efficient 

and faster implementation than Max PLUS optimalisation methods).  
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2.1.2  MDS lower level 

Implementation of the MDS matrix can seem very difficult, but closer analysis of 

operation performed in this matrix leads us to different conclusion.  

 
Y1(8) 

Y2(8) 

Y3(8) 

Y4(8) 
 

 

 

= 

C4 65 C8 8B 

8B C4 65 C8 

C8 8B C4 65 

65 C8 8B C4 
 

 

 

* 

x1(8) 

x2(8) 

x3(8) 

x4 8) (
 

 

Table 2.1: MDS lower level 

 

y1(8) =  C4*x1(8) ⊕ 65*x2(8) ⊕ C8*x3(8) ⊕ 8B*x4(8) 

y2(8) = 8B*x1(8) ⊕ C4*x2(8) ⊕ 65*x3(8) ⊕ C8*x4(8) 

y3(8) = C8*x1(8) ⊕ 8B*x2(8) ⊕ C4*x3(8) ⊕ 65*x4(8) 

y4(8) = 65*x1(8)  ⊕ C8*x2(8) ⊕ 8B*x3(8) ⊕ C4*x4(8) 
 

primitive polynomial for this field x8 + x6 + x5 + x + 1. 
 

Each 32-bit input value consists of four 8-bit values. Each 8-bit value is multiplied by 

a vector from the matrix and the results of all multiplication in each row of the MDS matrix 

are finally XORed bit by bit. 

 

Implementation of multiplication by C4h: 
 

OUT[7..0] = C4 * IN[7..0] 

IN[7..0] – input 8-bit value from GF(28), 

(IN[7] is the most significant bit in input value, IN[0] is the less significant bit in input value) 

OUT[7..0] – output 8-bit value from GF(28)  

(OUT[7] is the most significant bit in output value, OUT[0] is the less significant bit in output 

value) 
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OUT[7] = IN[7] ⊕ IN[2] ⊕ IN[1] ⊕ IN[0]; 

OUT[6] = IN[6] ⊕ IN[1] ⊕ IN[0];  

OUT[5] = IN[5] ⊕ IN[2] ⊕ IN[1];  

OUT[4] = IN[7] ⊕ IN[4] ⊕ IN[2];  

OUT[3] = IN[6] ⊕ IN[3] ⊕ IN[1];  

OUT[2] = IN[5] ⊕ IN[2] ⊕ IN[0];  

OUT[1] = IN[4] ⊕ IN[1];  

OUT[0] = IN[3] ⊕ IN[2] ⊕ IN[1]; 

 

We implement the rest of multiplication (by C8h, 65h, 8Bh) in the same way. 

  

2.1.3  MDS higher level 

 This kind of operation is easily implemented in hardware. This linear transformation 

operates on 128-bit block. It consists of sixteen input 8-bit values. The only thing we have to 

do is to XOR correct 8-bit values. In this way we receive all of sixteen output 8-bit values. 

 

2.2  Key schedule  

2.2.1  P(n) – function 

This kind of operation is easily implemented in hardware, too. This linear 

transformation operates on n-bit block. It consists of four input n-bit values. The only thing 

we have to do is to XOR correct n-bit values. In this way we receive four output n-bit values. 

We executed this transformation similarly to MDS higher level operation. 

2.2.2  M5E – function 

This kind of operation is easily implemented in hardware. This linear transformation 

operates on 64-bit block. It consists of eight input 8-bit values. The only thing we have to do 

is to XOR correct 8-bit values. In this way we receive eight output 8-bit values. We 

implemented this transformation similarly to MDS higher level operation. 

2.2.3  MB3 – function 

This transformation is very similar to M5E. We implemented this in the same way. 
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2.2.4 Fσ – function 

We described the ways of implementation of each part of this transformation in 

previous units. Sboxes in 2.1.1 and P(n) – function in 2.2.1.  

 
Fig 2.1:  Fσ – function 
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3.  Implementation of the HIEROCRYPT-3 algorithm 

3.1  Designing criteria – main assumptions of implementation 

 TOSHIBA Corp. prepared hardware implementation in ALTERA Max+Plus II using 

Flex 10K devices. This FPGA family is considered to be correct for dedicated cryptographic 

solutions. In this paper we will also try to present the realisation of HIEROCRYPT-3 using 

these ALTERA products (Max+plus II and Flex 10 KE). 

 There are various approaches to the realisation block ciphers. Some papers suggest 

that the generation of the subkeys and the round calculations should be parallely executed. In 

the first order the subkey to the round number one is calculated. Then the round is executed 

and the subkey to the next round is calculated. The main adventage of this design is the fact 

that we do not need to store the subkeys, they are currently calculated [6].   

Another proposition is to implement the key generation algorithm in other units of the 

cipher. In the first phase (called key setup) all necessary subkeys are generated and they are 

stored in the internal implemented registers (or memory). There is in the second phase 

encryption or decryption process only [2].  

Both realisations have got lots of advantages and disadvantages and both are most 

suitable for algorithms presented in these papers [2, 6]. Many other implementations of 

algorithms [14] presented in these papers [2, 6] proved correctness of the choices made.  

Conclusion: The best realisation of LOOP (iterative) architecture depends on special 

features of every symmetric algorithm.  

  Our proposals of HIEROCRYPT-3 implementation use the features of both 

realisations. There are two phases of  working FPGA circuit: key setup phase and encryption  

(decryption) phase. In the first order we realise the precomputation of some parts of subkeys 

algorithm generation (details are described in the units concerning the implementation of each 

project). This phase is finished when “high state” (logical one) appears on the output 

READY. Logical one remains on the output READY till there is a rising edge on the input 

RESET. If logical zero is on the output READY, every rising edge on the input START is 

ignored. If logical one is on the output READY, the first rising edge on the input START 

begins the work of the unit. During the work of the unit logical one is on the output WORK. 

After the end of the encryption (decryption) process on the output WORK appears logical 

zero. 
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REGISTER
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CLOCK

READY WORK

INPUT
DATA MAIN KEY

OUTPUT
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Fig. 3.1: The encryption (decryption) unit. 

 

3.2  TOSHIBA Corp. project and its results 

 TOSHIBA Corp. presented the performance of their FPGA projects in the paper “Self 

evaluation: HIEROCRYPT-3” [12]. They prepared two different solutions: High Speed 

Implementation and Small Area Implementation.  

 

 Logic elements Throughput Datails 

High speed  22700 52,6 Mb/s 5 devices !!! 

Small area 6300 4,1 Mb/s  

 

Table 3.1: Results of implementation of HIEROCRYPT-3 by TOSHIBA Corp. 
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3.3  Implementation of HIEROCRYPT-3 with short setup 

 In the first order we present a solution with short setup. In the phase of key setup, we 

realise the operation of main key pre-whitening and calculation of the subkey to the round 

number one. Next, in the external register from INTERMEDIATE STORAGE (Fig. 3.1) there 

is the first intermediate subkey. The subkey for round number one is in SUBKEY BUFFER. 

Encryption (decryption) unit is ready (READY – logical one) for working. During the work 

(WORK – logical one) of encryption (decryption) unit the generation of the subkeys and the 

round calculations are parallely executed. After the end of encryption (decryption) process, 

there is the first intermediate subkey in the external register from INTERMEDIATE 

STORAGE and subkey for round number one. In the last clock cycle of encryption 

(decryption) process there is an operation which writes these values from other registers. The 

unit is ready (READY is logical one, until the rising edge on the input RESET shows) to 

encrypt (decrypt) next 128-bit block.  

 The first feature of all implemented projects (3.3, 3.4, 3.5) is the way of sbox 

realisation. It is described in  2.1.1 and it is caused by technology of Flex 10 KE (There are 24 

blocks of EAB). For the first time of the implementation process the whole project fits to the 

one FPGA circuit. Its resources (logic elements and memory bits) are enough for all project 

elements. 

This project executes correct encryption (decryption) process during 8 clock cycles. 

Frequency of the clock could be 8,05 MHz and the throughput of this project is 115 Mb/s.    

 The key round is the critical path. 

3.4  Implementation of HIEROCRYPT-3 with long setup 

          The next feature of algorithm HIEROCRYPT-3 considered in the project with long 

setup is symmetry in the intermediate part of the key schedule (table 1.1). Using iterative 

update of intermediate key σ described in section 1.2.1. we can compute 1600 bits (5x256-bit 

intermediate subkeys and five 64-bit outputs of Fσ - function for corresponding intermediate 

subkeys), which are the critical data to the computation of all round subkeys. These 1600 bits 

are stored in external registers in INTERMEDIATE STORAGE. In this case we do not need 

to implement some parts of the algorithm (for example: σ-1 operation). These pre-

computations are executed in the setup. Logical one appears on the output READY, FPGA 

circuit is ready to encryption (decryption) process.     
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During the work (WORK – logical one) of encryption (decryption) unit the generation 

of the subkeys and the round calculations are parallely executed. Subkeys for the next round 

are calculated using the 1600 bits from INTERMEDIATE STORAGE. These stored bits are 

on the input to the key round (described in 1.2.2). 

This project executes correct encryption (decryption) process during 8 clock cycles. 

Frequency of the clock could be 11,91 MHz and throughput of this project is 190 Mb/s.    

The computation of Fσ - function output data is critical path. 

3.5  Implementation of HIEROCRYPT-3 with very long setup 

 Two very important changes in project with long setup were made and these are the 

main features of this project.  

Firstly, two operations from separated clock cycles became one: operation of XS-

function from 7th clock cycle and AK-operation from 8th clock cycle (encryption process 

takes only 7 clock cycles, instead of 8 from the previous project) are executed in 7th clock 

cycles. 

Second change caused the setup to become longer and  encryption (decryption) 

become shorter. Each iterative update of intermediate key σ is executed in three clock cycles.  

First clock cycle: 

  W(t-1)
1(64) || W(t-1)

2(64) = P(32) (Z(t-1)
1(64) || Z(t-1)

2(64)) 

Second clock cycle: 

Z(t)
3(64) = M5E(W(t-1)

1(64)) ⊕ G(t)
(64), 

Z(t)
4(64) = M5E(W(t-1)

2(64)). 

Third clock cycle: 

Z(t)
1(64) = Z(t-1)

2(64),  

Z(t)
2(64) = Z(t-1)

1(64)⊕ Fσ (Z(t-1)
2(64)⊕ Z(t)

3(64)), 

All these operations have almost the same delay – about 28 ns. 

This division of this procedure provide that the round of encryption (decryption) is the critical 

path.  

This project executes correct encryption (decryption) process during 7 clock cycles. 

Frequency of the clock could be 15,64 MHz and throughput of this project is 304 Mb/s. 
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3.6  Extensive implementation of HIEROCRYPT-3  

 We implement this implementation in STRATIX circuit available in QUARTUS II, 

because it was not possible to implement it in Flex 10 KE (too much resources necessary). 

Only one change was executed in the last project. This change was mathematical and it  

resulted from flexibility of HIEROCRYPT-3 algorithm.  

 Sbox in HIEROCRYPT-3 is 8x8 size and it is the bijective function, that means it is 

permutation of GF(28) elements. Multiplication by MDS lower level matrix is executed in this 

way: 

y1(8) =   C4*x1(8) ⊕ 65*x2(8) ⊕ C8*x3(8) ⊕ 8B*x4(8) 

y2(8) = 8B*x1(8) ⊕ C4*x2(8) ⊕ 65*x3(8) ⊕ C8*x4(8) 

y3(8) = C8*x1(8) ⊕ 8B*x2(8) ⊕ C4*x3(8) ⊕ 65*x4(8) 

y4(8) = 65*x1(8)  ⊕ C8*x2(8) ⊕ 8B*x3(8) ⊕ C4*x4(8) 
 
(primitive polynomial for this field x8 + x6 + x5 + x + 1). 

 

   Each element from GF(28) is firstly multiplied by four constants: C4h, 8Bh, C8h, 65h, and 

then they are EXORed. Multiplication of all elements from GF(28) by constant causes 

permutation of the elements from GF(28).  

Hence, we can consider sbox as a permutation.  We can consider the multiplication by 

MDS lower level matrix as a four permutation of each 8 bit value (there are 16 these values in 

128 bit block). It is possible to connect sbox with each multiplication and to receive one 

bijective sbox. MDS lower level matrix is circulant and this feature gives us four classes of 

new sboxes. Each class is represented by sixteen sboxes (implication from 16 eight bit 

values). This connection cause that the operation of round encryption (decryption) take only 

46ns.  

This project execute correct encryption (decryption) process during 7 clock cycles. 

Frequency of the clock could be 21,73 MHz and throughput of this project is 397 Mb/s. 
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3.7 Summary of HIEROCRYPT-3 cipher implementation. 
 
 Efficiency throughput 

Our proposal: Project with short setup 8599 LE / 48kb EAB 115 Mb/s 

Our proposal: Project with long setup 9497 LE / 48kb EAB 190 Mb/s 

Our proposal: Project with very long setup 9758 LE / 48kb EAB 304 Mb/s 

Our proposal: Extensive solution 25811 LE 397 Mb/s 

TOSHIBA Corp.:high speed 22700 LE 52,6 Mb/s 

TOSHIBA Corp.:small area 6300 LE 4,1 Mb/s 

 
Table 3.2: Summary of implementation of cipher HIEROCRYPT-3. 
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4.  CAMELLIA algorithm and its implementation 

The CAMELLIA block cipher algorithm was designed by NTT Corporation and 

Mitsubishi Electric Corporation and its detailed specification is given in [8].We have 

implemented the version of the algorithm with 128 bit blocks and 128 bit main key. The 

CAMELLIA has 18 rounds and each round needs one 64 bit subkey. Four 64 bit subkeys are 

necessary to pre-whitening and post-whitening operations at the beginning and end of the 

encryption process. 

 

4.1  Structure of CAMELLIA algorithm 

4.1.1 Encryption and decryption round 
 

The data randomizing part has an 18-round Feistel structure with two FL/FL-1-function 

layers after the 6-th and 12-th rounds and 128-bit XOR operations before the first round and 

after the last round. The key schedule part generates subkeys kwt(64) (t = 1, 2, 3, 4), ku(64) (u = 

1, 2, . . . , 18) and klv(64) (v = 1, 2, 3, 4) from the secret key K. Section 4.1.2 describes in detail 

the key schedule part. 

In the data randomizing part, first the plaintext M(128) is XORed with kw1(64)||kw2(64) 

and separated into L0(64) and R0(64) of equal length, 

M(128) ⊕ (kw1(64)||kw2(64)) = L0(64)||R0(64). 

Then, the following operations are perfomed from r = 1 to 18, except for r = 6 and 12; 

Lr = Rr-1 ⊕ F(Lr-1, kr), 

Rr = Lr-1. 

 

For r = 6 and 12, the following is carried out; 

L’r  =  Rr-1 ⊕ F(Lr-1, kr), 

R’r  =  Lr-1, 

Lr   =  FL(L’r, kl2r/6-1), 

Rr   = FL-1(R’r, kl2r/6). 

Lastly, R18(64) and L18(64) are concatenated and XORed with kw3(64)||kw4(64). The resultant 

value is the ciphertext, i.e.,  

C(128) = (R18(64)||L18(64)) ⊕ (kw3(64)||kw4(64)). 
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Fig. 4.1: Encryption procedure of CAMELLIA version 128-bit main key. 

 
 

Fig. 4.2: F-function 
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           Fig. 4.3: FL – function                                              Fig. 4.4: FL-1 - function  
 
 

4.1.2 Key Schedule  
 

In the key schedule part of Camellia, we introduce two 128-bit variables KL(128), 

KR(128) and four 64-bit variables KLL(64), KLR(64), KRL(64) and KRR(64), which are defined in the 

way that the following relations are satisfactory: 

K(128) = KL(128)                        KR(128) = 0                  

 for 128-bit key, 

Using these variables, we generate two 128-bit variables KA(128) and KB(128), as shown 

in Figure 8, where KB(128) is used only if the length of the secret key is 192 or 256 bits. First K 

= KL(128) is XORed with KR(128) and “encrypted” by two rounds using the constant values 

Σ1(64) and Σ2(64) as “keys”. The result is XORed with KL(128) and again encrypted by two 

rounds using the constant values Σ 3(64) and Σ 4(64). The resultant value is KA(128). Lastly KA(128) 

is XORed with KR(128) and encrypted by two rounds using the constant values Σ 5(64) and Σ6(64), 

the resultant value is KB(128).  

The subkeys kwt(64), ku(64), and klv(64) are generated from (left-half or right-half part of) 

rotate shifted values of KL(128), KR(128), KA(128), and KB(128).  
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Fig. 4.5 : Key Schedule 

 
 
 
 

 
Table 4.1: Constants 
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Table 4.2: Generation of subkeys 
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4.2 Analysis of the CAMELLIA main components 

4.2.1  Substitution boxes 
One round of CAMELLIA has got only 8 sboxes and it is possible to implement max. 

three rounds in one clock cycle, if we want 24 sboxes in EABs. It is possible to prepare 

implementations: 

- 1 clock cycle – 1 round of encryption, 

- 1 clock cycle – 2 rounds of encryption, 

- 1 clock cycle – 3 rounds of encryption, 

when we implement sboxes in EABs. 

 It turned out that the best solution is the third case. 

4.2.2 P – function 

 This kind of operation is similar to operations described in section 2.1.3 (MDS higher 

level in HIEROCRYPT-3)  in implementation (Fig. 4.2).    

4.2.3 FL – function 

FL – function is defined as follow (Fig.4.3): 

 
detailed: 

 
 
There are four kind of operations: 

- logical AND, 

- logical OR, 

- shift by 1 bit left, 

- EXOR. 

All of these operation are hardware oriented and implementation of FL-function is very 

simple. 

 

4.2.4 FL-1 - function 

Implementation of this operation is as easy as the previous (Fig.4.3).   
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 4.3 Implementation of the CAMELLIA and its results 
  

4.3.1 Performance of CAMELLIA (Hardware Performance) 
 
 Performance of CAMELLIA algorithm is given in [9]. The table is from this paper and 

it describes architectures and its throughput.  

 

Architecture Design library Throughput 

Xilinx XC4000XL 77,34 Mb/s 

Xilinx VirtexE 199,46 Mb/s 

Xilinx VirtexE 211,90 Mb/s 

Loop 

Xilinx VirtexE 227, 42 Mb/s 

Unrolled Xilinx VirtexE 401,89 Mb/s 

Pipeline Xilinx VirtexE 6749,99 Mb/s 

 

Table 4.3: FPGA hardware performance of CAMELLIA. 

 

4.3.2 Proposition of implementation of CAMELLIA. 
 

The most satisfactory results of implementation of CAMELLIA algorithm are 

achieved using loop-unrolled architecture. It means that in one clock cycle we execute 3 

rounds of encryption (decryption). 

We used the same interface as in HIEROCRYPT-3 projects. It is shown Figure 3.1.  

SETUP phase – executed in 2 clock cycles: 

1st clock cycle: 

key schedule – part I. (execution of 2 rounds and the output of these two rounds is EXORed 

with  KL(128)), 

2nd clock cycle: 

key schedule – part II (execution of 2 next rounds). 

 

WORK phase – executed in 6 clock cycles: 

1st clock cycle: 

encryption (decryption) – part I (execution of pre-whitening operation and 3 rounds), 
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2nd clock cycle: 

encryption (decryption) – part II (execution of 3 rounds and FL, FL-1 operation), 

3rd clock cycle: 

encryption (decryption) – part III (execution of 3 rounds), 

4th clock cycle: 

encryption (decryption) – part IV (execution of 3 rounds and FL, FL-1 operation), 

5th clock cycle: 

encryption (decryption) – part V (execution of 3 rounds), 

6th clock cycle: 

encryption (decryption) – part VI (execution of 3 rounds and post-whitening operation), 

 

The division of this procedure provides that the round of encryption (decryption) is 

critical path. Frequency of the clock could be 13,15 MHz and throughput of this project is 240 

Mb/s. Full LOOP – architecture achieved 227 Mb/s, Full UNROLLED – architecture 401 

Mb/s.  Some papers [14] prove the theorem that the solution called LOOP-UNROLLED – 

architecture achieves the results of throughput between the best result of LOOP and 

UNROLLED – architectures. Our results confirm this theorem.  

The efficiency of CAMELLIA implementation is 2973 logic elements and 49152 

memory bits.  

 5.  Conclusions 

 The implementation of HIEROCRYPT-3 is not simple. The optimal implementation 

of this algorithm is achieved when all conditions from section 3.5 are taken seriously. This 

implementation has a very high operation speed 304 Mb/s and it is almost 6 times faster than 

the fastest implementation proposed by the authors. This proposition of implementation needs 

only 9758 logic elements and 48 kb of EAB (embedded array block) - additional memory, it 

is twice more efficient than that proposed by the authors and it fits to one FPGA circuit. 

 HIEROCRYPT-3 is a very flexible algorithm. It is possible to connect substitution 

layer with MDS lower level layer and replace them by one substitution layer with 64 sboxes 

and few xor-operations. This project needs a lot of logic elements (more than 25000 logic 

elements), but it is still a practical implementation and its performance is 397 Mb/s.  

 It is easy to implement CAMELLIA in hardware. We achieve the best result of 

throughput when we execute three rounds in one clock cycle  (240 Mb/s). We call this project 

LOOP-UNROLLED architecture.   
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Both ciphers seem to be very suitable for hardware implementation, but,  surprisingly,  

we achieved better results of throughput for HIEROCRYPT-3. However, as to efficiency 

CAMELLIA is still better.   

Our work suggests that possibilities of the algorithm’s implementation 

(HIEROCRYPT-3) should not be evaluated by authors only who very often have not enough 

knowledge about optimalisation in designing.    

  At the end of our paper we present comparison of presented implementation by the  

authors of the primitives: HIEROCRYPT-3 and CAMELLIA and our projects. 

 

HIEROCRYPT-3: 

 efficiency throughput 

Our proposal: Project with short setup 8599 LE / 48kb EAB 115 Mb/s 

Our proposal: Project with long setup 9497 LE / 48kb EAB 190 Mb/s 

Our proposal: Project with very long setup 9758 LE / 48kb EAB 304 Mb/s 

Our proposal: Extensive solution 25811 LE 397 Mb/s 

TOSHIBA Corp.:high speed 22700 LE 52,6 Mb/s 

TOSHIBA Corp.:small area 6300 LE 4,1 Mb/s 

 

Table 5.1:Results of implementation of HIEROCRYPT-3 

 

It is difficult to compare the results of efficiency in CAMELLIA implementation 

because of the differences in technology between Xilinx and ALTERA circuits. 

CAMELLIA: 

 efficiency throughput 

Our proposal 2973 LE / 48kb EAB 240 Mb/s 

NTT & Mitshubishi EC: Loop  1296 LE 77,34 Mb/s 

NTT & Mitshubishi EC: Loop 1816 LE 199,46 Mb/s 

NTT & Mitshubishi EC: Loop 1816 LE 211,90 Mb/s 

NTT & Mitshubishi EC: Loop 1780 LE 227, 42 Mb/s 

NTT & Mitshubishi EC: Unrolled 9426 LE 401,89 Mb/s 

 

Table 5.2: Results of implementation of CAMELLIA. 
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