On Simulation-Sound Trapdoor Commitments

PuiLip MACKENZIE® KE Yanaf

December 2, 2003
Abstract

We study the recently introduced notion of a simulation-sound trapdoor commitment (SSTC)
scheme. In this paper, we present a new, simpler definition for an SSTC scheme that admits
more efficient constructions and can be used in a larger set of applications. Specifically, we show
how to construct SSTC schemes from any one-way functions, and how to construct very efficient
SSTC schemes based on specific number-theoretic assumptions. We also show how to construct
simulation-sound, non-malleable, and universally-composable zero-knowledge protocols using SSTC
schemes, yielding, for instance, the most efficient universally-composable zero-knowledge protocols
known. Finally, we explore the relation between SSTC schemes and non-malleable commitment
schemes by presenting a sequence of implication and separation results, which in particular imply
that SSTC schemes are non-malleable.

1 Introduction

The notion of a commitment is one of the most important and useful notions in cryptography. Intu-
itively, a commitment is the digital equivalent of a “sealed envelope.” A party Alice would commit to
a value by placing it into a sealed envelope, so that the value may later be revealed by Alice opening
the envelope, but cannot be viewed by any other party prior to this opening (this is known as the
“secrecy” or “hiding” property), and cannot be altered (this is known as the “binding” property).
Commitments have been useful in a wide range of applications, from zero-knowledge protocols (e.g.,
[4, 15, 34]) to electronic commerce (e.g., remote electronic bidding), and have been studied extensively
(e.g., [3, 40, 41]).

A commitment scheme is simply a method for generating and opening commitments. One can
construct a formal definition of security for a commitment scheme directly from the properties in-
herent in the intuitive description above. However, often these properties turn out to be insufficient
when commitments are used as building blocks in larger protocols or when multiple commitments are
used concurrently. This has motivated researchers to define and construct commitment schemes with
additional properties. We discuss them briefly below.

A trapdoor commitment (TC) scheme is a commitment scheme with an additional “equivocability”
property. Roughly speaking, for such a commitment scheme there is some trapdoor information whose
knowledge would allow one to open a commitment in more than one way (and thus “equivocate”).
Naturally, without the trapdoor, equivocation would remain computationally infeasible [4, 25, 2].

A non-malleable commitment (NMC) scheme is a commitment scheme with the property that
(informally) not only is the value v placed inside a commitment secret, but seeing this commitment
does not give another party any advantage in generating a new commitment that, once v is revealed,
can then be opened to a value related to v [22, 20, 29, 21, 17].!

*Bell Labs - Lucent Technologies, 600 Mountain Ave.,, Murray Hill, NJ 07974. E-mail:
philmac@research.bell-labs.com.

fComputer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. E-mail: yangke@cs.cmu.edu.
Part of the this research was done at Bell Labs. This research was also partially sponsored by National Science Foundation
(NSF) grants CCR-0122581 and CCR-0085982.

'The original definition of [22] states (informally) that another party does not even have any advantage in creating a
new commitment to a value related to v, regardless of the ability to open the new commitment. However, we will use
the definition based on opening.

A universally composable commitment (UCC) scheme is a commitment scheme with a very strong
property that intuitively means that the security of a commitment is guaranteed even when commit-
ment protocols are concurrently composed with arbitrary protocols [6, 7, 18]. To achieve universal
composability, a commitment scheme seems to require equivocability, non-malleability, and further-
more, ezxtractability. Roughly speaking, an extractable commitment scheme has a modified secrecy
definition, which states that there is a secret key whose knowledge would allow one to extract the
value placed in a commitment. Naturally, without this knowledge, the value would remain hidden.
We note that the notion of a UCC scheme appears to be strictly stronger than the other notions of
commitment schemes. In particular, Damgard and Groth [17] show that a UCC scheme implies secure
key exchange, while both TC schemes and NMC schemes can be constructed from one-way functions.

1.1 Simulation Sound Trapdoor Commitment

In this paper, we focus our attention on another extension of commitment schemes, namely simulation
sound trapdoor commitment (SSTC) schemes. An SSTC scheme is a TC scheme with a strengthened
binding property, called simulation-sound binding. Roughly speaking, in an SSTC scheme, an adver-
sary cannot equivocate on a commitment with a certain tag, even after seeing the equivocation of an
unbounded number of commitments with different tags (i.e., the adversary may request an equivoca-
tion oracle to generate an unbounded number of commitments with different tags, and then to open
them to arbitrary values). Here, a tag for a commitment is simply a binary string associated with the
commitment.

The term “simulation soundness” was first used to describe a property of zero-knowledge proofs
by Sahai [47], and intuitively meant that even though an adversary could see simulated proofs of
incorrect statements, it could not itself produce a new simulated proof of any incorrect statement.
Garay et al. [31] first applied this term to trapdoor commitments. They gave a slightly stronger,
although more complicated, simulation-sound binding property and an efficient construction based
on DSA signatures. Their definition was specifically tailored to the goal of developing a universally-
composable zero-knowledge (UCZK) proof that was secure in the presence of adversaries that could
adaptively corrupt parties.?

Perhaps the most interesting feature of SSTC schemes is that they are both very powerful and very
efficient to construct. As we will show later in this paper, SSTC schemes are non-malleable and can
be used to construct simulation-sound, non-malleable, and/or universally composable zero-knowledge
protocols. On the other hand, SSTC schemes can be constructed from one-way functions only, in
contrast to UCC schemes, which are considered highly unlikely to be constructible from one-way
functions alone [17]. Also, based on specific number-theoretic assumptions (e.g., strong RSA, or the
DSA assumption), very efficient SSTC schemes can be constructed, as we show in the paper. These
constructions in turn yield UCZK protocols that are more efficient than all previously known ones,
which are either based on UCC schemes [7, 18, 17] or on the previous definition of SSTC schemes [31].3

1.2 Summary of Results

Simpler Definition We provide a simpler definition of SSTC schemes than the one by Garay et. al. [31].
Though the binding property in our definition is weaker, it is still sufficient in many applications (e.g.,
to construct UCZK protocols that are secure in the presence of adversaries that can adaptively corrupt
parties).

2They use the term identifier in place of the term tag, and intuitively, in their definition [31], a commitment made
by the adversary using identifier id is binding, even if the adversary has seen any commitment using identifier ¢d opened
(using an oracle that knows a trapdoor) once to any arbitrary value, and moreover, any commitment using identifier
id’ # id opened (again using the oracle) an unbounded number of times to any arbitrary values.

3In fact, this (improved efficiency) is one of the main motivations to study the new simpler definition of SSTC.

We also discuss various design issues in the definition, and most notably, the choice between
definitions based on the tag of the commitment and on the body of the commitment. Informally, a
tag-based definition requires that an adversary cannot equivocate a commitment com with a certain
tag so long as it does not see the equivocation of any commitment with the same tag. On the other
hand, a body-based definition requires that the adversary cannot equivocate a commitment com so
long as the commitment com itself has not been equivocated. (Note that we use the term “body” to
refer to the bit-string that is the commitment.) For brevity, a scheme secure according to the tag-
based definition will be called a tag-based scheme, and a scheme secure according to the body-based
definition will be called a body-based scheme.

In our paper, we choose to focus on tag-based schemes since they admit simpler constructions and
seem to be the most appropriate for our applications. In particular, there exists a conversion from tag-
based schemes to body-based ones with the addition of a one-time signature scheme. This is a rather
common technique, and we discuss it later in the paper. We also show a rather general transformation
from body-based schemes to tag-based ones. Furthermore, in constructing secure zero-knowledge
protocols in the UC framework, where the communication is normally assumed to be authenticated, it
is natural to use a tag-based scheme, setting the tag to be the pair of the identities of the prover and
the verifier. In this way, one can avoid the overhead of the added one-time signature scheme caused
by the tag-based scheme to body-based scheme conversion. We give more details later in this paper.

Efficient Constructions We present various constructions of SSTC schemes. The first construction
is a generic one based on the (minimal) assumption that one-way functions exist. Our construction
is similar to that of a UCC commitment scheme in Canetti et. al. [9]. However, because SSTC
schemes do not require the extractability property, we are able to simplify the construction, and
have it rely on a weaker assumption. The next two constructions are based on specific number-
theoretic assumptions, namely the strong RSA assumption and the DSA assumption(see Appendix F).
These two constructions are very efficient, both involving only a small constant number of public key
operations. The construction based on DSA is similar to the one given by Garay et. al. [31], but is
about twice as efficient.

Interestingly, all of our constructions are heavily based on signature schemes that are existentially
unforgeable against adaptive chosen message attacks. We show that this is not a coincidence, in that
there is a straightforward conversion of any SSTC scheme into a signature scheme.

Applications We show constructions of unbounded simulation-sound, unbounded non-malleable,
and universally composable zero-knowledge (ZK) protocols using SSTC schemes in the common ref-
erence string (CRS) model. In particular, we show how to (1) convert a ¥-protocol [13] (which is a
special three-round, honest-verifier protocol where the verifier only sends random bits) into an un-
bounded simulation-sound ZK protocol; and (2) convert an -protocol [31] (which is a ¥-protocol
with a straight-line extractor) into an unbounded non-malleable ZK protocol, and further into a
universally-composable ZK protocol. The constructions are conceptually very simple. In fact, they all
share the same structure, and all use a technique from Damgard [16] and Jarecki and Lysyanskaya [36].
The same technique was also used in Garay et. al. [31] in constructing a universally-composable ZK
protocol that is secure against adaptive corruptions.

Our constructions are very efficient, and in particular our construction of a universally-composable
ZK protocol is more efficient than previous constructions based on universally-composable commitment
schemes [7, 9, 18]. First, we gain efficiency by using an SSTC scheme instead of a UCC scheme, since
our most efficient SSTC constructions are more efficient than any known UCC constructions. For
instance, the UCC constructions of [7, 9] are for bit commitments, and thus have an expansion factor
of at least the security parameter. The UCC construction of [18] has constant expansion factor,
but requires a CRS of length proportional to the number of parties times the security parameter.

Recently and independent from this work, Damgard and Groth [17] presented a UCC scheme with a
constant expansion factor with a CRS whose length is independent of the number of parties. However,
their scheme is still quite complicated, since it requires interaction, and uses two different types of
commitments, one a non-malleable commitment scheme, and the other a special “mixed commitment
scheme.” Second, we gain efficiency by avoiding the Cook-Levin theorem [11, 38].%

The second idea was used by Garay et. al. [31], who observed that one can construct honest-verifier
zero-knowledge protocols with very efficient straightline extractors for many natural problems. They
called these Q-protocols, and showed how to construct UCZK protocols from these 2-protocols in
the CRS model without using the Cook-Levin theorem, thus achieving very efficient constructions.
Intuitively, they managed this by “shifting” the burden of extractability from the commitments to
the underlying Q-protocols. In particular, they used a technique involving signatures to convert an -
protocol into a UCZK protocol secure against static corruptions, and then they used an SSTC scheme
(with a stronger definition than in this paper, as discussed above) to further convert the UCZK
protocol secure against static corruptions into a UCZK protocol secure against adaptive corruptions.
In this paper, we use an SSTC scheme (with the new definition introduced in this paper) to construct
UCZK protocols secure against both static and adaptive corruptions in the CRS model. Compared
to that in [31], our construction is simpler and more efficient. The savings are twofold: the simpler
SSTC construction (with a weaker definition) cuts the overhead of SSTC by half, and the direct use
of the tag-based scheme further eliminates the need for one-time signature schemes.

Relation to Non-malleable Commitments We discuss the relation between SSTC schemes and
NMC schemes [22, 20, 21, 17].5 At first glance, binding and non-malleability (or analogously, equiv-
ocation and malleability) seem like very different notions: while the former concerns the adversary’s
ability to open a commitment to multiple values, the latter concerns the adversary’s ability to produce
and open a commitment to a single value related to a previously committed value. However, they
are actually closely related, and we shall show that simulation-sound binding implies non-malleability
(when both are appropriately defined). In fact, a similar observation was used implicitly in [20, 21, 17]
to construct NMC schemes. In particular, these NMC schemes are all based on trapdoor commit-
ment schemes that satisfy a weak notion of simulation-sound binding. (Note that these results all
use body-based definitions instead of tag-based definitions.) However, the ezact relationship between
the notions of simulation-sound binding and non-malleability was not known, e.g., if simulation-sound
binding is strictly stronger than non-malleability, or if they are equivalent.

We study the exact relationship between these two notions in this paper. To do this, we need
to resolve some technical issues. First, just as SSTC schemes can be tag-based or body-based, NMC
schemes can also be tag-based or body-based, where a tag-based NMC scheme is informally defined as
one in which seeing a commitment (to some value v) with a certain tag does not give an adversary any
advantage in generating a new commitment with a different tag that can later be opened to a value
related to v. Since we focus on tag-based SSTC schemes, we will focus on their relation to tag-based
NMC schemes.® (Analogous results could be obtained for the relationship between body-based SSTC
schemes and body-based NMC schemes.) Second, an SSTC scheme is a TC scheme, so to make a
useful comparison, we consider non-malleable trapdoor commitment (NMTC) schemes. Third, since
an adversary for an SSTC scheme is allowed to query an equivocation oracle, we will also consider
NMTC schemes in which an adversary is allowed to query an equivocation oracle.

In previous constructions, they build a UCZK protocol TI for an NP-complete language L (e.g. Hamiltonian Cycle
or Satisfiability), and then the UCZK protocols for any NP language is reduced to II” via the Cook-Levin theorem,
which is not very efficient.

STechnically, when we refer to an NMC scheme, we will always mean an e-non-malleable commitment scheme, following
the notation proposed in [22].

5Tag-based NMC schemes are also related to UCC schemes. In particular, it can be shown that a UCC scheme is
also a tag-based NM commitment scheme in which the tag is the identity of the committing party.

4

Finally, we refine our definitions of SSTC schemes and NMTC schemes by specifying the number
of equivocation oracle queries an adversary is allowed to make. An equivocation oracle, on a commit
query, produces a commitment com and on an decommit query, opens com to an arbitrary value. We
say a TC scheme is SSTC(¥), if it remains secure if the adversary is allowed to make at most £ commit
queries to the oracle (with no restriction on the number of decommit queries). We define NMTC(¥)
schemes similarly. We use SSTC(o0) and NMTC(o0) to denote the schemes where the adversary can
make an unlimited number of commit queries. With the refined definitions (except for those related
to the definition in [17], discussed below), we shall then prove that, for any constant £, SSTC(£+1) is
strictly stronger than NMTC(¢) and NMTC(#) is strictly stronger than SSTC(#). (In particular, note
that even an SSTC(1) scheme is strictly stronger than an NMC scheme, since an NMTC(0) scheme
is at least as strong as an NMC scheme.) Furthermore, SSTC(00) is equivalent to NMTC(o0). See
Figure 1. This makes it clear that the two notions, simulation-sound binding and non-malleability,
are very closely related.

SSTC(0) SSTC(1) --- SSTC((—1) SSTC(£) --- SSTC(c0)
T / T / T / T / I — strictly imply
<~ equivalent
NMTC(0) NMTC(1) --- NMTC(£—1) NMTC(¢) --- NMTC(oo)

Figure 1: The relation between SSTC and NMTC schemes

As mentioned above, the definition of non-malleable commitments in Damgard and Groth [17]
(which they call reusable non-malleable commitments) does not quite fit into the equivalence and
separation results above. Their definition states that seeing one or more commitments does not give
another party any advantage in generating one or more commitments that can later be opened to
values related to the values in the original commitments. However it can be shown that SSTC(oco)
implies a reusable NMC scheme. As mentioned above, one can characterize their construction of a
reusable NMC scheme as constructing a trapdoor commitment schemes that satisfies a slightly weaker
notion of simulation-sound binding, and showing that this implies a reusable NMC scheme.

2 Preliminaries and Definitions

For a distribution D, we say a € D to denote any element that has non-zero probability in D, i.e., any
element in the support of D. We say a < D to denote a is randomly chosen according to distribution
D. For a set S, we say a & $ to denote that a is uniformly drawn from S.

If f and g are functions we say that f is eventually less than g, written f <e, g, if there is an
integer ko such that for all k& > ko, f(k) < g(k). A function «(k) is negligible, if it is eventually less
than k~¢ for any positive c.

All our definitions will assume that adversaries are non-uniform probabilistic polynomial-time
(PPT) algorithms.

Definition 2.1 Two sequences {Xy} and {Yi} of random wvariables are computationally indistin-
guishable if and only if there ezists a negligible function a(k) such that for every non-uniform PPT
A,

|Pr(A(Xg) =1) — Pr(A(Yx) = 1)| <ev (k).

A commitment scheme is a two-phase protocol between a sender and a receiver, both probabilistic
polynomial-time Turing machines, that operate as follows. In the commitment phase, the sender
commits to a value v by computing a pair (com,dec) and sending com to the receiver, and in the
decommitment phase, the sender reveals (v, dec) to the receiver, who checks whether the pair is valid.

Informally, a commitment scheme satisfies the hiding property, meaning that for any v; # vs of
the same length, a commitment to v; is indistinguishable from a commitment to v9, and the binding
property, meaning that once the receiver receives c, the sender cannot open the commitment c to two
different values, except with negligible probability.

We will always assume that commitments are labeled with a tag tag. While this is not a factor in
the security of basic commitment schemes, it will be useful in defining certain enhanced commitment
schemes, as will be obvious below. We also assume that there is a commitment generator function that
generates a set of parameters for the commitment scheme. In other papers this is often referred to
as a trusted third party or as the common reference string generation,” and it is especially important
when we define trapdoor commitment schemes below. (We include it in the basic definition to more
conveniently define trapdoor commitment schemes.)

Finally, for readability in our formal definitions, when we discuss distribution ensembles and neg-
ligible functions, we will often use the phrase “for all ” when we actually mean “for all sequences
{zk},” where z} denotes a value of z dependent on the security parameter k, and of length polynomial
in k. Formally, we define a commitment scheme as follows.

Definition 2.2 [Commitment Scheme] CS = (Cgen, Ccom, Cver) is a commitment scheme if Cgen,
Ccom, and Cver are probabilistic polynomial-time algorithms such that
— Completeness For all v and tag,

Pr[pk + Cgen(1¥); (com, dec) +~ Ccom(pk, v, tag) : Cver(pk,com v, tag,dec) = 1] = 1.

— Binding There is a negligible function a(k) such that for all non-uniform probabilistic polynomial-
time adversaries A,

Prpk < Cgen(1¥); (com, tag, vy, vo, dec;, decy) « A(pk) :
(Cver(pk, com, vy, tag,dec1) = Cver(pk,com,vs, tag,dece) = 1) A (v1 # v2)] <ev (k).

— Hiding For all pk generated with non-zero probability by Cgen(1¥), for all vi,vo of equal length,
and for all tag, the following probability distributions are computationally indistinguishable:

{(comy,decy) < Ccom(pk,v1, tag) : com;} and {(comg,decy) < Ccom(pk, v, tag) : coma}.
Next, we define trapdoor commitment schemes.(We borrow some notation from Reyzin [45].)

Definition 2.3 [Trapdoor Commitment Scheme]

TC = (TCgen, TCcom, TCver, TCfakeCom, TCfakeDecom) is a trapdoor commitment scheme if TCgen(1¥)

outputs a public/secret key pair (pk,sk), TCgen,y, is the related function that restricts the output

of TCgen to the public key, (TCgen,y, TCcom, TCver) is a commitment scheme and TCfakeCom and

TCfakeDecom are probabilistic polynomial-time algorithms such that

— Trapdoor Property For all identifiers tag and values v, the following probability distributions
are computationally indistinguishable:

{(pk, sk) < TCgen(1¥); (¢om, &) + TCfakeCom(pk, sk, tag); dec +— TCfakeDecom (¢, dec, v) :
(pk, tag, v, com, dec)}
and

{(pk, sk) < TCgen(1¥); (com, dec) + TCcom(pk, v, tag) : (pk, tag,v,com,dec)}.

"We do not use the term “common reference string” in our definition, since these parameters may be generated in a
number of ways, and in particular, they may be generated by the receiver. In protocols where this value actually comes
from a common reference string, we will make this clear.

3 Simulation-Sound Trapdoor Commitments

In [31], simulation-sound trapdoor commitment (SSTC) schemes were introduced, in order to construct
a universally-composable zero-knowledge (UCZK) protocol secure against adaptive corruptions. In-
tuitively, they defined an SSTC scheme as a trapdoor commitment scheme with a simulation-sound
binding property that guarantees that a commitment made by the adversary using tag tag is binding,
even if the adversary has seen any commitment using tag tag opened (using a simulator that knows
a trapdoor) once to any arbitrary value, and moreover, any commitment using tag tag’ # tag opened
(again using the simulator) an unbounded number of times to any arbitrary values.

Here we introduce a simpler definition for an SSTC scheme where the simulation-sound binding
property is such that adversary can only succeed on a tag that has never been used in a commitment,
rather than on a tag that has never been used in a commitment that has been decommitted in two
different ways.® Since this can only reduce the success probability of the adversary, it is a weaker
property. However, we will show that it also suffices for the desired application in [31], namely, for
constructing UCZK protocols secure against adaptive adversaries.

Definition 3.1 [SSTC Scheme] TC = (TCgen, TCcom, TCver, TCfakeCom, TCfakeDecom) is an SSTC

scheme if TC is a trapdoor commitment scheme such that

— Simulation-Sound Binding There is a negligible function a(k) such that for all non-uniform
probabilistic polynomial-time adversaries A,

Pr[(pk, sk) < TCgen(1¥); (com, tag, v, v2, decy, decy) < ACPk:sk (pk) :
(TCver(pk, com, vy, tag,decy) = TCver(pk, com,ve, tag,deco) = 1) A (v1 # v2) A tag & Q]
<ev a(k),

where Oy, s, operates as follows, with Q initially set to (:

— On input (commit, tag):
compute (com, £) < TCfakeCom(pk, sk, tag), store (com, tag,£), and add tag to Q. Return com.

— On input (decommit, com, v):
if for some tag and some &, a tuple (Com, tag,) is stored, compute dec TCfakeDecom(&, com, v).
Return dec.

For the remainder of the paper, SSTC will refer to this new definition, and SSTC(GMY) will refer
to the old definition of [31].

3.1 SSTC scheme based on any one-way function

Here we present an efficient SSTC scheme TC based on a signature scheme, which in turn may be
based on any one-way function [46]. TC is the aHC scheme from Canetti et al. [9] with the following
changes:

1. The underlying commitment scheme based on one-way permutations is replaced by the com-
mitment scheme of Naor [40] based on pseudorandom generators (which can be built from any
one-way function).

2. An extra parameter tag is included, and the one-way function f and corresponding NP language
{y|3z s.t. y = f(x)} used in the underlying non-interactive Feige-Shamir trapdoor commitment
[26] is replaced by the signature verification relation {((sig-vk, tag), o)|1 = sig_verify(sig_vk, tag,o)}.

8Note that in addition to the simulation-sound binding property being modified, our definition of the underlying
trapdoor commitment scheme is slightly different than the one given in [31].

7

In detail, the scheme goes as follows. TCgen(1*) generates a verification/signing key pair for a sig-
nature scheme (sig_vk, sig_sk) < sig_gen(1¥). For a bit m, TCcom(sig_vk, m, tag) uses the NP-reduction
of the relation {(sig_vk, tag)|3o s.t. 1 = sig_verify(sig_vk, tag,o)} to the Hamiltonicity relation, to ob-
tain a graph G (with ¢ nodes) so that finding a Hamiltonian cycle in G is equivalent to finding o.
Then it follows the aHC scheme of [9]:

e To commit to 0, pick a random permutation 7 of the nodes of G, and commit to the entries
of the adjacency matrix of the permuted graph one by one, using Com (an underlying non-
interactive perfectly-binding commitment scheme that produces pseudorandom commitments).
To decommit, send 7 and decommit to every entry of the adjacency matrix. The receiver verifies
that the graph it received is 7(G).

e To commit to 1, choose a randomly labeled g-cycle, and for all the entries in the adjacency
matrix correspond to edges on the g-cycle, use Com to commit to 1 values. For all the other
entries, produce random values. (These will be indistinguishable from commitments due to the
pseudorandomness of the commitments.) To decommit, open only the entries corresponding to
the randomly chosen g-cycle in the adjacency matrix.

TCfakeCom(sig_vk,sig_sk, tag) computes the graph G associated with (vk,tag), computes o =
sig_sign(sig_sk, tag), and using o finds a Hamiltonian cycle in G. Then it picks a random permu-
tation m of the nodes of G, commit to the entries of the adjacency matrix of the permuted graph one
by one, using Com, and sets & < (G,HC(G)).

TCfakeDecom (&, com,v) runs as follows. If v = 0, it decommits using a normal decommitment to
0. If v = 1, it decommits using a normal decommitment to 1, using the Hamiltonian cycle HC(G) as
the g-cycle.

To show the simulation-sound binding property, we show that if an adversary can break this
property, we can break the underlying signature scheme as follows. (We assume that the underly-
ing signature scheme is existentially unforgeable against an adaptive chosen-message attack.) Take
a verification key sig_vk and its corresponding signature oracle (from the definition of existential un-
forgeability against an adaptive chosen-message attack). For each commitment to a value v using
tag', compute a signature o on tag’ using the signature oracle. From signature o, one can compute
a Hamiltonian cycle in G, and thus run TCfakeCom as above (except using the signature oracle to
compute o) to produce a commitment com. To open a commitment ¢ to a value m, run TCfakeDecom
as above.

Now say the adversary gives a double opening with tag, for which no commitment was requested,
and thus no call to the signature oracle was made. In particular, say the adversary decommits to 0
and 1 for a commitment com. Then one can extract a Hamiltonian cycle in GG, and thus a signature
on tag, breaking the signature scheme.

3.2 SSTC scheme based on DSA

Here we present an efficient SSTC scheme TC based on DSA. For a definition of DSA, see Appendix F.
It is a simplified version of the DSA-based SSTC(GMY) scheme from [31]. TCgen(1*) generates a DSA
public/private key pair (pk, sk), where pk = (g,p,q,y) and sk = (g,p,q,z). For a message m € Z,
TCcom((g,p,q,y), m, tag) first computes « &Zq, ¢ < ¢g®mod p, and h = ¢gH7(ta9)y9" mod p. (Note
that if s is the discrete log of h over ¢, then (¢’ mod ¢, s) is a DSA signature for tag.) Then it generates
a Pedersen commitment [44] to m over bases (¢, h), i.e., it generates § & Zq and computes the commit-
ment/decommitment pair ((¢',c), (m, 3)), where ¢ < (g')?h™. TCfakeCom((g,p,q,v), (9,D,q,z), tag’)
computes a DSA signature (g”, s) on tag’ using the secret key, computes g’ < (g%(%9")y9")s™" mod p

and h + (¢')* mod p, generates (' & Z,, and sets ¢ < h? mod p. It outputs commitment (¢, c) and
g P, 8 q

!/

auxiliary information (4, s). Then TCfakeDecom((4', s), m) outputs (m, (8
decommitment to m.

To show the simulation-sound binding property, we show that if an adversary can break this
property, we can break DSA as follows. (We assume that DSA is existentially unforgeable against an
adaptive chosen-message attack.) Take a DSA key vk(and its corresponding DSA signature oracle
(from the definition of existential unforgeability against an adaptive chosen-message attack). It is
easy to see that the equivocation oracle, and in particular the commit queries to that oracle, may be
implemented using the DSA signature oracle on the requested tag’s.

Now say the adversary gives a double opening with tag, for which no commitment was requested,
and thus no call to the DSA signature oracle was made. In particular, say it gives openings (m, f3)
and (m/, ') of (¢',¢). Then (¢’ mod ¢, (' — B)/(m—m') mod q) is a signature on tag, breaking DSA.

—m)s mod ¢), which is a

3.3 SSTC scheme based on Cramer-Shoup signatures

Here we present an efficient SSTC scheme TC based on Cramer-Shoup signatures (for a definition of
Cramer-Shoup signatures, see Appendix F).

TCgen(1%) generates a public/private key pair (pk, sk) for Cramer-Shoup signatures, where pk =
(N,h,z,€¢',H) and sk = (p,q). For a message m € Z,, TCcom((N,h,z,e’', H), m, tag) first computes
(y',2,e) as in the Cramer-Shoup signature protocol for tag, and sets z” < zh= ") mod N. (Note
that if y is eth root of z” modulo N, then (e,y,y’) is a Cramer-Shoup signature for tag.) Then it uses
the unconditionally-hiding commitment scheme from [12] based on e-one-way homomorphisms (specif-
ically, based on the RSA encryption function with public key (e, N), i.e., f(a) : a® mod N) over base
z"". That is, it chooses § & Z% and computes the commitment/decommitment pair ((', e, ¢), (m, B)),
where ¢+ (z")™f(8) mod N. TCfakeCom((N,h,z,¢e',H),(p,q),tag’) computes a signature (e,y,y’)
on tag' using the secret key, computes ' + ()¢ h=#(") mod N and z” < zh=H(®") mod N, gener-
ates B & Z%, and sets ¢ < (8')¢ mod N. It outputs commitment (y',e,c) and auxiliary information
(8',y). Then TCfakeDecom((3',y), m) output (m,S'y~™ mod N), which is a decommitment to m.

To show the simulation-sound binding property, we show that if an adversary can break this
property, we can break the Cramer-Shoup signature scheme as follows. (We assume that Cramer-
Shoup signatures are existentially unforgeable against an adaptive chosen-message attack.) Take
a Cramer-Shoup key vk and its corresponding signature oracle (from the definition of existential
unforgeability against an adaptive chosen-message attack). It is easy to see that the equivocation
oracle, and in particular the commit queries to that oracle, may be implemented using the Cramer-
Shoup signature oracle on the requested tag’s.

Now say the adversary gives a double opening with tag, for which no commitment was requested,
and thus no call to the signature oracle was made. In particular, say it gives openings (m,) and
(m',3') of (y',e,c) with m > m'. Then (") ™ = (88 1) mod N and by e-one-wayness of the
RSA encryption function, the value y such that y® = £ mod N may be computed. and (e,y,y’) is a
signature on tag, breaking Cramer-Shoup.

SSTC Signatures All three of our previous constructions of SSTC schemes are heavily based on
signature schemes. In fact, this is not a coincidence, since one can easily derive a digital signature
scheme from any SSTC scheme, as the next theorem demonstrates. Intuitively, to sign a message
m, one exhibits the ability to open a commitment with label m to both the message 0 and the message
1.

More precisely, let SIGtc = (sig_gentc, sig_signc, sig_verifyrc) be specified as follows.

e sig_gentc(1¥) computes (pk, sk) < TCgen(1¥), sets sig.vk = pk, sig_sk = (pk, sk), and outputs
(sig-vk, sig_sk).

e sigsign((pk, sk),m) generates (com, &) < TCfakeCom(pk, sk, m), dfgcﬂ(\)f— TCfakeDecom(¢, com, 0),
and dec; < TCfakeDecom (&, com, 1), and then outputs (com, decy, decy).

o sig_verify(pk, m, (&)Tn,c?&o,citevcl)) outputs TCver(pk, c’o\ﬁ,O,m,d’ch)/\TCver(pk,cfo\r/n, 1,m,d’gc1).

Theorem 3.2 Given an SSTC TC, SIGyc is a signature scheme that is existentially unforgeable
against an adaptive chosen message attack.

Proof: Say a forger F, given public key sig vk = pk and a signature oracle, is able to forge a
signature in SIGtc. Then we give an adversary A that breaks the simulation-sound binding property
of the TC as follows. A takes a TC public key pk and an oracle S, gives F sig.vk = pk as the
public key of SIGt¢c and plays the part of the signature oracle by running the sig_sign procedure,
but using § to generate commitments and decommitments. Since F breaks SIGrtc, it produces a
message m and a signature (com, decy,decy) for some “fresh” m with non-negligible probability. Then
A outputs (com,m,0, 1, d’é;:o, d’;cl) with non-negligible probability, where TCver(vk, com, 0, m, &;co) =
TCver(vk,com, l,m,d’;cl) = 1, and m (as a tag) was not used in any commit queries to S. This
contradicts the simulation-sound binding property of TC. 0

4 Application to ZK proofs

We show how an SSTC scheme can be used to construct unbounded simulation-sound ZK protocols,
unbounded non-malleable ZK protocols, and universally composable ZK protocols. Qur constructions
are conceptually simpler than those given by Garay et al. [31].

All our results will be in the common reference string (CRS) model, which assumes that there
is a string uniformly generated from some distribution and is available to all parties at the start of
a protocol. Note that this is a generalization of the public random string model, where a uniform
distribution over fixed-length bit strings is assumed.

4.1 TUnbounded Simulation Sound ZK

Intuitively, a ZK protocol is unbounded simulation sound if an adversary cannot convince the verifier
of a false statement with non-negligible probability, even after interacting with an arbitrary number of
(simulated) provers. We use the formal definition from [31], and present this definition in Appendix A
for completeness.

Our construction starts with a class of three-round, public-coin, honest-verifier zero-knowledge
protocols, also known as X-protocols [13]. We briefly describe X-protocols here and defer the formal
definitions to Appendix B.

Consider a binary relation R(z,w) that is computable in polynomial time. A ¥-protocol IT for the
relation R proves membership of z in the language Lr = {z | 3w, s.t. R(z,w) = 1}. For a given z,
let (a,c,z) denote the conversation between the prover and the verifier. To compute the first and the
final messages, the prover invokes efficient algorithms ay(z,w,r) and zy(x, w,r, ¢), respectively, where
w is the witness, 7 is the random bits, and c is the challenge from the verifier (as the second message).
Using an efficient predicate ¢(z, a, ¢, z), the verifier decides whether the conversation is accepting with
respect to z. The relation R, and the algorithms a(-), z(-) and ¢(-), are public.

We assume the protocol II has a simulator Sy that, taking the challenge as input, generates an
accepting conversation. More precisely, we have (a, ¢, z) < Sii(c), such that the distribution of (a, ¢, z)
is computationally indistinguishable from the real conversation.

The protocol USS[};,C](:E) is shown in Figure 1, and uses an SSTC scheme TC. Say II is a »-protocol
for relation R. The prover generates a pair (sig_vk,sig_sk) for a strong one-time signature scheme

10

and sends sig vk to the verifier. Then the prover generates the first message a of II and sends its
commitment com, to the verifier, using the signature verification key sig_vk as the commitment tag.
After receiving the challenge ¢, the prover generates and sends the third message z of II, opens the
commitment com,, signs the entire transcript using the signing key sig_sk, and sends the signature on
the transcript to the verifier. (To be specific, the transcript consists of all values sent or received by
the prover in the protocol, except the final signature.)

prover verifier
(sig_vk, sig_sk) < sig_gen, (1%)
a < an(z,w,r)
sig_vk, com,

(comyg, decy) TCcom(pk, a, sig_vk)
c

z < zn(x,w,r,c)
a,decy, z, 8

TCver(pk,comg, a,sig_vk, dec,)

én(z,a,c,z2)
sig_verify, (sig_vk, transcript)

s < sig_sign, (sig_sk, transcript)

Figure 2: USS[Rpk] (z): An unbounded simulation-sound ZK protocol for relationship R with common

input z and common reference string pk, where pk is drawn from the distribution TCgen(1¥). The
prover also knows the witness w such that R(z,w) = 1.

Now we describe the simulator § = (81, S2) for protocol USSﬁk] (). 81(1k) generates a key pair
of the SSTC scheme by invoking (pk, sk) < TCgen(1*), and then outputs (pk, sk). The behavior of
Sa(sk) is more involved. On input z, it first checks if z € L and aborts if not. Then, it generates
a strong one-time signature key pair (sig_vk, sig_sk) as the prover. Next, Sy(sk) fakes a commitment
by generating (com, &) < TCfakeCom(pk, sk,sig_vk) and sends com to the verifier. On receiving the
challenge ¢, it uses the simulator of protocol II to compute an accepting conversation: (a,c, z) < S(c).
Next, So generates a decommitment to a by setting dec TCfakeDecom (£, com, sig_vk,a) and signs
the transcript using the strong one-time signature scheme; let s be the signature. Finally S; sends
over (a,dec, z, s) as the third message.

Theorem 4.1 The protocol USSI[;k](:E) is a USSZK argument.

The proof is postponed to Appendix D.

4.2 TUnbounded Non-malleable ZK

Intuitively, a ZK protocol is unbounded non-malleable if an efficient witness extractor successfully
extracts a witness from any adversary that causes the verifier to accept, even when the adversary is
also allowed to interact with any number of (simulated) provers. We use the formal definition from [31]
and present this definition in Appendix A for completeness.

Our construction of the NMZK protocol is very similar to that of the USSZK protocol presented
above, where the only difference is that the X-protocol is replaced by an Q-protocol. Recall that an
Q-protocol [31] is like a ¥-protocol with the additional property that it admits a polynomial-time,
straight-line extractor (an Q-protocol works in the CRS model). A bit more formally, there exists a
pair of polynomial-time algorithms (&;,&) with the following properties. £; generates a pair (o, 7):
(0,7) < &1, where o is a “simulated CRS” that is computationally indistinguishable from the real
distribution and 7 is the “backdoor information”. & will produce a “potential-witness” @ from the

11

backdoor information 7 and an accepting conversation (a,c, z): W+ &(z, T, (a,c,2z)). Furthermore,
we have the property that the potential-witness w is indeed a witness if there exists another accepting
conversation (a,c’,2') with the same first-message, but different challenges. We include the formal
definitions in Appendix B.

The protocol NM[I;& o] (z) is shown in Figure 3. It is very similar to the protocol in Figure 2, but
note that here we assume that II is an Q-protocol with ¢ being the CRS.

prover verifier
(sig_vk, sig_sk) <« sig_gen; (1%)
a < an(z,w,r,0)

(comyg, decy) < TCcom(pk, a, sig_vk) sig-vk, com,

Cc

z < zn(z,w,r,c,0)

a,deCa, 2,8 TCyer(pk, comy, a, sig_vk, decy)

4)1_[(ZI?, a,c, Z)
sig_verify, (sig_vk, transcript)

s < sig_sign, (sig_sk, transcript)

Figure 3: NM[J;,C,U] (z): A non-malleable ZK protocol for relationship R with common input z and

common reference string (pk, o), where pk is drawn from the distribution TCgen(1*) and o is drawn
from the distribution of the CRS for protocol II.

The simulator § = (51, S2) for protocol NMﬁ,w] (z) works almost exactly the same as in protocol
USS[Rpk] (z). S1(1*) generates a key pair of the SSTC scheme by invoking (pk, sk) < TCgen(1*), and

then sets o < Dy, where D is the distribution ensemble for the CRS of protocol II. Next, S;(1*)
outputs ((pk,o),sk). Sa(sk) first checks that common input z € Ly and aborts if not. Then
it generates a strong one-time signature key pair (sig_vk,sig sk) as the prover. Next, S, generates
(com, &) < TCfakeCom(pk, sk, sig_vk), and sends com to the verifier. On receiving the challenge ¢, it
uses the simulator of protocol IT to compute an accepting conversation: (a,c, z) <+ Sr(c). Next, Sy gen-
erates a decommitment to a by setting dec TCfakeDecom (&, com, sig_vk,a) and signs the transcript
using the strong one-time signature scheme; let s be the signature. Finally Ss sends over (a, &, z,5)
as the third message.

The extractor & = (&1,) for protocol NM[Rpk’ »1(2) is straightforward. £1(1*) generates a key pair

of the SSTC scheme by invoking (pk, sk) < TCgen(1¥), and then generates (o, 7) < €m,1(1¥). Next,
E1(1%) outputs ((pk,o), sk, 7). E(T) simply runs as the verifier V until V outputs a bit b. If b = 1,
then & (7) takes the conversation (a,c,z) of protocol IT and invokes the extractor for protocol II:
w <+ Enz(z, T, (a,c,z)); if b= 0, then &(7) sets w < L. Finally &(7) outputs (b, w).

Theorem 4.2 The protocol NMf;k’U](x) is an NMZK argument of knowledge for the relation R.

The proof to this theorem is very similar to that to Theorem 4.1 and is postponed to Appendix D.

4.3 Universally Composable ZK

The universal composability paradigm was proposed by Canetti [6] for defining the security and
composition of protocols. To define security one first specifies an ideal functionality using a trusted
party that describes the desired behavior of the protocol. Then one proves that a particular protocol
operating in a real-life model securely realizes this ideal functionality, as defined below. Here we briefly
summarize the framework as defined in Canetti and Krawczyk [8].

12

A (real-life) protocol 7 is defined as a set of n interactive Turing Machines Py, ..., P,, designating
the n parties in the protocol. It operates in the presence of an environment Z and an adversary A,
both of which are also modeled as interactive Turing Machines. The environment Z provides inputs
and receives outputs from honest parties, and may communicate with A. A controls (and may view)
all communication between the parties. (Note that this models asynchronous communication on open
point-to-point channels.) We will assume that messages are authenticated, and thus .4 may not insert
or modify messages between honest parties.’ A also may corrupt parties, in which case it obtains
the internal state of the party. (In the non-erasing model, the internal state would encompass the
complete internal history of the party.)

The ideal process with respect to a functionality F, is defined for n parties Pi,..., FP,, an envi-
ronment Z, and an (ideal-process) adversary S. However, P,..., P, are now dummy parties that
simply forward (over secure channels) inputs received from Z to F, and forward (again over secure
channels) outputs received from F to Z. Thus the ideal process is a trivially secure protocol with the
input-output behavior of F.

More details are given in Appendix C.

The zero-knowledge functionality. The (multi-session) ZK functionality as defined by Canetti [6]
is given in Figure 4. In the functionality, parameterized by a relation R, the prover sends to the
functionality the input x together with a witness w. If R(z,w) holds, then the functionality forwards
z to the verifier. As pointed out in [6], this is actually a proof of knowledge in that the verifier is
assured that the prover actually knows w.

ﬁézK proceeds as follows, running parties Py, ..., P, and an adversary S:
— Upon receiving (zk-prover, sid, ssid, P;, Pj,z,w) from P;: If R(z,w) then send (ZK-PROOF,
sid, ssid, P;, Pj,z) to P; and S. Otherwise, ignore.

Figure 4: The (multi-session) zero-knowledge functionality (for relation R)

Garay et al. [31] proved that any “augmentable” NMZK protocol can be easily converted to a UCZK
protocol in the ngs-hybrid model, assuming static corruptions. Intuitively, an NMZK protocol is
augmentable if the first message sent by the prover contains the common input z and a special field aux
in which the prover can fill with an arbitrary string without compromising security. (In the conversion
to UCZK in [31], the auxiliary string contains the sid, the ssid, and the identities of the prover and
verifier.)

It can be readily verified that the protocol NM[R;),C, o] () can be easily made augmentable by adding
z and aux in the first message. We denote the slightly modified protocol where the aux field is set to
(sid, ssid, P;, P;) by AN M[Rpk,o] (). Then it follows that ANM[Rka] (z) is a UCZK protocol for relation
R, assuming static corruptions.

However, one can simplify this protocol by removing the one-time signature scheme, only including
the identities of the prover and verifier in the auxiliary string, and using this auxiliary string as the tag
of the commitment scheme. This simplified scheme, MYZK[Rpk7 +1(2), is shown in Figure 5. (Note that
since we are assuming authenticated communication in the UC framework, the identities P; and P; will
be known to both parties, and thus do not need to be explicitly sent in our protocol.) Furthermore,
this protocol can be easily modified into one that remains secure against adaptive corruption in the
erasing model. In fact, all that is needed is to have the prover erase the randomness used in the
Q-protocol before sending the final message.

9This feature could be added to an unauthenticated model using a message authentication functionality as described
in [6].

13

P; (prover) P; (verifier)
a < an(z,w,r,0)

(comg, dec,) + TCcom(pk, a, (P;, P})) x,com,
C
z ¢ zn(z, w,r, ¢, 0) @,deCa,2 TCver(pk,comy,a, (P, P;), dec,)

ou(z,a,c, z)

Figure 5: MYZK{;,C, »1(#): A UCZK protocol for relationship R with common reference string (pk, o)

where pk is drawn from the distribution TCgen(1¥) and o is drawn from the distribution of the CRS
for protocol II.

Theorem 4.3 The protocol MYZK[Izkﬂ} (z) is a UCZK protocol for relation R, assuming static cor-
ruptions. By erasing the randomness (r) used in the Q-protocol before the final message, it is a UCZK
protocol for relation R, assuming adaptive corruption (in the erasing model).

The proof is postponed to Appendix D.

5 Comparison to Non-Malleable Commitments

We explore the exact relation between SSTC schemes and NMC schemes.

5.1 Definitions of NM commitments

Our definition for non-malleable (NM) commitments is based on the definition in [21], which, tech-
nically speaking, defines the notion of e-non-malleability, instead of strict non-malleability. For the
clarity of presentation, we shall use the term “non-malleability” to mean e-non-malleability, and will
note any places where our results have application to strict non-malleability.

Informally, similar to the definition in [21], we say a commitment scheme is non-malleable if when
an adversary sees a commitment com;, generates its own commitment coms, and sees com; opened,
it cannot then open com, to a value related to com; with any greater probability than a simulator
that never saw com; in the first place. Note that this is also called non-malleability with respect to
opening [20] and differs from the original definition of [22] that was discussed in the introduction,
and which is also called non-malleability with respect to commitment. Our definition differs from the
definition in [21] as follows.

e We only define NM trapdoor commitment (NMTC) schemes, since that is what will be of most
interest in comparisons to SSTC schemes. Non-trapdoor versions of these definitions are straight-
forward.

e We use tag-based definitions instead of body-based definitions. Again this is what will be of most
interest in comparisons to SSTC schemes. Body-based definitions are straightforward. In fact,
most of our results relating SSTC schemes and NMTC schemes also hold when these schemes
are defined using body-based definitions. We will discuss this later.

As mentioned in the introduction, the recent work of Damgard and Groth [17] generalizes and
strengthens the definition of non-malleable commitments to be reusable, i.e., to have the property that
seeing one or more commitments does not give another party any advantage in generating one or more
commitments that can later be opened to values related to the values in the original commitments.

14

Their definition also stipulates that the distribution of committed messages is dependent on the public
key. However, we will continue to use the simpler definition, since it exemplifies the relation between
SSTC schemes and NMTC schemes. Later we will discuss how to obtain similar relations to reusable
NMTC schemes.

In the following we assume tags are strings of length polynomial in the security parameter k.

Definition 5.1 [Non-Malleable Trapdoor Commitment (NMTC) Scheme] TC = (TCgen, TCcom,
TCver, TCfakeCom, TCfakeDecom) is an NMTC scheme if TC is a trapdoor commitment scheme with
the following property:

Non-Malleability There exists a negligible function a(-) such that for all polynomials r(-) and all
probabilistic polynomial-time adversaries A = (A, As), there ezists a polynomial q(-,-), such
that for all non-negligible!® € > 0, there ezists a simulator S running in time q(k,e™ ') such
that for all polynomial-time computable valid relations R (see below), for all tags tag,, and all
distributions D samplable in time r(k),

WA’tagl;l)’R(k) - ﬂ-:S,tagl,D,R(k) SeV € + Cy(k)’
where

T A,tag,,D,R(K) def Pr[(pk, sk) < TCgen(lk); m1 & D; (comy,decy) < TCcom(pk,m1, tag,);
(comg, tags, &) Ai(pk,comy, tag,, D); (me, decs) < Aa(pk, &, mq,decy) :
(TCver(pk, comgy, mo, tags, dece) = 1) A (tag; # tagy) A R(mi, ma)]

and

def
Wg,tagl’D,R(k) = Pr[my & D;mg S(lk, tag;, D) : R(m1,m2)].

A relation R is valid if for all m, R(m, L) = 0.

Remark 5.2 As in the definitions of [20, 21, 17], our definition does not allow the adversary to
receive any history (side information) about the messages to which commitments are made.

We generalize the definition above and consider NMTC(#) schemes, which are NMTC schemes in
which A; and Ay are allowed to query an oracle Opy, s as defined in the SSTC definition, but with
at most £ commit queries allowed. (Note that there is just one oracle that both A4; and Ay call,
and thus at most a total of £ commit queries between them.) Also the condition in the definition of
T A,tag,,D,R(K) is restricted to tags & Q, where Q is the list of tags used in commit queries to Oy, s.-
Note that an NMTC scheme is an NMTC(0) scheme. We use £ = oo to denote an oracle which accepts
an unbounded number of commit queries.

We similarly generalize the definition of SSTC schemes and consider SSTC(#) schemes. Then an
SSTC(0) scheme is just a TC scheme, and an SSTC(co) scheme is what we have called an SSTC
scheme.

Notice that we have defined NMTC schemes as tag-based, as opposed to body-based, as usually
seen in literature [22, 20, 29, 21, 17]. As we have explained in the introduction, this is because we
defined our SSTC schemes to be tag-based as well. However, this is not a significant distinction since
there exists fairly generic reductions from one to the other. Qur next theorem shows such a reduction
from body-based NMTC schemes to tag-based ones.

Here, we assume the commitment scheme allows commitments to strings of arbitrary length. A
similar theorem could be shown for commitment schemes which allow only fixed length commitments,
say of length equal to the security parameter.

10Tn other words, € may be a function of k such that e ! is bounded by a polynomial in k.

15

Theorem 5.3 Let TC be a body-based NMTC scheme. Let TC' be TC, but with the tag added to the
message being committed. That is, TCgen'(1¥) returns the result of TCgen(1%), TCcom’(pk,v, tag)
returns the result of TCcom(pk, (v,tag), tag), and TCver (pk,com,v,tag,dec) returns the result of
TCver(pk, com, (v, tag), tag,dec). Then TC' is a tag-based NMTC scheme.

Proof: This proof relies on the binding property of TC, as well as the non-malleability property. Take
any A’ = (A}, A}) for TC'. Then construct A = (A, Ay) for TC as follows. A;(pk,comy, tag;) com-
putes (comg, tags, &) + Al (pk,comy, tag,) and returns (coms, tags, (¢, tags)). A2(pk, (€, tagy), m1, decy)
computes (mg, decy) < AL (pk, &, m1,decq) and returns ((mq, tags),decs). Take the simulator S guar-
anteed to exist by the non-malleability of TC. Then we construct a simulator S’ for TC' as fol-
lows. S'(1%,tag,,D') computes (mao, tagy) + S(1%, tag,, D) and returns mg, where D = {(m, tag,) :
m + D'}. Now take any distribution D', and any relation R'. Let D be constructed as above, and
define R({m1, tag,), (ma, tags)) = R'(m1,m2). Then by the non-malleability of TC,

Tr-A’tang,R(k) - 7T{S‘,tagl,’D,R(k) <ev Ot(k)

It is easy to verify that mg,,. p p(k) = T 40 pr @ (k), so to prove the theorem we only need to
show that 74 149, 0", (k) — TA,tag,,D,r(k) is negligible. (Note that 74/ ;9,0 r (k) is defined using
the tag-based definition, while 7 4,449, p,r(k) is not.) Here it is easy to verify that this difference is
bounded by the probability of the adversary generating an identical commitment with a different tag
for a related message. Formally,

T A tag, D, R' (k) — T A,tag, ,D,R(K)
< Pr[pk + TCgen(1%); v, & D; (comy, decy) < TCcom(pk, v, tag,);
(comg, tagy, &) + A1(pk,comy, tag,); (ve, decy) < As(pk, s, v1,decy) :
(TCver(pk,coma, ve, tag,,dece) = 1) A (comy = coma) A (tag; # tags) A R(vi,v2)].

We show that this probability is negligible by showing that an adversary B may be constructed
that breaks the binding property of TC with the same probability. Let B run as follows, given
pk TCgenpk(lk). B chooses my & D' and sets vy < (my, tag;). Then B computes

(comy,dy) < TCcom(pk,v1, tag;),
(Com27 tagQaé) — Al(pkacomla ta’gl)aa’nd
(vo,decy) < As(pk,&, decy).

Then if (TCver(pk,coms,ve, tagy,dece) = 1) A (com; = coms) A (tag; # tags), B outputs the tuple
(comy, tag,,v1,v2,dec,decy). Note that vy # wve, since tag; # tag,, vi = (m1,tag;) and vo =
(mg, tagy) for some my € D (by the definition of As). Also, TCver does not check the identifiers,
so TCver(pk,comsg, (m1, tag,), tag,,decy) = TCver(pk,coms, (mq, tag,), tag,,decy) = 1. Thus B breaks
the binding property of TC with probability at least .4 1ag, D7, 7" (k) — T A,tag,,p,r(k), s0 this difference
must be negligible in k. 0

Note that Theorem 5.3 could be generalized to apply to non-trapdoor commitment schemes and
to strict non-malleable commitment schemes (as opposed to e-non-malleable commitment schemes).
However, we do not know any easy way (e.g., without adding a more complicated construction, like a
zero-knowledge proof) to convert a body-based NMTC(£) scheme into a tag-based NMTC(#) scheme,
for any £ > 0. The problem is dealing with the oracles, and the fact that one restricts success using a
tag-based definition, and the other restricts success using a body-based definition.

Now considering the problem of converting tag-based SSTC or NMTC schemes to body-based SSTC
or NMTC schemes, it seems that a simple construction like the one in Theorem 5.3 does not suffice.

16

Instead, one could construct a body-based scheme by generating a verification/signing key pair for
a strong one-time signature scheme (see Appendix E), using the verification key as the tag in the
tag-based commitment, signing the tag-based commitment using the signing key, and giving the pair
(the tag-based commitment and the associated signature) as the full commitment. As this is a fairly
standard technique, used in, e.g. [31], we omit the analysis here.

5.2 Relations between SSTC and NMTC

First we show that for all £ > 0, an SSTC(Z + 1) scheme is also an NMTC(#) scheme. We use the
notation A(*;w) to denote a probabilistic algorithm A that has its random bits fixed to w. (Note that
all probabilistic subroutines called by A will also have their random bits fixed.)

Theorem 5.4 Let TC be an SSTC(£ + 1) scheme. Then TC is an NMTC(¢) scheme.

Proof: This proof has the same structure as, but is a generalization of, the proof of Theorem 1
in [21].1

Take any polynomial r(-), any PPT A = (A;, A2) for the unbounded non-malleability of TC.
Construct a simulator § that depends on a parameter € and runs as follows, with Oy .z queries
answered by S (which it can do since it will know sk).

S(]-ka taglaD) :

(pk, sk) < TCgen(1F)

Fix random tape w

(Comy, &1) < TCfakeCom(pk, sk, tag,)

(Com27 tag27 52) « A?Pk’m (pka C/O\rnla taglJD)

Repeat at most 2¢ 1 1n2e! times:
my (i D
ms + DecommitValid(pk, coms, tag,, &2, comy, &1, tagy, m1; w)
If mo # L break

Output my

In the definition of M above, DecommitValid(pk,coms, tagy, &2, comy, &y, tag,,m1) is defined as
follows.

DecommitValid(pk, coms, tag,, &, comy, &1, tag,, m1)
dec; + TCfakeDecom(&;,coml, tagy,my)
(m2, decz) — As (pk, 62, mi, decl)
If (TCver(pk, comsy, ma, tag,, decy) = 1) A (tag, # tag,)}
then output my
else output L

By inspection, for any r(-) and PPT A, assuming D is samplable in time r(k) then there is a
polynomial ¢(-,-) such that for all non-negligible € > 0, S runs in time ¢(k,e™1).
Define Expt(pk, comy, tags, £2,comy, &1, tag,,w) as follows:'2

Expt(pk, comy, tagQa £2a C/O\Fﬁla §13 tagla w) :
Repeat at most 2 '1In2e~ ! times:
R
my <D
m3 < DecommitValid(pk, coms, tag,, &, comy, &1, tag,, my;w)
If m5 # L then break
output m;

" Their proof shows that a specific trapdoor commitment scheme with a slightly stronger binding property (similar to
a body-based SSTC(1) but not quite as strong) is also an body-based NMTC scheme.

12Note that in Expt, w is preceded by a comma and not a semicolon. Therefore it is a parameter to Expt, and is not
the random bits of the tape for running Expt. w will be used to fix the random bits for a subroutine of Expt.

17

Now for any identifier tag;, any distribution D samplable in (k) time, and any relation R, let

T Atag, p,R(K) = Pr[(pk, sk) < TCgen(1¥);w ¢ Q; (comy, &) < TCfakeCom(pk, sk, tag);
(C0m2, tagQa 52) &~ A?pk’Sk (pka E_O\F/nl, ta'gla D)a mi & D;
my < DecommitValid(pk, coma, tag,y, &2, comy, &1, tag,, m1;w) : R(my,ma) = 1]

and notice that 4 ta9,,0,R(K) — T A,1ag,,p,r(k) is negligible, by the trapdoorness property. Specifically,
since the only difference between the two experiments is that one uses TCfakeCom and TCfakeDecom
and the other uses TCcom, by trapdoorness there exists a negligible function 3(k) such that 74,49, p,r(k)—
7 A,tag,, D,R(K) <ev B(k). (This is where we use the fact that R is a polynomial-time relation, because
the distinguisher runs it, and we need the distinguisher to be polynomial time.)

Now notice that

Wg’tagl,D,R(k) = Pr[(pk, sk) < TCgen(lk); w & Q; (comy, &) « TCfakeCom(pk, sk, tag,);
(coma, tagy, &) « AT ™" (pk, com1, tagy, D); my & D;
m; A EXpt(pk, coma, tGQQ, 623 66Fnla 615 tagl; w) : R(mla m;) = 1]
As in [21], let us denote the generation of a random tuple v = (pk, com, &1, coms, tagsy, £2,w) by

7 < T'(1%). For a given tag; and D, define a tuple vy = (pk, comy, {1, comg, tagy, &,w) as being good if
it satisfies

Pr[mi & D;my < DecommitValid(pk, coms, tags, &2, Comy, &1, tag,, mi;w) : mg # 1] > €/2

Note that this probability distribution is only over the random choice of m;. Let GOOD(y) be the
event of that v is good. For a tuple v = (pk,comy, &1, coms, tagy, &2, w), we write DecommitValid(mq,)
to denote experiment DecommitValid(pk, coms, tagy, &2, comy, &1, tag,, m1;w), and we write Expt(7y) to
denote experiment Expt(pk, coms, tag,, &, comy, &1, tag,,w).

Then

7AU\,tagl,D,R(]f) - Wi?,tagl,D,R(k)
< Prly+ I'(1¥);m; & D;my < DecommitValid(my,) : R(m1, mg) A GOOD(7)]
+ Pr[y < D(1%); my & D; my < DecommitValid(m1,v) : R(m1, ma) A ~GOOD(v)]
—Pr[y « T'(1%);m1 & D;m} « Expt(y) : R(m1,m}) A GOOD(~)]
— Pry T(1%); my & Dymi « Expt(y) : R(m1,m5) A -GOOD(v)]
Pr[y < I'(1%); my & D; my « DecommitValid(m1,v) : R(m1,ma) A GOOD(y)]
+e/2
— Prfy D(1%); my & Dymi « Expt(y) : R(m1,m5) A GOOD(y)]

IN

This implies

7 A,tag,,D,R(K) = T8 109, 1,R(K)
< Prly « I'(1F);m; & D;my < DecommitValid(my, y); m3 < Expt(y) :
R(my,mg) A R(my,m3) A GOOD()]
+e/2

18

= Pr[y+ I'(1¥);m1 & D;my < DecommitValid(M,); m’ + Expt(y) :
R(m1,ma) A R(my,m5) A (mj = 1) A GOOD(y)]
+ Prfy « I'(1%);m; & D;mg DecommitValid(my,v); m} < Expt(y) :
R(m1,ms) = 1 A R(m1,m3) A (m3 # L) A GOOD(y)]
+e/2

To bound the first probability, recall that in the experiment for choosing m3, we are given up to
2¢ '1In2¢ ! tries to obtain m} # L, and in each attempt, the probability is at least ¢/2 assuming that
GOOD(7y) occurs. Then

Prly « I'(1¥); m; & D;my < DecommitValid(my,~); mb « Expt(y) :
R(my,m2) A R(mi,m3) A (m = L) A GOOD(v)]
< Prly « D(1%);m; & D;mg < DecommitValid(my, v); mb < Expt(y) :
R(my,m2) A R(my,m3) A (my = 1)|GOOD(y)]
< €/2.

Now call the second probability 0.4,t4¢,,p,r(k). Note that if TC is not an NMTC(¢) scheme, then
for all negligible (k) there is a function r(-), a PPT adversary A, a non-negligible € > 0, a distribution
D samplable in (k) time, an identifier tag; and a polynomial-time computable valid relation R such
that for an infinite set of natural numbers &,

O A tag,,D,R(K) > (k).

Using this we will show how to construct a PPT adversary B that contradicts the fact that
TC is an SSTC(£ + 1) scheme. For (pk,sk) < TCgen(1¥), B(pk) generates w & Q, calls its oracle
with (commit, tag,) to get com; (with (comi, &) stored by the oracle), computes (coms, tagy,&2) <
.A?pk’Sk (pk,comy, tag, D) by forwarding Oy, 4 calls by A to its own oracle.

Let v = (pk,comy, &1, coms, tagy, &2, w) (Note that B does not see &1, but it is stored by the
oracle.) Thus v is generated with the same distribution as I'(1%). Then B(pk) generates m; & D and
runs mg < DecommitValid(m1,~) and ml, < Expt(y), but replacing TCfakeDecom(—,com, tag, m) in
DecommitValid with a query decommit(com,m). B(pk) outputs (coms, tags, mo, mb, decs, dech) (where
decy and dech, are generated along with mgo and mb).

Note that if A makes at most £ commit queries to its oracle, then B makes at most £ + 1 commit
queries to its oracle. Also note that since € is non-negligible, B runs in probabilistic polynomial time.
To analyze the success probability, note that if the condition defining 0.4 t09,,p,r(K) is satisfied, then
B succeeds, since neither mgo nor mf, is L, they are different, and the commitment coms has been
opened to each one. So B succeeds with probability at least 04,44, p,r(k). This contradicts the fact
that TC is an SSTC(£ + 1) scheme. Thus TC is an NMTC(£) commitment scheme. 0

To relate our results to reusable non-malleable commitment schemes as defined in [17], we need
to consider adversaries that input a vector of commitments (and later decommitments), and output
a vector of commitments (and later decommitments). To be specific, let (¢,u)-NMTC(£) denote a
reusable NMTC commitment scheme with an input vector of size £ and an output vector of size wu.
Then using a proof similar to above, but with some additional ideas from [17], we can prove the
following theorem.'?

13 Asin [17], we change the definition of a valid relation (over vectors of messages) to one in which all messages including
1 are allowed, but where the probability of the relation being true cannot be increased by changing a message in the
second (adversarially-chosen) vector to L.

19

Theorem 5.5 Let TC be an SSTC(¢ +t) scheme. Then TC is a (t,u)-NMTC(£) scheme.
Now we look at the opposite direction.
Theorem 5.6 Let TC be an NMTC(¢) scheme. Then TC is an SSTC(£) scheme.

Proof: First note that if there is at most one possible tag, then the TC must be an SSTC(¥)
scheme by the binding property of TC. So assume there are more than one possible tags. Say a
scheme TC is not an SSTC(£) scheme. Then there exists a polynomial a(-) and a PPT adversary
B that, when given a public key generated by TCgen(1*) and with access to an oracle to which it
can make at most ¢ commit queries, for infinitely many k’s, produces with probability more than
a(k) a tuple (com,tag,vi,ve,deci,decy) such that tag was not queried to commit, v1 # vg, and
TCver(pk, com, vy, tag,dec;) = TCver(pk,com, vo, tag, decy) = 1.

From B we construct an adversary A = (A1, A2) that breaks the non-malleability of the scheme.
.A?”k’s’“ (pk,comy, tag;, D) runs B(pk), answering queries to Op sx with its own oracle, until it gets
an output (comg, tags, ve1, vee, decor,decss). If tag, = tagy, tagy was queried to commit, ve; = wvoo,
TCver(pk, coma, vo1, tagy,decar) # 1, or TCver(pk,coms, vaa, tagy,decos) # 1, then generate a ran-
dom commitment and output it, and have Ay simply open that commitment. Otherwise, output
(comg, tG,QQ, (’1)21, V22, dec21, deCQQ)). Then A2 (pk, (’021, V22, dec21, deC22), deC1, ’l)l) checks if R(’Ul, Ugl),
and if so Ay outputs (v, decor), else Ao outputs (vag,decss). Note that since B calls the oracle at
most £ times, so does A.

Since B is polynomial time, there must be a polynomial p(k) such that |vai],|vaa| < p(k). Let
C(1%,v) be an polynomial-time deterministic encoding function that maps a string of length at most
p(k) into a unique string of length exactly p’(k), where p'(k) is also a polynomial. For instance,
C(1%,v) could map v to the string z|v|0P(¥)= ¥l where z = |v| encoded in [logp(k)] bits.

Let D be uniform over {0,1}?' (®)+1 and let (k) be the time to sample that distribution, which is
obviously polynomial.

Let R be a polynomial-time relation taking two inputs of length p'(k) + 1 and at most p(k),
respectively, and having the properties that (1) for any ve € {0, 1}51’(’“),

R 1
PI‘(’U1 +7D: R(’Ul,’Ug)) = E’
and (2) there is no correlation or only negative correlation between different second inputs, i.e., for
any vai, V22 € {0, 1}§p(k:) With V21 75 V22,
PI‘(’U1 (i D: R(’l)l,’l)22)|R(’U1,’U21)) Z %

As an example, let R be the following relation, where v[j] denotes bit j of string v. (We are slightly
abusing notation here by assuming that boolean operations result in 1 or 0, and these are then used
as elements of Zs.)

p'(k)

R(vi,v) = |) (v1[j] - walj]) +vi[p' (k) + 1] | mod 2,
j=1

where wo = C(1%,v3). In other words, R is the inner product of the first p'(k) bits of v; with the
p'(k)-length encoding of vy, exclusive-or the (p'(k) 4+ 1)st bit of v;.1* Let tag, be an identifier that
is output by B at most half the time B succeeds. This identifier must exist since there are at least

Note that one can also construct relations with the two desired properties if the commitment scheme fixes the bit
length of a message, e.g., to 1 (a single bit) or k.

20

two possible identifiers. Then using the properties of R, and using the fact that the probability that
tag, = tag, is at most % when B succeeds, it is easy to see that for infinitely many k’s,

T A tag, p.r(E) > (1 — @) (%) 4 @ (g) _ % N @

and that for any simulator S,

N =

TS tag,, 0,k (K) <

Thus TC is not an NMTC(¥) scheme. 0

5.3 Separations between SSTC and NMTC

Theorem 5.7 Assuming the hardness of the discrete logarithm problem, there exists an SSTC(¥)
scheme that is not NMTC(£), for every £ > 0.

Proof: We shall prove the theorem constructively. For every £ > 0, we construct a scheme DL, that
is SSTC(¥) (assuming the hardness of discrete logarithm) but not NMTC(£).

Our construction is a modified version of the non-malleable commitment scheme based on discrete
logarithms by Di Crescenzo et.al. [21]. Before describing the construction in more detail, we discuss
some intuition behind the construction.

Given security parameter k, let G, denote a finite (cyclic) group of order ¢, where ¢ is prime and
|g| = k. Let g be a generator of G, and assume it is included in the description of G;,. We will assume
that elements in G can be efficiently sampled uniformly at random, and that for a random y € G,
it is computationally infeasible to compute z such that y = g*. This value z is the discrete log of ¥,
and this assumption is called the Discrete Logarithm (DL) assumption. (For instance, G, may be a
multiplicative subgroup of Zj, for some large prime p where ¢|(p —1).)

Notice that the group G is isomorphic to the additive group Z, in a straightforward manner (in
fact Zg is a field, a fact we shall use later). Now let us turn our attention to polynomials over Z, We
write a degree-£ polynomial as P(z) = ag + a1 -z + - - ag- zt. We state two extremely useful facts that
shall be employed in our construction. These facts are used as well in secret sharing and threshold
cryptography [49].

1. (¢ + 1)-wise independence
A random degree-£ polynomial is (£ 4+ 1)-wise independent. In other words, for a degree-¢
polynomial P(z), the knowledge of its value on £ positions does not yield any information of its
value on a new position. More precisely, by a random polynomial, we mean one whose coefficients
are chosen from Z4 uniformly at random. Then, for any z1,z9, ..., ¢+1 € Zg4, such that the z;’s
are all distinct for s = 1,2, ...,£+1, and any yi1,ys, ..., y¢ € Zg, P(x¢41) is still uniformly random
over Zg, for a random polynomial P(-) conditioned on P(z;) = y;, for i =1,2..., 4.

2. (¢ + 2)-wise dependence
A degree-£ polynomial is (£ + 2)-wise dependent. For any distinct 1,2, ..., 212 € Zg, there
exist constants A1, Az, .., Ap11 € Zg4 such that for any degree-¢ polynomial P(z), A - P(z1) +
A - P(zg) + - + A1 - P(zpq1) = P(2p40).' Furthermore, these constants can be efficiently
computed. As a direct corollary, given ¢ pairs {(z;,yi)}s, and o,/ € Zg4, one can efficiently
compute u,v € Zg, such that
P(d)=u-P(a)+wv (1)

for any degree-£ polynomial P(z) satisfying that P(x;) = y; for i = 1,2, ..., .

15This is essentially Lagrange Interpolation.

21

Very roughly speaking, we shall use the first fact to show that our construction is SSTC(£), and
the second fact to show that it is not NMTC(£). We explain it in more detail next.

The DL; scheme is a modified version of the commitment scheme by Di Crescenzo et. al. [21],
which in turn is based on Pedersen commitments [44]. (A Pedersen commitment to a message m is
g™h" for a random r, where h € G is a value such that the discrete log of h base g is unknown.) In
DL;, the public key pk consists of a universal one-way hash function H : {0,1}* — Z, and a signature
scheme SIG = (sig_gen, sig_sign, sig_verify) secure against one-time existential forgery. The public key
pk also consists of the description of G, (which we will henceforth denote simply as G;), and (£ + 1)
random elements in G, denoted by go, g1, --.., g¢. The corresponding secret key consists of the discrete
logarithms of the g;’s base g. In other words, sk = (ag, a1, ..., ag) such that g% = g;, for i = 0,1, ..., £.

To commit to a message m € Z, with tag, a sender first generates a fresh verification/signing
key pair for a strong one-time signature scheme using (sig_vk, sig_sk) < sig_gen(1¥) and then computes
a < H(sig_vk). We call a the “seed” of the commitment. Notice that since H(-) is a universal one-way
hash function, « is in some sense “fresh.” Next, the sender picks a random r € Z, and computes

B_ o 042 Oél m 'S 2
=(g0-97-95 =90) -9 (2)

We call B the “body” of the commitment. Finally the sender generates a signature s on tag using
sig_sk;, and sends over com = (sig_vk, tag, B, s) as the commitment. To decommit, the sender simply
exhibits (m,r), and then the receiver verifies that Eq.(2) holds and the signature is valid.

The protocol is described in Figure 6. Notice that the DKOS protocol [21] can be regarded as a
variation (where a message authentication code replaces the strong one-time signature scheme) of the
special case of DLy, with £ = 1.

S (input m € Zg, tag) R
(Commitment phase)

(sig_vk, sig_sk) « sig_gen(1¥)
a = H(sig_vk)

Q 042 O{Z m
B={90-97"95 -9) -9
s < sig_sign(sk, tag)

T

sig_vk, tag, B, s

(Decommitment phase)

a = H(sig_vk)
? 67 a2 al m T
32(90-91-92 ---gg) g

1+ sig_verify(vk, tag, s)

Figure 6: The DL, commitment scheme. The public key is pk = (H, p,q, 9, 9o, ---ge¢)-

To see that this is a trapdoor commitment scheme, we show how to produce commitments that
can be equivocated with the secret key (i.e., we construct TCfakeCom and TCfakeDecom). Using the
secret key sk, we define a polynomial P(z) = ag+ay -z + - - -+ ay- z¢. Notice that if g;’s are randomly
chosen, then a;’s are random elements in Z,, and thus P(z) is a random degree-¢ polynomial. Now,
Eq.(2) can be simplified to B = ¢gF(®)™+7_ Notice that the polynomial P(z) is explicitly expressed in

22

the secret key sk, but only implicit given by the public key pk. Notice that with knowledge of P(«),
where « is the seed of a commitment, one may equivocate that commitment. More precisely, say one
wishes to produce a commitment with tag that can be equivocated on decommitment. One generates
a signature key pair (sig_vk, sig_sk), computes the seed o = H (sig_vk), picks a random ¢ € Zg, produces
B = ¢! as the body of the commitment, and sets the commitment to (sig_vk, tag, B, s), where s is the
signature on tag using sig_sk. Note that using sk, one can efficiently compute P(«). Thus to open
this commitment to a message m, one simply computes r = ¢t — P(a) - m and sends (m,r) as the
decommitment. This shows that DL, is a trapdoor commitment scheme.

Next, we show that the DL, scheme has the simulation-sound binding property.

First consider a commitment com = (sig_vk, B, s) with seed a = H(sig_vk). Suppose it is opened
in two different ways: decy = (mqg,70) and dec; = (my,r1). Then gF(@)motro — B = gPla)mitr g4
P(a) = (r1 —r9)/(mo — m1). In other words, given two openings to the same commitment, com, one
can easily extract P(«a) for the seed a.

Now we can see the intuitive reason why DL, is secure. Imagine an adversary A that interacts
with an equivocation oracle (i.e., the oracle given in the description of the simulation-sound binding
property) to obtain arbitrary decommitments for £ commitments. Intuitively, A obtains the values
of P(z) on /¢ different seeds (we denote them by a1, aq,...,az). If we can force A to use a new seed
a in the commitment it wishes to equivocate (which is achieved by means of the universal one-way
hash function H and the strong one-time signature scheme SIG), then one can easily extract P(«).
However, since the values P(a;), ..., P(ay) do not carry any information about P(«) (by the (£ + 1)-
wise independence property), this value should have been computationally infeasible to produce, by
the security of the Pedersen commitment scheme (which is based on the DL assumption).

More precisely, say an adversary A breaks the simulation-sound binding property of DL;. Then
we will construct a “breaker” B that breaks the DL assumption. B takes as input Gy and an element
h € G, chosen uniformly at random, and will output log, h with a probability that negligibly close to
the probability that A breaks the simulation-sound binding property. We use the variable X to denote
log, h (which is a priori unknown to B). B runs a copy of A and interacts with A as the equivocation
oracle. B works in three phases.

1. Key Generation

B generates the public key in the following way. First, B generates ¢ signature key pairs
(sig_vk;, sig_sk;) and computes the corresponding seeds a; = H(sig_vk;) for i = 1,2,...,£. Since
H(-) is a universal one-way hash function, we may assume that the «;’s are distinct. B also
picks ¢ random elements (i, B2, ..., f¢. Next, B picks an oy € Z4 uniformly at random (and
thus we may assume that o is distinct from all previous «;’s) and sets fy = X (symboli-
cally). Then, B solves for the unique degree-¢ polynomial P(z) = ag +ay - z + - -+ + ag - ¥ such
that P(a;) = 0; for i = 0,1,...,£. This involves inverting a Vandermonde matrix and can be
done efficiently. As a result, B is able to obtain two series of constants {4;}, {B;}, such that
a; = A;- X + B; for i =0,1,...,0. Now, B sets g; = h™ - g5 for i = 0,1,...,£ and outputs
pk' = (H,SIG1,Gy, 90,91, -, g¢) as the public key of the DL, scheme. In this way, we have that

) £)
go-g% -9, = g" (3)
fori =0,1,2,....,£. (Note that gh = gX = h.) It is also easy to verify that since h was chosen
uniformly at random from G, the distribution of pk’ is identical to the distribution of the public
key of DL,.
2. Simulating the Equivocation Oracle

After generating the public key, B runs a copy of A and answers oracle queries, but at most £
commit queries. For the ith query (commit, tag;), B uses the ith stored key pair (sig_vk;, sig_sk;)

23

and the corresponding seed a; = H (sig_vk;) as the seed for the commitment. Then B chooses a
random ¢;, computes B; = g' as the body, and sends ¢; = (sig_vk;, tag;, B;, sig_sign(sig_sk;, tag;))
as the commitment. Notice that in the way the public key is set up, B knows P(a;) = 3; and
thus can decommit to any message easily. In particular, on receiving a query (decommit, ¢;,v),
B opens ¢; to value v by replying (v,t; — (; - v).

3. Extracting the Discrete Log

Say A produces a commitment com = (sig_vk’, tag’, B, s) and two associated decommitments
(I(?(:O = (my, o) and dec; = (m1,71), with mg # my and tag’ # tag, for alli € {1,...,£}. By the
fact that the strong one-time signature scheme SIG; is existential unforgeable and that H is a
universal one-way hash function, we may assume that sig vk’ # sig_vk; and H (sig_vk’) # «;, for
alli € {1,...,¢}. Let a = H(sig_vk’). Then B may compute P(a) = (r; —r9)/(mo — m1). Now
B knows the value of P(-) on £+ 1 distinct points a1, ag, ..., ay, and . Thus it computes u, v
as in Eq.(1), such that P(ap) = u - P(a) + v, and hence compute P(ap). But X = Gy = P(wy),
and X is the discrete log of h base g. Therefore B is able to compute the discrete log of h.

Finally, we show that DL, is not NMTC(¥), due to the (£ + 2)-wise dependence of degree-£ poly-
nomials. We shall present an adversary A that asks the equivocation oracle for multiple openings
to £ commitments, receives a commitment com and then produces a commitment com’, such that it
can always open com’ to whatever message com is opened to. Clearly, such an adversary completely
breaks non-malleability (specifically, for the equality relation).

We now describe the adversary A. Recall that associated with the public key is a “hidden” random
polynomial P(z). First, A obtains the value of P(z) on £ different inputs by means of the equivocation
oracle, and then receives a commitment com = (sig_vk, tag, B, s). Let a = H (sig_vk). Then A picks a
seed o/ (by generating a new signature key pair and applying H to the verification key) and computes
u,v as in Eq.(1), such that P(a’) = u- P(a) + v. Next, A submits a commitment com’ with o/ as the
seed and B’ = B" as the body. After receiving the opening (m,r) for the commitment com, A can
also open com’ to m by computing ' = u-r —wv-m (mod q). It is easy to verify that (m,r’) is a valid
opening:

B = B* — (gP(a)-m—H')u _ gu-P(a)-m+u-r _ g(P(a’)—v)-m—l—u-r P(a')m+(u-r—v-m)

=g

Theorem 5.8 If there exists an NMTC(£) scheme, then there exists an NMTC(£) scheme that is not
SSTC(¢+1).

Proof: The idea behind this proof is that we can modify any NMTC(£) scheme and have it “leak” some
information about the secret key when answering oracle queries (from the definition of simulation-
sound binding) to equivocate a commitment. We control the leak in such a way that £ commit queries
do not yield any information, but £+ 1 commit queries will leak the secret key. This will imply that
the modified scheme is still NMTC(#), but not SSTC(£ + 1).

More precisely, consider an arbitrary NMTC(¢) scheme TC = (TCgen, TCcom, TCver, TCfakeCom,
TCfakeDecom). Without the loss of generality, we may assume that the secret key sk produced by
TCgen(1*) is an element in Zq for some prime number ¢ (we can alway encode sk as a field element in a
field large enough), and furthermore that ¢ is at least &k bits long. Now we modify TC slightly to produce
a new commitment scheme TC' = (TCgen’, TCcom’, TCver’, TCfakeCom’, TCfakeDecom’). In TC’, the
decommitment dec’ contains an additional pair of elements (z,y) € Z, X Z, which we call the “leaking
channel”. The commitment function TCcom’ fills the leaking channel with a random element pair
in Z,, and the verification function TCver’ ignores it. Thus the “basic” commitment/decommitment

24

functionality remains unchanged with the addition of the leaking channel. In fact, the leaking channel
is only used by the functions TCfakeCom’ and TCfakeDecom’ to “leak” the information about the
secret key sk, as we explain next.

In TC', the public key pk’ is the same as pk. The secret key sk’ consists of the secret key sk of the
original scheme TC and a random degree-¢ polynomial P(z) = ag+a1 -2+ -+a,-z¢ over Z4 satisfying
that P(0) = sk (or equivalently, ag = sk). Here, a random polynomial over Z, is a polynomial whose
coefficients are chosen uniformly at random from Z,.

The leaking channel is used by the faking functions to leak the values of P(z) on random elements
of Z4 More precisely, the new commitment-faking function TCfakeCom'(pk, sk, tag) first invokes
TCfakeCom by setting (c,&) < TCfakeCom(pk, sk, tag), and then picks a random z € Z,, sets & =
(&,z,P(z)) and outputs (c,&'). The new decommitment-faking function TCfakeDecom’ (¢, ¢, tag,v),
where &' = (€, z, P(z)), outputs (TCfakeDecom (¢, ¢, tag,v),z, P(z)). Notice that TCfakeDecom’ fills
the leaking channel with the information of P(x) over a particular input z.

We now prove that the new scheme TC' remains NMTC(#). First, the standard hiding/binding
property of TC' follows straightforwardly from that of TC. Next, the trapdoor property of TC' remains
essentially unchanged from that of TC. This is because (z, P(z)) is uniformly distributed over Z, x Z,
for random z € Z, and random P(-), except when z = 0, which happens with probability %, and
therefore the leaking channel in TCcom’ is statistically indistinguishable from the leaking channel in
TCfakeCom' /T CfakeDecom'.

Finally, the non-malleability of TC' follows almost straightforwardly from that of TC. Notice that
an adversary making up to £ commit queries learns at most £ pairs (z;, P(z;)) from the leaking channel.
Since each z; is uniformly chosen at random, the probability that z; = 0 for some i, or that z; = z;
for some ¢ and j, is at most M, which is negligible. Now we may suppose the z;’s are all nonzero
and distinct. Since P(z) is a random degree-¢ polynomial, P(z1), P(z2),..., P(z¢) are all independent
uniformly random elements in Z, and therefore they don’t carry any information about sk = P(0).
Thus for any adversary A’ that breaks TC', we can easily construct an A that breaks TC. Essentially
A runs a copy of A’, and simulates the faking oracle for TC' by filling the leaking channel with a
random element pair (z;,y;) € Zg X Zq in the reply to the decommitment of the ith commitment A
requests.

However, the TC' scheme is obviously not SSTC(£ + 1), since with £ + 1 queries, an adversary can
determine P(0) by Lagrange interpolation (except when there is a collision, i.e., z; = z; for some i
and j in the leaking channel, which happens with negligible probability as discussed above). Thus the
adversary completely breaks the scheme. 0

We mention that Theorems 5.4, 5.5, 5.6, 5.8, and 5.7 would also apply to the body-based definitions
of SSTC and NMTC schemes.
Acknowledgments
We would like to thank Ivan Damgard for helpful comments and suggestions, particularly in relating
the results in our paper to those in [17].
References

[1] N. Bari¢ and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In
Advances in Cryptology — EUROCRYPT ’97 (LNCS 1233), pp. 480-494, 1997.

[2] D. Beaver. Adaptive zero-knowledge and computational equivocation. In 28th ACM Symp. on Theory of
Computing, pp. 629-638, 1996.

25

[3]
[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Blum. Coin flipping by telephone. In IEEE Spring COMPCOM, pp. 133-137, 1982.

G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS, 37(2):156-189,
1988.

J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes. In Advances
in Cryptology — CRYPTO 99 (LNCS 1666), pages 414-430, 1999.

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd IEEE
Symp. on Foundations of Computer Sci., pp. 136-145, 2001.

R. Canetti and M. Fischlin. Universally composable commitments. In Advances in Cryptology — CRYPTO
2001 (LNCS 2139), pp. 19-40, 2001.

R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels. In
EUROCRYPT 2002 (LNCS 2332), pp. 337-351, 2002. Full version in ePrint Archive, report 2002/059.
http://eprint.iacr.org/.

R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally composable two-party computation. In
34th ACM Symp. on Theory of Computing, pp. 494-503, 2002. Full version in ePrint archive, Report
2002/140. http://eprint.iacr.org/, 2002.

R. Canetti and T. Rabin. Universal Composition with Joint State In ePrint archive, Report 2002/047,
http://eprint.iacr.org/, 2002.

S. A. Cook. The complexity of theorem-proving procedures. In 8rd IEEE Symp. on Foundations of Com-
puter Sci., pp. 151-158, 1971.

R. Cramer and I. Damgard. Zero-Knowledge Proofs for Finite Field Arithmetic, or: Can Zero-Knowledge
Be for Free? In Advances in Cryptology — CRYPTO 98 (LNCS 1462), pages 424-441, 1998.

R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness
hiding protocols. In Advances in Cryptology — CRYPTO ’94 (LNCS 839), pages 174-187, 1994.

R. Cramer and V. Shoup. Signature scheme based on the strong RSA assumption. In ACM Trans. on
Information and System Security 3(3):161-185, 2000.

I. Damgard. On the existence of bit commitment schemes and zero-knowledge proofs. In Advances in
Cryptology — CRYPTO ’89 (LNCS 435), pp. 17-29, 1989.

I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In Advances in Cryptology
- EUROCRYPT 2000 (LNCS 1807), pp. 418-430, 2000.

I. Damgard and J. Groth. Non-interactive and reusable non-malleable commitment schemes. In 35th ACM
Symp. on Theory of Computing, pp. 426-437, 2003.

I. Damgard and J. Nielsen. Perfect hiding and perfect binding universally composable commitment schemes
with constant expansion factor. In Advances in Cryptology — CRYPTO 2002 (LNCS 2442), pp. 581-596,
2002. Full version in ePrint Archive, report 2001/091. http://eprint.iacr.org/, 2001.

A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust non-interactive zero
knowledge. In Advances in Cryptology - CRYPTO 2001 (LNCS 2139), pp. 566-598, 2001.

G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable commitment. In 30th
ACM Symp. on Theory of Computing, pp. 141-150, 1998.

G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and Non-Interactive Non-Malleable Com-
mitment. In Advances in Cryptology — EUROCRYPT 2001 (LNCS 2045), pp. 40-59, 2001.

D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. STAM J. on Comput., 30(2):391-437, 2000.
Also in 28rd ACM Symp. on Theory of Computing, pp. 542-552, 1991.

26

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans.
on Information Theory, 31:469-472, 1985.

S. Even, O. Goldreich, and S. Micali. On-line/Off-line digital signatures. J. Cryptology 9(1):35-67 (1996).

U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols. In 22nd ACM Symp.
on Theory of Computing, pp. 416-426, 1990.

U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In Advances in Cryptology
- CRYPTO ’89 (LNCS 435), pp. 526-544, 1989.

FIPS 180-1. Secure hash standard. Federal Information Processing Standards Publication 180-1, U.S. Dept.
of Commerce/NIST, National Technical Information Service, Springfield, Virginia, 1995.

FIPS 186. Digital signature standard. Federal Information Processing Standards Publication 186, U.S.
Dept. of Commerce/NIST, National Technical Information Service, Springfield, Virginia, 1994.

M. Fischlin and R. Fischlin. Efficient non-malleable commitment schemes. In Advances in Cryptology —
CRYPTO 2000 (LNCS 1880), pp. 413-431, 2000.

E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations.
In Advances in Cryptology — CRYPTO ’97 (LNCS 1294), pp. 16-30, 1997.

J. A. Garay, P. MacKenzie, and K. Yang. Strengthening Zero-Knowledge Protocols using Signatures. In
Advances in Cryptology — EUROCRYPT 2003 (LNCS 2656), pp- 177-194, 2003.

R. Gennaro, S.Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In
Advances in Cryptology — EUROCRYPT ’99 (LNCS 1592), pp. 123-139, 1999.

0. Goldreich. Foundations of Cryptography - Volume 1 (Basic Tools). Cambridge University Press, ISBN
0-521-79172-3, 2001.

0. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their validity or All languages in
NP have zero-knowledge proof systems. J. ACM, 38(3):691-729, 1991.

S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17:281-308, 1988.

S. Jarecki and A. Lysyanskaya. Adaptively Secure Threshold Cryptography: Introducing Concurrency,
Removing Erasures. In Advances in Cryptology — EUROCRYPT ’00 (LNCS 1807), pp. 221-242, 2000.

D. W. Kravitz. Digital signature algorithm. U.S. Patent 5,231,668, 27 July 1993.

L. A. Levin. Universal sorting problems. Problemy Peredaci Informacii, 9:115-116, 1973. In Russian. Engl.
trans.: Problems of Information Transmission 9:265-266.

P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange. In
Advances in Cryptology — CRYPTO 2002 (LNCS 2442), pp. 385-400, 2002.

M. Naor. Bit commitment Using Pseudo-Randomness. J. Cryptology 4(2):151-158 (1991).

M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for NP can be
based on general complexity assumptions. In Advances in Cryptology — CRYPTO ’92 (LNCS 740), pp.
196-214, 1992.

M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
22nd ACM Symp. on Theory of Computing, pp. 427-437, 1990.

P. Paillier. Public-key cryptosystems based on composite degree residue classes. In Advances in Cryptology
— EUROCRYPT 99 (LNCS 1592), pp. 223-238, 1999.

27

[44] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In Advances
in Cryptology — CRYPTO ’91 (LNCS 576), pp.- 129-140, 1991.

[45] L. Reyzin. Zero-knowledge with public keys. Ph.D. Thesis, MIT, 2001.

[46] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM Symp. on
Theory of Computing, pp. 387-394, 1990.

[47] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40th
IEEE Symp. on Foundations of Computer Sci., pp. 543-553, 1999.

[48] C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology — EURO-
CRYPT ’89 (LNCS 434), pp. 688-689, 1989.

[49] A. Shamir. How to Share a Secret. In CACM 22(11), pp. 612613 (1979).

A ZK proof Definitions

Here we provide definitions related to zero-knowledge proofs and proofs of knowledge. They are based
on definitions of NIZK proofs from [19], but modified to allow interaction.

For a relation R, let Lg = {z : (z,w) € R} be the language defined by the relation. For any
NP language L, note that there is a natural witness relation R containing pairs (z,w) where w is the
witness for the membership of z in L, and that Lr = L. We will use k as the security parameter.

For two interactive machines A and B, we define (A, B)[,)(z) as the local output of B after an
interactive execution with A using CRS ¢, and common input . The transcript of a machine is simply
the messages on its input and output communication tapes. Two transcripts match if the ordered
input messages of one are equivalent to the ordered output messages of the other, and vice-versa. We
use the notation tr < tr' to indicate tr matches tr'.

For some definitions below, we need to define security when an adversary is allowed to interact with
more than one instance of a machine. Therefore it will be convenient to define a common wrapper
machine that handles this “multi-session” type of interaction.'® For an interactive machine A, we
define to be a protocol wrapper for A, that takes two types of inputs on its communication tape:

— (START, 7, z,w): For this message starts a new interactive machine A with label 7, common
input z, private input w, a freshly generated random input r, and using the CRS of .

— (MsG,m,m): For this message sends the message m to the interactive machine with label 7 (if
it exists), and returns the output message of that machine.

We define the output of to be a tuple (z,tr,v), where z is the common input (from the START

message), tr is the transcript (the input and output messages A) and v is the output of A. (In

particular, if A is a verifier in a zero-knowledge protocol, this output will be 1 for accept, and 0 for

reject.) We say 1 is the wrapper of A that ignores all the subsequent START messages after seeing

the first one. Effectively, 1 is a “single-session” version of A.

We say two interactive machines B and C' are coordinated if they have a single control, but two
distinct sets of input/output communication tapes. For four interactive machines A, B, C, and D we
define ({4, B),(C, D))[4] as the local output of D after an interactive execution with C' and after an
interactive execution of A and B, all using CRS o. Note that we will only be concerned with this if
B and C are coordinated.

We note that all our ZK definitions use black-box, non-rewinding simulators, and our proofs of
knowledge use non-rewinding extractors.

'8 This is similar to the “multi-session extension” concept in Canetti and Rabin [10].

28

Definition A.1 [Unbounded ZK Proof] II = (D,P,V,S = (51,82)) is an unbounded ZK proof

(resp., argument) system for an NP language L with witness relation R if D is an ensemble of

polynomial-time samplable distributions, P, V, and Sy are probabilistic polynomial-time interactive

machines, and Sy is a probabilistic polynomial-time machine, such that there exist negligible functions

a and B (the simulation error), such that for all k,

Completeness For all x € L of length k, all w such that R(z,w) = 1, and all o € Dy, the probability
that (P(w),V)(s)(z) = 0 is less than a(k).

Soundness For all unbounded (resp., polynomial-time) adversaries A, if o & Dy, then for all x & L,
the probability that (A, V), (z) =1 is less than a(k).

Unbounded ZK For all non-uniform probabilistic polynomial-time interactive machines A, we have
that | Pr[Expt 4(k) = 1] — Pr[Expt§ (k) = 1]| < B(k), where the experiments Expt 4(k) and ExptS (k)
are defined as follows:

Expt 4 (k) : Expt5y (k) :
o & Dy (0,7) « S (1F)
Return (, Aol Return (| S'(7) |, A)[¢]
where 8'(1) runs as follows on common reference string o, common input = and private input w:
if R(z,w) =1, §8'(7) runs Sa(7) on common reference string o and common input x; otherwise
S'(1) runs Spun, where Spun is an interactive machine that simply aborts. 17

We point out that this definition only requires the simulator to simulate a valid proof, which is
implemented by having S’ have access to the witness w and only invoking Sy when w is valid.'®
However, Sy does not access the witness and will simulate a proof from the input z only.

Definition A.2 [Same-String Unbounded ZK] II = (D,P,V,S = (51,852)) is a same-string
unbounded ZK argument system for an NP language L with witness relation R if Il is an unbounded
ZK argument system for L with the additional property that the distribution of the reference string
output by S1(1%) is ezactly Dy.

We only define same-string unbounded ZK arguments since, as shown in [19], any protocol that is
same-string unbounded ZK must be an argument, and not a proof.

The following defines unbounded simulation-sound zero-knowledge (USSZK). This has been useful
in applications. In particular, as shown in [47], the one-time version suffices for the security of a (non-
interactive) ZK protocol in the construction of adaptive chosen-ciphertext secure cryptosystems using
the Naor-Yung [42] paradigm. We directly define the unbounded version, needed in other applications
such as threshold password-authenticated key exchange [39].

Definition A.3 [Unbounded Simulation-Sound ZK]

I1=(D,P,V,S =(851,82)) is an unbounded simulation-sound ZK proof (resp., argument) system for
an NP language L if I1 is an unbounded ZK proof (resp., argument) system for L and furthermore,
there exists a negligible function a such that for all k,

Unbounded Simulation Soundness

For all non-uniform probabilistic polynomial-time adversaries A = (A1, As), where Ay and Ay are
coordinated, we have that Pr[Expt 4(k) = 1] < a(k), where Expt 4(k) is defined as follows:

"Without loss of generality, we assume that if the input to P is not a witness for the common input, P simply aborts.

18 A must supply a witness, since P is restricted to polynomial time, and thus may not be able to generate a witness
itself. This may seem odd compared to definitions of standard ZK that assume an unbounded prover, but it does seem to
capture the correct notion of unbounded ZK, and in particular does not allow A to test membership in L. See Sahai [47]
for more discussion.

29

Expt 4 (k) :

(o,7) + S1(1F)

(2,r,0) = ((S"(7) | Ar), (A2, [V]) 1o

Let @ be the set of transcripts of machines in

Return 1iff b=1, € L, and for all tr' € Q, tr vk tr'
where 8" (1) runs as follows on CRS o, common input x and private input w: S"(7) runs Sa(7)
on CRS o and common input .

In the above definition, we emphasize that So may be asked to simulate false proofs for z & Lpg,
since §” does not check whether (z,w) € R. The idea is that even if the adversary is able to obtain
acceptable proofs on false statements, it will not be able to produce any new acceptable proof on a
false statement.

The following defines non-malleable zero-knowledge (NMZK) proofs (resp., arguments) of knowl-
edge. If a protocol is NMZK according to our definition, then this implies the protocol is also a NMZK
in the explicit witness sense (as defined in [19]). Moreover, we show that the protocol is also UCZK
in the model of static corruptions. Also note that simulation soundness is implied by this definition.

Definition A.4 [Non-malleable ZK Proof/Argument of Knowledge] II = (D, P, V,S = (51, S2),

€ = (&1,&2)) is a non-malleable ZK proof (resp., argument) of knowledge system for an NP language

L with witness relation R if II is an unbounded ZK proof (resp., argument) system for L and further-

more, &1 and & are probabilistic polynomial-time machines such that there exists a negligible function

a (the knowledge error) such that for all k,

Reference String Indistinguishability The distribution of the first output of Si(1*) is identical
to the distribution of the first output of £1(1%).

Extractor Indistinguishability For any 7 € {0,1}*, the distribution of the output of 1 is iden-
tical to the distribution of the restricted output of 1, where the restricted output of 1

does not include the extracted value.

Extraction For all non-uniform probabilistic polynomial-time adversaries A = (A1, A2), where Ay
and As are coordinated machines, we have that |Pr[Expt$(k) = 1] — Pr[Expt4(k) = 1]| < a(k),
where the experiments Expt 4(k) and Expt§(k) are defined as follows:

Expt 4 (k) : Expt (k) :
(0,7) < S (1F) (0,71, 72) « & (1F)
(2, tr,0) ((8"(7) [A1), (Ao, [V D)o | (st (b, w)) 4= (8" (1) | Av), (A, | €2(72) | Doy
Let @ be the set of transcripts Let @ be the set of transcripts
of machines in m of machines in .
Return 1iff 5 =1 and Return 1iff b =1, (z,w) € R, and
for all tr' € Q, tr vatr' for all tr' € Q, tr thtr'

where 8" (1) runs as follows on CRS o, common input x and private input w: S"(7) runs Sa(7)
on CRS o and common input .

In the above definition, as in the definition of USSZK protocols, we emphasize that Sy may be
asked to simulate false proofs for z ¢ L, since 8" does not check whether (z,w) € R. The idea is
that even if the adversary is able to obtain acceptable proofs on false statements, it will not be able
to produce any new acceptable proof for which a witness cannot be extracted.

B >-protocols and (2-protocols

Here we overview the basic definitions and properties of X-protocols [13]

30

First we start with some definitions and notation. Let R = {(z,w)} be a binary relation and
assume that for some given polynomial p(-) it holds that |w| < p(|z|) for all (z,w) € R. Furthermore,
let R be testable in polynomial time. Let Lp = {z : (z,w) € R} be the language defined by the
relation, and for all x € Lg, let Wgr(z) = {w : (z,w) € R} be the witness set for z. For any NP
language L, note that there is a natural witness relation R containing pairs (z,w) where w is the
witness for the membership of z in L, and that Lp = L.

Now we define a ¥-protocol (A, B) to be a three move interactive protocol between a probabilistic
polynomial-time prover A and a probabilistic polynomial-time verifier B, where the prover acts first.
The verifier is only required to send random bits as a challenge to the prover. For some (z,w) € R, the
common input to both players is z while w is private input to the prover. For such given z, let (a,c, 2)
denote the conversation between the prover and the verifier. To compute the first and final messages,
the prover invokes efficient algorithms a(-) and z(-), respectively, using (z,w) and random bits as
input. Using an efficient predicate ¢(-), the verifier decides whether the conversation is accepting
with respect to z. The relation R, the algorithms a(-), z(-) and ¢(-) are public. The length of the
challenges is denoted tp, and we assume that tp only depends on the length of the common string z.

We will need to broaden this definition slightly, to deal with cheating provers. We will define Ly
to be the input language, with the property that Lr C L R, and membership in Lg may be tested in
polynomial time. We implicitly assume B only executes the protocol if the common input z € Lg.

All X-protocols presented here will satisfy the following security properties:

o Weak special soundness: Let (a,c,z) and (a,c,2') be two conversations, that are accepting for
some given £ € Lg. If ¢ # ¢, then z € Li. The pair of accepting conversations (a,c, z) and
(a,d,2") with ¢ # ¢ is called a collision.

e Special honest verifier zero knowledge (SHVZK): There is a (probabilistic polynomial time)
simulator M that on input z € Li generates accepting conversations with a distribution that
is indistinguishable'® from when A and B execute the protocol on common input z (and A is
given a witness w for z), and B indeed honestly chooses its challenges uniformly at random.
The simulator is special in the sense that it can additionally take a random string ¢ as input,
and output an accepting conversation for z where c is the challenge. In fact, we will assume the
simulator has this special property for not only z € L, but also any = € Lg.

Specifically, there is a negligible function (k) such that for all non-uniform probabilistic polynomial-
time adversaries A = (A, A2), we have that | Pr[Expt 4(k) = 1] — Pr[Expt¥ (k) = 1])| < a(k),
where the experiments Expt 4(k) and Expt{ (k) are defined as follows:

Expt 4 (k) : Expt’y (k) :
(z,w,s) + A (1%) (z,w,s) + A1 (1¥)
If (x,w) ¢ R return 0 If (z,w) ¢ R return 0
r&{0,1}* c&{0,1}*
a + a(z,w,r) Return A (s, M(z,c))
c&{0,1}F
Return Ax (s, (a, ¢, z(z,w,7,¢)))

Some of the Y:-protocols also satisfy the following property.

e Special soundness: Let (a,c,z) and (a,c’,2') be two conversations, that are accepting for some
given z, with ¢ # ¢/. Then given z and those two conversations, a witness w such that (z,w) € R
can be computed efficiently.

190ften this is required to be perfectly indistinguishable, but we generalize the definition slightly to only require
computational indistinguishability.

31

A simple but important fact (see [13]) is that if a X-protocol is HVZK, the protocol is witness
indistinguishable (WI) [25]. Although HVZK by itself is defined with respect to a very much restricted
verifier, i.e. an honest one, this means that if for a given instance x there are at least two witnesses
w, then even a malicious verifier cannot distinguish which witness the prover uses.

B.1 Q-protocols

An Q-protocol (A, B)[y) for a relation R = {(z,w)} and CRS o, is a Z-protocol for relation R with

the following additional properties.

1. For a given distribution ensemble D, a common reference string ¢ is drawn from Dj, and each
function a(-), z(-), and ¢(-) takes ¢ as an additional input. (Naturally, the simulator M in the
definition of ¥-protocols may also take o as an additional input.)

2. There exists a polynomial-time extractor & = (£1,&2) such that the reference string output by
£1(1%) is statistically indistinguishable from Dj. Furthermore, given (o, 7) &1(1¥), if there
exists two accepting conversations (a, ¢, z) and (a,c, ') with ¢ # ¢ for some given = € Lg, then
& (z, T, (a,c,z)) outputs w such that (z,w) € R.2°

Informally, one way to construct Q2-protocols is as follows. Our common reference string will consist

of a random public key pk for a semantically-secure encryption scheme. Then for a given (z,w) € R,

we will construct an encryption e of w under key pk, and then construct a -protocol to prove that

there is a w such that (z,w) € R and that e is an encryption of w.

As with Y-protocols, we will use the V notation to denote an “OR” protocol, even if one or both
of these protocols are {2-protocols.

C The Universal Composability Framework

In more detail, the execution in the real-life model and the ideal process proceeds basically as follows.
The environment Z drives the execution. It can provide input to a party P; or to the adversary, A or
S. If P; is given an input, P; is activated. In the ideal process P; simply forwards the input directly
to F (this is the “direct forwarding” that we discussed in the introduction), which is then activated,
possibly writing messages on its outgoing communication tape, and then handing activation back to P;.
In the real-life model, P; follows its protocol, either writing messages on its outgoing communication
tape or giving an output to Z. Once F; is finished, Z is activated again. If the adversary is activated,
it follows its protocol, possibly giving output to Z, and also either corrupting a party, or performing
one of the following activities. If the adversary is A in the real-life model, it may deliver a message
from the output communication tape of one honest party to another, or send a message on behalf of
a corrupted party. If the adversary is S in the ideal process, it may deliver a message from F to a
party, or send a message to F. If a party or F receives a message, it is activated, and once it finishes,
Z is activated

At the beginning of the execution, all participating entities are given the security parameter k € N
and random bits. The environment is also given an auxiliary input z € {0,1}*. At the end of the
execution, the environment outputs a single bit. Let REAL; 4 z denote the distribution ensemble of
random variables describing Z’s output when interacting in the real-life model with adversary A and
players running protocol 7, with input z, security parameter k, and uniformly-chosen random tapes
for all participating entities. Let IDEALx s z denote the distribution ensemble of random variables

2ONotice that this extraction property is similar to that of weak special soundness of X-protocols, where there exists
an accepting conversation even for an invalid proof, but two accepting conversations guarantees that the proof is valid.
Here, the extractor can always extract something from any conversation, but it might not be the witness if there is
only one accepting conversation. However, having two accepting conversations sharing the same a guarantees that the
extracted information is indeed a witness.

32

describing Z’s output after interacting with adversary S and ideal functionality F, with input z,
security parameter k, and uniformly-chosen random tapes for all participating entities.

A protocol 7 securely realizes an ideal functionality F if for any real-life adversary A there exists
an ideal-process adversary S such that no environment Z, on any auxiliary input, can tell with non-
negligible advantage whether it is interacting with A and players running 7 in the real-life model,
or with § and F in the ideal-process. More precisely, REAL; 4 z N IDEALf s z, where ~ denotes
computational indistinguishability. (In particular, this means that for any d € N there exists kg € N
such that for all k > ko and for all inputs z, |Pr[REAL; 4 z(k,z)] — Pr[IDEALf s z(k, 2)]| < k~9).

To formulate the composition theorem, one must introduce a hybrid model, a real-life model with
access to an ideal functionality F. In particular, this F-hybrid model functions like the real-life model,
but where the parties may also exchange messages with an unbounded number of copies of F, each
copy identified via a unique session identifier (sid). The communication between the parties and each
one of these copies mimics the ideal process, and in particular the hybrid adversary does not have
access to the contents of the messages. Let HYB;Z A,z denote the distribution ensemble of random
variables describing the output of Z, after interacting in the F-hybrid model with protocol 7. Let
7 be a protocol in the F-hybrid model, and p a protocol that secures realizes . The composed
protocol 7 is now constructed by replacing the first message to F in 7 by an invocation of a new
copy of p, with fresh random input, the same sid, and with the contents of that message as input;
each subsequent message to that copy of F is replaced with an activation of the corresponding copy
of p, with the contents of that message as new input to p.

Canetti [6] proves the following composition theorem.

Theorem C.1 ([6]) Let F, G be ideal functionalities. Let m be an n-party protocol that securely
realizes G in the F-hybrid model, and let p be an n-party protocol that securely realizes F. Then
protocol wP securely realizes G.

D Proofs

We present the proofs to some of the theorems in the paper.
First, we present the exclusive collision lemma to be used in some of the proofs. See [31] for a
proof.

Lemma D.1 (The Exclusive Collision Lemma) Let A be a random variable and B, a random
variable whose distribution is parameterized by a value a in the support of A. For every a in the
support of A, and for every by and be in the support of B, let Colly(b1,bs) be a predicate defining
a collision. Let q be the mazimum (over all a in the support of A) probability of a collision of two
independent random variables Bl and B2, i.e., ¢ = max,{Prob[Coll (B}, B%)]}. Let ¢(a,b) be a
predicate, and let p = Prob[¢(A, Ba)]. Let ¢'(a,b1,b2) = ¢(a,b1) A d(a,b2) A (=Colly(b1,b2)). Then we
have Prob[¢'(A, By, B4)] > p? — q, where BY and B% are independent conditioned on A.

Proof: (Proof of Theorem 4.1)

Completeness: Straightforward.

Unbounded ZK: By inspection, S;(1*) produces exactly the same distribution as the real protocol.
Next, notice that S’ runs Sy only when (z,w) € R; that the trapdoor property of the SSTC scheme
ensures that the faked commitment/decommitment are computationally indistinguishable from the
real commitment/decommitment; and that protocol II is honest-verifier ZK, and is thus witness indis-
tinguishable. The unbounded ZK-ness follows from these facts by a straightforward hybrid argument.
Unbounded simulation soundness: The proof here is quite similar to the proof of unbounded
simulation soundness of the USSZK construction in [31]. Roughly speaking, we prove that any adver-
sary that breaks the unbounded simulation soundness of the ZK protocol can either be used to fake

33

a signature for the strong one-time signature scheme or to open a commitment in two different ways.
The first case will violate the security of the strong one-time signature scheme, and the second case
will violate the unbounded simulation soundness of the SSTC scheme.

The basic argument is that for an adversary to break the unbounded simulation soundness, one
of two cases must hold. The first case is when the adversary creates a new proof accepted by the
verifier that uses one of the public keys for the strong one-time signature scheme that were used by
the simulator. In this case, for the transcript to be different, it must be that it signs a new transcript,
and thus forges in the strong one-time signature scheme.

The second case is when the adversary uses a new public key for the strong one-time signature
scheme. Then the adversary’s commitment uses a new identifier. Recall that if € Lg, then for each
first message to Il there is at most one challenge that leads to an accepting conversation. This implies
that if the adversary could answer two challenges, it must open its commitment in two different ways,
breaking the simulation soundness of the commitment scheme.

For an adversary A = (A1, Az), recall the experiment Expt 4(k) in the definition of unbounded
simulation sound ZK. Let p = Pr[Expt 4(k) = 1]. Our goal is to show that p is negligible.

Say a forgery occurs if V accepts, and the verification key sig_vk in that session was used by Sa,
but with a new transcript/signature pair. Let Expty (k) be Expt 4(k) except that if a forgery occurs,
the experiment halts and fails. Let p' = Pr[Expty(k) = 1].

First, by the existential unforgeability property of SIGy, we show that the difference between p
and p’ is negligible. We do this by constructing a non-uniform probabilistic polynomial-time attacker
B that can break SIG; with probability ¢ = %(p —p'), where ¢ is the number of sessions Ag starts
with the simulator in Expt4(k). The input to B; is a verification key sig_vk and a signature oracle
OSignsig_vk. B chooses d & {1,...,c}, and then runs the experiment Expt 4(k), running the simulator
and verifier as normal, except for inserting sig vk into the dth instance of Sy and using OSig"sig_vk
to perform the signature operation for sig_vk in that instance. If a forgery occurs with verification
key sig_vk, B halts and outputs the forgery, i.e., the transcript and signature provided by A, for its
session with V. The view of A in this slightly modified experiment is the same as the view of A in
Expt 4(k) until a forgery occurs. Thus, since a forgery occurs with probability p — p/, and since if a
forgery occurs, B; will break the SIG; on sig vk with probability %, By breaks SIG; with probability
)

Next, we show that p’ is negligible. We do so by constructing a probabilistic polynomial-time
attacker B that breaks the simulation-sound binding property of the SSTC scheme TC with probability
at least ¢y = (p')? — 27%. The input to B is a public key pk for the SSTC scheme TC and a simulator
Stc(sk) with the corresponding secret key, as in the definition of the SSTC scheme (Definition 3.1).
The breaker B runs the experiment Expth(k), running the simulator S and verifier V as normal,
except for using pk as the common reference string. When S» needs to open a decommitment, B asks
the supplied simulator St¢ to do so. Before V sends a challenge to Az, B forks the experiment and
continues independently in each sub-experiment (thus giving independent random challenges to As).
Then B examines the output (x,tri,b1) and (z,tr2,be) in each sub-experiment. If by = be = 1 and
xz & Lg (call this a successful sub-experiment), and also the challenges in each sub-experiment are
distinct, then we conclude that the adversary A must have successfully decommitted to two different
first messages of protocol II. In other words, A has produced (ai,dec,,) and (ag,dec,,) such that
TCver(pk,comg, a1,sig-vk,dec,,) = 1 and TCver(pk, com,, ag, sig_vk,dec,,) = 1 for some com,. We
know that it must be the case that a; # as, since by weak special soundness of protocol II, if z ¢ Lg,
then there do not exist two accepting conversations with the same first-message in II.

Now we determine the success probability of B. First note that for each sub-experiment, the
view of A is perfectly indistinguishable from the view of A in Exptl((k), and thus the probability of
success in each sub-experiment is p’. Second, note that the probability of a random collision on k-bit
challenges is 27%. Then we can determine the success probability of B using Lemma D.1, as follows.

34

A is a random variable denoting possible runs of experiments up to the challenge from V. B, is a
random variable denoting the remainder of a run of an experiment after initial part a in the support of
A. For any a in the support of A, and for any b; and by in the support of B,, the predicate Coll, (b1, b2)
is defined to be true if the challenges from V are equal in b; and bs. Thus a pair (a,b) indicates a
full run of the experiment, the predicate ¢(a,b) indicates success in the experiment, and the predicate
¢(a, b1, by) indicates success in each sub-experiment corresponding to runs (a, b;) and (a, be), with the
challenges from V in b; and be being distinct. Therefore ¢(a, b1, b2) indicates that By succeeds, and
hence by Lemma D.1, we see that By succeeds with probability at least ey = (p')? — 27°*. 0

Proof: (Proof of Theorem 4.2)

Completeness: Straightforward.

Reference string indistinguishability: Straightforward.

Extractor indistinguishability: It follows from the extractor indistinguishability of IIj, (z).
Unbounded ZK: By inspection, S;(1¥) produces exactly the same distribution as the real protocol.
Next, notice that &' runs Sy only when (z,w) € R; the trapdoor property of the SSTC scheme en-
sures that the faked commitment/decommitment are computationally indistinguishable from the real
commitment/decommitment; and that protocol II is honest-verifier ZK, and is thus witness indistin-
guishable. The unbounded ZK-ness follows from these facts by a straightforward hybrid argument.
Extraction: The proof is very similar to the proof of unbounded non-malleability of the NMZK
construction in [31]. It is also very similar to the proof of simulation-soundness of Theorem 4.1.

For an adversary A = (A;, Ag), recall the experiments Expt 4(k) and Expti(k) in the definition of
non-malleable ZK. Let p; = Pr[Expt 4(k) = 1] and py = Pr[Expt%(k) = 1]. Our goal is to show that
|p2 — p1] is negligible.

Say a forgery occurs if V or £ accepts, and the verification key sig_vk in that session was used
by Ss, but with a new transcript/signature pair. Let Exptly(k) be Expt 4(k) except that if a forgery
occurs, the experiment halts and fails. Let p} = Pr[ExptY (k) = 1]. Similar to the proof of Theorem 4.1,
we can show that pj = p1 — ce1, where ¢ is the number of sessions As starts with the simulator in
Expt 4(k), and €; is negligible.

Now let Expt%(k) be Expti(k) except that if a forgery occurs, the experiment halts and fails. As
above, we can show that p, = pa — cea, where €3 is negligible.

Let p" be the probability in Expt% (k) that £(7) outputs (1,w) for a session with common input
z, and (z,w) ¢ R. Using the extraction property of protocol II, as in the proof of Theorem 4.1
one can show that there is a non-uniform probabilistic polynomial-time breaker B that breaks the
simulation-sound binding property of the SSTC scheme TC with probability at least ey = (p')? — 27,
Thus p” is negligible.

By extractor indistinguishability again, the probability of producing output b = 1 with a unique
transcript in ExptY (k) and Expt%(k) is the same, so ph = p} — p'.

Then p1 = p) + ce1 = ph + p" + ce1 = pa — cea + cer + p”, 80 |p2 — p1| < cer + cex + p”, which is
negligible. 0
Proof: (Proof of Theorem 4.3)

We will prove the theorem for the case of adaptive corruptions. The case of static corrthions is

similar. For simplicity, we denote the protocol MYZK[};,C’ ol (z) with the extra erasing step by II.

Let A be an adversary that operates against protocol II in the]—"gRS—hybrid model. We construct
an ideal process adversary S such that no environment Z can tell whether it is interacting with A and
IT in the FErs-hybrid model, or with S in the ideal process for FE.

For simplicity, we will assume only one copy of ﬁézK is accessed by Z. Obviously we could duplicate
the actions of S for each copy of .7:"5'1{ (differentiated by the sid value).

Formally, let II be the Q-protocol in the construction of protocol I with simulator Si and extractor

En = (&m,1,Em2)-

35

At the beginning of the ideal process, the ideal adversary S generates (o, T) <—5H,1(1k) and
(pk, sk) & TCgen(1¥), uses (pk, o) as the common reference string for FB:s, and stores sk and 7.

During the ideal process, S runs a simulated copy of A. Messages received from Z are forwarded
to the simulated A, and messages sent by the simulated A to its environment are forwarded to Z.

If S receives a message (ZK-PROOF, sid, ssid, P;, P;, z) from ﬁgK, i.e., P; is uncorrupted and has
given a witness w to ﬁg}{ such that (z,w) € R, then § simulates P; using the trapdoor property of the
SSTC scheme. In particular, S generates (com, &) < TCfakeCom(pk, sk, (P;, P;)) and sends (z,com)
to P; as the first message. If P; receives a challenge ¢ from P;j, S simulates F; as follows. First it
invokes the simulator Syj to obtain an accepting conversation (a, ¢, z) < Si(z,0,c). Then, S generates
a decommitment for a by setting dec « TCfakeDecom(&, com, (P;, P;),a). Finally S sends (a, dfgc,z)
to Pj.

If P; is corrupted before receiving a challenge, then the witness w is revealed. In this case, §
generates a as a normal prover would, by a < an(z,w,r,o) where r is chosen randomly. Then S
generates a decommitment dec for a, just as in the previous case. Thus all session values (w, a, r, and
cIéE) can be provided to A.

If P; is corrupted after sending out the final message, again the witness w is revealed. The session
values a and dec have already been determined (and sent), and the randomness r has been erased.
Thus all non-erased session values (w, a, and ciAeE) can be provided to A.

If P; is uncorrupted and receives a first message from a prover F;, say for a value z in session ssid,
then S simulates P; as in the actual protocol f[, i.e., it sends back a random challenge c. When P;
receives the final message (a,dec,, z) in session ssid, S performs the verifications specified in protocol

A~

IT (for the decommitment and Q-protocol IT) and, if these pass, proceeds as follows.

1. If P; is uncorrupted, S forwards the message (ZK-PROOF, sid, ssid, P;, Pj, z) to the actual un-
corrupted P;.

2. If P; is corrupted, but S had previously received a message (ZK-PROOF, sid, ssid, P;, P, z) from
f-"é%K — this happens when F; is corrupted during a UCZK protocol — then using the witness w
that was revealed when P; was corrupted, S sends (zk-prover, sid, ssid, P;, Pj, z,w) to .7:"%(; and
forwards the response from ﬁézK to P;.

3. Otherwise, S runs the extractor & 2(z, 7, (a, ¢, z)) which outputs a potential witness w. S sends
(zk-prover, sid, ssid, P;, Pj,xz,w) to .7-";21{; and forwards any response from FézK to P;.

Now we show that

HYB " £ IDEAL
f[,.A,Z ~ ﬁgK,S,Z’

which implies our theorem.

First we define a new experiment Mix 4 z (k). Intuitively, this new experiment is a “mixture” of the
hybrid model and the ideal process, in that an uncorrupted party acting as a prover is handled as in the
ideal process (i.e., the trapdoor property of the commitment scheme is used to enable it the simulation
of a prover in the Q-protocol), but an uncorrupted party acting as a verifier is handled as in the hybrid
model (i.e., no extraction takes place).2! More precisely, the experiment generates (o,) < &,1(1%)

2Tt may be tempting to switch these (i.e., in the mixed protocol, the prover is handled as in the hybrid protocol,
and the verifier is handled as in the ideal protocol), and argue that simple trapdoor commitments would suffice. The
argument would go as follows: (1) The output of the hybrid protocol and the mixed protocol would be indistinguishable,
by the extraction property of the Q-protocol; and (2) The output of the mixed protocol and the ideal protocol would be
indistinguishable, by the trapdoorness property of the trapdoor commitment protocol, and by the SHVZK property of
the Q-protocol. However, this argument is flawed. In particular, the SHVZK property does not hold if the adversary is
also given access to the knowledge of whether the Q-protocol extractor is successful. In fact, the success/failure of this
extractor distinguishes between a real prover’s output and the SHVZK simulator’s output.

36

and (pk, sk) & TCgen(1%), and just as in the case of IDEALzr ¢ z, (Pk,0) is used as the common
ZK >

reference string for FgRS, and sk and 7 are stored. Then the experiment runs simulated copies of Z and
A. Messages sent by Z to the adversary are forwarded to A, and messages sent by A to its environment
are forwarded to Z. If an uncorrupted party P; receives input (zk-prover, sid, ssid, P;, Pj,z,w) from
Z with (z,w) € R, it generates its messages in the same way as S above. Corruptions are handled
in the same way as S above. An uncorrupted party P; responds to a prover as in the actual verifier
protocol in II. Finally, the output of Mix 4,z (k) is the output of Z.

Let MIX 4,z denote the distribution ensemble of random variable describing the outputs of Mix 4 z (k).

First, we can show that HYBIZ[:%SZ &~ MIX A,z. This follows from the trapdoor property of the SSTC
scheme and a straightforward 171y’brid reduction to the SHVZK property of the Q-protocol II.

Now we show that MIX 4 z ~ IDEAL];%;K’ 5.2 which will finish the proof of the theorem.

Let p = | Pr[IDEAL];.égK,S,Z(k)] —Pr[Mix 4, z(k)]. We shall prove that p is negligible. Notice that the
only difference between experiment Mix 4 z(k) and the ideal process is in the case when S is simulating
an uncorrupted verifier P;, and attempts to extract a witness from a corrupted prover P; but fails.
Thus p is a lower bound on the probability of failing to extract a witness.

Now we define an experiment ExptOneg 7 (k) that runs S and Z in the ideal process, returning 1
on the failure of S to extract a witness. By the discussion above, Pr[ExptOneg z(k)] > p. Now say a
session has index (a, f) if it is the Sth session between prover P; and verifier P;, and (P;, P;) is the

ath different prover/verifier pair for which a session has been started. In this case, we say P; (P;) is

the prover (verifier) associated with index (a, 8). Let ExptOnegO:’Zﬁ)(k) denote the same experiment as

above, except that it returns 1 if and only if S fails to extract a witness for the first time in the session
with index («, 8). (Note that we may assume this experiment halts and outputs 0 if, assuming P; and
P; are the prover and verifier, respectively, associated with index («, 3), P; is ever corrupted, P; is
uncorrupted when P; receives the first message in the session with index (a, 3), or the session with
index (a,) finishes with a successful extraction.) Then if at most u sessions are started, it is easy to

see that for some (o, 8) with o, 8 € {1,...,u}, Pr[ExptOnefgaf)(k)] > p/u?. Call the lexicographically
first such session index (ay, fp)- ,

Now let ExptTwofSa’Zﬂ) (k) denote the same experiment as above, except that if the prover P; as-
sociated with index (02, B) is uncorrupted and starts a session with P;, then the challenge ¢ from P;
is chosen, an accepting conversation is produced by the simulator (a,c, z) < Su(z, o, ¢), the commit-
ment/decommitment pair is produced for a as normal by (com,,dec,) <— TCcom(pk, a, (F;, P;j)), and
(x,com,) is sent to P;. If P; receives this message, it sends challenge ¢, and if P; receives this challenge,
it responds using the z value computed by the simulator. Note that P; does not use the trapdoor prop-

erty of the commitment scheme for tag (P;, P;), but it still simulates the Q-protocol II exactly as in

ExptOne‘(Sag)(k).22 By the trapdoor property of the commitment scheme, Pr[ExptTwongjOZ’ﬂ 0)(19)] > 1,

for some 1) ~ p/u?.

Now we construct an adversary B that breaks the SSTC scheme TC with probability at least
1? — 27%. Since u is polynomial, this will imply that 1, and hence p, is negligible. We describe the
adversary B. Let B take a public key pk of TC along with its corresponding equivocation oracle.
First B chooses random «, 3 € {1,...,u}, and then it runs ExptTwofsof’Zﬁ)(k) except for (1) changing
the common reference string to include pk as the public key of the SSTC scheme, (2) having S use
the equivocation oracle to fake commitments. Also, before sending a challenge in the session with
index («, 8) B forks the experiment and continues independently in each sub-experiment (i.e., sending
random independent challenges in the session with index (e, 3) in each sub-experiment). Let ® be the

%2Note that we would not be able to complete the simulation if P; were corrupted, but in this case the experiment
would halt and output zero anyway.

37

event that each sub-experiment halts and outputs 1, and the challenges in each sub-experiment are
distinct. If ® occurs, then we know that A has decommitted differently in the two sub-experiments.
This is because of the extraction property of the Q-protocol: if A had decommitted in the same way,
then there would exist two accepting conversations with the same first-message, and a witness would
have been extracted. Thus B has obtained two different decommitments for a commitment with tag
(P, Pj). Note that by the authenticated channels assumption, since P; is uncorrupted, no other party
could send a message ostensibly from P;. Then by the definition of the experiment, the equivocation
oracle is not called for the tag (P;, P;) By Lemma D.1, Pr(®) > ¢? — 2%, Therefore, B breaks the
SSTC scheme TC with probability at least 1> — 2%, as claimed above. 0

E Signature Scheme Definitions

A signature scheme SIG is a triple (sig-gen, sig_sign, sig_verify) of algorithms, the first two being prob-
abilistic, and all running in polynomial time (with a negligible probability of failing). sig_gen takes as
input 1* and outputs a public key pair (sig_vk, sig_sk), i.e., (sig_vk, sig_sk) < sig_gen(1%). sig_sign takes
a message m and a secret key sig_sk as input and outputs a signature o for m, i.e., o < sig_sign(sk, m).
sig_verify takes a message m, a public key vk, and a candidate signature o’ for m as input and re-
turns the bit b = 1 if ¢’ is a valid signature for m for the corresponding private key, and otherwise
returns the bit b = 0. That is, b < sig_verify(sig vk, m,c’). Naturally, if o < sig_sign(sig_sk,m), then
sig_verify(sig_vk,m,o) = 1.

Security for signature schemes We specify existential unforgeability against adaptive chosen-
message attacks [35] for a signature scheme SIG = (sig_gen, sig_sign, sig_verify). A forger is given sig_vk,
where (sig_vk, sig_sk) < sig_gen(1*), and tries to forge signatures with respect to sig_vk. It is allowed
to query a signature oracle (with respect to sig_sk) on messages of its choice. It succeeds if after
this it can output a valid forgery (m, o), where sig_verify(sig_vk,m,o) = 1, but m was not one of the
messages signed by the signature oracle. We say a forger (¢, g, €)-breaks a scheme if the forger runs in
time t(k) makes ¢q(k) queries to the signature oracle, and succeeds with probability at least e(k). A
signature scheme SIG is existentially unforgeable against adaptive chosen-message attacks if for all ¢
and ¢ polynomial in k, if a forger (¢, g, €)-breaks SIG, then e is negligible in k.

In a one-time signature scheme, security is formulated as above except that the adversary may
only query the signature oracle once, and we call it “existential unforgeability against chosen-message
attacks,” since the term “adaptive” only makes sense with multiple queries. We note that one-
time signatures scheme can be made very efficient since they don’t need public-key cryptographic
operations [24]. In a strong one-time signature scheme [47], we require that a forger is not even able
to produce a different valid signature on a message that was signed by the signature oracle. A strong
one-time signature scheme can be constructed from any one-way function [47].

F Number-Theoretic Assumptions

We review some of the number-theoretic assumptions used in this paper.

The Strong RSA assumption. The Strong RSA assumption is a generalization of the standard
RSA assumption which (informally) states that given an RSA modulus N and an exponent e, it is
computationally infeasible to find the e-th root of a random z. Informally, the strong-RSA assumption
states that it is infeasible to find an arbitrary non-trivial root of a random z.

38

More formally, we say that p is a safe prime if both p and (p—1)/2 are prime. Then let RSA-Gen(1%)
be a probabilistic polynomial-time algorithm that generates two random k/2-bit safe primes p and g,
and outputs N < pgq.

Assumption F.1 (Strong-RSA) For any non-uniform probabilistic polynomial-size circuit A, the
following probability is negligible in k:

Pr[N < RSA-Gen(1%); z < Z%; (y,€) «+ A(1*,2,N) : y* = z mod N A e > 2]

The Strong RSA assumption was introduced by Barié¢ and Pfitzmann [1], and has been used in
several applications (see [30, 32, 14]). It is a stronger assumption than the “standard” RSA assumption,
yet no method is known for breaking it other than factoring N.

The Cramer-Shoup Signature Scheme Cramer and Shoup [14] presented an efficient signature
scheme that is existentially unforgeable against adaptive chosen-message attacks under the Strong RSA
Assumption, formally defined in Appendix F. In addition to the main security parameter k, they use
a secondary security parameter k' for public key modulus size.?> The value &’ is dependent on k and
is set so that known attacks on public key systems with modulus size k' are at least as hard as known
attacks on hash functions and other brute-force attacks on systems with main security parameter k.
Here we describe their scheme, which we denote SIGcs = (sig_gencs, sig-signcs, sig_verifycs).?*

e sig_gencs(1¥):
p,q < SAFEPRIME(1¥/2); N < pg; z,h & QRy; € + PRIME(1#11);
H « Hasu(1*); sk « (p, q); vk < (N, h,z,¢', H);
return (vk, sk).

e sig signcs(sk, m):

v & QRy; 2’ + ()¢ - h~H(™) mod N; e + PRIME(1¥+1)\{e'};
,\\ ¢~ L mod ¢(N
Y < (mh—H(w))e ot)modN;

return <€, Y, y,>;

b Sig—Verif)’CS (’Uk, m, <6, Y, yl>):
if e is not an odd k£ + 1 bit number, or e = €', return 0;
' ()¢ - h=H(m) mod N;
if z = y°h"() mod N return 1, else return 0.

As a technical note, instead of an expected polynomial-time algorithm for prime generation, we
assume a probabilistic strict polynomial-time algorithm that has a negligible probability of failing.
This has no effect on the following security result.

Theorem F.2 ([14]) The Cramer-Shoup signature scheme is secure against adaptive chosen-message
attack, under the Strong RSA Assumption and the assumption that H is collision-resistant.

Z3For today’s technology, reasonable values may be k = 256 and k' = 1024.

24Some technical notations: a prime number p is a safe prime, if (p — 1)/2 is also a prime number. SAFEPRIME(1") is
the set of all n-bit safe prime numbers; PRIME(1") is the set of all n-bit prime numbers; QRx is the set of all quadratic
residues in Z%, and HasH(1") is a set of efficient hash functions that maps strings of arbitrary length to an n-bit string.

39

DSA The Digital Signature Algorithm [37] was proposed by NIST in April 1991, and in May 1994
was adopted as a standard digital signature scheme in the U.S. [28]. It is a variant of the ElGamal
signature scheme [23], and is defined as follows, with two security parameters & and k' as in the
Cramer-Shoup signature scheme.?®

e sig_genpsa(1%):
q « 1(1%); p « PRIME(1*'), where q|(p — 1); g & Zy, where order(g) = g;
& Lg; y g* mod p; sk (g, p, q,7); vk < (9,p, 4, y);
return (vk, sk).

e sig_signpsa(sk,m):
v & Zg; v+ g° mod p; s < v~} (H(m) + zr) mod g;
return (r mod g, s).

o sig_verifypsa(vk, m, (1, s)):
IfO<r <gq0<s<gq,andr = ((g7myr")s™ modd mod p) mod g, return 1, else return 0.

The security of DSA intuitively rests on the hardness of computing discrete logarithms, but there
is no known security reduction that proves this. However, it is often simply assumed that DSA is
existentially unforgeable against adaptive chosen-message attack.

%5In the DSA standard, k, k', and H are fixed in the following way: k = 160, k¥ is set to a multiple of 64 between
512 and 1024, inclusive, and hash function H is defined as SHA-1 [27]. However, we will use these parameters as if they
could be varied according to the security level desired.

40

