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Abstract

Recently some efforts were made towards capturing the security requirements from digital
signature schemes as an ideal functionality within a composable security framework. This
modeling of digital signatures potentially has some significant analytical advantages (such as
enabling component-wise analysis of complex systems that use signature schemes, as well as
symbolic and automatable analysis of such systems). However, it turns out that formulating
ideal functionalities that capture the properties expected from signature schemes in a way that
is both sound and enjoys the above advantages is not a trivial task.

This work has several contributions. We first correct some flaws in the definition of the
ideal signature functionality of Canetti, 2001, and subsequent formulations. Next we provide a
minimal formalization of “ideal certification authorities” and show how authenticated commu-
nication can be obtained using ideal signatures and an ideal certification authority. This is done
while guaranteeing full modularity (i.e., each component is analyzed as stand-alone), and in an
unconditional and errorless way. This opens the door to symbolic and automated analysis of
protocols for these tasks, in a way that is both modular and cryptographically sound.

∗An extended abstract of this work appears in the proceedings of the 17th Computer Security Foundations Work-
shop (CSFW). This is a slightly corrected version. The first version of this paper, which dates November 18 2003,
contained by mistake the date November 16, 2004 on its title page.
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1 Introduction

Digital Signatures (first proposed by Diffie and Hellman [dh76]) are widely used in a variety of
contexts. One main context is for binding between documents and “physical entities” such as human
individuals or organizations. This is essential in electronic financial transactions and contracts.
Another use is for guaranteeing authenticated communication over an unauthenticated medium.
Here signature-based authenticated key exchange protocols plays a major role (see e.g. [iso93,
tls, ipsec]). Other uses include guaranteeing various integrity properties within cryptographic
protocols (see e.g., [ddn00, chk04]).

A widely accepted formalization of the security requirements from signature schemes was put
forth in [gmri88]. Essentially, the requirement is that, when the public and secret keys are honestly
generated, then honestly generated signatures will always verify, and in addition it will be infeasible
for an adversary to come up with a message m that was not honestly signed, and an alleged signature
σ, such that σ will verify as a valid signature for m with respect to the given public key. This
simple-to-state notion (called existential unforgeability against chosen message attacks, or CMA-
security in short) has proven to be very useful, and in particular it seems appropriate in all the
above contexts.

An alternative approach for capturing the security properties of signature schemes is via emulat-
ing an “ideal signature process” in an ideal-process-based general framework for analyzing security
of protocols (such as [pw01, c01]). In this approach (taken by [c01, ck02, cr03, bpw03a, bh03]),
one first formulates an “ideal signature functionality” that captures the desired security properties
of signature schemes in an abstract way. A signature scheme is said to be secure if it “emulates”
the ideal signature functionality. The effort to provide ideal-process-based definitions of security
for signature schemes may seem surprising at first; indeed, ideal-process-based definitions of se-
curity have been traditionally used for capturing the security of distributed protocols, rather than
for capturing the security of more basic cryptographic primitives such as digital signatures. The
reason that this ideal-model based analysis of signature schemes is attractive is that it provides very
strong secure composability properties. Specifically, in both frameworks mentioned above security
was shown to be preserved under a very general composition operation called universal composition
(see [c01], and [bpw04] based on [pw00, pw01]). These properties open the door to a number
of potential advantages over the “traditional” notion of CMA-security. Let us highlight two main
ones:
Enabling component-wise analysis of complex systems: When analyzing multi-protocol, multi-
instance systems, we can separately analyze each protocol instance as if it is “stand alone,” and
then use the composition theorem to deduce the security of all instances when running concurrently
in the same system. When applied to signature schemes, this means that we may be able to an-
alyze each instance of a signature scheme separately, and then deduce that the composition of all
the individual instances remains secure (i.e., maintains the functionality of multiple independent
“signature services”). This would allow us to perform component-wise analysis also to complex
protocols that use signature schemes. In fact, such separation can sometime be carried out even
when multiple protocol instances use the same instance of a signature scheme [cr03].
Sound realization of the “Dolev-Yao methodology”: Using the universal composition theorem, it is
possible to use the following modular approach to analysis of protocols that use signatures: (a)
Given a concrete, real-life protocol that uses a signature scheme, first de-compose the protocol
into a “signature module” and a “high-level module” that uses the signature. (b) Prove that the
“signature module” securely realizes the ideal signature functionality. (c) Prove that the “high-level
module” has the desired security properties when having access to the ideal signature functionality.
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(d) Use the composition theorem to assert that the original (concrete) protocol maintains the
same security property as the “high-level module”. The crux of this analytical approach is that
step (c), namely the analysis of the “high-level module”, can often be carried out unconditionally.
Furthermore, it can potentially be carried out using symbolic analysis of protocols. Specifically,
it may be possible to use the methodology proposed by Dolev and Yao [dy83], where encryption
and signature are represented as abstract symbolic operations. This would demonstrate that the
“Dolev-Yao methodology” can be used to argue security of the original protocol that uses concrete
algorithms.

However, coming up with a sound, ideal-process-based notion of security for signature schemes,
that realizes these potential advantages, turns out to be non-trivial. Two main approaches have
been proposed. In this work we concentrate on the approach of [c01], which aims at capturing
the basic security properties of a signature scheme as a stand-alone module, which is then used
as a component withing larger protocols. The other approach, which was subsequently taken in
[bpw03a], is discussed at the end of the Introduction. Here each instance of the “ideal signature
functionality”, denoted Fsig, corresponds to a single instance of a signature scheme (i.e., a single pair
of signature and verification keys). Furthermore, it was claimed that a signature scheme is CMA-
secure if and only if the scheme (or, rather, a simple protocol based on this scheme) securely realizes
Fsig. This approach has a number of advantages, including the above mentioned points of sound
realization of the Dolev-Yao paradigm and modular analysis of multi-protocol systems. However,
the formalization in [c01], as well as the subsequent re-formulations of Fsig in [ck02, cr03, bh03],
contain a number of technical flaws that make the claim of equivalence to CMA security incorrect.

The present work has several contributions. First, we present a corrected (and somewhat
simplified) formulation of the signature functionality. While the corrections are rather technical,
they are necessary for providing a sound abstraction of signature schemes. In particular, they are
necessary the equivalence with CMA-security of signature schemes. We identify three issues; they
are discussed within. We invite the scrutiny of the community to verify the absence of flaws in the
current formalization.

Next, we demonstrate the usefulness of Fsig for realizing the tasks of certification of documents
(i.e., the binding of documents to identities of principals), and obtaining authenticated communi-
cation. This is done in several steps, as follows. Recall that the signature functionality is aimed at
capturing the basic properties of a CMA-secure signature scheme. This essentially means that the
functionality provides binding between a message m and a public verification key v. (The binding
is done via a “signature string”, s.) We first define a somewhat “higher-level” functionality, that
provides direct binding between messages and the identity of the signer. We call this “ideal certi-
fication functionality” Fcert. We formulate a minimal “set-up assumption” that allows realization
of Fcert. Specifically, we assume existence of a “certification authority” with which parties have
ideally authenticated communication, and whose sole role is to register party identities together
with public values provided by the registered parties. We formulate this set-up assumption as an
ideal functionality, called Fca, and show that Fcert can be realized in a natural way, given ideal
access to Fca and to Fsig.

The next step is to show that ideally authenticated communication can be obtained given ideal
access to Fcert. For this purpose we recall the ideal message authentication functionality, Fauth,
of [c01], and show a natural protocol that realizes Fauth given ideal access to Fcert. Finally, to
complement this method of obtaining authenticated communication, and to justify the use of Fca,
we show that Fauth (and consequently also Fcert) cannot be realized in the bare model of [c01]
by any “useful” protocol.
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Let us highlight two points. First, throughout the analysis we consider only protocols for a
single instance of a signature scheme, and for authenticating a single message. Security for the
multi-session case is obtained “automatically” via the UC, and the UC with joint state (JUC)
theorems. (JUC is needed for demonstrating how multiple messages can be authenticated using
a single instance of a signature scheme.) Second, both the protocol for realizing Fcert given
(Fsig,Fca), and the protocol for realizing Fauth given Fcert, are unconditionally secure, with no
error probability. This fact greatly simplifies potential symbolic and automated analysis of these
protocols using existing tools. (These points can be regarded as manifestations of the above-
mentioned advantages of our formalization of signature schemes.)

Finally, we remark that the attempt to formulate an ideal process that captures the security
properties of signature schemes in an abstract way brings up a number of interesting issues per-
taining to the expected security properties of such schemes. Let us highlight four issues:

• Is it OK for a signature scheme to allow an adversary, given a public key v, a message m, and
a signature s, to come up with a different signature s′ 6= s such that s′ is a valid signature
for m with respect to v?

• Is it OK for a signature scheme to allow an adversary, given a public key v, a message m, and
a signature s, to come up with a different public key v′ 6= v such that s is a valid signature
for m with respect to v′?

• Is it OK for a signature scheme to have the signature disclose information on messages that
were signed in the past?

• Is it OK for a signature scheme to allow an adversarial signer to post a public key that causes
the verification algorithm to accept any signature as valid for any message?

• When registering a new (public key, identity) pair with a certification authority, does the
owner of the public key have to “prove possession of the private key” to the authority? If so,
then what exactly has to be proven?

Future directions. The present formalization of Fsig and Fcert is attractive in that it allows a
very modular approach where each instance of the ideal functionality handles only a single instance
of a signature scheme (i.e., a single pair of signature and verification keys). This has several
advantages as described in this work. However, the interface of the signature scheme is somewhat
less abstract than we may have wanted. Specifically, the interface contains an idealized “signature
string” that is passed around among parties (see discussion in Section 2.1). An interesting research
challenge is to show how the present interface can be rigorously linked to existing formal models and
automated tools for symbolic protocol analysis. This would allow us to enjoy the advantages of fully
modular analysis, together with the advantages of automation. One possible direction to go about
this challenge is to prove “correspondence theorems” between states of protocols and adversaries
in the UC framework, given ideal signatures, and their states in a more abstract formalism. The
works of Abadi and Rogaway [ar00], and Micciancio and Warinschi [mw04] can be regarded as
steps in this direction. Note, however, that in contrast to these works, here the correspondence
theorems can potentially be unconditional, without involving computational issues at all. This may
considerably simplify potential solutions.
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More on related work. Several other abstractions of the security requirements from signature
schemes were made in the past, e.g. [sm93, p95, chh00, lmms99]. However, none of these ab-
stractions enjoy the secure composability property which is central to our goals. Signature schemes
were also considered in [psw00]; however, they were treated as part of a larger protocol and there
was no attempt to capture signatures as an abstract primitive.

An alternative approach to writing an ideal functionality that captures signature schemes was
proposed in [bpw03a]. This formulation provides a more abstract (and somewhat restricted) model-
ing of signatures. The additional abstraction comes at a price: It forces the [bpw03a] formalization
to capture, within a single copy of the functionality, all the signature instances in the system, plus
a number of other cryptographic services such as public-key encryption. Furthermore, all the com-
munication among the parties (secure, authenticated, unauthenticated) must be handled by this
single instance of the functionality. This “monolithic” approach loses much of the ability to carry
out modular analysis of protocols. Furthermore, it means that sound Dolev-Yao style analysis as
sketched above can be applied only to real-life protocols where the “low-level component” realizes
their entire multi-instance, multi-function ideal functionality. This may be a limitation when at-
tempting to analyze protocols that implement and use only, say, signatures but not, say, encryption.
More discussion on this approach appears in Appendix B.

In a concurrent work to ours [bh03], Backes and Hofheinz point out some flaws in the [c01,
ck02, cr03] formalization of Fsig, and propose a corrected version. While they point out some
important flaws (e.g., the fact that an adversarial signer can provide inconsistent answers to different
verification requests of the same message and signature), their formalization still contains some
(other) flaws. See more details within.

Organization. The paper is organized as follows. Section 2 presents the corrected formulation
of the ideal signature functionality, Fsig, and re-proves the equivalence with CMA-security. Section
3 presents the ideal certification functionality, Fcert, and demonstrates how to realize it given Fsig

and a certification authority. Section 4 demonstrates how to realize authenticated communication
given Fcert, and proves that obtaining authenticated communication in the bare unauthenticated
model is impossible. Appendix A reviews the UC framework. Finally, Appendix B provides a
more detailed review of the [bpw03a] formalization of ideal signatures.

2 The basic signature functionality

This section presents a corrected version of the ideal signature functionality of [c01, ck02, cr03,
bh03]. We also use this opportunity to provide an extended motivation for the definitional ap-
proach, as well as the specific choices made. (Some of these considerations were already mentioned
in these works; still, we hope that the additional elaboration provided here will prove useful.)
Section 2.1 informally discusses the first considerations leading to the present formalization of the
basic signature functionality, Fsig. Section 2.2 presents the updated formulation of Fsig, along
with a number of additional considerations. Section 2.3 proves equivalence with CMA-security.
The reader is first referred to Appendix A for an overview of the UC framework.

2.1 First attempts

When presented in the most abstract way, a signature scheme provides a way to bind messages
to some publicly known entity, or a party. An immediate realization of this concept as an ideal

6



functionality may proceed as follows: The ideal functionality (which may be thought of as a “trusted
service” that is available to all parties) simply serves as a “depository of signed messages”. That
is, the functionality allows a single party, called the signer, to register messages as signed. Any
party can then ask the functionality whether some message m is registered as signed. Let us call
this ideal functionality F1.

Functionality F1 indeed captures a basic ideal concept of digital signatures. However, it is
somewhat “too ideal”, in a number of respects. One such respect is that F1 directly binds a message
to an identity of a party (the signer). Realizing this requires some prior communication among all
parties, including some global agreement or broadcast. Arguably, such communication need not
be part of the basic definition of digital signatures. (Rather, it is part of a “certification process”
that builds on top of digital signatures.) Another limitation of this direct binding of messages to
parties is that it excludes other uses of signature schemes, such as binding to organizations, or other
uses within cryptographic protocols. In addition, natural operations such as “certifying a public
key” by signing it using a different key cannot be modeled in a modular way. That is, both the
“certifying” and the “certified” public keys have to be part of the same copy of the functionality
(which in addition has to explicitly accommodate such recursive operations).

A second attempt at formulating an ideal signature functionality may thus make the “public
key” an explicit part of the interface of the ideal functionality. That is, now the ideal signature
functionality behaves as F1 does, except that it incorporates an initial “key set-up” interface, where
the signer obtains a “idealized verification key” from the functionality. The task of communicating
the public key to other parties or entities is now left to the protocol that uses the ideal service
represented by the functionality. (We postpone addressing the question of how the value of the key
is determined to the next sub-section.) Verification queries now take the form of “is this message
signed with this public key”. Let us call this ideal functionality F2.

Functionality F2 better captures the basic properties of signature schemes, in that it leaves the
binding between the public key and an external identity out of scope. However, F2 is still somewhat
“over-idealized”, in that it ideally binds a signed message to a verification key without the mediation
of a “signature string”. To see where this becomes problematic, consider a real-life situation where
party A obtains a signature s on some message m from the signer, and then transfers (m, s) to
another party B. If the signature string s is treated as an internal “implementation detail” and is
not part of the functionality interface, then the “signature protocol” that realizes F2 must take care
of transferring “the ability to verify that m is signed” (i.e., transferring s) from party A to party
B. This means that the signature protocol has to be active whenever signatures are transferred
from one party to another in any arbitrary communication. This of course does not correspond to
our intuitive notion of a signature scheme. The lack of explicit signature strings also causes some
other modeling problems. For instance, modeling natural operations such as sending an “encrypted
signature” that is usable only by the holders of the decryption key cannot be done in a modular
way, i.e., in a model where parties have access to an ideal signature functionality and a separate
“ideal encryption functionality”.

We conclude that in order to capture our intuitive notion of signature schemes, an ideal sig-
nature functionality should make the “signature string” part of its interface. That is, the signing
process will generate an “idealized signature string”, that will be presented at verification time.
(Also here, we postpone addressing the question of how the signature string is determined to the
next sub-section). The ideal verification process will use the message, the idealized signature string,
and the public key. We demonstrate that this process can be implemented by a real-life “verifi-
cation algorithm” that is local and does not require any extraneous communication. This indeed
corresponds ot our intuitive notion of a signature verification process.
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The above discussion captures only few of the considerations that come into play when formu-
lating ideal signature functionalities. Other considerations include the wish to make sure that a
single copy of the functionality will correspond to a single instance of a signature scheme. This is
essential if one wants to use an ideal signature functionality within other cryptographic protocols
and maintain the feature that, at all levels, each protocol instance can be analyzed separately from
all others. A number of other considerations are discussed in subsequent sections.

2.2 The basic signature functionality, Fsig

This section presents and motivates the ideal signature functionality, Fsig. The basic idea is to
have Fsig provide a “registry service” where a distinguished party (the signer, S in the figure) can
register (message,signature) pairs. Any party that provides the right verification key can check
whether a given pair is registered. The functionality is presented in Figure 1. Below we highlight
some aspects of the formulation and motivate the definitional choices made. We also discuss the
differences from prior formulations.

Functionality Fsig

Key Generation: Upon receiving a value (KeyGen, sid) from some party S, verify that sid =
(S, sid′) for some sid′. If not, then ignore the request. Else, hand (KeyGen, sid) to the adver-
sary. Upon receiving (Verification Key, sid, v) from the adversary, output (Verification
Key, sid, v) to S, and record the pair (S, v).

Signature Generation: Upon receiving a value (Sign, sid, m) from S, verify that sid = (S, sid′)
for some sid′. If not, then ignore the request. Else, send (Sign, sid, m) to the ad-
versary. Upon receiving (Signature, sid, m, σ) from the adversary, verify that no entry
(m,σ, v, 0) is recorded. If it is, then output an error message to S and halt. Else, output
(Signature, sid, m, σ) to S, and record the entry (m,σ, v, 1).

Signature Verification: Upon receiving a value (Verify, sid, m, σ, v′) from some party P , hand
(Verify, sid, m, σ, v′) to the adversary. Upon receiving (Verified, sid, m, φ) from the ad-
versary do:

1. If v′ = v and the entry (m,σ, v, 1) is recorded, then set f = 1. (This condition guarantees
completeness: If the verification key v′ is the registered one and σ is a legitimately
generated signature for m, then the verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m,σ′, v, 1) for any σ′ is
recorded, then set f = 0 and record the entry (m,σ, v, 0). (This condition guarantees
unforgeability: If v′ is the registered one, the signer is not corrupted, and never signed
m, then the verification fails.)

3. Else, if there is an entry (m,σ, v′, f ′) recorded, then let f = f ′. (This condition guar-
antees consistency: All verification requests with identical parameters will result in the
same answer.)

4. Else, let f = φ and record the entry (m,σ, v′, φ).

Output (Verified, id, m, f) to P .

Figure 1: The basic signature functionality, Fsig.

Determining the values of the verification key and the signatures. Functionality Fsig lets
the adversary determine the values of the verification key and the legitimate signatures. This
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reflects the fact that the intuitive notion of basic security of signature schemes does not make
any requirements on these values. In particular, the signature values may depend on the
identity of the signer, on the signed message, or even on all the messages signed so far. There
is also no requirement that signatures on different messages be different from each other.
(Indeed, observe that the security properties guaranteed by Fsig hold even if all signature
strings are identical. Said otherwise, making sure that strings are different from each other
is only a technical tool that allows realizing the abstract requirement in an algorithmic way.)

Alternative (and more restrictive) formulations would require that signatures depend only on
the currently signed message, or have some pre-determined distribution. The first require-
ment was proposed in [bpw03b]. The second is reminiscent of verifiable random functions
[mrv99]; however, whereas verifiable random functions do not guarantee that the signature
value “appears random” to the signer, the above alternative formulation does.

Verification with an incorrect key. If the verification key v′ presented by the verifier is not
the registered one (i.e., v) then Fsig provides no guarantees regarding the outcome of the
verification process. This captures the fact that the basic functionality of a signature scheme
only binds messages and signatures to verification keys, rather than to other entities such as
party identities. It is the responsibility of the protocol that uses Fsig to make sure that the
verifying party has the correct verification key. (Jumping ahead, we remark that the binding of
signatures to party identities is provided by the “certification functionality”, Fcert, presented
in Section 3.)

Allowing multiple signatures for a message. When the singer activates Fsig multiple times
for signing the same message, Fsig allows the adversary to generate multiple different signa-
tures for that message. This reflects the fact that the standard security requirement from
signature schemes does not prohibit schemes that, in different activations, generate different
signatures for the same message. A more restrictive variant would mandate that each message
may have at most a single valid signature.

Allowing public modification of signatures. When presented with a verification request for
(m,σ, v), where m was legitimately signed but with a different signature σ′, Fsig lets the
adversary decide whether the verification should succeed (subject to the consistency condi-
tion). This reflects the fact that the basic notion of security of signature schemes makes no
requirement on the verification procedure in such a case. In particular, it may be possible to
publicly generate new signatures for a message from existing ones. An alternative (and more
restrictive) formulation would force rejection whenever σ was not generated by the signing
algorithm as a signature on m. (In our formalization this would mean that (m,σ, v) is rejected
unless m is explicitly recorded as signed with σ.) This stronger requirement is considered in
e.g. [go92].

Allowing Corrupted signers to claim signatures. If the signer is corrupted, and Fsig is asked
to verify (m,σ, v), then Fsig allows the ideal-process adversary to force the answer to be “1”,
even if m was never before singed and v is the correct verification key. This feature captures
the fact that the basic security properties from signature schemes do not prevent a corrupted
signer from causing the verification algorithm to accept any signature as valid for any message.
Let us clarify this point via an example. Take any “secure” signature scheme s and modify
it into a signature scheme s′ that is identical to s except that a bit b is perpended to the
verification key. If b = 0 then the verification procedure remains unchanged. But if b = 1
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then the verification procedure always accepts its input signature as a valid signature for its
input message. We claim that the scheme s′ is still “secure”. (In particular, if s is CMA-
secure then so is s′.) Still, s′ allows a a corrupted party P to register with a public key that
begins with a “1”. In this case, P can claim any signature for any message as “its own”.
(As artificial as the scheme s′ may look, similar properties are shared by existing signature
schemes. For instance when using any RSA-based signature scheme, a corrupted party can
publish a verification key that specifies an RSA modulus N = 1. In this case, the verification
algorithm would accept any message-signature pair.)1

Requiring consistency in signature verification. Functionality Fsig guarantees that if some
verification request for (m,σ, v′) returned an answer f ∈ {0, 1}, then all future verification
requests for the same (m, σ, v′) will return the same answer. This is so, regardless of whether
σ was legitimately generated by Fsig or not, or whether the verification key v′ in the verifi-
cation request is the value generated by Fsig or not. This feature is central in our intuitive
notion of signatures: A party wants to be assured that if it successfully verified some triple
(m,σ, v′) then any other party that follows the protocol would successfully verify the same
triple, regardless if this triple was legitimately generated or not. (This basic consistency
property holds trivially in most known signature schemes, where the verification algorithm
is deterministic and does not use external information other than its input. Still, in an ab-
stract functional specification like Fsig, consistency of verification answers has to be required
explicitly.)

Encoding the signer’s identity in the SID. Fsig ignores all key generation and signature gen-
eration requests, unless the identity of the signer agrees with the signer-identity that is en-
coded in the session ID (SID). (Recall that in the UC framework each instance of an ideal
functionality has a unique SID, which is determined by the first call to this instance.) This
convention makes sure that only a single party (presumably, the first party to call this in-
stance) is able to generate a key and sign messages. Furthermore, it allows the protocol that
realizes Fsig to simply ignore all KeyGen and Sign requests unless the SID in the request
agrees with the local party identity. Notice that this convention makes the signer identity
public, thus essentially prohibiting anonymity in signatures. Indeed, if anonymity is desired
then a different formulation is needed.

Addressing secrecy and anonymity concerns. The present formulation of Fsig does not pro-
vide any secrecy or anonymity guarantees for the singer. In particular, the signer identity is
made public via the SID, and the adversary is aware of each signed message and the value of
each generated signature. While formulating an ideal functionality that provides secrecy and
anonymity guarantees is out of scope of this work, we mention some possible techniques for
obtaining such properties within the current general approach.

Hiding the signer identity can be obtained by replacing the signer’s identity in the SID with
a random string (which is chosen by the calling protocol within the signer). Preventing
the adversary from learning the values of the signed messages and the signatures can be
done as follows: When providing Fsig with the verification key v, the adversary would give

1The following additional property of signature schemes was recently proposed [ms03]. Given a public verification
key v, a message m and a signature s on m that was “honestly generated” using the signing key that corresponds
to v, it should be infeasible to come up with a different verification key v′ 6= v such that s passes as a legitimate
signature for m with respect to public key v′. Functionality Fsig does not guarantee this property. Indeed, while
this property may be convenient in some specific uses, it is arguably not a basic requirement from signature schemes
in general protocol settings.
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Fsig a “signature generation algorithm” (namely an ITM G), and a “signature verification
algorithm” (namely an ITM V ). Now, in the signature generation process, instead of asking
the adversary to generate each signature value σ, Fsig would keep a running instance of G
and generate each signature by running G on the signed message. Similarly, Fsig would keep
a running copy of machine V ; when processing a verification request, Fsig would interact with
V instead of interacting with A. (Here both G and V are PPT ITMs. That is, there is a
fixed polynomial p() associated with each of the machines, and in each activation the machine
makes only up to p(n) steps, where n is the length of its input.)

Additional secrecy requirements may be captured as follows. Requiring that each signature
depends only on the currently signed message can be captured by requiring that G does not
keep state between signatures. Requiring that the signature does not disclose information on
the message (other than the ability to verify) can be captured by letting G sign a random
“alias” rm instead of signing m.

Differences from prior formulations of Fsig. The formulation here differs from prior formu-
lations in three main respects. (I) Different formulations did not encode the signer identity in the
SID. The formulation of [c01] allowed any party to be the signer, as long as it is the first one to call
this copy of Fsig. This prevented secure realizations since the adversary could always “get ahead”
of any good signer and register itself as the signer. (This issue was discovered independently in
[bh03] and in an earlier version of this work. The solutions proposed there are different than here.)
(II) The formulations in [c01, ck02, cr03] do not allow a corrupted signer to cause the verification
algorithm to accept arbitrary signature as valid for arbitrary messages. (See the above motivating
discussion on this property of Fsig.) (III) Neither of the previous formulations provided the con-
sistency guarantee discussed above in a satisfactory way. The formulations in [c01, ck02, cr03]
do not address this point at all. In [bh03] the issue is explicitly addressed for the first time. Still,
the guarantee there is only partial in that it is made only when the verification key in the the
verification request is the recorded one; this allows an adversarial signer to “repudiate” signatures
by failing to properly register its verification key. The formulation in [c04] suffers from two flaws.
First, it is too restrictive in that it requires consistency per (message,signature) pair, rather than
per (message,signature,public-key) triple as here. Consequently, it unnecessarily rules out signature
schemes where the same (message,signature) pair may be valid for one public key, and invalid for
another public key. Second, it does not record a negative verification answer in case 2 (matching
public key, uncorrupted signer, and message never before signed). This would allow signature pro-
tocols where a negative answer for a (message,signature) pair is later changed to a positive one
(say, after the message is signed). I thank Ivan Damgard for pointing out the shortcomings of the
[c04] formulation.

Another point of difference from previous formalizations has to do with the formalization of
probabilistic polynomial time interactive Turing machines. Since this technical point is general to
the framework, we describe it together with the review of the framework in Appendix A.

2.3 Equivalence with the [gmri88] notion of security

Recall that it is claimed in [c01] that realizing Fsig is equivalent to existential unforgeability
against chosen message attacks as in [gmri88]. However, the proof there relates only to non-
adaptive adversaries (i.e., to the case where the identities of the corrupted parties are fixed in
advance). Furthermore, it is flawed in that it overlooks the flaws in the [c01] formulation Fsig.
This section presents a corrected and extended version of that proof, that addresses the above
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issues, and in addition addresses also adaptive adversaries. (The overall structure of the proof
remains unchanged; the modifications are all local in nature.)

We first briefly restate the [gmri88] notion, while making explicit some requirements that
remain implicit there. A signature scheme is a triple of PPT algorithms Σ = (gen, sig, ver), where
sig may maintain local state between activations.

Definition 1 A signature scheme Σ = (gen, sig, ver) is called eu-cma if the following properties
hold for any negligible function ν(), and all large enough values of the security parameter k.

Completeness: For any message m, Prob[(s, v) ← gen(1k); σ ← sig(s,m); 0 ← ver(m,σ, v)] <
ν(k).

Consistency (Non-repudiation): For any m, the probability that gen(1k) generates (s, v) and
ver(m,σ, v) generates two different outputs in two independent invocations is smaller than
ν(k). (This requirement is implicit in [gmri88]. Indeed, it holds trivially in their case, where
ver is a local and deterministic algorithm.)

Unforgeability: For any PPT forger F , Prob[(s, v)← gen(1k); (m,σ)← F sig(s,·)(v); 1← ver(m,σ, v)
and F never asked sig to sign m] < ν(k).

Next, we describe how to translate a signature scheme Σ = (gen, sig, ver) into a protocol πΣ

in the present setting. This is done as follows: When party S, running πΣ, receives an input
(KeyGen,sid), it verifies that sid = (S, sid′) for some sid′. If not, it ignores the input. Also, it
runs algorithm gen, keeps the signing key s and outputs the verification key v. When S receives
an input (Sign,sid,m) for an sid for which it has a signing key s, it sets σ = sig(s,m) and
outputs (Signature,sid,m, σ). When any party gets an input (Verify,sid,m, σ, v′), it outputs
(Verified,sid,m, ver(m,σ, v′)). We show:

Theorem 2 Let Σ = (gen, sig, ver) be a signature scheme. Then πΣ securely realizes Fsig if and
only if Σ is eu-cma.

Proof: For the “only if” direction, assume that Σ violates Definition 1. We show that πΣ does not
securely realize Fsig. This is done by constructing an environment Z and a real-life adversary A
such that for any ideal-process adversary S, Z can tell whether it is interacting with A and πΣ or
with S in the ideal process for Fsig. In all cases, Z corrupts no party and sends not messages to A.
(Since protocol πΣ never sends any messages, this means that A is never activated.) In addition:

(I) Assume Σ is not complete, i.e. there exists m such that Prob[(s, v)← gen(1k); σ ← sig(s,m);
0 ← ver(m,σ, v)] < ν(k) for infinitely many k’s. Then Z simply sets sid = (S, 0) and
activates some party S with input (KeyGen, sid), followed by (Sign, sid, m), obtains v and
σ, and then activates some party V with (Verify, sid, m, σ, v) and outputs the returned
verification value. Clearly in the ideal process Z outputs 1 always, whereas in the interaction
with πΣ Z outputs 0 with non-negligible probability.

(II) Assume Σ is not consistent. Then Z operates similarly except that it activates V twice
with (Verify, sid, m, σ, v), and outputs 1 iff the two answers are the same. Again, in the
ideal process Z outputs 1 always, whereas in the interaction with πΣ Z outputs 0 with
non-negligible probability.
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(III) Assume Σ is not unforgeable, i.e. there exists a successful forger G for Σ. Then Z proceeds
as above, except that it internally runs a copy of G and hands it the public key v obtained
from S. From now on, whenever G asks its oracle to sign a message m, Z activates S with
input (Sign,sid = (S, 0),m), and reports the output to G. When G generates a pair (m,σ),
Z Proceeds as follows. If m was signed before then Z outputs 0 and halts. Else, Z activates
some party with input (Verify,sid,m, σ, v) and outputs the verification result. It can be
readily seen that, when Z interacts with πΣ, G sees exactly a standard chosen message attack
on Σ, thus Z outputs 1 with non-negligible probability. However, if A is interacting with the
ideal process for Fsig, then Z never outputs 1.

For the “if” direction, assume that πΣ does not realize Fsig, i.e. there is a real-life adversary
A such that for any ideal-process adversary S there exists an environment Z that can tell whether
it is interacting with Fsig and S in the ideal process, or with πΣ and A in the real-life model. We
show that Σ violates Definition 1.2 Since Z succeeds for any S, it also succeeds for the following
“generic” S. S runs a simulated copy of A; then:

1. Any input from Z is forwarded to A. Any outputs of A is copied to S’s output (to be read
by Z).

2. Whenever S receives a message (KeyGen,sid, S) from Fsig, it does: If sid is not of the form
(S, sid′) then S ignores this request. Otherwise, S runs (s, v) ← gen(1k), records s, and
returns (Verification Key,sid, v) to Fsig.

3. Whenever S receives a message (Sign,sid, S, m) from Fsig, if sid = (S, sid′) and there is a
recorded signing key s, then S computes σ = sig(s,m), and hands (Signature,sid,m, σ)
back to Fsig. Otherwise, it does nothing.

4. Whenever S receives (Verify, sid, m, σ, v) from Fsig, it returns (Verified, sid, m, φ) where
φ = ver(v,m, σ).

5. When A corrupts some party P , S corrupts P in the ideal process. If P is the signer, then
S reveals the signing key s (and potentially the internal state of algorithm sig, if such state
exists) as the internal state of P .

Now, assume that scheme Σ is both complete and consistent (otherwise the theorem is proven).
We demonstrate that it is not unforgeable, by constructing a forger G. This is done as follows. G
runs a simulated copy of Z, and simulates for Z an interaction with S in the ideal process for Fsig

(where G plays the role of both S and Fsig for Z). Like S, G runs a simulated copy of A. However,
in the first activation, instead of running gen to obtain the keys (s, v), G hands A the public
verification key v in G’s input. Instead of running the signing algorithm to obtain σ = sig(s,m),
G asks its oracle to sign m and obtains the signature σ. Whenever the simulated Z activates some
uncorrupted party with input (Verify,sid,m, σ, v), G checks whether (m,σ) constitute a forgery
(i.e., whether m was never signed before and ver(v,m, σ) = 1). If (m,σ) is a forgery, then G
outputs that pair and halts. Else it continues the simulation. If A asks to corrupt the signer than
G halts with a failure output.

We analyze the success probability of G. Let B denote the event that, in a run of πΣ with
A and Z with sid = (S, sid′), the singer S generates a public key v, and some party is activated

2As demonstrated in [c01], it suffices to show this derivation for the case where A is the “dummy adversary” that
only delivers messages, corrupts parties, and reports the gathered information to Z. Still, for clarity we provide a
proof for all A.
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with a verification request (Verify, sid, m, σ, v), where ver(m,σ, v) = 1, and S is uncorrupted and
never signed m. Since Σ is complete and consistent, we have that as long as event B does not
occur, Z’s view of an interaction with A and πΣ is statistically close to its view of an interaction
with S and Fsig in the ideal process. (The views may differ in case of a completeness or consistency
error. But these happen only with negligible probability.) However, we are guaranteed that Z
distinguishes with non-negligible probability between the interaction with πΣ and the interaction
with S and Fsig Thus we are guaranteed that, when Z interacts with A and πΣ, event B occurs
with non-negligible probability.

It remains to observe that, from the point of view of A and Z, the interaction with the forger
G looks the same as an interaction in the real-life model with πΣ. Thus, we are guaranteed that
event B will occur with non-negligible probability. Notice that event B can occur only before the
signer S is corrupted. This means that whenever event B occurs, G outputs a successful forgery.
2

We remark that the adversary A constructed in the proof of the “only if” direction is non-
adaptive, whereas the adversary A considered in the proof of the “if” direction can be adaptive.
This means that for any signature scheme Σ, protocol πΣ securely realizes Fsig against adaptive
adversaries if and only if it securely realizes Fsig against non-adaptive adversaries. Also, it is
interesting to note that the proof of Claim 2 does not involve any data erasures.

3 Using signatures to provide certification

This section presents an abstraction of signature schemes that directly binds messages and signa-
tures to “physical entities,” such as parties in a network. We use the term certification to describe
such binding. We first formulate an ideal functionality, Fcert, that provides ideal binding of mes-
sages to party identities. Next, we demonstrate how to realize Fcert given ideal access to Fsig.
However, even given Fsig, it is impossible to realize Fcert in a completely unauthenticated commu-
nication model, such as the bare model provided by the UC framework. (We prove this fact in the
next section.) Therefore, we make the minimal set-up assumption that the parties have access to
a rudimentary “certification authority” that registers party identities together with public values
provided by the registered party. We formalize this set-up assumption via an ideal functionality,
Fca, and show a natural protocol for realizing Fcert given ideal access to Fsig and Fca. We note
that this protocol is errorless, and unconditionally secure. That is, it realizes Fcert perfectly, and
even for unbounded adversary and environment.

Section 3.1 presents the ideal certification functionality, Fcert. Section 3.2 formulates Fca and
shows how Fcert can be realized given Fsig and Fca.

3.1 The certification functionality, Fcert

The ideal certification functionality, Fcert, is presented in Figure 2. It is similar to Fsig, except
that it provides direct binding between a signature for a message and the identity of the signer.
(In contrast, Fsig provides binding only to the verification key.) Using common terminology, this
corresponds to providing signatures accompanied by “certificates” that bind the verification process
to the signer’s identity. Consequently, in Fcert the generation of public keys becomes an “imple-
mentation detail” and is not part of the interface with the environment. Furthermore, there are no
public keys in the interface of Fcert. We note that Fcert does not deal with revocation of certifi-
cates. Dealing with revocation requires more structure (such as trusted “revocation authorities”)
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and is left out of scope.

Functionality Fcert

Signature Generation: Upon receiving a value (Sign, sid, m) from S, verify that sid = (S, sid′)
for some sid′. If not, then ignore the request. Else, send (Sign, sid, m) to the adversary. Upon
receiving (Signature, sid, m, σ) from the adversary, verify that no entry (m,σ, 0) is recorded.
If it is, then output an error message to S and halt. Else, output (Signature, sid, m, σ) to
S, and record the entry (m,σ, 1).

Signature Verification: Upon receiving a value (Verify, sid, m, σ) from some party P , hand
(Verify, sid, m, σ) to the adversary. Upon receiving (Verified, sid, m, φ) from the adver-
sary, do:

1. If (m,σ, 1) is recorded then set f = 1.

2. Else, if the signer is not corrupted, and no entry (m,σ′, 1) for any σ′ is recorded, then
set f = 0 and record the entry (m,σ, 0).

3. Else, if there is an entry (m,σ, f ′) recorded, then set f = f ′.

4. Else, set f = φ, and record the entry (m,σ′, φ).

Output (Verified, sid, m, f) to P .

Figure 2: The certification functionality, Fcert.

3.2 Functionality Fca and realizing Fcert

We present a simple protocol that realizes Fcert given Fsig, with the aid of ideally authenticated
communication with a “trusted certification authority.” This set-up assumption is formalized as
an ideal functionality, Fca. We start by presenting Fca. Next we present the protocol and prove
its security. (There exist of course other methods for realizing Fcert, for instance using direct out-
of-band exchange of public verification keys. Still, as shown in Claim 5, Fcert cannot be realized
in the bare unauthenticated model; some set-up assumption is necessary.)

The certificate authority functionality. The ideal certificate authority functionality, Fca, is
presented in Figure 3. Also here, each copy of Fca is bound to a single party identity via the
session ID. In fact, for ease of presentation here we make the SID identical to the corresponding
party identity. Fca accepts only the first registered value, and does not allow for modification
or “revocation.” Such more advanced features are of course useful, but are not necessary for our
basic use. We stress that Fca does not perform any checks on the registered value; it simply
acts as a public bulletin board. (In particular, no “proof of possession of secret key” is required.)
Consequently, when running in the Fca-hybrid model, a party can register with some copy of Fca

using, e.g., the same public value as that of some other party, in another copy of Fca. Still, as seen
below, the present minimal formulation suffices for realizing Fcert and subsequently Fauth.

Realizing Fcert in the (Fsig,Fca)-hybrid model. We present a protocol, cas (for “certificate-
authority-assisted signatures”), that realizes Fcert in the (Fsig,Fca)-hybrid model in a straightfor-
ward way. See Figure 4.
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Functionality Fca

1. Upon receiving the first message (Register, sid, v) from party P , send (Registered, sid, v)
to the adversary; upon receiving ok from the adversary, and if sid = P and this is the first
request from P , then record the pair (P, v).

2. Upon receiving a message (Retrieve, sid) from party P ′, send (Retrieve, sid, P ′) to the
adversary, and wait for an ok from the adversary. Then, if there is a recorded pair (sid, v)
output (Retrieve, sid, v) to P ′. Else output (Retrieve, sid,⊥) to P ′.

Figure 3: The ideal certification authority functionality, Fca

Protocol cas

Signing protocol: When activated with input (Sign, sid, m), party P does:

1. P verifies that sid = (P, s) for some identifier s; if not, then the input is ignored. (That
is, P verifies that it is the legitimate signer for this sid.)

2. If this is the first activation then P generates a verification key, i.e., it sends (KeyGen, sid)
to Fsig. Once it obtains (Verification Key, sid, v), it sends (Register, P, v) to Fca.

3. P sends (Sign, sid, m) to Fsig. Upon receiving (Signature, sid, m, σ) from Fsig, P
outputs (Signature, sid, m, σ).

Verification protocol: When activated with input (Verify, sid, m, σ), where sid = (P, s), party
P ′ checks whether it has a pair (P, v) recorded. If not, then P ′ sends (Retrieve, P) to Fca,
and obtains a response (Retrieve, P, v). If v =⊥ then P ′ rejects the signature, i.e. it outputs
(Verified, sid, m, 0). Else it records (P, v). Next, P ′ sends (Verify, sid, m, σ, v) to Fsig, and
outputs the response (Verified, sid, m, f) from Fsig.

Figure 4: The protocol for realizing Fcert in the (Fsig,Fca)-hybrid model.

Claim 3 Protocol cas securely realizes functionality Fcert in the (Fsig,Fca)-hybrid model.

Proof: Let A be an adversary that interacts with parties running cas in the (Fsig,Fca)-hybrid
model. We construct an ideal-process adversary (simulator) S such that the view of any environ-
ment Z of an interaction with A and cas is distributed identically to its view of an interaction
with S in the ideal process for Fcert. As usual, simulator S runs an internal copy of A and each
of the involved parties. All messages from Z to A and back are forwarded. In addition, S does:

Simulating signature generation. When S receives in the ideal process a message (Sign, sid, m)
from Fcert, where sid = (P, s) and P is uncorrupted, it proceeds as follows:

1. If this is the first time that P generates a signature, then simulate for A the process of
key generation. That is, send to A (in the name of Fsig) the message (KeyGen, sid),
obtain the response (Verification Key, sid, v) from A, and send to A the message
(Registered, P, v) from Fca. When A sends ok to Fca, mark the pair (P, v) as recorded.

2. Simulate for A the process of signing m. That is, send to A (in the name of Fsig) the
message (Sign, sid, m), forward the response (Signature, sid, m, σ) to Fcert.
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Simulating the interaction of a corrupted signer proceeds as follows.

1. If A instructs a corrupted P to send (KeyGen, sid) to Fcert then proceed in the natural
way. That is, if sid is different than the sid of the first message received from Fcert in
this run, or sid 6= (P, s) for some s, then ignore this instruction. Else, send to A (in
the name of Fsig) the message (KeyGen, sid); when A responds with (Verification
Key, sid, v), send (Verification Key, sid, v) to P .

2. The process of generating a signature by Fsig is simulated in a similar way, with the
addition that S records the generated (message,signature) pairs. Finally, When P sends
(P, v′) to Fca, send to A the message (Registered, P, v′) from Fca. When A sends ok
to Fca, then mark the pair (P, v′) as recorded. (Note that v′ may be different than v;
still the simulation remains valid.)

Simulating signature verification. When notified by Fcert that some uncorrupted party P ′

made a verification request, proceed as follows.

1. If this is the first verification request made by P ′, then simulate for A the exchange
between P ′ and Fca. That is, simulate for A a message (Retrieve, P, P ′) coming from
Fca. Then, when A responds with ok, simulate Fca’s output to P ′: If Fca has a pair
(P, v) recorded then record that P ′ obtained a response (P, v) from Fca. record that P ′

obtained a response (P,⊥) from Fca.

2. If a message (Verify, sid, P ′,m, σ) arrives from Fcert, then forward this message to A
(in the name of Fsig). Forward A’s response back to Fcert.

If the verifier P ′ is corrupted then the simulation is modified in the natural way. That is,
when P ′ sends a message (Verify, sid, m, σ, v) to to Fsig, generate a response following the
instructions of Fsig.

Simulating party corruptions. When A corrupts a party, S corrupts that party in the ideal
process, and forwards the obtained information to A. This poses no problem since none of
the parties maintains any secret information.

It is straightforward to verify that the simulation is perfect. That is, for any (even computa-
tionally unbounded) environment Z and A, it holds that Z’s view of an interaction with S and
Fcert is distributed identically to its view of an interaction with parties running protocol cas in
the (Fsig,Fca)-hybrid model. 2

Remark: In protocol cas each party contacts Fca only once, and records the verification key
it receives for future verifications. Alternatively, a verifier may obtain the verification key from
Fca upon each signature verification. This would make sense in settings where identities can be
revoked, or when the verifier does not maintain state between verifications.

4 Message authentication given Fcert

We exemplify the usefulness of Fcert by demonstrating how it can be used to obtain authenticated
communication. Specifically, we recall the message authentication functionality, Fauth, from [c01],
and show a simple protocol that realizes Fauth in the Fcert-hybrid model. The protocol is essentially
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the signature-based authenticator from [bck98]. (In fact, we use a corrected formulation of Fauth;
see below.)

We complete this section by proving a complementary claim: Fauth cannot be realized in
the bare unauthenticated model. This claim formalize the intuitive notion that authenticated
communication cannot be “bootstrapped” without some initial, out-of-band, authentication of the
entities involved. Furthermore, it implies that Fcert cannot be realized in the bare, unauthenticated
model.
Fauth is presented in Figure 5.3 Recall that each copy of Fauth handles a single message; this

simplifies the presentation and analysis of protocols for realizing it. Section 4.1 demonstrates how
to realize Fauth given Fcert. Section 4.2 demonstrates the impossibility of realizing Fauth in the
bare model.

Functionality Fauth

1. Upon receiving (send, sid, B, m) from party A, send (sent,sid,A, B, m) to the adversary.

2. Upon receiving (send, sid, B′,m′) from the adversary, do: If A is corrupted then output
(sent,sid,A, m′) to party B′. Else, output (sent,sid,A, m) to party B. Halt.

Figure 5: The Message Authentication functionality, Fauth

4.1 Realizing Fauth given Fcert

We present a protocol for realizing Fauth given ideal access to Fcert. The protocol is very simple:
To send an authenticated message m to party B, with session identifier sid, party A simply signs
(m, B) and sends the signed message to B. A more complete description appears in Figure 6.

Protocol sba

1. Upon receiving an input (Send, sid, B, m), party A sets sid′ = (A, sid), sets m′ =
(m,B), sends (Sign, sid′,m′) to Fcert, obtains the response (Signed, sid′,m′, s), and sends
(sid,A, m, s) to B.

2. Upon receiving (sid,A, m, s), B sets sid′ = (A, sid), sets m′ = (m,B), sends
(Verify, sid′,m′, s) to Fcert, and obtains a response (Verified, sid′,m′, s, f). If f = 1
then B outputs (Sent,sid,A, B, m) and halts. Else B halts with no output.

Figure 6: The signature-based authentication protocol, sba

Several remarks are in order before setting to prove security of the protocol. First, notice that
the protocol contains no explicit mechanisms to protect against adversarial replay of messages. In-
deed, the protocol relies on the uniqueness of the session-identifier for each instance of the protocol.

3The formulation here is somewhat different than the one in [c01, ck02]: the prior formulation failed to let the
adversary change the delivered message and identity of the recipient in case that the sender gets corrupted between
sending and delivery. This results in an unnecessarily strong guarantee (that is in fact unrealizable by reasonable
protocols). This oversight in the previous formulation was pointed out in a number of places (e.g. [hms03, af04]),
with respect to related functionalities. We note that [c04] still uses the original (overly strong) version of Fauth.
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This in essence puts the burden of protecting from replay on the protocol that uses sba (or, rather,
on an “operating system” that verifies uniqueness of sid’s). Specifically, it is assumed that if the
receiver B obtains outputs from two different copies of sba, and these two copies have the same sid,
then the second output is discarded. While we do not specify how this provision is implemented,
we mention two popular ways to do so. One method is to have the recipient maintain a list of past
session-identifiers of instances of sba (potentially grouped by sender identities, and expected to be
increasing in value, for more efficient storage). A second method is to have the recipient contribute
to the sid by having the parties exchange randomly chosen nonces prior to the initiation of the
protocol, and using the concatenation of the nonces as the sid. This method involves an additional
round-trip prior to the one-message protocol, and also introduces a small error probability, but
has the advantage that no state needs to be kept across protocol instances. See [blr04] for more
discussion and formalization of general methods for guaranteeing uniqueness of SID’s. It should
also be noted that the protocol obtained by using sba with the above nonce-based exchange is
essentially the signature-based authenticator of [bck98].

Second, observe that a separate instance of sba is invoked for each message transmission. This
simplifies the protocol and analysis (e.g., there is no need to sign the session identifier), but it also
means that a separate copy of Fcert is used per message. Using the construction from Section 3, we
have that a different instance of a signature scheme is needed for each message, which is of course
highly wasteful. However, as shown in [cr03], it is possible to realize multiple instances of Fcert

(with the same signer) using a single copy of Fcert, by including the session identifier in the signed
text. Using universal composition with joint state, we have that multiple instances of protocol sba
can use the same instance of Fcert.

Third, we note that functionality Fcert can be used also for session-based message authenti-
cation. Specifically, the formalization of key-exchange protocols in [ck02] can be readily adapted
to use Fcert. This would simplify the current formalization that uses Fsig plus initially authenti-
cated communication between any pair of parties. In addition, using Fcert and Fca better models
the practice of using certificate authorities. Finally, we note that the security of protocol sba is
unconditional, with no computational assumptions and no error probability.

Claim 4 Protocol sba securely realizes Fauth in the Fcert-hybrid model.

Proof: Let A be an adversary that interacts with parties running sba in the Fcert-hybrid model.
We construct an ideal-process adversary (simulator) S such that the view of any environment Z
from an interaction with A and sba is distributed identically to its view of an interaction with S
in the ideal process for Fauth. As usual, simulator S runs a copy of A, and forwards all messages
from Z to A and back. In addition, S proceeds as follows.

Simulating the sender. When an uncorrupted party A is activated with input (Send, sid, B), S
obtains this value from Fauth. Then, S simulates for A the expected interaction with Fcert;
that is, S sends to A the message (Sign, (A, sid), (m,B)) from Fcert, and obtains a value s
from A. Next, S hands A the message (sid,A, m, s) sent from A to B.

If the sender is corrupted, then all that S has to do is to simulate for A the interaction with
Fcert. That is, whenever a corrupted A sends a message (Sign, sid′′,m′′) to Fcert, S responds
with (Sign, sid′′,m′′) to A, obtain a signature s′′, and sends (Signature, sid′′,m′′, s′′) to A
in the namer of Fcert.

Simulating the recipient. When A delivers a message (sid,A, m, s) to an uncorrupted party
B, S first simulates for A the interaction with Fcert: if the logic of Fcert would instruct
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it to send (Verify, sid′ = (A, sid),m′ = (m,B), s) to A (that is, if A is corrupted, or m′

was signed in the past but with a signature different than s) then send this message to
A, and record the response of A. Next, if the logic of Fcert would instruct it to output
(Verified, sid′,m′, s, f = 1) to B (that is, if A responded with f = 1 or the message m′ was
recorded with signature s) then deliver the message (Receivedsid,A, B, m) which was sent
in the ideal process from Fauth to B. Otherwise, do nothing.

Simulating party corruptions. Whenever A corrupts a party, S corrupts the same party in
the ideal process, and provides A with the internal state of the corrupted party. This is
straightforward to do, since the protocol maintains no secret state at any time.

It can be readily seen that the combined view of Z and A in an execution of sba is distributed
identically to the combined view of Z and the simulated copy of A within S in the ideal pro-
cess. Indeed, the only case where the two views may potentially differ is if the receiver obtains
(Verified, sid′,m′, s, f = 1) from Fcert for an incoming message (sid,A, m, s), while A is un-
corrupted at the time when the message was delivered, and never sent the message (sid,A, m, s).
However, if A never sent (sid,A, m, s), then the message m′ = (m,B) was never signed by the
copy of Fcert with session id (A, sid); thus, according to the logic of Fcert, B would always obtain
(Verified, sid′,m′, s, f = 0) fromFcert. 2

4.2 Realizing Fauth in the bare model

This section demonstrates that it is impossible to realize Fauth in the bare unauthenticated model
by any “useful” protocol. A corollary from this fact is that there exist no “useful” protocols that
realize Fcert in the plain model. More precisely, say that a multiparty protocol is useful if, whenever
the adversary corrupts no party and delivers all messages unmodified and with no delay, then at
least one party generates output with non-negligible probability.4

Claim 5 There exist no useful protocols that realize Fauth in the bare unauthenticated model in a
network with at least two parties.

Proof: Let π be a protocol (that is geared towards realizing Fauth), and consider a network with
parties A, B. We construct the following environment Z and real-life adversary A. Z activates
no party with any input. If party B generates output (Received, sid = 0, A, m = 0), then Z
outputs 1. Otherwise Z outputs 0.5 Adversary A simulates for B an execution of π on input
(Send, sid = 0, B, m = 0) for A, where no party is corrupted, and all messages are delivered
without delay. Note that A can do so successfully, since it can feed B with any incoming messages,
and B shares no prior state with any other party.

Since protocol π is useful, with non-negligible probability B outputs (Received, 0, A, 0) in the
real execution of π. However, in the ideal process B never generates any output. 2

4Delivery with no delay can of course be interpreted in a number of ways. To be specific, we stick to “first come
first serve” delivery, where the earliest undelivered message is the next to be delivered. The claim holds with respect
to other reasonable delivery method.

5This instruction seems hard to implement in an asynchronous network, since Z cannot wait “until B generates
output”. We thus interpret this instruction as follows: Z first writes 0 on its output tape. Next, if B generates the
said output, then Z overwrites 1 on its output tape. Now, recall that the output of the execution is defined as the
contents of the output tape of Z when the execution terminates (i.e, when all involved entities either terminate or
are at a waiting state). Thus, the present interpretation achieves the desired effect.
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Corollary 6 There exist no useful protocols that realize Fcert in the bare unauthenticated model,
in a network with at least two parties.

Proof: If there exist protocols that realize Fsig then the corollary follows from Claims 5 and 4.
Otherwise, the corollary follows from the fact that Fsig can be (trivially) realized in the Fcert-hybrid
model. 2
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A Universally Composable Security: A review

We provide a review of the UC security framework. The text is somewhat informal for clarity
and brevity, and is mostly taken from the overview section of [c01], with some local updates and
modifications. Full details (as well as a history of works leading to that framework) appear there.
We first present the real-life model of computation, the ideal process, and the general definition of
securely realizing an ideal functionality. Next we present the hybrid model and the composition
theorem.

Protocol syntax. Following [gmra89, g01], a protocol is represented as a system of interactive
Turing machines (ITMs), where each ITM represents the program to be run within a different party.
Specifically, the input and output tapes model inputs and outputs that are received from and given
to other programs running on the same machine, and the communication tapes model messages sent
to and received from the network. Adversarial entities are also modeled as ITMs. We concentrate on
a model where the adversaries have an arbitrary additional input, representing external information.
From a complexity-theoretic point of view, this essentially implies that adversaries are non-uniform
ITMs. Each ITM has a session-identifier (SID) that describes which session (or, protocol instance)
the ITM belongs to. It also has a party identifier (PID) that describes the role (or, participant
identifier) of that ITM within the protocol instance. The pair (SID,PID) is guaranteed to be unique
in the system.

We assume that all ITMs run in probabilistic polynomial time (PPT). An ITM is PPT if there
exists a constant c > 0 such that, at any point during its run, the overall number of steps taken by
M is at most nc, where n is the overall number of bits written on the input tape of M in this run,
plus k ∗ t, where k is the security parameter k and t the number of activations with new input M
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had in this run. (Figuratively, if we assume that the value 1k is prepended to each input value to
M , then n is the overall input length.) In the notion of PPT ITMs from that of [c01]. 6

A.1 The Basic Framework

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in the presence of an adversary and in a given
computational environment is formalized. Next, an “ideal process” for carrying out the task at
hand is formalized. In the ideal process the parties do not communicate with each other. Instead
they have access to an “ideal functionality”, which is essentially an incorruptible “trusted party”
that is programmed to capture the desired functionality of the task at hand. A protocol is said to
securely realize an ideal functionality if the process of running the protocol amounts to “emulating”
the ideal process for that ideal functionality. We overview the model for protocol execution (called
the real-life model), the ideal process, and the notion of protocol emulation.

Protocol execution in the real-life model. We sketch the process of executing a given protocol
π (run by some set of parties) with an adversary A and an environment machine Z with input
z. All parties have a security parameter k ∈ N and are polynomial in k. The execution consists
of a sequence of activations, where in each activation a single participant (either Z, A, or some
party) is activated, and may write on a tape of at most one other participant, subject to the rules
below. Once the activation of a participant is complete (i.e., once it enters a special waiting state),
the participant whose tape was written on is activated next. (If no such party exists then the
environment is activated next.)

The environment is the first to be activated. In each activation it may read the contents of the
output tapes of all parties, it may invoke a new party that runs the current instance of the protocol,
or it may write information on the input tape of either one of the parties or of the adversary.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or corrupt a party, or report information to Z by writing
this information on its output tape. The delivered messages need not bear any relation to the
messages sent by the parties. (This essentially means that the underlying communication model
is unauthenticated.) Upon corrupting a party, the adversary gains access to all the tapes of that
party and controls all the party’s future actions. In addition, whenever a party is corrupted the
environment is notified (say, via a message that is added to the output tape of the adversary).

Once a party is activated (either due to an input given by the environment or due to a message
delivered by the adversary), it follows its code and possibly writes a local output on its output tape
or an outgoing message on its outgoing communication tape. Once the activation of the party is
complete the environment is activated.

6This formalization is different than in prior versions of [c01], where it is required that the overall running time
is bounded by kc for some c. This prior formalization is indeed adequate for capturing the notion of “polynomial
time protocols” for tasks where the number of activations expected from a party, and the length of the input per
activation, are a-priori bounded. (For instance, secure function evaluation is a class of such tasks.) However, it is too
restrictive for capturing tasks where the number of activations expected from a party, and the length of the input per
activation, may not be a-priori bounded. As an example, consider the intuitive notion of a signature scheme. This
notion assumes that the number and lengths of messages to be signed are not a-priori bounded. Rather, these numbers
are determined by the adversary with which the scheme interacts; while they are always polynomially bounded, the
polynomial may depend on the adversary. In particular, the ideal signature functionality Fsig described above is not
PPT ITM according the the [c01] notion, and cannot be realized by PPT ITMs according to that notion. We thank
Dennis Hofheinz, Joern Mueller-Quade, and Rainer Steinwandt for pointing this issue to us in [hms03a].
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The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let execπ,A,Z(k, z, ~r) denote the output of environment Z when interacting with adversary A
and parties P1, ..., Pn running protocol π on security parameter k, input z and random input ~r =
rZ , rA, r1 . . . rn as described above (z and rZ for Z, rA for A; ri for party Pi). Let execπ,A,Z(k, z)
denote the random variable describing execπ,A,Z(k, z, ~r) when ~r is uniformly chosen. Let execπ,A,Z
denote the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

The ideal process. Security of protocols is defined via comparing the protocol execution in the
real-life model to an ideal process for carrying out the task at hand. A key ingredient in the ideal
process is the ideal functionality that captures the desired functionality, or the specification, of that
task. The ideal functionality is modeled as another ITM that interacts with the environment and
the adversary via a process described below. More specifically, the ideal process involves an ideal
functionality F , an ideal process adversary S, an environment Z with input z, and a set of dummy
parties.

The order of activations in the ideal process is determined as in the real-lie model. In particular,
as there, the environment is activated first, and in each activation it may read the contents of the
output tapes of all (dummy) parties, and may write information on the input tape of either one of
the (dummy) parties or of the adversary. Once the activation of the environment is complete the
entity whose input tape was written on is activated next.

The dummy parties are fixed and simple ITMs: Whenever a dummy party is activated with
input x, it forwards x to the ideal functionality F , say by writing x on the incoming communication
tape of F . Whenever a dummy party is activated due to delivery of some output from F it copies
this output to its own output tape.

Once F is activated, it reads the contents of its incoming communication tape, and potentially
gives output to parties or sends messages to the adversary S.

Once the adversary S is activated, it may read its own input tape and the messages sent to it
from F . (Note that S cannot see the inputs or outputs of the parties.) S may either send a message
to F , or corrupt a party. In addition, from the time of corruption on, the adversary controls the
party’s actions. Also, both Z and F are notified that the party is corrupted.

As in the real-life model, the protocol execution ends when the environment halts. The output
of the protocol execution is the (one bit) output of Z.

Let idealF ,S,Z(k, z, ~r) denote the output of environment Z after interacting in the ideal process
with adversary S and ideal functionality F , on security parameter k, input z, and random input
~r = rZ , rS , rF as described above (z and rZ for Z, rS for S; rF for F). Let idealF ,S,Z(k, z) denote
the random variable describing idealF ,S,Z(k, z, ~r) when ~r is uniformly chosen. Let idealF ,S,Z
denote the ensemble {idealF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Securely realizing an ideal functionality. We say that a protocol ρ securely realizes an ideal
functionality F if for any real-life adversary A there exists an ideal-process adversary S such that
no environment Z, on any input, can tell with non-negligible probability whether it is interacting
with A and parties running ρ in the real-life process, or it is interacting with S and F in the ideal
process. This means that, from the point of view of the environment, running protocol ρ is ‘just as
good’ as interacting with an ideal process for F .

A distribution ensemble is called binary if it consists of distributions over {0, 1}. We have:
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Definition 7 Two binary distribution ensembles X and Y are called indistinguishable (written X ≈
Y ) if for any c ∈ N there exists k0 ∈ N such that for all k > k0 and for all a we have

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c.

Definition 8 Let n ∈ N. Let F be an ideal functionality and let π be an n-party protocol. We say
that π securely realizes F if for any adversary A there exists an ideal-process adversary S such that
for any environment Z we have

idealF ,S,Z ≈ execπ,A,Z .

A.2 The Composition Theorem

The Hybrid Model. In order to state the composition theorem, and in particular in order to
formalize the notion of a real-life protocol with access to multiple copies of an ideal functionality,
the hybrid model of computation with access to an ideal functionality F (or, in short, the F-hybrid
model) is formulated. This model is identical to the real-life model, with the following additions.
On top of sending messages to each other, the parties may send messages to and receive messages
from an unbounded number of copies of F . The copies of F are differentiated using their SIDs (the
RIDs of all copies of F are null.) All messages addressed to each copy and all message sent by each
copy carry the corresponding SID.

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, once a party sends a message m to a copy of F with SID s, that copy is activated
next. (If no such copy of F exists then a new copy of F is created and activated next.) Similarly,
once a copy of F generates output for a dummy party, the dummy party is activated.

The model does not specify how the SIDs are generated, nor does it specify how parties “agree”
on the SID of a certain protocol copy that is to be run by them. These tasks are left to the
protocol in the hybrid model. This convention seems to simplify formulating ideal functionalities,
and designing protocols that securely realize them, by freeing the functionality from the need to
choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common practice
of protocol design in existing networks.

Let execFπ,A,Z(k, z) denote the random variable describing the output of environment machine
Z on input z, after interacting in the F-hybrid model with protocol π, adversary A, analogously to
the definition of execπ,A,Z(k, z). (We stress that here π is a hybrid of a real-life protocol with ideal
evaluation calls to F .) Let execFπ,A,Z denote the distribution ensemble {execFπ,A,Z}k∈N,z∈{0,1}∗ .

Replacing a call to F with a protocol invocation. Let π be a protocol in the F-hybrid
model, and let ρ be a protocol that securely realizes F (with respect to some class of adversaries).
The composed protocol πρ is constructed by modifying the code of each ITM in π so that the
first message sent to each copy of F is replaced with an invocation of a new copy of ρ with fresh
random input, with the same SID, and with the contents of that message as input. Each subsequent
message to that copy of F is replaced with an activation of the corresponding copy of ρ, with the
contents of that message given to ρ as new input. Each output value generated by a copy of ρ is
treated as a message received from the corresponding copy of F .

If protocol ρ is a protocol in the real-life model then so is πρ. If ρ is a protocol in some G-hybrid
model (i.e., ρ uses ideal evaluation calls to some functionality G) then so is πρ.

Theorem statement. In its general form, the composition theorem basically says that if ρ se-
curely realizes F in the G-hybrid model for some functionality G, then an execution of the composed
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protocol πρ “emulates” an execution of protocol π in the F-hybrid model. That is, for any ad-
versary A there exists an adversary A′ in the F-hybrid model such that no environment machine
Z can tell with non-negligible probability whether it is interacting with A and πρ in the G-hybrid
model or it is interacting with A′ and π in the F-hybrid model:

Theorem 9 (Universal composition [c01]) Let F , G be ideal functionalities. Let π be a pro-
tocol in the F-hybrid model, and let ρ be a protocol that securely realizes F in the G-hybrid model.
Then for any adversary AG there exists an adversary AF such that for any environment Z we have

execFπ,AF ,Z ≈ execGπρ,AG ,Z .

A corollary of the general theorem states that if π securely realizes some functionality I in the
F-hybrid model, and ρ securely realizes F in the real-life model, then πρ securely realizes I in the
G-hybrid model.

B On the [bpw03a] modeling of signatures

Backes, Pfitzmann and Waidner [bpw03a] propose a “library” of idealized cryptographic primitives,
within the framework of [pw01] (which is an asynchronous variant of [pw00]).7 The main goal of
this library is similar to one of the goals of this work, namely to realize the “Dolev-Yao paradigm”
(sketched in the introduction) in a computationally sound way. Since this library provides, among
other things, an alternative abstract modeling of digital signatures, we review it here in terminology
that facilitates comparison and provide some discussion and comparison to the formalism of this
work.

The [bpw03a] library is essentially an ideal functionality that provides, within a single copy,
multiple instances of an ideal signature service, as well as multiple instances of an ideal public-
key encryption scheme, multiple instances of secure or authenticated communication channels, and
ideal nonce generation. We concentrate here on the details relevant to the signature service. The
service has the following interfaces: 8

• Registration: In order to register as a signer, a party sends a registration request to the
library. It then receives a “key-handle”, which is essentially the current value of a “key-
handle counter”; in addition, the library internally registers the party as the signer for this
handle.

• Signature generation: In order to sign a message m with respect to some key-handle, the
signer sends m and the key-handle to the library. In response, the library records m as
signed, and provides the signer with a “signature-handle”, which is again the current value of
some counter. Finally, the library internally records the signer as a “legitimate verifier” for
this signature-handle.

• Signature verification: When a party that is registered as a “legitimate verifier” for some
signature-handle wishes to verify the signature, it sends a verification request to the library

7This framework has many similarities to the UC framework, although the formalization is somewhat different.
In particular, the universal composition theorem holds also in that framework; see [bpw04] for details.

8We note that the description of the library interface in [bpw03a] is much more detailed. To improve readability,
the sketch here is much more high-level and informal. Still, to the best of our understanding it provides an accurate
depiction of the [bpw03a] formalism.
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(together with the message and the handle). The library then verifies that the party is
registered as a “legitimate verifier”. If so, then it reports back whether the (message, handle)
pair is recorded. Otherwise, the request is ignored.

These are the basic interface functions of the signature scheme. Notice, however, that these func-
tions do not allow any party other than the signer to verify signatures. Transferring the ability to
verify signatures is provided via other functions of the library, namely the communication functions.
That is:

• Signature transmission: When a party A that is registered as a “legitimate verifier” for
some signature-handle asks to send the handle of some signature to another party B via a
communication channel provided by the library, the library provides B with a corresponding
signature-handle and adds B to the list of “legitimate verifiers” for this signature-handle.
(More precisely, to accommodate asynchronous and unauthenticated channels, the library
provides B with a handle only when the adversary explicitly instructs to deliver this signature
handle to B.)9

Discussion. An attractive property of this formalism is that it “abstracts out” public keys and
signature tags. Instead, users are ideally notified whether a given message was signed. (This is
somewhat reminiscent of functionality F1 in Section 2.1.) This frees the application protocols that
use the functionality from dealing with public-keys and signature strings. However, this high level
of abstraction has a number of side-effects:

First, we note that the above formulation of the library forces the user of the library to use only
the communication channels provided by the library to transmit signature handles. It is impossible
to use other communication mechanisms, or even communication channels that are provided by
a different copy of the library, and maintain the ability to verify signatures. This means that all
instances of all signature schemes in a given system must be analyzed as a single unit. Furthermore,
all instances of all protocols that use these signature schemes must be analyzed as a single unit.
(This is so, since all these instances use the same common instance of the library, and thus have
some joint state.) This applies also to non-cryptographic application protocols that use signatures
as a small part of their function. Consequently, the present formulation of the library seems to
preclude modular analysis of the systems that use it.10

Another property of the present formulation of the library is that it is unable to model more
general ways of communicating signatures to other parties. For instance, consider a (real-life)
protocol where a party wishes to secret-share the signature among several parties, and then have
another party determine who will be able to reconstruct the signature. Such use of signature scheme
cannot be modeled within the present formulation.

Finally, we note the following difficulty that arises when trying use the [bpw03a] library in order
to realize the “Dolev-Yao paradigm” as sketched in the introduction. Recall that the paradigm
starts with a concrete protocol that uses some cryptographic primitive (say, a signature scheme),

9This “list of legitimate verifiers,” while somewhat hidden inside the [bpw03a] formalism, is essential for making
the functionality realizable. Indeed, it is easy to see that if parties could verify validity of a signature without being
explicitly given the corresponding signature handle by the library then the library would not be realizable at all. See
Section 2.1 for more discussion on these issues.

10One could potentially hope to use Universal Composition with Joint State (JUC) [cr03] to separately analyze
different protocols that use the same instance of a signature scheme. However, the present formalism of the library,
and in particular the fact that all instances of signatures must use a joint communication module, seems to preclude
the use of this theorem.
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de-composes the protocol into a “high-level module” that uses an abstraction of the primitive and
a module that realizes the abstract primitive, analyzes each module separately, and then uses a
composition theorem to deduce that the original protocol is secure. However, if the present library
is used, then we need to de-compose the given protocol into a “low-level” module that realizes
the library, plus a “high-level module” that uses the library. It is stressed if one wants to use the
composition theorem then the low level module must realize the entire library. However, most
cryptographic protocols do not contain any module that realizes the entire library. Therefore, they
cannot be de-composed as needed. Indeed, the [bpw03a] library cannot be used as-is to analyze
such protocols; further mechanisms are needed to validate its applicability.

In conclusion, we note that all the issues discussed here are related to the fact that the library
models all instances of all primitives within a single copy of an ideal functionality, which also handles
all the communication. Indeed, a formalization where each copy of the functionality captures only
a single instance of a single primitive seems more conducive towards effective realization of the
Dolev-Yao paradigm, and better suited for modular analysis of large, multi-user, multi-module
systems.

Erratum. In the previous version of this work the account in this appendix of the [bpw03a]
work contained an error: It was claimed that the [bpw03a] library requires that the “Signature
transmission” operation described above be carried out only over authenticated channels. This
claim is incorrect, and results from our misunderstanding of the [bpw03a] text. We apologize for
the mistake and thank Birgit Pfitzmann and Michael Waidner for correcting us.
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