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Abstract. Low power consumption, low gate count and high throughput used
to be standard design criteria for cryptographic coprocessors designated for
smart cards and related embedded devices. Not anymore. With the advent
of side channel attacks, the first and foremost concern is device resistance to
such attacks, at a price.

General-purpose hardware countermeasures, such as metal shields, tamper-
detectors, clock randomization, random current generators, seem not anymore
a sufficient protection against sophisticated differential power analysis or fault
attacks specifically tailored to break a particular device. In this paper we
describe an attempt to embed data masking technique at a hardware design
level for an AES coprocessor. We concentrate on inversion in GF since it is
the only non-linear operation, and requires complex transformations on the
masked data and masks.

1. Introduction

When first invasive attacks on smart cards had been reported in mid-90ies [2],
chip industry reacted by incorporating in a chip a plethora of tamper resistant
features such as glue logic, metal shields, various sensors, etc. [14]

The end of the 90ies sent once again a shock wave through the industry. A new
class of so called side-channel attacks emerged as a powerful thread to cryptographic
applications, and ever since there is a steady stream of publications divulging how
to break various implementations of DES, AES and RSA by measuring timing
characteristics [12], power consumption [11, 17, 18] or electromagnetic radiation
[9, 22] of a smart card microprocessor when it runs the algorithm in question.

Until recently, most of the attacks exploited some specific features of software im-
plementation of cryptographic algorithms. Fittingly, most countermeasures against
such attacks were also designed at algorithmic level, although often it was assumed
that hardware features such as clock randomization or random current generation
would make an attack much more difficult, and thus, less practical.

For many applications, however, it is necessary that cryptographic algorithm
should be realized in hardware. Hence, research into the vulnerability of cryp-
tographic hardware is just as important. Although not many results had been
published yet, it is prudent to suggest that cryptographic hardware also leaks side
channel information, and that alongside with general tamper-resistant features such
hardware should include countermeasures specifically targeted to protect the real-
ized algorithm(s).
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In this paper we propose rather a novel approach to protecting AES coprocessor
from differential power analysis attacks, namely full hardware implementation of
AES computations on masked data.

The main innovation is that we suggest a new method of computing inverses on
masked data in composite fields. As one may surmise, this comes at a price in terms
of gate count and power consumption. To minimize these parameters, we offer yet
another, less expensive, solution that combines ideas of inversion in composite fields
[24, 29, 19] with masked table look-up [28].

The rest of the paper is organized as follows. After a brief description of the Ad-
vanced Encryption Standard algorithm in the next chapter, we proceed in Chapter
3 explaining in details how to reduce inversion in the field GF (28) to inversion in
the composite field GF ((24)2), and how the latter can be realized in combinational
logic only.

Chapter 4 introduces the notion and discusses the difficulties of the inversion on
masked data, i.e., data that are obtained as a result of the XOR operation applied
to the actual data Ai,j constituting an (i, j)-th byte of the state, and a random
mask Xi,j .

In the subsequent chapter we outline hardware blocks that implement the oper-
ations of mapping from GF (28) to GF ((24)2) and inversion in GF (24) on masked
data, and estimate the cost in terms of a gate count.

Chapter 6 describes an alternative solution to hardware implementation of in-
version on masked data in GF (24) using masked lookup tables.

The paper is concluded with the the summary of the novel features for secure
AES hardware architecture and with discussion on price/performance tradeoffs.

2. AES Reminder

AES encryption and decryption are based on four different transformations that
are performed repeatedly in a certain sequence; each transformation maps a 128-bit
input state into a 128-bit output state. In both states, transformations are grouped
in rounds. The rounds are slightly different for encryption and decryption, and the
number of rounds depends on the key size.

For simplicity, we consider the 128-bit block- and and key sizes version on the ba-
sis that the cryptanalytic study of the Rijndael during the standardization process
was primarily focused on this version. For a complete mathematical specification
of the Rijndael algorithm we refer readers to [7].

In the Rijndael, the 128-bit data block is considered as a 4 × 4 array of bytes.
The algorithm consists of an initial data/key addition, 9 full rounds (when the key
length is 128 bits), and a final (modified) round. A separate key scheduling module
is used to generate all the sub-keys, or round keys, from the initial key; a sub-key
is also represented as 4 × 4 array of bytes. The full Rijndael round involves four
steps.

The Byte Substitution step replaces each byte in a block by its substitute in
an S-box. The S-box is an invertible substitution table which is constructed by a
composition of two transformations:

• First, each byte Ai,j is replaced with its reciprocal in GF (28) (except that
0, which has no reciprocal, is replaced by itself).

• Then, an affine transformation f is applied. It consists of
– a bitwise matrix multiply with a fixed 8× 8 binary matrix M ,
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– after which the resultant byte is XOR-ed with the hexadecimal number
{63}.
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Figure 1. The structure of the AES encryption algorithm.

The S-box is usually implemented as a look-up table consisting of 256 entries;
each entry is 8 bits wide; but it also can be computed “on-a-fly”.

Next comes the Shift Row step. Each row in a 4 × 4 array of bytes of data is
shifted 0, 1, 2 or 3 bytes to the left in a round fashion, producing a new 4× 4 array
of bytes.

In the Mix Column step, each column in the resultant 4 × 4 array of bytes
is considered as polynomial over GF (28) and multiplied modulo x4 + 1 with a
fixed polynomial c(x) = {03}x3 + {01}x2 +′ {01}x + {02}. The operation of a
multiplication with a fixed polynomial a(x) = a3x

3 + a2x
2 + a1x

1 + a0 can be
written as a matrix multiplication where the matrix is a circular matrix with the
first row equal to a0, a3, a2, a1, each subsequent row is obtained by a circular shift
of the previous one by 1 position to the left. representation.

The final step, Add Round Key, simply XOR-es the result with the sub-key for
the current round.

In parallel to the round operation, the round key is computed in the Key Schedul-
ing Block. The round key is derived from the cipher key by means of key expansion
and round key selection.

Round keys are taken from the expanded key (which is a linear array of 4-byte
words) in the following way: the first round key consists of the first Nb words, the
second of the following Nb words, etc. The first Nk words are filled in with the
cipher key. Every following word W [i] is obtained by XOR-ing the words W [i− 1]
and W [i−Nk].
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For words in positions that are multiples of Nk, the word is first rotated by
one byte to the left; then its bytes are transformed using the S-box from the Byte
Substitution step, after which XOR-ed with the round-dependent constant.
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Figure 2. Two steps of Byte Substitution transformation.

Fig. 1 shows a standard circuit implementation of the AES encryption algo-
rithm, which executes one round per once clock. A sequence of round operations
is implemented as a combinational circuit and its input and output are connected
to a 128-bit data register. The 3:1 selector before the AddRoundKey is used to skip
some operations in the first and the last rounds.

Compared to the encryption, the decryption algorithm is simply the execution
of the inverse transformations in the inverse order.

In applications such as smart cards, hardware complexity is a very important
issue that directly affects the cost and power consumption. In general, one may
claim that the size, the speed and the power consumption of an AES hardware
engine depends to a great degree on the number and the style of implementation
of S-boxes.

To optimize silicon area, a number of flexible ASIC solutions were proposed
[15, 16] that use similarities between encryption and decryption to share silicon.
For this, it is necessary to implement SubByte transformation in two separate steps,
as a combination of the inversion in the field and an affine transformation (or its
inverse).

While the affine transformations used for encryption and decryption are slightly
different, the silicon implementing an inversion in GF (28) can be used for both.
Therefore, area- and power-efficient and secure implementation of inversion in
GF (28) can have a big impact on overall design.

The most obvious solution is to use a look-up table for this operation. It is
fast and inexpensive in terms of power consumption, as the study in [19] indicates.
There is a major drawback, however. Namely, the size of required memory, which
is about 1,700 gate equivalents per one table in 0.18µ technology.

Various alternative approaches to constructing compact inversion circuits over
GF have been studied. In particular, composite field inversions were found to
be effective over GF (28), and were used to create compact AES implementations
[20, 24, 25, 19, 29]. As a basis for our design we used fully combinational logic
implementation of inversion in composite field described in [29].
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In contrast to V. Rijmen original proposal [23] which suggests the optimal normal
basis representation of finite field elements, [29] use the polynomial representation
of finite field elements, which results in a far more flexible hardware architecture
without necessity to do complex conversions from one representation to another.

3. Mathematical Background

First of all, we need some mathematical background. To make this paper self-
contained but not overloaded with mathematics, we introduce only relevant for-
mulae, which we borrow from [29]. Fig. 3 will help to relate the transformations
defined below.

Map

a
h
 a
e


Square
 Square


{e}


Inverse


Map
-
1


a


a
-
1


Figure 3. Implementation of inversion in composite fields.

3.1. Transition between field representations. Usually, the field GF (28) is
seen as an extension of GF (2) and therefore its elements can be represented as
bytes. However, GF (28) can also bee seen as a quadratic extension of GF (24); in
this case an element a ∈ GF (28) is represented as a linear polynomial ahx+al with
coefficients in GF (24). We denote is as [ah, al]. This isomorphic representation is
far better suited for hardware implementation [20, 24, 19, 29].
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The bijection from an element a = (a0, a1, ..., a7) to a two-term polynomial
ahx + al is given by the function map computed as shown below.

ahx + al = map(a), ah, al ∈ GF (24), a ∈ GF (28)

(3.1)
aA = a1 ⊕ a7 aB = a5 ⊕ a7 aC = a4 ⊕ a6

al0 = aC ⊕ a0 ⊕ a5 al1 = a1 ⊕ a2 al2 = aA al3 = a2 ⊕ a4

ah0 = aC ⊕ a5 ah1 = aA ⊕ aC ah2 = aB ⊕ a2 ⊕ a3 ah3 = aB

The inverse transformation (map−1) converts a two-term polynomial back into an
element a ∈ GF (28), and is defined by a similar set of equations, comprising only
binary XOR, or ⊕, operations. For more details see [29].

3.2. Arithmetic operations in extension fields. All arithmetic operations ap-
plied to elements of GF (28) can also be computed in the new representation.

Two-term polynomials are added by addition of their corresponding coefficients:

(3.2) (ahx + al)⊕ (bhx + bl) = (ah ⊕ bh)x + (al ⊕ bl).

Multiplication and inversion of two term-polynomials require a modular reduction
step to ensure that the result is a two-term polynomial as well. Following [29],
we use irreducible polynomial n(x) = x2 = {1}x + {e}. Coefficients of n(x) are
elements in GF (24) are written in hexadecimal notation. Their particular values
are chosen to optimize the finite field arithmetics.

A convenient method to multiply a(x) and b(x) in GF (2k) is to generate partial
products: P (x) = a(x) · xi, and to add those partial products where corresponding
bit of the multiplier is 1. The partial products can be calculated efficiently by
iterating multiplication by x, i.e., Pi(x) = Pi−1(x) · x mod m(x), P0(x) = a(x).
Multiplication by x is termed xtimes.

Multiplication of two-term polynomials involves multiplication of their coeffi-
cients, which are elements of GF (24), which require an irreducible polynomial of
degree 4 m(x) = x2 + x + 1.

Multiplication in GF (24) is given by the following set of equations derived by
applying the formulae for polynomial multiplication to GF (24) with m(x) as irre-
ducible polynomial.

(3.3) q(x) = a(x)⊗b(x) = a(x)·b(x) mod m4(x),wherea(x), b(x), q(x) ∈ GF (24)

q0 = a0b0 ⊕ a3b1 ⊕ (a2 ⊕ a3)b2 ⊕ (a1 ⊕ a2)b3 q1 = a1b0 ⊕ (a0 ⊕ a3)b1 ⊕ a2b2 ⊕ a1b3

q2 = a2b0 ⊕ a1b1 ⊕ (a0 ⊕ a3)b2 ⊕ (a2 ⊕ a3)b3 q3 = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ (a0 ⊕ a3)b3

The concatenation of two bits aiaj in these equations represents binary multi-
plication, which is an AND operation.

Squaring in GF (24) is a special case of multiplication, and is computed as follows.

q(x) = a(x)2 mod m4(x), a(x), q(x) ∈ GF (24)

(3.4) q0 = a0 ⊕ a2 q1 = a2 q2 = a1 ⊕ a3 q3 = a3

Inversion of a two-term polynomial is the equivalent operation to inversion in
GF (28) defined as (ahx + al)⊗ (ahx + al)−1 = {0}c + {1}. From this definition the
formulae for inversion can be derived:

(3.5) (ahx+ al)−1 = (ah⊗ d)x+(ah⊕ al)⊗ d, d = ((a2
h⊗{e})⊕ (ah⊗ al)⊕ a2

l )
−1.
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The inverse a−1 of an element a ∈ GF (24) can be derived by solving the equation
a⊗ a−1 mod m(x) = 1 as follows.

(3.6) q(x) = a(x)−1 mod m4(x), q(x), a(x) ∈ GF (24)

where q = (q0, .., q3) is calculated as shown below with aA = a1⊕ a2⊕ a3⊕ a1a2a3.

q0 = aA ⊕ a0 ⊕ a0a2 ⊕ a1a2 ⊕ a0a1a2

q1 = a0a1 ⊕ a0a2 ⊕ a1a2 ⊕ a3 ⊕ a1a3 ⊕ a0a1a3

q2 = a0a1 ⊕ a2 ⊕ a0a2 ⊕ a3 ⊕ a0a1 ⊕ a0a2a3

q3 = aA ⊕ a0a3 ⊕ a1a3 ⊕ a2a3

In contrast to inversion in GF (28), inversion in GF (24) is suitable for a hardware
implementation using combinational logic.

4. Secure AES Implementation in Hardware: Computations on
Masked Data

Basically, side-channel attacks work because there is a correlation between the
physical measurements taken during computations (e.g., power consumption, EMF
radiation, time of computations) and the internal state of the processing device,
which itself is related to a secret key.

Among many attacks, the Differential Power Analysis (DPA) is the most danger-
ous (see, for example, [18]). It uses statistical analysis to extract information from
a collection of power consumption curves obtained by running an algorithm many
times with different inputs. Then an analysis of a probability distribution of point
son the curves is carried on. DPA uses correlation between power consumption
and specific key-dependent bits which appear at known steps of the cryptographic
computations. For example, a selected bit b at the output of one S-box of the first
round of AES will depend on the known input message and 8 unknown bits of the
key. The correlation between power consumption and b can be computed for all
256 values of 8 unknown bits of the key. The correlation is likely to be maximal for
the correct guess of the 8 bits of the key. Then an attack can be repeated for the
remaining S-boxes.

There are many strategies to combat side-channel attacks. On the hardware
level, the counter measures usually include clock randomization [26, 13, ?], power
consumption randomization [3] or compensation [8], and various detectors of ab-
normal behavior. However, as is already known within the smart card industry, the
effect of some of these counter measures can be reduced by various signal processing
techniques.

It seems that the most powerful counter measure is bit splitting [6, 10], which can
be reduced to masking with random value. The idea is simple: the message (and
the key) is masked by with some random mask at the beginning of the algorithm,
and thereafter everything is almost as usual. Of course, the value of the mask at
the end of some fixed step (e.g., at the end of the round) must be known in order
to re-establish the expected value at the end of the execution; we call this mask
correction.

A traditional XOR operation is used as a masking counter measure; however,
the mask is arithmetic on GF (28) [1]. The operation is compatible with the AES
structure except for SubByte, which is the only non-linear transformation since it
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uses an inversion in the field. In other words, it is easy to compute mask correction
for all transformations in a round, apart from the inversion step of the SubByte.

Our solution is to modify the inversion in GF (28) in such a way that it takes
into account a mask. In other words, we define a new operation, ModInv, such that

ModInv(Ai,j ⊕Xi,j) = A−1
i,j ⊕ Yi,j

for every byte Ai,j of the state and some random mask Xi,j , and show how this
operation can be implemented directly in combinational logic. Here Yi,j is either a
new random mask, or is equal to an ”old” mask Xi,j .

In the remaining part of the paper we show how to implement an inversion on
masked data and compute a corresponding mask correction with combinational
logic only, never revealing the actual data Ai,j in a process.

4.1. Operations on Masked Data. As one can easily see, all operations in exten-
sion field as well as the function map eventually require only operations in GF (2),
namely bit-wide XOR and AND.

XOR is a linear operation, i.e., to compute XOR on two masked data bits, one
does not need to ”unmask” these bits:

(ai ⊕ xi)⊕ (bj ⊕ yj) = (aj ⊕ bj)⊕ (xj ⊕ yj).

Hence, a transformation of a masked byte Ai,j ⊕Xi,j into a two-term polynomial
which uses only bit-wide XOR (and the corresponding mask correction) can be
carried out without revealing the actual data in a process, i.e., the following holds:

(map(Ai,j ⊕Xi,j) = map(Ai,j)⊕map(Xi,j).

The same is applicable for the inverse transformation map−1.
Since the affine transformation comprising the SubByte operation is a linear op-

eration, and can be expressed only in terms of bit-wise XOR (see [29] for reference),
it can be easily done on the masked data as well. The same applies to the inverse
affine transformation used for decryption.

The only problematic part of the SubByte is an inversion, which, as we have seen,
can be reduced to multiplication and inversion in GF (24), both of them containing
binary AND operation.

The problem is that in order to compute AND on masked data and the corre-
sponding ”mask correction”, one would have to reveal the actual (unmasked) data
bits. Indeed, if xi and yj denote the bits that mask the ”real” bits ai and bj , then

(ai ⊕ xi) · (bj ⊕ yj) = (ai · bj)⊕ (ai · yj)⊕ (xi · bj)⊕ (xi · yj).

Hence, basically, the problem of the inversion of masked data can be effectively
reduced to the problem of computing a binary AND operation on masked bits of
the data and the corresponding mask correction without revealing the actual (un-
masked) data bits. In what follows, we show how this operation can be implemented
in combinational logic without ”compromising” the actual data bits.

4.2. Masked AND operation. Our approach is based on the algebraic properties
of the operations ⊕ and ·. We derive the solution by simple manipulations with
the algebraic formulas, as following. Let us denote masked bits ai and bj via
ã = (ai ⊕ xi) and b̃ = (bj ⊕ yj) correspondingly. Then

(4.1) ã · b̃ = (ai · bj ⊕ (ai · yj)⊕ (xi · bj)⊕ (xi · yj)
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Now we want to express the terms (ai⊕ yj) and (bj ⊕xi) using only masked bits ã,
b̃ and the bits of the mask xi and yj . From the equation xi · b̃ = (xi · bj)⊕ (xi · yj)
we can derive the method to compute xi · bj as follows.

(4.2) (xi · bj) = xi · b̃⊕ (xi · yj)

Analogously, using equation yj · ã = (yj · ai)⊕ (yj · xi) we compute ai · yj :

(4.3) (ai · yj) = yj · ã⊕ (xi · yj)

Now, substituting the corresponding terms in equation 4.1 for their values ob-
tained in equations 4.2 and 4.3 and simplifying the resulting formulae, we obtain

(4.4) ã · b̃ = (ai · bj)⊕ (xi · b̃)⊕ (yj · ã)⊕ (xi · yj)

Hence, the computations of the ”mask correction” (xi · b̃) ⊕ (yj · ã) ⊕ (xi · yj) can
be carried out without compromising the bits of actual data. The question is now
if using only two mask bits is enough to make the whole construction robust.
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Figure 4. AND operation on masked data.

From 4.4 it follows that if we use only two existing mask bits, xi and yj to mask
the value (ai · bj), then in order to obtain a robust mask, we would have to XOR
the result of computations on masked data with the new mask (xi⊕ yj), which can
be achieved while computing the terms of the ”mask correction”.

Far better solution is to use a third random bit, z, as a new mask, computing a
”masked” AND operation, for example, as follows

(4.5) ((ã · b̃)⊕ ((xi · b̃)⊕ ((xi · yj)⊕ z)))⊕ (yj · ã).

Alternative constructions can be used as well stemming from the basic algebraic
formulas relating the operations AND, OR and XOR in GF (2).

An actual implementation of the masked AND operation is obtained as a cas-
cade of layers of logic gates, as shown in Figure 4.5. The first layer generates the
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necessary elementary AND-terms. All other layers, including the last one, produce
the variables in the form (α ⊕ z), where z is independent on all the bits we have
used so far.

5. Building Blocks for the Masked SubByte Transformation

From the details of the implementation of SubByte in the composite field GF ((24)2)
as a fully combinational logic design given in [29], we can see that the complexity
of the S-box it 123 XOR gates in total, plus 16 multiplexors and a number of AND
gates, which the designers ignored in their calculations.

However, for computations on masked data, AND operations are the most resource-
consuming, as we had seen in the previous section. Hence, we have to take them
into account.

When manipulating masked data, all stages in the SubByte transformation,
apart from inversion in GF (24), require a simple mask correction (either an anal-
ogous computations on masks performed in parallel, which duplicates the gates,
or pipelined computations on masked data and masks (for which we would need
128-bits of additional registers. Hence, for a fully parallel implementation of all
operations with the exception of the inversion in GF (24), we need 222 XOR gates.

To implement a byte inversion, we have to compute inversion on a two-term
polynomial (see equation 3.5), which takes 3 multiplication and one inversion in
GF (24).

From the formulas 3.6 it follows that an unmasked inversion in GF (24) requires
12 XOR and 9 AND gates. For masked data, for each AND operation we need
additionally 3 AND and 4 XOR gates, which makes in total 36 AND and 48 XOR
gates to invert one element of GF (24).

Multiplication in GF (24) requires 16 AND and 12 XOR operations, and there
are 3 multiplication units for each byte, which gives altogether 192 binary AND and
192+36 binary XOR gates.

Since there are 20 SubByte operations in one round, each requires inversion in
GF (28), the total number of gates depend on the design trade-offs. In a ”minimal-
ist” design with 1 S-box only, 653 XOR and about the same amount of AND gates
is required. In a fully parallel design, one would need an equivalent of 13,000 XOR
gates altogether to implement an inversion on masked values.

As we recall from [19], a gate equivalent required for an implementation of one
SubByte transformation as a lookup table is 1,700. Considering that fully parallel
implementation of one round on masked data would need either on-a-fly generation
of 16 256-byte Sbox tables, or storing all 16 pre-computed modified Sbox tables, our
solution is much better in terms of the gate count (about 25%).

6. Implementation of Inversion on Masked Data as a Table Lookup

A well-known software solution [17] consists in ”masking” an original look-up
table T which implements the SubByte transformation, with two masks, the input
mask Rin and the output mask Rout, in such a way that for the modified table TM

the following holds:

(6.1) TM [Ai,j ⊕Rin
i,j ] = T [Ai,j ]⊕Rout

i,j .

This implies that the masked table must be computed for each pair Rin, Rout. If one
fixes the pair prior to each run of the AES computations and pre-computes table



11

lookups, then up to 20 256-byte tables should be stored in RAM, which requires
6KB of memory. If the new tables are computed ”on-a-fly”, for example, using a
fast algorithm suggested in [28], as a sequence of table splits into blocks of certain
size and block permutations depending on the mask value, the transformation still
takes some time because it has to be done 16 (20, including the Key Scheduling
operation) times per round!

Here is the ”split-and-shift” algorithm for fast table re-computations.
Look-up table re-computation.

Input: inverse masked table T + R_out;
random M = (m_7, ..., m_1, m_0)

Output: table T’ such that T’[b+M] = T[b] + r_b for b = 0..255,
T’ := T;
For every m_i from (m_7, ..., m_0) in random order do:

If m_i = 1 then
(1) split T’ into blocks, each block containing 2^(i)

subsequent elements from T;
(2) swap pairwise j-th and j+1-st blocks;
(3) assign the result to T’;

Return T’

However, for an inversion in composite field GF ((24)2) the idea of masking the
lookup table seems attractive.

Indeed, from the architecture of the S-box operation in a composite field (see
Fig. 3) it follows that the actual inversion is applied to the masked elements in
GF (24). There are only 16 possible values for a 4-bit mask. For each such value,
the ”mask correction” for the sequence of all linear operations that occur prior
to the inversion, can be pre-computed once and for all. Hence, we would need a
cross-reference table M , which for each possible value of the mask indicates the
”correct” entry in the (randomized) inversion table.

In other words, M [xi] = I, such that the following property holds: T [I] = a−1
i ,

where T is the ”original” inverse table in GF (24). Of course, one immediately no-
tice that such straightforward implementation would be vulnerable to DPA attack.
Hence, instead of keeping the inversion table T , we have to keep 16 16×4-bit tables
obtained from T according to the ”split-and -shift” algorithm. Assuming that the
output mask, z is fixed prior to running AES encryption/decryption, entries of each
of the 16 tables kept in RAM are already masked.

Hence, the inversion is a two-step process. Given an input value Aai ⊕ xi and a
mask correction value xi, we do the following

(1) Given an input xi, lookup in the correspondence table M provides us with
the index of one of the 16 ”split-and-shift” inversion tables, i.e., M [xi] = j,
such that Tj [ai ⊕ xi] = a−1

i ⊕ z.
(2) Given an index j and an input data (ai ⊕ xi), return the value Tj [ai ⊕ xi]

as a result of a table Tj lookup.

Altogether, we need 16×16×4 bits, or 128 bytes, for all 16 tables, plus additional 8
bytes for M . How many copies are used altogether depends on the design trade-offs:
e.g., an architecture with 4 S-boxes requires 544 bytes of RAM.
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7. Conclusion

In this paper we propose a new solution to the problem of hardware implemen-
tation of AES secure against DPA attacks. Namely, we designed a combinational
logic block to compute inversion on masked data, without ever revealing the actual
data bits in a process. Our solution is, in fact, rather general, and can be applied
to other cryptographic algorithms. It is quite different from the dual rail logic [27]
design, but provides comparable protection. Taking into account that dual rail
logic is very hard to implement in real life, our design offers an alternative solution
to hardware protection.

At this stage, we would refrain from claiming that we found the best solution to
the problem of designing an efficient and secure AES co-processor for smart cards.
Many other considerations, such as power consumption, throughput, production
cost, etc., have to be taken into account.

As a future work, we would like to compare our novel hardware that works with
masked data with ”traditional” ASIC implementation of AES, where resistance to
DPA attacks is ensured by well-known and widely used hardware counter measures,
such as metal shields, random clock, and random current generator and their combi-
nations. It is generally already known, for example, that clock randomization alone
is not sufficient protection against DPA attacks because its effect can be relatively
easy eliminated by clever processing of power curves using signal processing tech-
niques. Similar reasoning can be applied to random current generators. However,
it is not the ”best” feature that counts, but overall design trade-offs. Investigation
of such trade-offs is a challenging experimental problem.
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