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Abstract

We provide formal definitions and efficient secure techniques for
e turning noisy information into keys usable fany cryptographic application, and, in particular,
e reliably and securely authenticating biometric data.

Our techniques apply not just to biometric information, but to any keying material that, unlike tradi-
tional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose
two primitives: afuzzy extractoreliably extracts nearly uniform randomnedrom its input; the ex-
traction is error-tolerant in the sense thatwill be the same even if the input changes, as long as it
remains reasonably close to the original. This;an be used as a key in a cryptographic application.

A secure sketclproduces public information about its inputthat does not reveal, and yet allows
exact recovery ofv given another value that is close#o Thus, it can be used to reliably reproduce
error-prone biometric inputs without incurring the security risk inherent in storing them.

We define the primitives to be both formally secure and versatile, generalizing much prior work. In
addition, we provide nearly optimal constructions of both primitives for various measures of “closeness”
of input data, such as Hamming distance, edit distance, and set difference.
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1 Introduction

Cryptography traditionally relies on uniformly distributed and precisely reproducible random strings for its
secrets. Reality, however, makes it difficult to create, store, and reliably retrieve such strings. Strings that
are neither uniformly random nor reliably reproducible seem to be more plentiful. For example, a random
person’s fingerprint or iris scan is clearly not a uniform random string, nor does it get reproduced precisely
each time it is measured. Similarly, a long pass-phrase (or answers to 15 quéstiohs [FJO1] or a list of favorite
movies [JS0B6]) is not uniformly random and is difficult to remember for a human user. This work is about
using such nonuniform and unreliable secrets in cryptographic applications. Our approach is rigorous and
general, and our results have both theoretical and practical value.

To illustrate the use of random strings on a simple example, let us consider the task of password authen-
tication. A user Alice has a passwordand wants to gain access to her account. A trusted server stores
some informatiory = f(w) about the password. When Alice entersthe server lets Alice in only if
f(w) = y. In this simple application, we assume that it is safe for Alice to enter the password for the veri-
fication. However, the server’s long-term storage is not assumed to be securg i@gjgred in a publicly
readabldetc/passwd  file in UNIX [MT79]). The goal, then, is to design an efficiefitthat is hard to
invert (i.e., giveny it is hard to findw’ such thatf (w") = y), so that no one can figure out Alice’s password
from y. Recall that such functiong are calledone-way functions

Unfortunately, the solution above has several problems when used with passwavddable in real
life. First, the definition of a one-way function assumes thas truly uniformand guarantees nothing if
this is not the case. However, human-generated and biometric passwords are far from uniform, although
they do have some unpredictability in them. Second, Alice has to reproduce her passaditgeach
time she authenticates herself. This restriction severely limits the kinds of passwords that can be used.
Indeed, a human can precisely memorize and reliably type in only relatively short passwords, which do not
provide an adequate level of security. Greater levels of security are achieved by longer human-generated and
biometric passwords, such as pass-phrases, answers to questionnaires, handwritten signatures, fingerprints,
retina scans, voice commands, and other values selected by humans or provided by nature, possibly in
combination (se€ [Fry00] for a survey). These measurements seem to contain much more entropy than
human-memaorizable passwords. However, two biometric readings are rarely identical, even though they are
likely to be close; similarly, humans are unlikely to precisely remember their answers to multiple questions
from time to time, though such answers will likely be similar. In other words, the ability to tolerate a
(limited) number of errors in the password while retaining security is crucial if we are to obtain greater
security than provided by typical user-chosen short passwords.

The password authentication described above is just one example of a cryptographic application where
the issues of nonuniformity and error-tolerance naturally come up. Other examples include any crypto-
graphic application, such as encryption, signatures, or identification, where the secret key comes in the form
of noisy nonuniform data.

OuR DEFINITIONS. As discussed above, an important general problem is to convert noisy nonuniform
inputs into reliably reproducible, uniformly random strings. To this end, we propose a hew primitive, termed
fuzzy extractar It extracts a uniformly random string from its inputw in a noise-tolerant way. Noise-
tolerance means that if the input changes to sarhéut remains close, the string can be reproduced
exactly. To assist in reproducingfrom w’, the fuzzy extractor outputs a nonsecret stifhdt is important

to note thatk remains uniformly random even givdn. (Strictly speaking,R will be e-close to uniform
rather than uniformg can be made exponentially small, which makesas good as uniform for the usual
applications.)
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Figure 1: (a) secure sketch(b) fuzzy extractor;(c) a sample application: user who encrypts a sensitive
record using a cryptographically strong, uniform kigyextracted from biometriew via a fuzzy extractor;

both P and the encrypted record need not be kept secret, because no one can decrypt the record without a
w’ that is close.

Our approach is generaR extracted fromw can be used as a key in a cryptographic application but
unlike traditional keys, need not be stored (because it can be recovered fram tnay is close tav). We
define fuzzy extractors to lieformation-theoreticall\secure, thus allowing them to be used in cryptographic
systems without introducing additional assumptions (of course, the cryptographic application itself will
typically have computational, rather than information-theoretic, security).

For a concrete example of how to use fuzzy extractors, in the password authentication case, the server
can store( P, f(R)). When the user inputs’ close tow, the server reproduces the actiialising P and
checks iff(R) matches what it stores. The presencd’ofvill help the adversary inverf(R) only by the
additive amount of, because® is e-close to uniform even giveHE] Similarly, R can be used for symmetric
encryption, for generating a public-secret key pair, or for other applications that utilize uniformly random
secretd

As a step in constructing fuzzy extractors, and as an interesting object in its own right, we propose
another primitive, termedecure sketchlt allows precise reconstruction of a noisy input, as follows: on
inputw, a procedure outputs a sketehThen, givens and a valuev’ close tow, it is possible to recoven.

The sketch is secure in the sense that it does not reveal muchwabautetains much of its entropy even
if sis known. Thus, instead of storing for fear that later readings will be noisy, it is possible to store
instead, without compromising the privacy ©f A secure sketch, unlike a fuzzy extractor, allows for the
precise reproduction of the original input, but does not address nonuniformity.

! To be precise, we should note that because we do not requad henceP, to be efficiently samplable, we neg¢do be a
one-way function even in the presence of samples fegrthis is implied by security against circuit families.

2 Naturally, the security of the resulting system should be properly defined and proven and will depend on the possible adversarial
attacks. In particular, in this work we do not consider active attack® @n scenarios in which the adversary can force multiple
invocations of the extractor with relatedand gets to observe the differeRtvalues. Seé [Boy(4, BDKOS,[DKRS06] for follow-
up work that considers attacks on the fuzzy extractor itself.



Secure sketches, fuzzy extractors and a sample encryption application are illustrated i]Figure 1.

Secure sketches and extractors can be viewed as providing fuzzy key storage: they allow recovery of the
secret keyq or R) from a faulty readingv’ of the password by using some public informatios or P). In
particular, fuzzy extractors can be viewed as error- and nonuniformity-tolerant secketykenpcapsulation
mechanismfSho01].

Because different biometric information has different error patterns, we do not assume any particular
notion of closeness betweeart andw. Rather, in defining our primitives, we simply assume thatomes
from some metric space, and thatis no more than a certain distance framin that space. We consider
particular metrics only when building concrete constructions.

GENERAL REsULTS Before proceeding to construct our primitives for concrete metrics, we make some
observations about our definitions. We demonstrate that fuzzy extractors can be built out of secure sketches
by utilizing strongrandomness extractoffNZ96], such as, for example, universal hash functions [CW79,
WCB81] (randomness extractors, defined more precisely below, are families of hash which “convert” a high
entropy input into a shorter, uniformly distributed output). We also provide a general technique for con-
structing secure sketches from transitive families of isometries, which is instantiated in concrete construc-
tions later in the paper. Finally, we define a notion bf@metric embeddingf one metric space into another
and show that the existence of a fuzzy extractor in the target space, combined with a biometric embedding
of the source into the target, implies the existence of a fuzzy extractor in the source space.

These general results help us in building and analyzing our constructions.

OUR CONSTRUCTIONS We provide constructions of secure sketches and fuzzy extractors in three metrics:
Hamming distance, set difference, and edit distance. Unless stated otherwise, all the constructions are new.

Hamming distance (i.e., the number of symbol positions that differ betweandw’) is perhaps the
most natural metric to consider. We observe that the “fuzzy-commitment” construction of Juels and Wat-
tenberg/[JW99] based on error-correcting codes can be viewed as a (nearly optimal) secure sketch. We then
apply our general result to convert it into a nearly optimal fuzzy extractor. While our results on the Ham-
ming distance essentially use previously known constructions, they serve as an important stepping stone for
the rest of the work.

The set difference metric (i.e., size of the symmetric difference of two inputisatglw’) is appropriate
whenever the noisy input is represented as a subset of features from a universe of possibleﬂfeﬂwres.
demonstrate the existence of optimal (with respect to entropy loss) secure sketches and fuzzy extractors for
this metric. However, this result is mainly of theoretical interest, because (1) it relies on optimal constant-
weight codes, which we do not know how to construct, and (2) it produces sketches of length proportional
to the universe size. We then turn our attention to more efficient constructions for this metric in order to
handle exponentially large universes. We provide two such constructions.

First, we observe that the “fuzzy vault” construction of Juels and Slidan|[JS06] can be viewed as a secure
sketch in this metric (and then converted to a fuzzy extractor using our general result). We provide a new,
simpler analysis for this construction, which bounds the entropy lost frogiven s. This bound is quite
high unless one makes the size of the outpuery large. We then improve the Juels-Sudan construction to
reduce the entropy loss and the lengths ¢d near optimal. Our improvement in the running time and in the
length of s is exponential for large universe sizes. However, this improved Juels-Sudan construction retains
a drawback of the original: it is able to handle only sets of the same fixed size (in partiedlanust equal

3A perhaps unexpected application of the set difference metric was explofed i [JS06]: a user would like to encrypt a file (e.g.,
her phone number) using a small subset of values from a large universe (e.g., her favorite movies) in such a way that those and only
those with a similar subset (e.g., similar taste in movies) can decrypt it.
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Second, we provide an entirely different construction, called PinSketch, that maintains the exponential
improvements in sketch size and running time and also handles variable set size. To obtain it, we note that
in the case of a small universe, a set can be simply encoded as its characteristic vector (1 if an element is
in the set, 0 if it is not), and set difference becomes Hamming distance. Even though the length of such a
vector becomes unmanageable as the universe size grows, we demonstrate that this approach can be made
to work quite efficiently even for exponentially large universes (in particular, because it is not necessary to
ever actually write down the vector). This involves a result that may be of independent interest: we show
that BCH codes can be decoded in time polynomial inwleéghtof the received corrupted word (i.e., in
sublineartime if the weight is small).

Finally, edit distance (i.e., the number of insertions and deletions needed to convert one string into the
other) comes up, for example, when the password is entered as a string, due to typing errors or mistakes
made in handwriting recognition. We discuss two approaches for secure sketches and fuzzy extractors for
this metric. First, we observe that a recent low-distortion embedding of Ostrovsky and Raban| [OR05]
immediately gives a construction for edit distance. The construction performs well when the number of
errors to be corrected is very small (s&y for o < 1) but cannot tolerate a large number of errors. Second,
we give a biometric embedding (which is less demanding than a low-distortion embedding, but suffices for
obtaining fuzzy extractors) from the edit distance metric into the set difference metric. Composing it with a
fuzzy extractor for set difference gives a different construction for edit distance, which does betterigsvhen
large; it can handle as many @§n/ log” n) errors with meaningful entropy loss.

Most of the above constructions are quite practical; some implementations are availablel [HIRO06].

EXTENDING RESULTS FORPROBABILISTIC NOTIONS OFCORRECTNESS The definitions and construc-

tions just described use a very strong error model: we require that secure sketches and fuzzy extractors
accepteverysecretw’ which is sufficiently close to the original secret with probability 1. Such a strin-

gent model is useful, as it makes no assumptions on the stochastic and computational properties of the error
process. However, slightly relaxing the error conditions allows constructions which tolerate a (provably)
much larger number of errors, at the price of restricting the settings in which the constructions can be ap-
plied. In Sectiorj B, we extend the definitions and constructions of earlier sections to several relaxed error
models.

It is well-known that in the standard setting of error-correction for a binary communication channel,
one can tolerate many more errors when the errors are random and independent than when the errors are
determined adversarially. In contrast, we present fuzzy extractors that meet Shannon’s bounds for correcting
random errors and, moreover, can correct the same number of errors even when errors are adversarial. In our
setting, therefore, under a proper relaxation of the correctness condition, adversarial errors are no stronger
than random ones. The constructions are quite simple and draw on existing techniques from the coding
literature [BBR88| DGL04, Gur03, Lan04, MPSWO05].

RELATION TO PREVIOUS WORK. Since our work combines elements of error correction, randomness
extraction and password authentication, there has been a lot of related work.

The need to deal with nonuniform and low-entropy passwords has long been realized in the security
community, and many approaches have been proposed. For example, Kelsey et al. [KSHW97] suggested
using f(w, r) in place ofw for the password authentication scenario, wheig a public random “salt,”
to make a brute-force attacker’s life harder. While practically useful, this approach does not add any en-
tropy to the password and does not formally address the needed properfiedbther approach, more
closely related to ours, is to add biometric features to the password. For example, Ellison_et al. [EHMSO00]



proposed asking the user a seriesugersonalized questions and using these answers to encrypt the “ac-
tual” truly random secreR. A similar approach using the user’s keyboard dynamics (and, subsequently,
voice [MRLWO01a] MRLWO01b]) was proposed by Monrose etlal. [MRW99]. These approaches require the
design of a secure “fuzzy encryption.” The above works proposed heuristic designs (using various forms of
Shamir's secret sharing), but gave no formal analysis. Additionally, error tolerance was addressed only by
brute force search.

A formal approach to error tolerance in biometrics was taken by Juels and Wattenberd [JW99] (for
less formal solutions, see [DEMF99, MRW99, EHMS00]), who provided a simple way to tolerate errors
in uniformly distributedpasswords. Frykholm and Juels [FJ01] extended this solution and provided en-
tropy analysis to which ours is similar. Similar approaches have been explored earlier in seemingly unre-
lated literature on cryptographic information reconciliation, often in the context of quantum cryptography
(where Alice and Bob wish to derive a secret key from secrets that have small Hamming distance), particu-
larly [BBR88,BBCS91]. Our construction for the Hamming distance is essentially the same as a component
of the quantum oblivious transfer protocol of [BBC$91].

Juels and Sudamn_[JS06] provided the first construction for a metric other than Hamming: they con-
structed a “fuzzy vault” scheme for the set difference metric. The main difference is that [JS06] lacks a
cryptographically strong definition of the object constructed. In particular, their construction leaks a signifi-
cant amount of information about their analogityfeven though it leaves the adversary with provably “many
valid choices” forR. In retrospect, their informal notion is closely related to our secure sketches. Our con-
structions in Sectiop|6 improve exponentially over the construction of [JS06] for storage and computation
costs, in the setting when the set elements come from a large universe.

Linnartz and TuylIs[[LTOB] defined and constructed a primitive very similar to a fuzzy extractor (that
line of work was continued i [VTDL0O3].) The definition af [LT03] focuses on the continuous sR&ce
and assumes a particular input distribution (typically a known, multivariate Gaussian). Thus, our definition
of a fuzzy extractor can be viewed as a generalization of the notion of a “shielding function”froml [LTO3].
However, our constructions focus on discrete metric spaces.

Other approaches have also been taken for guaranteeing the privacy of noisy data. Csirmaz and Katona
[CKO3] considered quantization for correcting errors in “physical random functions.” (This corresponds
roughly to secure sketches with no public storage.) Barral, Coron and Nactache [BCNO4] proposed a
system for offline, private comparison of fingerprints. Although seemingly similar, the problem they study
is complementary to ours, and the two solutions can be combined to yield systems which enjoy the benefits
of both.

Work on privacy amplification, e.g!, [BBR88, BBCM95], as well as work on derandomization and hard-
ness amplification, e.g/, [HILL99, NZ96], also addressed the need to extract uniform randomness from a
random variable about which some information has been leaked. A major focus of follow-up research has
been the development of (ordinary, not fuzzy) extractors with short seeds (seel[Sha02] for a survey). We
use extractors in this work (though for our purposes, universal hashing is sufficient). Conversely, our work
has been applied recently to privacy amplification: Ding [Din05] used fuzzy extractors for noise tolerance
in Maurer’s bounded storage model [Mau93].

Independently of our work, similar techniques appeared in the literature on noncryptographic informa-
tion reconciliation[MTZ03| CT04] (where the goal is communication efficiency rather than secrecy). The
relationship between secure sketches and efficient information reconciliation is explored further inf$ection 9,
which discusses, in particular, how our secure sketches for set differences provide more efficient solutions
to the set and string reconciliation problems.

FoLLow-upP WORK. Since the original presentation of this paper [DRS04], several follow-up works have



appeared (e.g/, [BoyD4, BDK05,[DS05, DORS06, Smi07, CLI06, LSM06, CFL06]). We refer the reader to
a recent survey about fuzzy extractors [DRS07] for more information.

2 Preliminaries

Unless explicitly stated otherwise, all logarithms below are 2asehe Hamming weigh{or justweigh)

of a string is the number of nonzero characters in it. Wellis® denote the uniform distribution ofbit
binary strings. If an algorithm (or a functiorf)is randomized, we use the semicolon when we wish to make
the randomness explicit: i.e., we denote f{y; r) the result of computing’ on inputz with randomness

r. If X is a probability distribution, therf(X) is the distribution induced on the image piy applying

the (possibly probabilistic) functiofi. If X is a random variable, we will (slightly) abuse notation and also
denote byX the probability distribution on the range of the variable.

2.1 Metric Spaces

A metric space is a se¥! with a distance functiodis : M x M — R* = [0,0). For the purposes of
this work, M will always be a finite set, and the distance function only take on only integer values (with
dis(z,y) = 0 if and only if z = y) and will obey symmetryis(z, y) = dis(y, «) and the triangle inequality
dis(z, z) < dis(z,y) + dis(y, z) (we adopt these requirements for simplicity of exposition, even though the
definitions and most of the results below can be generalized to remove these restrictions).

We will concentrate on the following metrics.

1. Hamming metric Here M = F" for some alphabef, anddis(w, w’) is the number of positions in
which the stringsv andw’ differ.

2. Set difference metric Here M consists of all subsets of a universe For two setsw, w’, their

symmetric differencev Aw’ o {r ewUw' | z ¢ wnw'}. The distance between two setsw’ is
lwAw'|. |2_‘] We will sometimes restricM to contain onlys-element subsets for some

3. Edit metric Here M = F*, and the distance betweenandw’ is defined to be the smallest num-
ber of character insertions and deletions needed to transioimto w’. [P| (This is different from
the Hamming metric because insertions and deletions shift the characters that are to the right of the
insertion/deletion point.)

As already mentioned, all three metrics seem natural for biometric data.

2.2 Codes and Syndromes

Since we want to achieve error tolerance in various metric spaces, we wilrisecorrecting codegor

a particular metric. A cod€’ is a subsefwy,...,wx_1} of K elements ofM. The map fromi to w;,
which we will also sometimes denote B, is calledencoding Theminimum distancef C is the smallest

d > 0 such that for ali # j we havedis(w;, w;) > d. In our case of integer metrics, this means that one

“In the preliminary version of this work [DRSD4], we worked with this metric scale@ phat is, the distance waﬁw&wﬂ.
Not scaling makes more sense, particularly wheandw’ are of potentially different sizes sin¢ge Aw’| may be odd. It also
agrees with the hamming distance of characteristic vectors; see E@ction 6.

SAgain, in [DRS04], we worked with this metric scaled @y Likewise, this makes little sense when strings can be of different
lengths, and we avoid it here.



can detect up t@¢d — 1) “errors” in an element of\. The error-correcting distanceof C'is the largest
numbert > 0 such that for everyw € M there exists at most one codewarih the ball of radiug around

w: dis(w, ¢) < t for at most one: € C. This means that one can correct ug &rrors in an element of

M; we will use the terndecodingfor the map that finds, givem, thec € C such thatis(w, ¢) < ¢ (note

that for somew, suche may not exist, but if it exists, it will be unique; note also that decoding is not the
inverse of encoding in our terminology). For integer metrics by triangle inequality we are guaranteed that
t > |(d—1)/2]. Since error correction will be more important than error detection in our applications, we
denote the corresponding codes a4, K, t)-codes. For efficiency purposes, we will often want encoding
and decoding to be polynomial-time.

For the Hamming metric ovef™, we will sometimes calk = log | K the dimensiorof the code and
denote the code itself as &n k, d = 2t+1] z-code, following the standard notation in the literature. We will
denote byA, r|(n, d) the maximumK possible in such a code (omitting the subscript whgh= 2), and
by A(n,d, s) the maximumk for such a code ovel0, 1} with the additional restriction that all codewords
have exactly ones.

If the code is linear (i.e.F is a field, 7™ is a vector space ovef, andC' is a linear subspace), then
one can fix a parity-check matril as any matrix whose rows generate the orthogonal spaceThen

for anyv € F", the syndromeyn(v) v, The syndrome of a vector is its projection onto subspace
that is orthogonal to the code and can thus be intuitively viewed as the vector modulo the code. Note that
v € C & syn(v) = 0. Note also thaf{ is an(n — k) x n matrix and thasyn(v) isn — k bits long.

The syndrome captures all the information necessary for decoding. That is, suppose a cadsword
sent through a channel and the ward= c + ¢ is received. First, the syndrome wofis the syndrome of:
syn(w) = syn(c) + syn(e) = 0 + syn(e) = syn(e). Moreover, for any value, there is at most one word
of weight less thaw /2 such thatyn(e) = u (because the existence of a pair of distinct wardss would
mean that;, — e is a codeword of weight less thah but since0™ is also a codeword and the minimum
distance of the code 8, this is impossible). Thus, knowing syndromya(w) is enough to determine the
error patterre if not too many errors occurred.

2.3 Min-Entropy, Statistical Distance, Universal Hashing, and Strong Extractors

When discussing security, one is often interested in the probability that the adversary predicts a random
value (e.g., guesses a secret key). The adversary’s best strategy, of course, is to guess the most likely value.
Thus,predictabilityof a random variablel is max, Pr[A = a], and, correspondinglynin-entropyH . (A)

is — log(max, Pr[A = a]) (min-entropy can thus be viewed as the “worst-case” entriopy [CG88]; see also
Sectior] 2.4).

The min-entropy of a distribution tells us how many nearly uniform random bits can be extracted fromit.
The notion of “nearly” is defined as follows. Tisatistical distance betwedwo probability distributions
AandBisSD (4,B) = $ >, | Pr(4 =v) — Pr(B =v)|.

Recall the definition o§trong randomness extractoiidZ96].

Definition 1. Let Ext : {0,1}" — {0, 1} be a polynomial time probabilistic function which usesits of
randomness. We say thatt is an efficien{n, m, ¢, ¢)-strong extractoif for all min-entropym distributions
Won{0,1}", SD ((Ext((W; X), X), (Us, X)) < €, whereX is uniform on{0, 1}".

Strong extractors can extract at mése m — 2log (%) + O(1) nearly random bits [RTS00]. Many
constructions match this bound (see Shaltiel's survey [Sha02] for references). Extractor constructions are
often complex since they seek to minimize the length of the séelor our purposes, the length &f will



be less important, so universal hash functions_[CW79, WC81] (defined in the lemma below) will already
give us the optimad = m —21log (1) +2, as given by théeftover hash lemmbelow (see[[HILLI9, Lemma
4.8] as well as references therein for earlier versions):

Lemma 2.1 (Universal Hash Functions and the Leftover-Hash / Privacy-Amplification Lemma).As-
sume a family of functiong”,, : {0,1}" — {0, 1}5}I€X isuniversal forall a # b € {0,1}", Pryex[Hz(a) =
H,(b)] = 27*. Then, for any random variablﬁ/ﬁ

SD ((Hx (W), X) , (Ur, X)) < 5 V2 B=021 (1)

In particular, universal hash functions ate, m, £, €)-strong extractors whenevér< m — 2log () + 2.

2.4 Average Min-Entropy

Recall thatpredictability of a random variabled is max, Pr[A = a], and itsmin-entropyH..(A) is
—log(max, Pr[A = a]). Consider now a pair of (possibly correlated) random variableB. If the
adversary finds out the valueof B, then predictability ofA becomesnax, Pr[A = a | B = b]. On
average, the adversary’s chance of success in predidtisghenE,._p [max, Pr[A = a | B = b]]. Note
that we are taking thaverageover B (which is not under adversarial control), but therst caseover A
(because prediction ofl is adversarial oncé is known). Again, it is convenient to talk about security in
log-scale, which is why we define ttmrerage min-entroppf A given B as simply the logarithm of the
above:

H.(A| B) o —log <EbHB {m:?XPr[A =a|B= b]D = —log (EbHB {27H°°(A|B:b)}) .

Because other notions of entropy have been studied in cryptographic literature, a few words are in order
to explain why this definition is useful. Note the importance of taking the logaritten taking the average
(in contrast, for instance, to conditional Shannon entropy). One may think it more natural to define average
min-entropy ast,. g [H (A | B = b)], thus reversing the order &g andE. However, this notion is
unlikely to be useful in a security application. For a simple example, consider the casedverehB are
1000-bit strings distributed as follows3 = U990 and A is equal to the valué of B if the first bit of b is
0, andU1go (independent of3) otherwise. Then for half of the values &fH.,(A | B = b) = 0, while
for the other half Ho (A | B = b) = 1000, SOE;._p [Hs(A | B =0)] = 500. However, it would be
obviously incorrect to say that has 500 bits of security. In fact, an adversary who knows the \iadiid3
has a slightly greater tha®% chance of predicting the value df by outputtingb. Our definition correctly
captures thi$0% chance of prediction, becaukk,, (A | B) is slightly less than 1. In fact, our definition of
average min-entropy is simply the logarithm of predictability.

The following useful properties of average min-entropy are proven in Appérndix A. We also refer the
reader to Appendik B for a generalization of average min-entropy and a discussion of the relationship be-
tween this notion and other notions of entropy.

Lemma 2.2. Let A, B, C be random variables. Then

(a) For anyd > 0, the conditional entropf . (A|B = b) is at leastH (A|B) — log(1/8) with proba-
bility at leastl — ¢ over the choice ab.

®In [HILL9Y], this inequality is formulated in terms of @yi entropy of order two of¥; the change tdH..(C) is allowed
because the latter is no greater than the former.



(b) If B has at mose* possible values, theHo (4 | (B, C)) > Hoo((4, B) | C)—A > Hyo(A | C)—A.
In particular, Hoo (A | B) > Hoo((A,B)) — A > Hoo(4) — A

2.5 Average-Case Extractors

Recall from Definitiorj [L that a strong extractor allows one to extract almost all the min-entropy from some
nonuniform random variabl&’. In many situationsi¥ represents the adversary’s uncertainty about some
secretw conditioned on some side informatién Since this side informationis often probabilistic, we

shall find the following generalization of a strong extractor useful (see Lgmra 4.1).

Definition 2. Let Ext : {0,1}" — {0,1}’ be a polynomial time probabilistic function which uses
bits of randomness. We say thatt is an efficientaverage-casén, m, ¢, €)-strong extractor if for all
pairs of random variable§V, I) such thatl¥ is ann-bit string satisfyingH..(W | I) > m, we have
SD ((Ext(W; X), X, 1), (Us, X, 1)) < ¢, whereX is uniform on{0, 1}".

To distinguish the strong extractors of Definitign 1 from average-case strong extractors, we will some-
times call the formeworst-casestrong extractors. The two notions are closely related, as can be seen from
the following simple application of Lemnja 2.2(a).

Lemma 2.3. For anyd > 0, if Ext is a (worst-casejn, m — log (%) , £, €)-strong extractor, theifxt is also
an average-casén, m, ¢, € + §)-strong extractor.

Proof. Assume(W, I) are such thaH, (W | I) > m. LetW; = (W | I = i) and let us call the valug¢
“bad” if Hoo(W;) < m — log (). Otherwise, we say thatis “good”. By Lemmd 2.R(a)Pr(i is bad < é.
Also, for any goodi, we have thaExt extracts/ bits that arec-close to uniform fromW,;. Thus, by
conditioning on the “goodness” df we get

SD ((Ext(W; X), X, 1), (U, X,I)) = Y Pr(i)-SD ((Ext(Wi; X), X), (Up, X))

< Pr(iisbad -1+ Y Pr(i) - SD ((Ext(Wi X), X), (Uz, X))

< d+e€

O]

However, for many strong extractors we do not have to suffer this additional dependefidecoause
the strong extractor may be already average-case. In particular, this holds for extractors obtained via univer-
sal hashing.

Lemma 2.4 (Generalized Leftover Hash Lemma) Assume H,, : {0,1}" — {0,1}*},¢x is a family of
universal hash functions. Then, for any random variaiésind 7,

SD ((Hx (W), X, 1), (Us, X, 1)) < 3 V2 R0 D1 2)

In particular, universal hash functions aeverage-casén, m, ¢, €)-strong extractors whenevér< m —
2log (%) + 2.
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Proof. LetW; = (W | I =4). Then

SD ((Hx(W), X, 1), (U, X, 1)) = E;[SD((Hx(Wi),X), (Us, X))]
%Ei V2 Wt
S/ Ei [2 = (021]

1 —
- 2—HOO(W\I)2£_
2

IN

IN

In the above derivation, the first inequality follows from the standard Leftover Hash Lemma (Lenjma 2.1),
and the second inequality follows from Jensen’s inequality (nar}ﬁe[ﬂ] < VE[Z)). O

3 New Definitions

3.1 Secure Sketches
Let M be a metric space with distance functidis.

Definition 3. An (M, m,m,t)-secure sketcls a pair of randomized procedures, “sketcBS) and “re-
cover” (Rec), with the following properties:

1. The sketching procedu&S on inputw € M returns a bit string € {0, 1}*.

2. The recovery procedurRec takes an element’ € M and a bit strings € {0,1}*. The correct-
nessproperty of secure sketches guarantees thdis{fw, w’) < t, thenRec(w’,SS(w)) = w. If
dis(w,w’) > t, then no guarantee is provided about the outpuReat

3. Thesecurityproperty guarantees that for any distributidhover M with min-entropym, the value
of W can be recovered by the adversary who obsesweih probability no greater tha2~"™. That
is, Hoo (W | SS(W)) > m.

A secure sketch isfficientif SS andRec run in expected polynomial time.

AVERAGE-CASE SECURESKETCHES. In many situations, it may well be that the adversary’s information
about the password is probabilistic, so that sometiméseveals a lot about, but most of the timev stays

hard to predict even given In this case, the previous definition of secure sketch is hard to apply: it provides
no guarantee iH ., (17]7) is not fixed to at least: for some bad (but infrequent) valuesiofA more robust
definition would provide the same guarantee for all pairs of variat¥éd ) such that predicting the value

of W given the value of is hard. We therefore define anerage-cassecure sketch as follows:

Definition 4. An average-casé M, m,m,t)-secure sketcis a secure sketch (as defined in Defini@n 3)
whose security property is strengthened as follows: for any random varidbteger M andI over{0,1}*
such thatf (W | I) > m, we haveH..(W | (SS(W), I)) > 7n. Note that an average-case secure sketch
is also a secure sketch (take¢o be empty).

This definition has the advantage that it composes naturally, as shown in Lenjma 4.7. All of our con-
structions will in fact be average-case secure sketches. However, we will often omit the term “average-case”
for simplicity of exposition.

11



ENTROPYLOSS The quantityn is called thaesidual (min-)entropwf the secure sketch, and the quantity

A = m — m is called theentropy losf a secure sketch. In analyzing the security of our secure sketch
constructions below, we will typically bound the entropy loss regardless,ahus obtaining families of
secure sketches that work for all (in general,[[Rey(Q7] shows that the entropy loss of a secure sketch is
upperbounded by its entropy loss on the uniform distribution of inputs). Specifically, for a given construction
of SS, Rec and a given value, we will get a value\ for the entropy loss, such that, fanym, (SS, Rec) is
an(M,m,m — A, t)-secure sketch. In fact, the most common way to obtain such secure sketches would be
to bound the entropy loss by the length of the secure sk&&¢hr), as given in the following simple lemma:

Lemma 3.1. Assume some algorithn$$ and Rec satisfy the correctness property of a secure sketch for
some value of, and that the output range 65 has size at most* (this holds, in particular, if the length

of the sketch is bounded By. Then, for any min-entropy threshold, (SS, Rec) form an average-case
(M,m,m — A, t)-secure sketch faM. In particular, for anym, the entropy loss of this construction is at
MOostA.

Proof. The result follows immediately from Lemnha 2.2(b), sif§®(1W) has at mose* values: for any

(W7I)1HOO(W’ (SS(W)7I)) ZI:IOO(W|I)_)\' O

The above observation formalizes the intuition that a good secure sketch should be as short as possible.
In particular, a short secure sketch will likely result in a better entropy loss. More discussion about this
relation can be found in Sectigh 9.

3.2 Fuzzy Extractors

Definition 5. An (M, m, ¢, t, €)-fuzzy extractois a pair of randomized procedures, “generate#n) and
“reproduce” Rep), with the following properties:

1. The generation procedufin on inputw € M outputs an extracted string € {0, 1}* and a helper
string P € {0,1}*.

2. The reproduction proceduRep takes an element’ € M and a bit string? € {0, 1}* as inputs. The
correctnesproperty of fuzzy extractors guarantees thalisfw, w’') < t andR, P were generated by
(R, P) «— Gen(w), thenRep(w’, P) = R. If dis(w,w’) > t, then no guarantee is provided about the
output ofRep.

3. Thesecurityproperty guarantees that for any distributidhon M of min-entropym, the stringR is
nearly uniform even for those who obseteif (R, P) < Gen(W), thenSD ((R, P), (U, P)) < e.

A fuzzy extractor isefficientif Gen andRep run in expected polynomial time.

In other words, fuzzy extractors allow one to extract some randonfRéssn w and then successfully
reproduceR from any stringw’ that is close tav. The reproduction uses the helper stridgroduced during
the initial extraction; yef? need not remain secret, becauséoks truly random even giveR. To justify
our terminology, notice that strong extractors (as defined in Secfion 2) can indeed be seen as “nonfuzzy”
analogs of fuzzy extractors, corresponding te 0, P = X, andM = {0,1}".

We reiterate that the nearly uniform random bits output by a fuzzy extractor can be used in any cryp-
tographic context that requires uniform random bits (e.g., for secret keys). The slight nonuniformity of the
bits may decrease security, but by no more than their distafien uniform. By choosing negligibly
small (e.g.27% should be enough in practice), one can make the decrease in security irrelevant.

12



Similarly to secure sketches, the quantity— ¢ is called theentropy lossof a fuzzy extractor. Also
similarly, a more robust definition is that of amerage-caséizzy extractor, which requires thati .. (1 |
I) > m, thenSD ((R, P,I), (Uys, P, I)) < € for any auxiliary random variablé.

4 Metric-Independent Results

In this section we demonstrate some general results that do not depend on specific metric spaces. They will
be helpful in obtaining specific results for particular metric spaces below. In addition to the results in this
section, some generic combinatorial lower bounds on secure sketches and fuzzy extractors are contained
in Appendi C. We will later use these bounds to show the near-optimality of some of our constructions for
the case of uniform inpuf§.

4.1 Construction of Fuzzy Extractors from Secure Sketches

Not surprisingly, secure sketches are quite useful in constructing fuzzy extractors. Specifically, we construct
fuzzy extractors from secure sketches and strong extractors as follows: Spfyw to obtains, and a

strong extractoExt with randomness to w to obtainR. Store(s, x) as the helper string?. To reproduce

R fromw’ andP = (s, z), first useRec(w’, s) to recoverw and therExt(w, x) to getR.

V —p P w

SS (—» } S—> >

WI ’ ’ , Rec | x Ext |R
w—p

L——>» Ext [—R |

X—>

A few details need to be filled in. First, in order to applyt to w, we will assume that one can represent
elements ofM usingn bits. Second, since after leaking the secure sketch vgltiee passwordv has
only conditionalmin-entropy, technically we need to use #nerage-caseastrong extractor, as defined in
Definition[3. The formal statement is given below.

Lemma 4.1 (Fuzzy Extractors from Sketches).AssumgSS, Rec) is an (M, m, m, t)-secure sketch, and
let Ext be anaverage-casg, m, ¢, €)-strong extractor. Then the followin@en, Rep) is an (M, m, ¢, t, €)-
fuzzy extractor:

e Gen(w;r,x): setP = (SS(w;r),z), R = Ext(w;x), and output R, P).

e Rep(w’, (s,z)): recoverw = Rec(w’, s) and outputR = Ext(w; x).

Proof. From the definition of secure sketch (Deflnlt@n 3), we know Hat (W | SS(W)) > 7. And since
Ext is an average-casg, m, ¢, €)-strong extractorSD ((Ext(W; X),SS(W), X), (Uy,SS(W), X)) =
SD ((R, P), (U, P)) < e. O

On the other hand, if one would like to use a worst-case strong extractor, we can apply Lefhma 2.3 to
get

Corollary 4.2. If (SS, Rec) is an (M, m, 1, t)-secure sketch anBixt is an (n, 7 — log (3) , £, €)-strong
extractor, then the above constructi@@en, Rep) is a (M, m, ¢, t, e + §)-fuzzy extractor.

"Although we believe our constructions to be near optimal for nonuniform inputs as well, and our combinatorial bounds in
Appendi@ are also meaningful for such inputs, at this time we can use these bounds effectively only for uniform inputs.
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Both Lemm4d 4.]1 and Corollafy 4.2 hold (with the same proofs) for buildverage-caséuzzy extrac-
tors fromaverage-cassecure sketches.

While the above statements work for general extractors, for our purposes we can simply use univer-
sal hashing, since it is an average-case strong extractor that achieves the éptimal [RTS00] entropy loss of
2log (%) In particular, using Lemn@A, we obtain our main corollary:

Lemma 4.3. If (SS, Rec) is an (M, m, m, t)-secure sketch anét is an(n, m, ¢, €)-strong extractor given
by universal hashing (in particular, arfy< m — 2 log (%) +2 can be achieved), then the above construction
(Gen, Rep) is an (M, m, ¢,t, €)-fuzzy extractor. In particular, one can extract up(t@ — 2log (1) + 2)
nearly uniform bits from a secure sketch with residual min-entr@apy

Again, if the above secure sketch is average-case secure, then so is the resulting fuzzy extractor. In
fact, combining the above result with Lemma3.1, we get the following general construction of average-case
fuzzy extractors:

Lemma 4.4. Assume some algorithn$$ and Rec satisfy the correctness property of a secure sketch for
some value of, and that the output range &S has size at mos?* (this holds, in particular, if the
length of the sketch is bounded hy. Then, for any min-entropy threshoid, there exists an average-
case(M,m,m — X\ — 2log (%) + 2,t, €)-fuzzy extractor forM. In particular, for anym, the entropy loss

of the fuzzy extractor is at most+ 2 log (%) -2

4.2 Secure Sketches for Transitive Metric Spaces

We give a general technique for building secure sketcheamsitivemetric spaces, which we now define. A
permutationr on a metric spacé is anisometryif it preserves distances, i.elis(a, b) = dis(w(a), 7(b)).

A family of permutationsll = {;},., actstransitivelyon M if for any two elements:,b € M, there
existsm; € II such thatr;(a) = b. Suppose we have a family of transitive isometries foM (we will
call suchM transitive). For example, in the Hamming space, the set of all shif{sv) = w @ x is such a
family (see Sectioh|5 for more details on this example).

Construction 1 (Secure Sketch For Transitive Metric Spaces)Let C' be an(M, K, t)-code. Then the
general sketching scherfi8 is the following: given an inpuy € M, pick uniformly at random a codeword
b € C, pick uniformly at random a permutation € II such thatr(w) = b, and outpuSS(w) = = (itis
crucial that eachr € II should have a canonical description that is independent offwas chosen and, in
particular, independent éfandw; the number of possible outputs $ should thus b¢lI|). The recovery
procedureRec to find w givenw’ and the sketch is as follows: find the closest codewdrdto 7 (w’), and
outputr—1(d').

LetI" be the number of elementse II such thatmin,, ;, [{7|7(w) = b}| > I'. l.e., for eachw andb,
there are at leadt choices forr. Then we obtain the following lemma.

Lemma 4.5. (SS, Rec) is an average-caseM, m,m — log|II| + logI" + log K, t)-secure sketch. It is
efficient if operations on the code, as wellmand=~!, can be implemented efficiently.

Proof. Correctness is clear: whetis(w,w’) < t, thendis(b, 7(w’)) < t, so decodingr(w’) will result
in ¥ = b, which in turn means that~!(¢’) = w. The intuitive argument for security is as follows:
we addlog K + logI' bits of entropy by choosing andw, and subtractog [II| by publishingw. Since
givenr, w andb determine each other, the total entropy losks|II| — log K — logI". More formally,
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H, (W | SS(W),I) = Hoo (W, SS(W)) | I) — log 1| by Lemm(b). Given a particular valuewf
there areK equiprobable choices férand, further, at leadt equiprobable choices far onceb is picked,
and hence any given permutatiaris chosen with probability at mody/(KT') (because different choices
for b result in different choices for). Therefore, for alt, w, andm, Pr[iW = w ASS(w) =7 | [ =i] <
Pr[W =w | I = i]/(KT); henceH,.((W,SS(W)) | I) > Hoo(W | I) 4+ log K + logT. O

Naturally, security loss will be smaller if the codgis denser.
We will discuss concrete instantiations of this approach in Sefction 5 and Secfion 6.1.

4.3 Changing Metric Spaces via Biometric Embeddings

We now introduce a general technigue that allows one to build fuzzy extractors and secure sketches in some
metric spaceM; from fuzzy extractors and secure sketches in some other metric 8gac8elow, we let

dis(-, -), denote the distance function ;. The technique is tembedM; into M5 so as to “preserve”
relevant parameters for fuzzy extraction.

Definition 6. A function f : M; — M, is called a(t1, t2, m1, m2)-biometric embedding if the following
two conditions hold:

e foranyw;,w] € M; such thatdis(w:, w}),; < t1, we havedis(f(w1), f(w2))y < to.
e for any distributioni?’; on M; of min-entropy at least:;, f(1/1) has min-entropy at leasts.

The following lemma is immediate (correctness of the resulting fuzzy extractor follows from the first con-
dition, and security follows from the second):

Lemma 4.6. If f is a (1, t2, m1, m2)-biometric embedding o#; into M and (Gen(-), Rep(-,-)) is an
(Mg, ma, £, ta, €)-fuzzy extractor, the(Gen(f()),Rep(f(-),-)) isan(Myi, my, ¢, 1, €)-fuzzy extractor.

Itis easy to defina@verage-casdiometric embeddings (in whicH (W, | I) > m; = Hoo(f(W}) |
I) > my), which would result in an analogous lemma for average-case fuzzy extractors.

For a similar result to hold for secure sketches, we need biometric embeddings with an additional prop-
erty.

Definition 7. A function f : M; — My is called &(t1, t2, \)-biometric embedding with recovery informa-
tion g if:

e foranyw;,w] € M, such thatis(w,w}),; < t1, we havedis(f(w1), f(w2))y < ta.

e g: M; — {0,1}* is a function with range size at maat, andw; € M; is uniquely determined by

(f(w1), g(wr)).
With this definition, we get the following analog of Leminal4.6.

Lemma 4.7. Let f be a(t1,t2, ) biometric embedding with recovery informatignLet (SS, Rec) be an
(Mg, mq — X\, 1ha, to) average-case secure sketch. B6t(w) = (SS(f(w)), g(w)). LetRec (w’, (s,7))
be the function obtained by computiRgc(w’, s) to get f(w) and then inverting f (w), ) to getw. Then
(SS’,Rec’) is an (M, my, o, t1) average-case secure sketch.
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Proof. The correctness of this construction follows immediately from the two properties given in Defi-
nition [7. As for security, using Lemnfa 2.2(b) and the fact that the rangetefs size at mos?*, we

get thatH. (W | g(W)) > m; — X wheneverH.,(W) > m;. Moreover, sincdV is uniquely re-
coverable fromf (W) and g(W), it follows that H.(f(W) | g(W)) > mi — X as well, whenever

H. (W) > my. Using the fact tha{SS, Rec) is anaverage-casé Mz, m; — A, ma, t2) secure sketch,

we get thatF . (f(W) | (SS(W), g(W))) = Huo(f(W) | SS'(W)) > 1. Finally, since the application

of f can only reduce min-entrop¥.. (W | SS'(W)) > 1y wheneveiH . (W) > m;. O

As we saw, the proof above critically used the notion of average-case secure sketches. Luckily, all our
constructions (for example, those obtained via Lernmp 3.1) are average-case, so this subtlety will not matter
too much.

We will see the utility of this novel type of embedding in Secfi¢n 7.

5 Constructions for Hamming Distance

In this section we consider constructions for the sp&te= 7" under the Hamming distance metric. Let
F = |F|landf = log, F.

SECURE SKETCHES. THE CODE-OFFSETCONSTRUCTION For the case of = {0, 1}, Juels and Wat-
tenberg [[JW99] considered a notion of “fuzzy commitmerﬁ.”Given anin, k, 2t + 1], error-correcting
codeC (not necessarily linear), they fuzzy-commititdy publishingw & C(x). Their construction can be
rephrased in our language to give a very simple construction of secure sketches for general

We start with arn, k, 2t 4+ 1] = error-correcting cod€’ (not necessarily linear). The idea is to use
to correct errors inv even thougho may not be inC. This is accomplished by shifting the code so that a
codeword matches up with, and storing the shift as the sketch. To do so, we need to #ias an additive
cyclic group of order (in the case of most common error-correcting codesyill anyway be a field).

Construction 2 (Code-Offset Construction). On inputw, select a random codewordthis is equivalent
to choosing a random € F* and computing”(z)), and seSS(w) to be the shift needed to get fromto
w: SS(w) = w — ¢. ThenRec(w', s) is computed by subtracting the shiffrom «’ to get¢’ = w' — s;
decoding’ to getc (note that becaussis(w’, w) < t, so isdis(c, ¢)); and computingu by shifting back to
getw = c + s.

¢ IS W

Q t
'\%4/”/_5"/—. v
c

In the case ofF = {0,1}, addition and subtraction are the same, and we get that computation of the
sketch is the same as the Juels-Wattenberg commitr8&iity) = w @ C(z). In this case, to recoven
givenw’ ands = SS(w), compute’’ = w’ & s, decode’ to gete, and computer = ¢ & s.

When the codé€’ is linear, this scheme can be simplified as follows.

Construction 3 (Syndrome Construction). SetSS(w) = syn(w). To computeRec(w’, s), find the unique
vectore € F" of Hamming weight< ¢ such thasyn(e) = syn(w’) — s, and outputy = w’ — e.

As explained in Sectiop| 2, finding the short error-veetdrom its syndrome is the same as decoding
the code. It is easy to see that two constructions above are equivalent:sgiyer) one can sample from

8In their interpretation, one commits oby picking a randomu and publishingsS (w; x).
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w — ¢ by choosing a random stringwith syn(v) = syn(w); converselysyn(w — ¢) = syn(w). To show

that Rec finds the correctv, observe thatlis(w’ — e,w’) < ¢ by the constraint on the weight ef and
syn(w’ —e) = syn(w’) — syn(e) = syn(w’) — (syn(w’) — s) = s. There can be only one value within
distancet of w’ whose syndrome is (else by subtracting two such values we get a codeword that is closer
than2t + 1 to 0, but 0 is also a codeword), 86 — ¢ must be equal ta.

As mentioned in the introduction, the syndrome construction has appeared before as a component of
some cryptographic protocols over quantum and other noisy channels [BBCS3T) Ghough it has not
been analyzed the same way.

Both schemes argF™, m, m — (n — k) f, t) secure sketches. For the randomized scheme, the intuition
for understanding the entropy loss is as follows: we adandom elements of and publishn elements of
JF. The formal proof is simply Lemnija 4.5, because additiorFihis a family of transitive isometries. For
the syndrome scheme, this follows from Le 3.1, because the syndrome i8) elements ofF.

We thus obtain the following theorem.

Theorem 5.1. Given an|n, k, 2t + 1]+ error-correcting code, one can construct an average-qa@se, m,
m — (n — k) f,t) secure sketch, which is efficient if encoding and decoding are efficient. Furthermore, if the
code is linear, then the sketch is deterministic and its outpt is k) symbols long.

In Appendix G we present some generic lower bounds on secure sketches and fuzzy extractors. Recall
that Ar(n,d) denotes the maximum numbéf of codewords possible in a code of distantever n-
character words from an alphabet of siZzeThen by Lemmf C]1, we obtain that the entropy loss of a secure
sketch for the Hamming metric is at leasf — log, Ar(n, 2t + 1) when the input is uniform (that is, when
m = nf), becausek (M, t) from Lemme[ C.1L is in this case equal t-(n, 2t + 1) (since a code that
correctst Hamming errors must have minimum distance at |@ast 1). This means that if the underlying
code is optimal (i.e.X = Ar(n, 2t + 1)), then the code-offset construction above is optimal for the case of
uniform inputs, because its entropy lossiis— logp K logy F' = nf —log, K. Of course, we do not know
the exact value ofi(n, d), let alone efficiently decodable codes which meet the bound, for many settings
of F', n andd. Nonetheless, the code-offset scheme gets as close to optimality as is possible from coding
constraints. If better efficient codes are invented, then better (i.e., lower loss or higher error-tolerance) secure
sketches will result.

Fuzzy EXTRACTORS As awarm-up, consider the case wh&mis uniform (n = n) and look at the code-
offset sketch construction: = w — C(z). For Gen(w), outputR = z, P = v. ForRep(w’, P), decode
w’ — P to obtainC(x) and applyC~! to obtainz. The result, quite clearly, is aiF", nf, kf,t,0)-fuzzy
extractor, since is truly random and independentefwhenw is random. In fact, this is exactly the usage
proposed by Juels and Wattenberg [JW99], except they viewed the above fuzzy extractor as a way to use
to “fuzzy commit” toz, without revealing information about

Unfortunately, the above construction settiRg= = works only for uniformW, since otherwise
would leak information about.

In general, we use the construction in Lenimg 4.3 combined with Theorém 5.1 to obtain the following
theorem.

Theorem 5.2. Given anyn, k, 2t + 1] codeC and anym, ¢, there exists an average-cag®t, m, ¢, t, €)-
fuzzy extractor, wheré=m+kf —nf —2log (%) + 2. The generatiofsen and recovenRep are efficient
if C' has efficient encoding and decoding.
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6 Constructions for Set Difference

We now turn to inputs that are subsets of a univéfséet n = |U/|. This corresponds to representing an
object by a list of its features. Examples include “minutiae” (ridge meetings and endings) in a fingerprint,
short strings which occur in a long document, or lists of favorite movies.

Recall that the distance between two sets/’ is the size of their symmetric differencéis(w, w’) =
lwAw'|. We will denote this metric space Bif (/). A setw can be viewed as itsharacteristic vectom
{0, 1}, with 1 at positionz € U if x € w, and0 otherwise. Such representation of sets makes set difference
the same as the Hamming metric. However, we will mostly focus on settings whemmuch larger than
the size ofw, so that representing a setby n bits is much less efficient than, say, writing down a list of
elements inw, which requires onlyw| log n bits.

LARGE VERSUSSMALL UNIVERSES More specifically, we will distinguish two broad categories of
settings. Lets denote the size of the sets that are given as inputs to the secure sketch (or fuzzy extractor)
algorithms. Most of this section studies situations where the universe: $&zsuperpolynomial in the set
sizes. We call this the “large universe” setting. In contrast, the “small universe” setting refers to situations
in whichn = poly(s). We want our various constructions to run in polynomial time and use polynomial
storage space. In the large universe settingntt string representation of a set becomes too large to be
usable—we will strive for solutions that are polynomiakiandlog n.

In fact, in many applications—for example, when the input is a list of book titles—it is possible that the
actual universe is not only large, but also difficult to enumerate, making it difficult to even find the position
in the characteristic vector correspondingrtee w. In that case, it is natural to enlarge the universe to a
well-understood class—for example, to include all possible strings of a certain length, whether or not they
are actual book titles. This has the advantage that the positiorirofhe characteristic vector is simply
itself; however, because the universe is now even larger, the dependence of running-ilmecomes even
more important.

FIXED VERSUS FLEXIBLE SET SIZE. In some situations, all objects are represented by feature sets of
exactly the same sizg¢ while in others the sets may be of arbitrary size. In particular, the original set
and the corrupted set’ from which we would like to recover the original need not be of the same size. We
refer to these two settings fisgedandflexibleset size, respectively. When the set size is fixed, the distance
dis(w, w’) is always evendis(w,w’) = t if and only if w andw’ agree on exactly — £ points. We will
denote the restriction &Dif (/) to s-element subsets BDif s (/).

SUMMARY . As a point of reference, we will see below thag () — log A(n,2t + 1, s) is a lower bound

on the entropy loss of any secure sketch for set difference (whether or not the set size is fixed). Recall that
A(n,2t + 1, s) represents the size of the largest code for Hamming space with minimum digtanck

in which every word has weight exactly In the large universe setting, wherex n, the lower bound is
approximatelyt log n. The relevant lower bounds are discussed at the end of Sectigns §.1jand 6.2.

In the following sections we will present several schemes which meet this lower bound. The setting of
small universes is discussed in Secfion 6.1. We discuss the code-offset construction (from[$ection 5), as
well as a permutation-based scheme which is tailored to fixed set size. The latter scheme is optimal for this
metric, but impractical.

In the remainder of the section, we discuss schemes for the large universe setting. In[Sefction 6.2 we
give an improved version of the scheme of Juels and Sudan]|[JS06]. Our version achieves optimal entropy
loss and storagelog n for fixed set size (notice the entropy loss doesn’t depend on the set sithough
the running time does). The new scheme provides an exponential improvement over the original parameters

18



| I Entropy Loss \ Storage \ Time | SetSize]] Notes |

Juels-Sudan|| tlogn + log ((:‘)/(Z:j)) +2 rlogn poly(rlog(n)) | Fixed 7 is a parameter
[JS06] s<r<n
Generic n —log A(n,2t + 1) n —log A(n,2t + 1) poly(n) Flexible || ent. lossx tlog(n)
syndrome (for linear codes) whent < n
Permutation-|| log (7) — log A(n,2t + 1, s) O(nlogn) poly(n) Fixed ent. lossx tlogn
based whent < n
Improved tlogn tlogn poly(slogn) Fixed
JS
PinSketch tlog(n +1) tlog(n +1) poly(slogn) | Flexible See Sectiop 6/3
for running time

Table 1. Summary of Secure Sketches for Set Difference.

(which are analyzed in Appendix D). Finally, in Sect[on|6.3 we describe how to adapt syndrome decoding
algorithms for BCH codes to our application. The resulting scheme, called PinSketch, has optimal storage
and entropy losslog(n + 1), handles flexible set sizes, and is probably the most practical of the schemes
presented here. Another scheme achieving similar parameters (but less efficiently) can be adapted from
information reconciliation literature [MTZ03]; see Sectfdn 9 for more details.

We do not discuss fuzzy extractors beyond mentioning here that each secure sketch presented in this
section can be converted to a fuzzy extractor using Lefnja 4.3. We have already seen an example of such
conversion in Sectidnl 5.

Tablel summarizes the constructions discussed in this section.

6.1 Small Universes

When the universe size is polynomialdnthere are a number of natural constructions. The most direct one,
given previous work, is the construction of Juels and Sudan [JS06]. Unfortunately, that scheme requires a
fixed set size and achieves relatively poor parameters (see Apgpendix D).

We suggest two possible constructions. The first involves representing selstadrings and using the
constructions of Sectidrj 5. The second construction, presented below, requires a fixed set size but achieves
slightly improved parameters by going through “constant-weight” codes.

PERMUTATION-BASED SKETCH. Recall the general construction of Secfior] 4.2 for transitive metric spaces.
Let IT be a set of all permutations di. Givenr € II, make it a permutation 06Dif({) naturally:
m(w) = {m(z)|x € w}. This makedI into a family of transitive isometries o8Dif;(/), and thus the
results of Section 4]2 apply.

Let C C {0,1}" be anyn, k,2t + 1] binary code in which all words have weight exactly Such
codes have been studied extensively (see, €.9., [AVZ00, B$SS90] for a summary of known upper and lower
bounds). View elements of the code as sets of sizé/e obtain the following scheme, which produces a
sketch of lengtfO(n log n).

Construction 4 (Permutation-Based Sketch).On inputw C U of sizes, choose) C U/ at random from
the codeC, and choose a random permutation &/ — U such thatr(w) = b (that is, choose a random
matching betweemw andb and a random matching betwebh— w andi/ — b). OutputSS(w) = = (say,
by listing 7(1), ..., m(n)). To recoverw from w’ such thadis(w,w’) < t andw, computed’ = 7~ (w’),
decode the characteristic vectortoto obtainb, and outputy = 7 (b).
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This construction is efficient as long as decoding is efficient (everything else take®tinmleg n)).
By Lemma[4.5, its entropy loss Isg () — k: here[TI| = n! andT' = s!(n — s)!, solog [II| — logT" =
logn!/(sl(n — s)!).

COMPARING THEHAMMING SCHEME WITH THE PERMUTATION SCHEME. The code-offset construction
was shown to have entropy loss— log A(n, 2t + 1) if an optimal code is used; the random permutation
scheme has entropy loks (Z) —log A(n, 2t + 1, s) for an optimal code. The Bassalygo-Elias inequality
(see [vL92]) shows that the bound on the random permutation scheme is always at least as good as the
bound on the code offset schem#(n, d) - 27" < A(n,d, s) - (Z)*l. This implies that, — log A(n, d) >
log (Z) —log A(n,d, s). Moreover, standard packing arguments give better constructions of constant-weight
codes than they do of ordinary codsln fact, the random permutations scheme is optimal for this metric,
just as the code-offset scheme is optimal for the Hamming metric.

We show this as follows. Restri¢tto be even, becaustis(w, w’) is always even ifw| = |w’|. Then
the minimum distance of a code ov@Dif (/) that corrects up to errors must be at lea8t + 1.Indeed,
suppose not. Then take two codewordsandc, such thatlis(ci, c2) < 2¢. There aré: elements irc; that
are not inc, (call their setc; — ¢3) andk elements ire, that are not ire; (call their setes — ¢1), with & < ¢.
Starting withcy, removet /2 elements of; — ¢ and add /2 elements of; — ¢; to obtain a setv (note that
here we are using thatis even; ifk < ¢/2, then uset elements). Thedis(c;, w) < t anddis(ce, w) < t,
and so if the received word 18, the receiver cannot be certain whether the sent wordcyascs and hence
cannot correct errors.

Therefore by Lemm.l, we get that the entropy loss of a secure sketch must be higlé@st—
log A(n,2t+1, s) in the case of a uniform input. Thus in principle, it is better to use the random permuta-
tion scheme. Nonetheless, there are caveats. First, we do not kreoylifitly constructed constant-weight
codes that beat the Elias-Bassalygo inequality and would thus lead to better entropy loss for the random
permutation scheme than for the Hamming scheme [see [BSSS90] for more on constructions of constant-
weight codes and [AVZ00] for upper bounds). Second, much more is known about efficient implementation
of decoding for ordinary codes than for constant-weight codes; for example, one can find off-the-shelf hard-
ware and software for decoding many binary codes. In practice, the Hamming-based scheme is likely to be
more useful.

6.2 Improving the Construction of Juels and Sudan

We now turn to the large universe setting, wheris superpolynomial in the set sizgand we would like
operations to be polynomial inandlog n.

Juels and Sudah [JS06] proposed a secure sketch for the set difference metric with fixed set size (called
a “fuzzy vault” in that paper). We present their original scheme here with an analysis of the entropy loss in
AppendiXD. In particular, our analysis shows that the original scheme has good entropy loss only when the
storage space is very large.

We suggest an improved version of the Juels-Sudan scheme which is simpler and achieves much better
parameters. The entropy loss and storage space of the new scheme ardegdmntiwhich is optimal. (The
same parameters are also achieved by the BCH-based construction PinSketch inf Séction 6.3.) Our scheme
has the advantage of being even simpler to analyze, and the computations are simpler. As with the original
Juels-Sudan scheme, we assuine || is a prime power and work ovef = GF'(n).

This comes from the fact that the intersection of a ball of radiusth the set of all words of weight is much smaller than
the ball of radiusi itself.
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An intuition for the scheme is that the numbets 1, . . ., y, from the JS scheme need not be chosen at
random. One can instead evaluate themy;as p/(x;) for some polynomiap’. One can then represent the
entire list of pairgx;, y;) implicitly, using only a few of the coefficients @f. The new sketch is determinis-
tic (this was not the case for our preliminary version_in [DRS04]). Its implementation is avallable [HJRO06].

Construction 5 (Improved JS Secure Sketch for Sets of Siz€.
To computeSS(w):
1. Letp’() be the unique monic polynomial of degree exastuch thap'(x) = 0 for all z € w.
(Thatis, letp/(2) ' [T en (2 — 2).)
2. Output the coefficients qf () of degrees — 1 down tos — t.
This is equivalent to computing and outputting the firsymmetric polynomials of the values i;

ie., ifw={xy,..., x5}, then output
S Y Y (m) |
i i#j SCls],|S|=t \i€S
To computeRec(w’, p’), wherew’ = {a1, aq, ..., as},

1. Create a new polynomiak;,,, of degrees which shares the top+ 1 coefficients ofp’; that is, let

def s—1 :
Phigh(2) = 2° + 357 5 a2’

2. Evaluatepy;g, on all points inw’ to obtains pairs(a;, b;).

3. Usel[s,s — t,t + 1];y Reed-Solomon decoding (see, e/g., [Bla83, vL92]) to search for a polynomial
plow Of degrees — ¢ — 1 such thatp,(a;) = b; for at leasts — ¢/2 of the a; values. If no such
polynomial exists, then stop and output “fail.”

4. Output the list of zeroes (roots) of the polynomigl,, — piow (see, €.9.,[Sho05] for root-finding
algorithms; they can be sped up by first factoring out the known roots—nafnely;; ) for thes —¢/2
values ofa; that were not deemed erroneous in the previous step).

To see that this secure sketch can toletatet difference errors, supposie(w, w’) < ¢. Letp’ be asin
the sketch algorithm; that ig;(z) = [[,c,,(z — x). The polynomiap’ is monic; that is, its leading term is
z*. We can divide the remaining coefficients into two groups: the high coefficients, denoted. . , a;_1,
and the low coefficients, denotéd ..., bs_+ 1:

s—1 s—t—1
p'(z) = 2%+ Z aizi + Z bizi .
1=0

1=s—t
—_——
Phigh (2) q(2)

We can writep’ aspnign + ¢, Wheregq has degree — t — 1. The recovery algorithm gets the coefficients of
Phigh as input. For any point in w, we haved = p'(z) = puigh(z) + ¢(z). Thus,pyisn and—gq agree at all
points inw. Since the se intersectsy’ in at leasts — ¢ /2 points, the polynomiat-g satisfies the conditions
of Sted 3 inRec. That polynomial is unique, since no two distinct polynomials of degree— 1 can get the
correctb; on more thams —t/2 a;s (else, they agree on at least ¢ points, which is impossible). Therefore,
the recovered polynomial,,, must be—g; hencepyign(x) — piow(x) = p'(x). Thus,Rec computes the
correctp’ and therefore correctly finds the setwhich consists of the roots of.

Since the output &S is ¢ field elements, the entropy loss of the scheme is at mogt: by Lemmg 3.]L.
(We will see below that this bound is tight, since any sketch must lose attlegst in some situations.)
We have proved:
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Theorem 6.1 (Analysis of Improved JS).Constructior} b is an average-ca&Dif (i), m, m — tlog n, t)
secure sketch. The entropy loss and storage of the scheme are afisgostand both the sketch generation
SS() and the recovery procedufec() run in time polynomial irs, ¢ andlog n.

LOWERBOUNDS FORFIXED SET SIZE IN A LARGE UNIVERSE. The short length of the sketch makes this
scheme feasible for essentially any ratio of set size to universe size (we onljogeet be polynomial in

s). Moreover, for large universes the entropy logs n is essentially optimal for uniform inputs (i.e., when

m = log (). We show this as follows. As already mentioned in the Se 6.1, Lgmnpa C.1 shows that
for a uniformly distributed input, the best possible entropy losa is m’ > log ’S‘) —log A(n,2t + 1, s).

n

By Theorem 12 of Agrellet al. [AVZ0O0], A(n,2t + 2,s) < Et; Noting thatA(n,2t 4+ 1,s) =
s—t

A(n, 2t + 2, s) because distances $Dif ;({/) are even, the entropy loss is at least

m—m' > log <Z> “log A(n, 2t + 1,5) > log (Z) ~log <<Sit>/(sit>) ~ log (n—:+t>.

Whenn > s, this last quantity is roughlylog n, as desired.

6.3 Large Universes via the Hamming Metric: Sublinear-Time Decoding

In this section, we show that the syndrome construction of Section 5 can in fact be adapted for small sets in
a large universe, using specific properties of algebraic codes. We will show that BCH codes, which contain
Hamming and Reed-Solomon codes as special cases, have these properties. As opposed to the constructions
of the previous section, the construction of this section is flexible and can accept input sets of any size.

Thus we obtain a sketch for sets of flexible size, with entropy loss and stolage: + 1). We will
assume that is one less than a power of 2:= 2 — 1 for some integefn, and will identify/ with the
nonzero elements of the binary finite field of degreel/ = GF(2™)*.

SYNDROME MANIPULATION FOR SMALL -WEIGHT WORDS  Suppose now that we have a small set
w C U of sizes, wheren > s. Let x,, denote the characteristic vector of (see the beginning of
Sectior] §). Then the syndrome construction says36ét) = syn(z,,). This is an(n — k)-bit quantity.
Note that the syndrome construction gives us no special advantage over the code-offset construction when
the universe is small: storing thebit x,, + C(r) for a randomk-bit r is not a problem. However, it's a
substantial improvement when> n — k.

If we want to usesyn(z,,) as the sketch ofy, then we must choose a code with- £ very small. In
particular, the entropy af) is at mostiog (Z) ~ slog n, and so the entropy logs— k had better be at most
slogn. Binary BCH codes are suitable for our purposes: they are a family,@f, 6], linear codes with
0 =2t + 1 andk = n — tm (assumingh = 2™ — 1) (see, e.g.[[vL92]). These codes are optimalifex n
by the Hamming bound, which implies thiat< n — log (’Z) [vLQZJB Using the syndrome sketch with a
BCH codeC, we get entropy loss — k& = tlog(n + 1), essentially the same as thieg n of the improved
Juels-Sudan scheme (recall that 2¢ 4 1 allows us to correct set difference errors).

The only problem is that the scheme appears to require computatioftimesince we must compute
syn(x,) = Hz,, and, later, run a decoding algorithm to recowgr. For BCH codes, this difficulty can be
overcome. A word of small weight can be described by listing the positions on which it is nonzero. We

%The Hamming bound is based on the observation that for any code of digtatheeballs of radiug (5§ — 1)/2] centered at
various codewords must be disjoint. Each such ball confgjps’, , ) points, and s@* (|, "}, 5;) < 2". Inour case = 2¢+1,

and so the bound yields < n — log (7).
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call this description theupportof x,, and writesupp(z,,) (note thatupp(z,,) = w; see the discussion of
enlarging the universe appropriately at the beginning of Secjion 6).

The following lemma holds for general BCH codes (which include binary BCH codes and Reed-Solomon
codes as special cases). We state it for binary codes since that is most relevant to the application:

Lemma 6.2. For a [n, k, ] binary BCH code” one can compute:
e syn(x), givensupp(x), in time polynomial ird, log n, and|supp(z)]
e supp(x), givensyn(x) (whenz has weight at mos — 1)/2), in time polynomial iy andlog n.

The proof of Lemma 6]2 requires a careful reworking of the standard BCH decoding algorithm. The
details are presented in Appenflix E. For now, we present the resulting secure sketch for set difference.

Construction 6 (PinSketch).
To computeSS(w) = syn(xy,):
1. Lets; = Y, ., =" (computations inGF (2™)).
2. OutputSS(w) = (s1, 83, S5, - - -, S2t—1)-
To recoverRec(w’, (s1, 83, ..., S2t—1)):
1. Compute(s, s5, ..., sh_1) = SS(w') = syn(zyy).
2. Leto; = s, — s; (in GF(2™), so “—" is the same as+").
3. Computesupp(v) such thatyn(v) = (o1, 03, ...,02-1) and|supp(v)| < t by Lemmg 6.P.
4. If dis(w, w’) < ¢, thensupp(v) = wAw'. Thus, outputv = w’ Asupp(v).

An implementation of this construction, including the reworked BCH decoding algorithm, is available [HIRO06].
The bound on entropy loss is easy to see: the outpgubign + 1) bits long, and hence the entropy loss
is at mostt log(n + 1) by Lemmg 3.]L. We obtain:

Theorem 6.3.PinSketch is an average-ca&Dif (U/ ), m, m—t log(n+1), t) secure sketch for set difference
with storaget log(n + 1). The algorithmsS andRec both run in time polynomial in andlog n.

7 Constructions for Edit Distance

The space of interest in this section is the spAtdor some alphabeF, with distance between two strings
defined as the number of character insertions and deletions needed to get from one string to the other. Denote
this space b¥ditz(n). Let F' = | F]|.

First, note that applying the generic approach for transitive metric spaces (as with the Hamming space
and the set difference space for small universe sizes) does not work here, because the edit metric is not
known to be transitive. Instead, we consider embeddings of the edit metfi; df" into the Hamming or
set difference metric of much larger dimension. We look at two types: standard low-distortion embeddings
and “biometric” embeddings as defined in Secfion 4.3.

For the binary edit distance space of dimensigomve obtain secure sketches and fuzzy extractors cor-
rectingt errors with entropy loss roughly:°!), using a standard embedding, aha8¢/tn log n, using a
relaxed embedding. The first technique works better whisrsmall, sayn!~7 for a constanty > 0. The

second technique is better wheis large; it is meaningful roughly as long ais ﬁgzn.
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7.1 Low-Distortion Embeddings

A (standard) embedding with distortiab is an injectiony) : M; — M, such that for any two points
z,y € My, the ratio%;’z’(y)) is at least 1 and at mo&2.

When the preliminary version of this paper appeared [DRS04], no nontrivial embeddings were known
mapping edit distance inté, or the Hamming metric (i.e., known embeddings had distorfign)). Re-
cently, Ostrovsky and Rabani [OR05] gave an embedding of the edit metricFover{0, 1} into ¢; with
subpolynomial distortion. It is an injective, polynomial-time computable embedding, which can be inter-
preted as mapping to the Hamming spéeel }¢, whered = poly(n).

Fact 7.1 ([OR05]). There is a polynomial-time computable embedding : Editg 3(n) — {0, 1}Pe (™)
with distortion Deq(n) & 20(Vicgnloglogn)

We can compose this embedding with the fuzzy extractor constructions for the Hamming distance to
obtain a fuzzy extractor for edit distance which will be good whahe number of errors to be corrected, is
quite small. Recall that instantiating the syndrome fuzzy extractor construction (Theotem 5.2) with a BCH
code allows one to corretterrors out ofd at the cost of’ log d + 21log (1) — 2 bits of entropy.

Construction 7. For any length: and error threshold, let 1.4 be the embedding given by Fact]7.1 from
Edity,13(n) into {0, 1}¢ (whered = poly(n)), and letsyn be the syndrome of a BCH code correcting
t' = tDeq(n) errors in{0,1}¢. Let {H,}.cx be a family of universal hash functions frof®, 1}¢ to
{0, 1}* for somer. To computeGen on inputw € Edit{o,13(n), pick a random: and output

R = Hx(wed(w)) 7P = (syn(wed(w))7m) .

To computeRep on inputsw’ and P = (s, ), computey = Rec(1eq(w’), s), whereRec is from Construc-
tion[3, and outpu? = H,(y).

Because).q is injective, a secure sketch can be constructed simil&$(w) = syn(y(w)), and to
recoverw from w’ ands, computey_' (Rec(1eqa(w'))). However, it is not known to be efficient, because it
is not known how to computé;d1 efficiently.

Proposition 7.2. For any n,t,m, there is an average-cadgdity, 13(n), m, m’, t)-secure sketch and an
efficient average-cas&dit(g 1} (n), m, £, t, ¢)-fuzzy extractor where)' = m — t20(vicgnloglogn) gndy =

m/ —2log (%) + 2. In particular, for anya < 1, there exists an efficient fuzzy extractor toleratirfgerrors

with entropy los: () + 21og ().

Proof. Constructiorn ] is the same as the construction of Theprejn 5.2 (instantiated with a BCH-code-based
syndrome construction) acting afq(w). Becauseyp.q is injective, the min-entropy oflq(w) is the

same as the min-entropy. of w. The entropy loss in Constructi¢n 3 instantiated with BCH codes is
t'logd = t20Wlognloglogn) 150 poly(n). Because2C(Vicenloglogn) grows faster thaogn, this is the

same a$20(\/10gn10g logn). n

Note that the peculiar-looking distortion function from 7.1 increases more slowly than any polyno-
mial inn, but still faster than any polynomial ing . In sharp contrast, the best lower bound states that any

1The embedding of [OR05] produces strings of integers in the space. , O(logn) }*°¥(™ equipped with/; distance. One
can convert this into the Hamming metric with only a logarithmic blowup in length by representing each integer in unary.
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embedding oEdit, ;}(n) into ¢; (and hence Hamming) must have distortion at 1é48bg 1/ log log n)
[AKQ7]. Closing the gap between the two bounds remains an open problem.

GENERAL ALPHABETS. To extend the above construction to genefalwe represent each character of
F as a string ofog F bits. This is an embedding™ into {0, 1}"!°8 ¥ which increases edit distance by a
factor of at mostog F'. Thent’ = t(log F')Deq(n) andd = poly(n,log F'). Using these quantities, we get
the generalization of Propositipn ¥.2 for larger alphabets (again, by the same embedding) by changing the

formula form’ to m’ = m — t(log F)20(V/log(nlog F) loglog(n log F')),

7.2 Relaxed Embeddings for the Edit Metric

In this section, we show that a relaxed notion of embedding, callEdraetric embedding Sectior 4.B,

can produce fuzzy extractors and secure sketches that are better than what one can get from the embedding
of [ORO0S5] whent is large (they are also much simpler algorithmically, which makes them more practical).

We first discuss fuzzy extractors and later extend the technique to secure sketches.

Fuzzy EXTRACTORS Recall that unlike low-distortion embeddings, biometric embeddings do not care
about relative distances, as long as points that were “close” (closet;tham not become “distant” (farther
apart thant,). The only additional requirement of a biometric embedding is that it preserve some min-
entropy: we do not want too many points to collide together. We now describe such an embedding from the
edit distance to the set difference.

A c-shingleis a lengthe consecutive substring of a given string A c¢-shingling [Bro97] of a string
w of lengthn is the set (ignoring order or repetition) of &b — ¢ + 1) c¢-shingles ofw. (For instance,
a 3-shingling of “abcdecdeah” iabc, bed, cde, dec, ecd, dea, pahThus, the range of the-shingling
operation consists of all nonempty subsets of size at mest: + 1 of F¢. Let SDif (F*¢) stand for the set
difference metric over subsets 8f andSH,. stand for the:-shingling map fronEditz(n) to SDif (F¢). We
now show thatH, is a good biometric embedding.

Lemma 7.3. For anyc, SH. is an average-casg, to = (2c —1)t1,m1,ma = my — [Z]logy(n —c+1))-
biometric embedding dditz(n) into SDif (F¢).

Proof. Let w,w’ € Editz(n) be such thatlis(w,w’) < ¢; andI be the sequence of at mastinser-
tions and deletions that transformsinto w’. It is easy to see that each character deletion or insertion
adds at mos{2c — 1) to the symmetric difference betwe&t.(w) and SH.(w’), which implies that
dis(SH¢(w), SH.(w")) < (2¢ — 1)t1, as needed.

Forw € F", defineg.(w) as follows. Comput&H.(w) and store the resulting shingles in lexicographic
orderhy ... hy (k < n —c+1). Next, naturally partitionv into [n/c]| c-shingless; . . . sy, ], all disjoint
except for (possibly) the last two, which overlap &y:/c| — n characters. Next, for < j < [n/c], set
p; to be the index € {0...k} such thats; = h;. In other wordsp; tells the index of thejth disjoint
shingle ofw in the alphabetically ordereb-setSH.(w). Setg.(w) = (p1,...,pP[m/c)- (FOr instance,
g3(“abcdecdeah = (1,5,4,6), representing the alphabetical order of “abc”, “dec”, “dea” and “eah” in
SH5(“abcdecdealy’) The number of possible values fgr(w) is at most(n — ¢ + 1)[¢!, andw can be
completely recovered fro®H.(w) andg.(w).

Now, assumé/V is any distribution of min-entropy at least; on Edit=(n). Applying Lemm(b),
we getH (W | go(W)) > m; — [%]1logy(n —c+1). SincePr(W = w | g.(W) = g) = Pr(SH.(W) =
SH.(w) | g.(W) = g) (because givep.(w), SH.(w) uniquely determines and vice versa), by applying
the definition ofH.,, we obtainH . (SH.(W)) > Hoo (SH(W) | g(W)) = Hoo (W | go(W)). The same
proof holds for average min-entropy, conditioned on some auxiliary informdtion O
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By Theore, for universg® of size F¢ and distance threshold = (2¢ — 1)¢;, we can construct
a secure sketch for the set difference metric with entropy dodsg(F“ + 1)] ([-] because Theorem 6.3
requires the universe size to be one less than a power of 2). By Lemjna 4.3, we can obtain a fuzzy extractor
from such a sketch, with additional entropy l@dsg (%) —2. Applying Lemm to the above embedding
and this fuzzy extractor, we obtain a fuzzy extractorBdit~(n), any input entropyn, any distance, and
any security parameter with the following entropy loss:

1
{2-‘ logg(n —c+1) 4+ (2¢ — 1)t[log(F° + 1)] + 2log () -2
C €
(the first component of the entropy loss comes from the embedding, the second from the secure sketch for
set difference, and the third from the extractor). The above sequence of lemmas results in the following

construction, parameterized by shingle lengémd a family of universal hash functiohé= {SDif (F¢) —
{0,1}"} e x, wherel is equal to the input entropy. minus the entropy loss above.

Construction 8 (Fuzzy Extractor for Edit Distance).
To computeGen(w) for |w| = n:
1. ComputeSH,(w) by computingn — ¢ + 1 shingles(vy, ve, . .., v,—+1) @and removing duplicates to
form the shingle set from w.
2. Computes = syn(z,) as in Constructiop]6.
3. Select a hash functioH,, € H and outpul R = H,(v), P = (s,x)).
To computeRep(w’, (s, x)):
1. ComputeSH.(w’) as above to get'.
2. UseRec(v', s) from in Constructiof 6 to recover.
3. OutputR = H,(v).

We thus obtain the following theorem.

Theorem 7.4. For anyn,m,c and0 < e < 1, there is an efficient average-caskditr(n), m,m —
[2]logy(n — e+ 1) — (2¢ — 1)t[log(F° + 1)] — 2log (1) + 2, ¢, €)-fuzzy extractor.

Note that the choice afis a parameter; by ignoring| and replacing: — ¢ + 1 with n, 2¢ — 1 with 2¢
andF° + 1 with ¢, we get that the minimum entropy loss occurs near

nlogn 1/3
C =
4t log F
and is abou?.38 (tlog F')'/3 (nlog n)?® (2.38 is really /4-+1//2). In particular, if the original string has
a linear amount of entrop(n log F), then we can tolerate= Q(nlog? F/ log® n) insertions and deletions
while extractingd(n log F') — 2 log (%) bits. The number of bits extracted is linear; if the string lengih

polynomial in the alphabet siz&, then the number of errors tolerated is linear also.

SECURE SKETCHES. Observe that the proof of Lemra J7.3 actually demonstrates that our biometric em-
bedding based on shingling is an embedding with recovery informgtio®bserve also that it is easy to
reconstructw from SH.(w) and g.(w). Finally, note that PinSketch (Constructioh 6) is an average-case
secure sketch (as are all secure sketches in this work). Thus, combining Thedrem 6.3 with[Lelnma 4.7, we
obtain the following theorem.
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Construction 9 (Secure Sketch for Edit Distance).For SS(w), computev = SH.(w) ands; = syn(x,)
as in Constructiop|8. Compuse = g.(w), writing eachp; as a string oflog n] bits. Outputs = (s1, s2).
ForRec(w’, (s1, s2)), recover as in Constructioh|8, sort it in alphabetical order, and recevey stringing
along elements of according to indices in,.

Theorem 7.5. For anyn,m,c and0 < ¢ < 1, there is an efficient average-caséditr(n), m,m —
[%]1logy(n — ¢+ 1) — (2¢ — 1)t[log(F° + 1)],t) secure sketch.

The discussion about optimal valuescdfom above applies equally here.

Remark 1. In our definitions of secure sketches and fuzzy extractors, we required the origaral the
(potentially) modifiedw’ to come from the same spagdéd. This requirement was for simplicity of exposi-
tion. We can alloww’ to come from a larger set, as long as distance frois well-defined. In the case of
edit distance, for instance;’ can be shorter or longer than all the above results will apply as long as it is
still within ¢ insertions and deletions.

8 Probabilistic Notions of Correctness

The error model considered so far in this work is very strong: we required that secure sketches and fuzzy
extractors accemverysecretw’ within distance of the original inputw, with no probability of error.

Such a stringent model is useful as it makes no assumptions on either the exact stochastic properties of
the error process or the adversary’s computational limits. However, Lé¢mrha C.1 shows that secure sketches
(and fuzzy extractors) correctingerrors can only be as “good” as error-correcting codes with minimum
distance2t + 1. By slightly relaxing the correctness condition, we will see that one can tolerate many more
errors. For example, there is no good code which can corrgteerrors in the binary Hamming metric:
by the Plotkin bound (see, e.d., [Sud01, Lecture 8]) a code with minimum distance greatey 2haams at
most2n codewords. Thus, there is no secure sketch with residual entndpy log n which can correct
n/4 errors with probability 1. However, with the relaxed notions of correctness below, one can tolerate
arbitrarily close ton/2 errors, i.e., correotz(% — =) errors for any constant > 0, and still have residual
entropy$2(n).

In this section, we discuss three relaxed error models and show how the constructions of the previous
sections can be modified to gain greater error-correction in these models. We will focus on secure sketches
for the binary Hamming metric. The same constructions yield fuzzy extractors (by Lemma 4.1). Many of
the observations here also apply to metrics other than Hamming.

A common point is that we will require only that the a corrupted inplbe recovered with probability at
leastl —« < 1 (the probability space varies). We describe each model in terms of the additional assumptions
made on the error process. We describe constructions for each model in the subsequent sections.

Random Errors. Assume there is &nowndistribution on the errors which occur in the data. For the
Hamming metric, the most common distribution is the binary symmetric chanfi€l,: each bit of
the input is flipped with probability and left untouched with probability — p. We require that for
any inputw, Rec(W’,SS(w)) = w with probability at least — « over the coins ofS and overiV’
drawn applying the noise distribution te.

In that case, one can correct an error rate up to Shannon’s bound on noisy channel coding. This bound
is tight. Unfortunately, the assumption of a known noise process is too strong for most applications:
there is no reason to believe we understand the exact distribution on errors which occur in complex
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data such as biometri@.However, it provides a useful baseline by which to measure results for other
models.

Input-dependent Errors. The errors are adversarial, subject only to the conditions that (a) the error mag-
nitudedis(w, w’) is bounded to a maximum of and (b) the corrupted workpends only on the input
w, and not on the secure sket86(w). Here we require that for any pair, w’ at distance at most
we haveRec(w’, SS(w)) = w with probability at leasl — « over the coins 08S.

This model encompasses any complex noise process which has been observed to never introduce more
thant errors. Unlike the assumption of a particular distribution on the noise, the bound on magnitude
can be checked experimentally. Perhaps surprisingly, in this model we can tolerate just as large an
error rate as in the model of random errors. That is, we can tolerate an error rate up to Shannon’s
coding bound and no more.

Computationally bounded Errors. The errors are adversarial and may depend on@ahd the publicly
stored informatiorsS(w). However, we assume that the errors are introduced by a process of bounded
computational power. Thatis, there is a probabilistic circuit of polynomial size (in the lefgthich
computesw’ from w. The adversary cannot, for example, forge a digital signature and base the error
pattern on the signature.

It is not clear whether this model allows correcting errors up to the Shannon bound, as in the two mod-
els above. The question is related to open questions on the construction of efficiently list-decodable
codes. However, when the error rate is either very high or very low, then the appropriate list-decodable
codes exist and we can indeed match the Shannon bound.

ANALOGUES FORNOISY CHANNELS AND THE HAMMING METRIC. Models analogous to the ones
above have been studied in the literature on codes for noisy binary channels (with the Hamming met-
ric). Random errors and computationally bounded errors both make obvious sense in the coding con-
text [Sha48, MPSWO05]. The second model — input-dependent errors — does not immediately make sense
in a coding situation, since there is no data other than the transmitted codeword on which errors could de-
pend. Nonetheless, there is a natural, analogous model for noisy channels: one can allow the sender and
receiver to share either (1) common, secret random coins[(see [DGL04,/Lan04] and references therein) or
(2) a side channel with which they can communicate a small number of noise-free, secret bits [Gur03].

Existing results on these three models for the Hamming metric can be transported to our context using
the code-offset construction:

SS(wyz) =w e C(x).

Roughly, any code which corrects errors in the models above will lead to a secure sketch (resp. fuzzy
extractor) which corrects errors in the model. We explore the consequences for each of the three models in
the next sections.

8.1 Random Errors

The random error model was famously considered by Shamnon [Sha48]. He showed that for any discrete,
memoryless channel, the rate at which information can be reliably transmitted is characterized by the maxi-
mum mutual information between the inputs and outputs of the channel. For the binary symmetric channel

125ince the assumption here plays a role only in correctness, it is still more reasonable than assuming that we know exact
distributions on the data in proofs sécrecy However, in both cases, we would like to enlarge the class of distributions for which
we can provably satisfy the definition of security.
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with crossover probability, this means that there exist codes encodirgts inton bits, tolerating error
probability p in each bit if and only if

Y1) - o).
n
whereh(p) = —plogp — (1 — p)log(1 — p) andd(n) = o(1). Computationally efficient codes achieving
this bound were found later, most notably by Forney [For66]. We can use the code-offset construction
SS(w; x) = w @& C(x) with an appropriate concatenated cade [For66] or, equival&fily) = syn,(w)
since the codes can be linear. We obtain:

Proposition 8.1. For any error rate0 < p < 1/2 and constand > 0, for large enough there exist secure
sketches with entropy lo$é(p) + d)n, which correct the error rate of in the data with high probability
(roughly2~<™ for a constants > 0).

The probability here is taken over tleerorsonly (the distribution on input strings can be arbitrary).

The quantityh(p) is less than 1 for any in the range(0,1/2). In particular, one can get nontrivial
secure sketches even for a very high error gedes long as it is less thaly2; in contrast, no secure sketch
which corrects errors with probability 1 can tolerates n/4. Note that several other works on biometric
cryptosystems consider the model of randomized errors and obtain similar results, though the analyses
assume that the distribution on inputs is uniform [TG04, CZ04].

A MATCHING IMPOSSIBILITY RESULT. The bound above is tight. The matching impossibility result also
applies to input-dependent and computationally bounded errors, since random errors are a special case of
both more complex models.

We start with an intuitive argument: If a secure sketch allows recovering from random errors with high
probability, then it must contain enough information abeoub describe the error pattern (since giverand
SS(w), one can recover the error pattern with high probability). Describing the outcoméndependent
coin flips with probabilityp of heads requiresh(p) bits, and so the sketch must reveal(p) bits aboutw.

In fact, that argument simply shows thdti(p) bits of Shannon information are leaked aboeutwhereas
we are concerned with min-entropy loss as defined in Sefction 3. To make the argument more foiinal, let
be uniform over{0, 1} and observe that with high probability over the output of the sketching algorithm,
v = SS(w), the conditional distributio, = W|ssy)—, forms a good code for the binary symmetric
channel. That is, for most valuesif we sample a random string from W{ssy-)—, and send it through a
binary symmetric channel, we will be able to recover the correct valu€hat means there exists some
such that both (a)V, is a good code and (.. (W) is close taH. (W|SS(W)). Shannon’s noisy coding
theorem says that such a code can have entropy atmibst h(p) + o(1)). Thus the construction above is
optimal:

Proposition 8.2. For any error rate0 < p < 1/2, any secure sketc$t which corrects random errors (with
rate p) with probability at least2/3 has entropy loss at least(h(p) — o(1)); that is, Hoo (W|SS(W)) <
n(1l — h(p) — o(1)) whenW is drawn uniformly from{0, 1}".

8.2 Randomizing Input-dependent Errors

Assuming errors distributed randomly according to a known distribution seems very limiting. In the Ham-
ming metric, one can construct a secure sketch which achieves the same result as with random errors for
every error process where the magnitude of the error is bounded, as long as the errors are independent of
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the output ofSS(WW). The same technique was used previously by Bennett et al. [BBR88, p. 216] and, in a
slightly different context, Lipton [Lip94, DGL04].

The idea is to choose a random permutation[n| — [n], permute the bits ofv before applying the
sketch, and store the permutatiomlong withSS(7(w)). Specifically, let”' be a linear code toleratingya
fraction of random errors with redundaney- k£ ~ nh(p). Let

SS(w;m) = (7, sync(m(w))),

wherer : [n] — [n] is a random permutation and, for= w; - - - wy, € {0, 1}", 7(w) denotes the permuted
StriNgwx(1)Wr(2) * - - Wx(n)- The recovery algorithm operates in the obvious way: it first permutes the input
w’ according tor and then runs the usual syndrome recovery algorithm to reedvey.

For any particular paitw, w’, the differencew & w’ will be mapped to a random vector of the same
weight by, and any code for the binary symmetric channel (with gate ¢/n) will correct such an error
with high probability.

Thus we can construct a sketch with entropy l0$5(¢/n) — o(1)) which corrects any flipped bits
with high probability. This is optimal by the lower bound for random errors (Propoditign 8.2), since a
sketch for data-dependent errors will also correct random errors. It is also possible to reduce the amount of
randomness, so that tkzeof the sketch meets the same optimal bolind [Smi07].

An alternative approach to input-dependent errors is discussed in the last paragraph of Section 8.3.

8.3 Handling Computationally Bounded Errors Via List Decoding

As mentioned above, many results on noisy coding for other error models in Hamming space extend to
secure sketches. The previous sections discussed random, and randomized, errors. In this section, we
discuss constructions [Gur03, Lan04, MPSWO05] which transforiistadecodablecode, defined below,

into uniquely decodable codes for a particular error model. These transformations can also be used in the
setting of secure sketches, leading to better tolerance of computationally bounded errors. For some ranges
of parameters, this yields optimal sketches, that is, sketches which meet the Shannon bound on the fraction
of tolerated errors.

LisT-DECODABLE CODES. A codeC' in a metric spaceM is calledlist-decodablewith list size L and
distance if for every pointx € M, there are at mogt codewords within distanceof M. A list-decoding
algorithm takes as input a wotd and returns the corresponding list co, ... of codewords. The most
interesting setting is whef is a small polynomial (in the description sit& | M|), and there exists an
efficient list-decoding algorithm. It is then feasible for an algorithm to go over each word in the list and
accept if it has some desirable property. There are many examples of such codes for the Hamming space;
for a survey see Guruswami’s thesis [GUr01]. Recently there has been significant progress in constructing
list-decodable codes for large alphabets, €.g., [PV05, GROE].

Similarly, we can define bist-decodable secure sketalith size L and distance as follows: for any pair
of wordsw, w’ € M at distance at most the algorithmRec(w’, SS(w)) returns a list of at mosk points
in M; if dis(w,w’) < t, then one of the words in the list must beitself. The simplest way to obtain a
list-decodable secure sketch is to use the code-offset construction of $éction 5 with a list-decodable code for
the Hamming space. One obtains a different example by running the improved Juels-Sudan scheme for set
difference (Construction| 5), replacing ordinary decoding of Reed-Solomon codes with list decoding. This
yields a significant improvement in the number of errors tolerated at the price of returning a list of possible
candidates for the original secret.

30



SIEVING THE LIST. Given a list-decodable secure skef& all that's needed is to store some additional in-
formation which allows the receiver to disambiguatérom the list. Let's suggestively name the additional
informationTag(w; R), whereR is some additional randomness (perhaps a key). Given a list-decodable
codeC, the sketch will typically look like

SS(w;z) = (w @ C(x), Tag(w) ).

Oninputsw’ and(A, tag), the recovery algorithm consists of running the list-decoding algorithm’anA
to obtain a list of possible codeword¥z1),...,C(xy). There is a corresponding list of candidate inputs
wi,...,wr, Wherew; = C'(z;) @ A, and the algorithm outputs the first in the list such thaf'ag(w;) =
tag. We will choose the functiofi'ag() so that the adversary can not arrange to have two values in the list
with valid tags.

We consider twdag() functions, inspired by [Gur03, Lan04, MPSWO05].

1. Recall that for computationally bounded errors, the corrupted strimepends obothw andSS(w),
butw’ is computed by a probabilistic circuit of size polynomiakin

Considerl'ag(w) = hash(w), wherehash is drawn from a collision-resistant function family. More
specifically, we will use some extra randomnegs choose a keyey for a collision-resistant hash
family. The output of the sketch is then

SS(w;z,7) = (w @ C(x), key(r), hashje,qy(w) ).

If the list-decoding algorithm for the cod€ runs in polynomial time, then the adversary succeeds
only if he can find a valuev; # w such thathash,, (w;) = hashy., (w), that is, only by finding a
collision for the hash function. By assumption, a polynomially bounded adversary succeeds only with
negligible probability.

The additional entropy loss, beyond that of the code-offset part of the sketch, is bounded above by the
output length of the hash function. df is the desired bound on the adversary’s success probability,
then for standard assumptions on hash functions this loss will be polynonigj(iry c).

In principle this transformation can yield sketches which achieve the optimal entropy(faggn ) —

o(1)), since codes with polynomial list size are known to exist for error rates approaching the
Shannon bound. However, in order to use the construction the code must also be equipped with a
reasonably efficient algorithm for finding such a list. This is necessary both so that recovery will be
efficient and, more subtly, for the proof of security to go through (that way we can assume that the
polynomial-time adversary knows the list of words generated during the recovery procedure). We do
not know ofefficient(i.e., polynomial-time constructible and decodable) binary list-decodable codes
which meet the Shannon bound for all choices of parameters. However, when the error rat(%is near
such codes are knowin [GS00]. Thus, this type of construction yields essentially optimal sketches when
the error rate is nealr/2. This is quite similar to analogous results on channel coding [MPSWO5].
Relatively little is known about the performance of efficiently list-decodable codes in other parameter
ranges for binary alphabets [Gul01].

2. A similar, even simpler, transformation can be used in the setting of input-dependent errors (i.e.,
when the errors depend only on the input and not on the sketch, but the adversary is not assumed
to be computationally bounded). One can stbrg(w) = (I, hy(w)), where{h;},., comes from a
universal hash family mapping from to {0, 1}¢, wherel = log (é) +log L and« is the probability

of an incorrect decoding.
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The proof is simple: the valuesy,...,w; do not depend ord, and so for any valuev; # w,

the probability thath;(w;) = hr(w) is 27¢. There are at mosk possible candidates, and so the
probability that any one of the elements in the list is accepted is at mo8t! = o The additional
entropy loss incurred is at most= log (2) + log(L).

In principle, this transformation can do as well as the randomization approach of the previous section.
However, we do not know of efficient binary list-decodable codes meeting the Shannon bound for
most parameter ranges. Thus, in general, randomizing the errors (as in the previous section) works
better in the input-dependent setting.

9 Secure Sketches and Efficient Information Reconciliation

Suppose Alice holds a setand Bob holds a set’ that are close to each other. They wish to reconcile the
sets: to discover the symmetric differeneé\w’ so that they can take whatever appropriate (application-
dependent) action to make their two sets agree. Moreover, they wish to do this communication-efficiently,
without having to transmit entire sets to each other. This problem is known as set reconciliation and naturally
arises in various settings.

Let (SS, Rec) be a secure sketch for set difference that can handle distance;fpritvermore, suppose
that|wAw'| < t. Then if Bob receives = SS(w) from Alice, he will be able to recoven, and therefore
wAw', from s andw’. Similarly, Alice will be able findwAw’ upon receivings’ = SS(w’) from Bob.

This will be communication-efficient ifs| is small. Note that our secure sketches for set difference of
Section$ 62 anfl_§.3 are indeed short—in fact, they are secure precisely because they are short. Thus, they
also make good set reconciliation schemes.

Conversely, a good (single-message) set reconciliation scheme makes a good secure sketch: simply
make the message the sketch. The entropy loss will be at most the length of the message, which is short
in a communication-efficient scheme. Thus, the set reconciliation scheme CPISync of [MTZ03] makes a
good secure sketch. In fact, it is quite similar to the secure sketch of Sectjon 6.2, except instead of the top
coefficients of the characteristic polynomial it uses the values of the polynontigbaits.

PinSketch of Sectiop §.3, when used for set reconciliation, achieves the same parameters as CPISync
of [MTZ03], except decoding is faster, because instead of spendliige to solve a system of linear equa-
tions, it spendg? time for Euclid’s algorithm. Thus, it can be substituted wherever CPISync is used, such
as PDA synchronization [STA03] and PGP key server updates [Min04]. Furthermore, optimizations that
improve computational complexity of CPISync through the use of interaction [MT02] can also be applied
to PinSketch.

Of course, secure sketches for other metrics are similarly related to information reconciliation for those
metrics. In particular, ideas for edit distance very similar to ours were independently considered in the
context of information reconciliation by [CTDA4].
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A Proof of Lemmal2.2

Recall that Lemm 2|2 considered random variable®, C' and consisted of two parts, which we prove
one after the other.

Part (a) stated that for ady> 0, the conditional entropi . (A|B = b) is at leasH . (A| B) —log(1/4)
with probability at least — § (the probability here is taken over the choicebpf Let p = 2 Hee(AIB) —

E, [27H(AIB=b)] By the Markov inequality2 ~H=(415=t) < p/§ with probability at least — 4. Taking
logarithms, part (a) follows.

Part (b) stated that iB has at mos2* possible values, thef (A | (B,C)) > Hoo((A,B) | C) =\ >
H. (A | C) — A\ Inparticular,Ho, (A | B) > Hoo((4, B)) — A > Ho(A) — . Clearly, it suffices to
prove the first assertion (the second follows from takihtp be constant). Moreover, the second inequality
of the first assertion follows from the fact that[A = a A B =b | C = ¢] < Pr[A =a | C = ¢], for anyc.
Thus, we prove only thafl,.(A | (B,C)) > Hy((A,B) | C) — X:
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Ho(A|(B,C)) = —logEy o) [maxPr[A =a|B=bANC= c]]

= —lomeaxPr[A:a\B:b/\C:c]Pr[B:b/\C:c]
(bc)

= —logzmaxPr[A:a/\B:MC:c]Pr[C:c]
(be)

— 10 Y B mpxPifd —an B = € =]
b

Y

flogZJECHC [maxPr[A =aANB=V|C= c]]

= —logz2_ (AB)IO) > _1og2ro H((AB)O) — f1_((4,B) | C) -

The first inequality in the above derivation holds since taking the maximum over all(pair$ (instead of
over pairs(a, b) whereb is fixed) increases the terms of the sum and hence decreases the negative log of the
sum.

B On Smooth Variants of Average Min-Entropy and the Relationship to
Smooth Renyi Entropy

Min-entropy is a rather fragile measure: a single high-probability element can ruin the min-entropy of an
otherwise good distribution. This is often circumvented within proofs by considering a distribution which is
close to the distribution of interest, but which has higher entropy. Renner and Wolf [RW04] systematized this
approach with the notion efsmoothmin-entropy (they use the term &Ryi entropy of ordersc” instead of
“min-entropy”), which considers all distributions that arelose:

HgO(A) - B: SII?(i),(B)Se HOO(B) '

Smooth min-entropy very closely relates to the amount of extractable nearly uniform randomness: if one
can mapA to a distribution that is-close toU,,, thenHS_(A) > m; conversely, from anyl such that
H¢ (A) > m, and for any, one can extrach—2 log ( ) bits that are+¢,-close to uniform (seé¢ [RW04]
for a more precise statement; the proof of the first statement follows by considering the inverse map, and
the proof of the second from the leftover hash lemma, which is discussed in more detail in Lerhma 2.4). For
some distributions, considering the smooth min-entropy will improve the number and quality of extractable
random bits.

A smooth version of average min-entropy can also be considered, defined as

HS (A|B) = max H.(C|D).
(C,D): SD((A,B),(C,D))<e

It similarly relates very closely to the number of extractable bits that look nearly uniform to the adversary
who knows the value oB, and is therefore perhaps a better measure for the quality of a secure sketch that
is used to obtain a fuzzy extractor. All our results can be cast in terms of smooth entropies throughout,
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with appropriate modifications (if input entropy éssmooth, then output entropy will also lsesmooth,

and extracted random strings will lagfurther away from uniform). We avoid doing so for simplicity of

exposition. However, for some input distributions, particularly ones with few elements of relatively high

probability, this will improve the result by giving more secure sketches or longer-output fuzzy extractors.
Finally, a word is in order on the relation of average min-entropy to conditional min-entropy, introduced

by Renner and Wolf in[[RW05], and defined B (A | B) = —logmax,, Pr(A =a | B =b) =

min, Ho (A | B = b) (ane-smooth version is defined analogously by considering all distribu{ioh®)

that are withine of (A, B) and taking the maximum among them). This definition is too strict: it takes

the worst-casé, while for randomness extraction (and many other settings, such as predictability by an

adversary), average-cassuffices. Average min-entropy leads to more extractable bits. Nevertheless, after

smoothing the two notions are equivalent up to an addltbge(%) term: H (A | B) > HS (A | B)

andHo,“T2(A | B) > HS (A | B) — log (é) (for the case ok = 0, this follows by constructing

a new distribution that eliminates dllfor which Hy,(A | B = b) < Hoo(A | B) — log (é) which

will be within ey of the (A4, B) by Markov’s inequality; fore > 0, an analogous proof works). Note that
by Lemmg 2.2(b), this implies a simple chain rule #f_ (a more general one is given in [RW05, Section

2.4]): Hootr2 (A | B) > H_((A, B)) — Ho(B) — log (LQ) whereHy(B) is the logarithm of the number
of possible values oB.

C Lower Bounds from Coding

Recall that an{ M, K, t) code is a subset of the metric spakewhich cancorrectt errors (this is slightly
different from the usual notation of coding theory literature).

Let K(M,t) be the largesiK for which there exists aiM, K, t)-code. Given any sef of 2™ points
in M, we letK(M,t,S) be the largesKk such that there exists g1, K, t)-code all of whosex points
belong toS. Finally, we letL(M,t,m) = log(min|gj—om K(n,t,S)). Of course, whem = log | M|, we
getL(M,t,n) = log K(M,t). The exact determination of quantitiBg M, t) and K (M, ¢, S) is a central
problem of coding theory and is typically very hard. To the best of our knowledge, the quattity ¢, m)
was not explicitly studied in any of three metrics that we study, and its exact determination seems hard as
well.

We give two simple lower bounds on the entropy loss (one for secure sketches, the other for fuzzy extrac-
tors) which show that our constructions for the Hamming and set difference metrics output as much entropy
m’ as possible when the original input distribution is uniform. In particular, because the constructions have
the same entropy loss regardlessgfthey are optimal in terms of the entropy loas— m/. We conjecture
that the constructions also have the highest possible valder all values ofm, but we do not have a good
enough understanding éf( M, ¢, m) (where M is the Hamming metric) to substantiate the conjecture.

Lemma C.1. The existence of an\1, m, m’, t) secure sketch implies that’ < L(M, ¢, m). In particular,
whenm = log | M| (i.e., when the password is truly uniformy), < log K (M, t).

Proof. AssumeSS is such a secure sketch. Lgtbe any set of size™ in M, and leti be uniform over
S. Then we must havél.,(W | SS(W)) > m/. In particular, there must be some valuesuch that
H, (W | SS(W) = v) > m/. But this means that conditioned 66(1W) = v, there are at leag" points
w in S (call this setl") which could producé&S(W) = v. We claim that thes2™ values ofw form a code
of error-correcting distance Indeed, otherwise there would be a pairite M such thatis(wg, w’) < ¢

anddis(wy,w’") < t for somewy, w; € T. But then we must have th&c(w’, v) is equal to bothuy and
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w1, Which is impossible. Thus, the sEtabove must form agM, 2m', t)-code insideS, which means that
m’ <log K(M,t,S). SinceS was arbitrary, the bound follows. O

Lemma C.2. The existence dfM, m, ¢, t, €)-fuzzy extractors implies th&t< L(M,t, m)—1log(1l —¢). In
particular, whenm = log | M| (i.e., when the password is truly unifornd)< log K (M, t) — log(1 — €).

Proof. Assume(Gen, Rep) is such a fuzzy extractor. L&t be any set of size™ in M, let W be uniform
over S and let(R, P) « Gen(WW). Then we must hav8D ((R, P), (Uy, P)) < e. In particular, there
must be some valug of P such thatR is e-close toU, conditioned onP = p. In particular, this means
that conditioned orP = p, there are at leagtl — ¢)2¢ pointsr € {0, 1} (call this setT’) which could be
extracted with? = p. Now, map every € T to some arbitraryw € .S which could have producedwith
nonzero probability gived® = p, and call this mag'. C must define a code with error-correcting distance
t by the same reasoning as in Lemima|C.1. O

Observe that, as long as< 1/2, we have) < —log(1 —¢) < 1, so the lower bounds on secure sketches
and fuzzy extractors differ by less than a bit.

D Analysis of the Original Juels-Sudan Construction

In this section we present a new analysis for the Juels-Sudan secure sketch for set difference. We will assume
thatn = |U| is a prime power and work over the fiefl= GF(n). On input setw, the original Juels-Sudan
sketch is a list of- pairs of pointgz;, y;) in F, for some parametet, s < r < n. Itis computed as follows:

Construction 10 (Original Juels-Sudan Secure Sketch [JS06]).
Input: a setw C F of sizes and parametersec {s+1,...,n},t € {1,...,s}

1. Choosep() at random from the set of polynomials of degree at nhosts — ¢t — 1 over.F.
Write w = {z1,...,z5}, and lety; = p(z;) fori =1,...,s.

2. Chooser — s distinct pointss.1, . . ., z, at random fromF — w.

3. Fori=s+1,...,r,choosey; € F at random such that # p(z;).

4. OutputSS(w) = {(x1,v1), ..., (zr,y)} (in lexicographic order of;).

The parameter measures the error-tolerance of the scheme: g8f&w) and a setw’ such that
wAw' < t, one can recovew by considering the paire;, y;) for z; € w’ and running Reed-Solomon
decoding to recover the low-degree polynomiél). When the parameter is very small, the scheme
corrects approximately twice as many errors with good probability (in the “input-dependent” sense from
Sectior] 8). Whenm is low, however, we show here that the bound on the entropy loss becomes very weak.

The parameter dictates the amount of storage necessary, one on hand, and also the security of the
scheme (thatis, far = s the scheme leaks all information and for larger and lardkere is less information
aboutw). Juels and Sudan actually propose two analyses for the scheme. First, they analyze the case where
the secretw is distributed uniformly over all subsets of size Second, they provide an analysis of a
nonuniform password distribution, but only for the case- n (that is, their analysis applies only in the
small universe setting, whefe(n) storage is acceptable). Here we give a simpler analysis which handles
nonuniformity and any < n. We get the same results for a broader set of parameters.

Lemma D.1. The entropy loss of the Juels-Sudan scheme is atmhesh + log () — log (' ~%) + 2.
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Proof. This is a simple application of Lemnja .2(bHo((W,SS(W))) can be computed as follows.
Choosing the polynomigl (which can be uniquely recovered fromandSS(w)) requiress — ¢ random
choices fromF. The choice of the remaining;’s requireslog (’j:j) bits, and choosing thgs requires
r— s random choices fronf — {p(z;)}. Thus,Ho (W, SS(W))) = Hoo (W) + (s —t) log n+log (~3) +
(r — s)log(n — 1). The output can be describedlis ((?)n") bits. The result follows by Lemnfa 2.2(b)
after observing thatr — s) log -5 < nlog -7 < 2. O

In the large universe setting, we will have< n (since we wish to have storage polynomialsin In
that setting, the bound on the entropy loss of the Juels-Sudan scheme is in fact very large. We can rewrite
the entropy loss aslogn — log (}) + log () + 2, using the identity") (7) = (%) (~?). Now the entropy
of W is at most(’;), and so our lower bound on the remaining entropflig (2) —tlogn — 2). To make
this quantity large requires makimgvery large.

E BCH Syndrome Decoding in Sublinear Time

We show that the standard decoding algorithm for BCH codes can be modified to run in time polynomial
in the length of the syndrome. This works for BCH codes over any fightl¢), which include Hamming
codes in the binary case and Reed-Solomon for the ¢aseq — 1. BCH codes are handled in detail in
many textbooks (e.g!, [vL92]); our presentation here is quite terse. For simplicity, we discuss only primitive,
narrow-sense BCH codes here; the discussion extends easily to the general case.

The algorithm discussed here has been revised due to an error pointed out by Ari Trachtenberg. Its
implementation is available [HJRO6].

We'll use a slightly nonstandard formulation of BCH codes. het ¢™ — 1 (in the binary case of
interest in Sectio@&’q = 2). We will work in two finite fields: GF'(¢) and a larger extension field
F = GF(q"™). BCH codewords, formally defined below, are then vector&/ii(¢)". In most common
presentations, one indexes thgositions of these vectors by discrete logarithms of the elements' of
positioni, for 1 < i < n, corresponds ta‘, wherea generates the multiplicative grod§. However, there
is no inherent reason to do so: they can be indexed by elemerfiddokctly rather than by their discrete
logarithms. Thus, we say that a word has valyet positionz, wherez € F*. If one ever needs to write
down the entirex-character word in an ordered fashion, one can arbitrarily choose a convenient ordering of
the elements ofF (e.g., by using some standard binary representation of field elements); for our purposes
this is not necessary, as we do not store entigit words explicitly, but rather represent them by their
supports:supp(v) = {(z,ps) | p= # 0}. Note that for the binary case of interest in Secfior} 6.3, we can
definesupp(v) = {z | p» # 0}, because, can take only two values: 0 or 1.

Our choice of representation will be crucial for efficient decoding: in the more common representation,
the last step of the decoding algorithm requires one to find the positibthe error from the field element
o'. However, no efficient algorithms for computing the discrete logarithm are knoyf i large (indeed,
a lot of cryptography is based on the assumption that such an efficient algorithm does not exist). In our
representation, the field elemeritwill in fact be the position of the error.

Definition 8. The (narrow-sense, primitive) BCH code of designed distarmer GF'(q) (of lengthn > §)

is given by the set of vectors of the for(nx)xef* such that each, is in the smaller field7F(q), and the
vector satisfies the constrainZsacEf* cext =0, fori = 1,...,0 — 1, with arithmetic done in the larger
field .
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To explain this definition, let us fix a generatorof the multiplicative group of the large field@*. For
any vector of coefficientéc,) _ .., we can define a polynomial

o(z) = Z ¢ 2108

z€GF(qgm)*

eF*?

wheredlog(x) is the discrete logarithm of with respect ton. The conditions of the definition are then
equwalent to the requirement (more commonly seen in presentations of BCH codeg)that= 0 for
i=1,...,0 — 1, becauséa’)do8(®) = (qdlog(z))i — 4,

We can simplify this somewhat. Because the coefficieptare in GF(q), they satlsfycx = ¢,. Using
the identity(z + y)? = 27 + y4, which holds even in the large fiel, we havec(a?)? = > 240 chril =
c(a). Thus, roughly d /q fraction of the conditions in the definition are redundant: we need only to check
that they hold fori € {1,...,d — 1} such thay /i.

The syndrome of a word (not necessarily a codewnd) .c - € GF(q)™ with respect to the BCH
code above is the vector

syn(p) = p(at),...,p(e’™"), where p(a’) =) p.z
zeF*

As mentioned above, we do not in fact have to include the val(®9 such that|i.

COMPUTING WITH Low-WEIGHT WORDS. A low-weight wordp € GF(q)™ can be represented either as
a long string or, more compactly, as a list of positions where it is nonzero and its values at those points. We
call this representation the support listiofnd denote isupp(p) = {(x,px)}zzp#o.

Lemma E.1. For a ¢g-ary BCH codeC of designed distancg one can compute:
1. syn(p) fromsupp(p) in time polynomial iny, log n, and |supp(p)|, and
2. supp(p) fromsyn(p) (whenp has weight at mogty — 1)/2), in time polynomial iy andlog n.

Proof. Recall thatsyn(p) = (p(a),...,p(a’~1)) wherep(a’) = 3, p.a'. Part (1) is easy, since to
compute the syndrome we need only to compute the powers ©his requires about - weight(p) multi-
plications inF. For Part (2), we adapt Berlekamp’s BCH decoding algorithm, based on its presentation in
[VL92]. Let M = {x € F*|p, # 0}, and define

o) E L0 -w2) and wie) o) 3o G0

1—x2)’
zeM zeM

Since(1 — zz) divideso(z) for z € M, we see thab(z) is in fact a polynomial of degree at mdst/| =
weight(p) < (6 — 1)/2. The polynomialsr(z) andw(z) are known as the error locator polynomial and
evaluator polynomial, respectively; observe that(o(z),w(z)) = 1.

We will in fact work with our polynomials modula®. In this arithmetic the inverse dfi — zz) is
S0 (z2) 1 that s,

)
1—:1:22 5151 mod 2°.
=1

We are giverp(al) for £ = 1,...,8. Let S(z) = 0-1p(af)z!. Note thatS(z) = S een Prrs
mod 2°. This implies that



The polynomialsr(z) andw(z) satisfy the following four conditions: they are of degree at njéstl ) /2
each, they are relatively prime, the constant coefficient & 1, and they satisfy this congruence. In fact,
let w'(2), 0’ (z) be any nonzero solution to this congruence, where degree§ of ando’(z) are at most
(06 —1)/2. Thenw'(2)/0'(z) = w(z)/o(2). (To see why this is so, multiply the initial congruenceddy)
to getw(z)o’(z) = o(2)w’'(2) mod 2. Since both sides of the congruence have degree at dnest,
they are in fact equal as polynomials.) Thus, there is at most one solutignw(z) satisfying all four
conditions, which can be obtained from any(z),«w’(z) by reducing the resulting fractian’(z)/o’(z) to
obtain the solution of minimal degree with the constant term efual to 1.

Finally, the roots o () are the pointg:~! for = € M, and the exact value @f, can be recovered from
w(@™") = pe [T ey (1 — y2~') (this is needed only fog > 2, because fog = 2, p, = 1). Note that
it is possible that a solution to the congruence will be found even if the input syndrome is not a syndrome
of any p with weight(p) > (6 — 1)/2 (it is also possible that a solution to the congruence will not be found
at all, or that the resulting (z) will not split into distinct nonzero roots). Such a solution will not give
the correcp. Thus, if there is no guarantee thedight(p) is actually at mosto — 1)/2, it is necessary to
recomputesyn(p) after finding the solution, in order to verify thais indeed correct.

Representing coefficients ef(z) andw’(z) as unknowns, we see that solving the congruence requires
only solving a system of linear equations (one for each degree dfom 0 tod—1) involving 6+1 variables
over.F, which can be done i®»(5%) operations inF using, e.g., Gaussian elimination. The reduction of the
fractionw’(z2)/o’(2) requires simply running Euclid’s algorithm for finding the g.c.d. of two polynomials of
degree less thaf which takesD(52) operations inF. Suppose the resultinghas degree. Then one can
find the roots ofr as follows. First test that indeed has distinct roots by testing that(z)|z9" — z (this
is a necessary and sufficient condition, because every elemgnisad root ofz¢" — = exactly once). This
can be done by computir@?” mod o(z)) and testing if it equals mod o; it takesm exponentiations of a
polynomial to the powey, i.e.,O((mlog q)e?) operations inF. Then apply an equal-degree-factorization
algorithm (e.g., as described in [Sho05]), which also taRégn log q)e?) operations inF. Finally, after
taking inverses of the roots &f and findingp,. (which takesO(e?) operations inF), recomputeyn(p) to
verify that it is equal to the input value.

Becausen log ¢ = log(n + 1) ande < (6§ — 1)/2, the total running time i€ (53 + 6% log n) operations
in F; each operation itF can done in time(log® n), or faster using advanced techniques.

One can improve this running time substantially. The error locator polynanfjatan be found in
O(log ¢) convolutions (multiplications) of polynomials ovét of degree(o — 1)/2 each [Bla83, Section
11.7] by exploiting the special structure of the system of linear equations being solved. Each convolution can
be performed asymptotically in tim@(d log 6 loglog d) (see, e.g./[[vzGG03]), and the total time required
to find o gets reduced t@ (4 log? § log log ) operation inF. This replaces thé’ term in the above running
time.

While this is asymptotically very good, Euclidean-algorithm-based decoding [SKHN75], which runs
in O(62) operations inF, will find o(z) faster for reasonable values dfcertainly for§ < 1000). The
algorithm findso as follows:

set  Roa(z) « 2°7Y  Rew(2) « S(2)/2, Vou(z) < 0, Vew(2) « 1.

while  deg(Reur(2)) > (6 —1)/2:
divide  Roa(z) by Rcw(z) to get quotient q(z) and remainder  Ryew(2);
set View(2) < Vou(z) — q(2)Veur (2);
set Rold( ) — Rcur( ) cur( ) — Rnew(z) ‘/;)1(1(2) — ‘/cur(z)v ‘/cur(z) — Vnew(z)-

set ¢« Vow(0); set  o(z) « Vew(z)/c and w(z) <« z- Rewr(2)/c
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In the above algorithm, i& = 0, then the correct(z) does not exist, i.eweight(p) > (§ — 1)/2. The
correctness of this algorithm can be seen by observing that the congisienegz) = w(z) (mod 2°) can
havez factored out of it (becausg(z), w(z) andz° are all divisible byz) and rewritten agS(z)/z)o(z) +
u(2)2°~ = w(z)/z, for someu(z). The obtained is easily shown to be the correct one (if one exists at all)
by applying [Sho05, Theorem 18.7] (to use the notation of that theorem, set’~!,y = S(z)/z,t* =
r*=(0-1)/2," =w(2)/z,¢ =u(z),t' =0o(z)).

The root finding ofo can also be sped up. Asymptotically, detecting if a polynomial dver=
GF(¢™) = GF(n + 1) of degreee hase distinct roots and finding these roots can be performed in
time O(e!815(1og n)?407) operations inF using the algorithm of Kaltofen and Shoup [K$95], or in time
O(e? + (logn)elogeloglog e) operations inF using the EDF algorithm of Cantor and Zassenus
For reasonable values ef the Cantor-Zassenhaus EDF algorithm with Karatsuba’s multiplication algo-
rithm [KO63] for polynomials will be faster, giving root-finding running time@fe? + €'°23 log n) oper-
ations inF. Note that if the actual weight of p is close to the maximum tolerat¢d — 1)/2, then finding
the roots ofr will actually take longer than finding. O

A DuUAL VIEwW OF THEALGORITHM. Readers may be used to seeing a different, evaluation-based formu-
lation of BCH codes, in which codewords are generated as followsZlagain be an extension 6tF (q),

and letn be the length of the code (note tH&t*| is not necessarily equal to in this formulation). Fix
distinctxy, zo,...,x, € F. For every polynomiat over the large fieldF of degree at most — 6, the
vector (c(x1), c(x2), ... c(xy)) is a codeword if and only if every coordinate of the vector happens to be in
the smaller fieldc(x;) € GF(q) for all i. In particular, whenF = GF(q), then every polynomial leads to

a codeword, thus giving Reed-Solomon codes.

The syndrome in this formulation can be computed as follows: given a vecter(yi,yo, ..., Yn)
find the interpolating polynomiaP = p,,_12" ! 4 p,_22" "2 + - -- + py over F of degree at most — 1
such thatP(z;) = y; for all i. The syndrome is then the negative ®p- 1 coefficients ofP: syn(y) =
(=Pn—1, —Pn-2,---, —Pn—(s5-1))- (Itis easy to see that this is a syndrome: it is a linear function that is zero
exactly on the codewords.)

Whenn = |F| — 1, we can index the-component vectors by elementsBf, writing codewords as
(c(x))zex+. In this case, the syndrome @f,.).c++ defined as the negative tép- 1 coefficients ofP such
that for allz € F*, P(z) = y, is equal to the syndrome defined following Definit@n 8as, r yyx* for
i=1,2,...,6 — 1. ﬁ Thus, whem = | F| — 1, the codewords obtained via the evaluation-based definition
areidenticalto the codewords obtain via Definitiph 8, because codewords are simply elements with the zero
syndrome, and the syndrome maps agree.

This is an example of a remarkable duality between evaluations of polynomials and their coefficients:
the syndrome can be viewed either as the evaluation of a polynomial whose coefficients are given by the
vector, or as the coefficients of the polynomial whose evaluations are given by a vector.

The syndrome decoding algorithm above has a natural interpretation in the evaluation-based view. Our
presentation is an adaptation of Welch-Berlekamp decoding as presented if, e.q., [Sud01, Chapter 10].

13See [[Sho05, Section 21.3], and substitute the most efficient known polynomial arithmetic. For example, the procedures de-
scribed in[vzGGOB] take tim& (e log e log log e) instead of timeD(e?) to perform modular arithmetic operations with degeee-
polynomials.

14 This statement can be shown as follows: because both maps are linear, it is sufficient to prove that they agree on a vector
(Yz)zer~ Such thaly, = 1 for somea € F* andy, = 0 for x # a. For such a vectoi - Y-z = a'. On the other hand,
the interpolating polynomiaP(z) such thatP(z) = y, is —az™ ™' — a?2" 2 — ... —a" 'z — 1 (indeed,P(a) = —n = 1;
furthermore, multiplyingP(z) by = — a givesa(z™ — 1), which is zero on all ofF*; henceP(z) is zero for everyr # a).
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Supposer = |F'| — 1 andzy, ..., z, are the nonzero elements of the field. ket (y1,v2,...,yn) be
a vector. We are given its syndrome (y) = (—pn—1, —Pn-2; - -, —Pn—(5-1))s Wherep,_1,...,p,_(5-1)
are the top coefficients of the interpolating polynonmfal Knowing onlysyn(y), we need to find at most
(6 — 1)/2 locationsx; such that correcting all the correspondipgwill result in a codeword. Suppose that
codeword is given by a degrée-— ¢) polynomialc. Note thatc agrees withP on all but the error locations.
Let p(z) be the polynomial of degree at mast— 1)/2 whose roots are exactly the error locations. (Note
thato (z) from the decoding algorithm above is the samie) but with coefficients in reverse order, because

the roots ofs are the inverses of the roots pf) Thenp(z) - P(z) = p(2) - ¢(2) for z = z1,z9,...,zy.
Sincezy, ..., z, are all the nonzero field elemeniq;’ , (z — z;) = 2" — 1. Thus,
p(z)-c(z) = p(z)- P(z) mod H(z —x;) = p(z)-P(z)mod (2" —1).
=1
If we write the left-hand side as,,_12" ! + an—22""2 + - - - 4+ o, then the above equation implies
thatay,—1 = -+ = a,_(5-1)/2 = 0 (because the degreeifz) - c(z) is at mostr — (6 + 1)/2). Because
Qn—1,- -+, n_(5—1)/2 depend on the coefficients pfas well as orp,,—1, ..., p,_(5-1), but not on lower

coefficients of P, we obtain a system ab — 1)/2 equations for(é — 1)/2 unknown coefficients op. A

careful examination shows that it is essentially the same system as we hgd fam the algorithm above.

The lowest-degree solution to this system is indeed the coprday the same argument which was used

to prove the correctness ofin LemmaE.[L. The roots qf are the error-locations. Far> 2, the actual
corrections that are needed at the error locations (in other words, the light vector corresponding to the given
syndrome) can then be recovered by solving the linear system of equations implied by the value of the
syndrome.
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