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Abstract

A complexity-theoretic model for public-key steganography with active attacks is introduced. The
notion of steganographic security against adaptive chosen-covertext attacks (SSaBEA) re-
laxation calledsteganographic security against publicly-detectable replayable adaptive chosen-
covertext attacks (SS-PDR-CCdte formalized. These notions are closely relate@@A-security
andPDR-CCA-securityor public-key cryptosystems. In particular, it is shown that any SS-(PDR-
)CCA stegosystem is a (PDR-)CCA-secure public-key cryptosystem and that an SS-PDR-CCA ste-
gosystem can be realized from any PDR-CCA-secure public-key cryptosystem with pseudorandom
ciphertexts.

1 Introduction

Steganography is the art and science of hiding information by embedding messages within other, seem-
ingly harmless messages. As the goal of steganography is to higestbenceof a message, it can be
seen as the complement of cryptography, whose goal is to hidmtitentof a message.

Consider two parties linked by a public communications channel which is under the control of
an adversary. The parties are allowed to exchange messages as long as they are not adding a hidden
meaning to their conversation. A genuine communication message is callectext but if the sender
of a message has embedded hidden information in a message, it is stetietext The adversary,
who also knows the distribution of the covertext, tries to detect whether a given message is covertext or
stegotext.

Steganography has a long history as surveyed by Anderson and Petitcolas [2], but formal models
for steganography have only recently been introduced. Several information-theoretic formalizations [4,
23, 14] and one complexity-theoretic model [11] have addrepsedte-keysteganography, where the
participants share a common secret key. These models are all limited to a passive adversary, however,
who can only read messages on the channel.

Von Ahn and Hopper [21] have recently formalized public-key steganography with a passive ad-
versary and, in a restricted model, also with an active adversary. Their notion offers security against
“attacker-specific” chosen-stegotext attacks, where the recipient must know the identity of the sender,
however; this is a limitation of the model compared to the bare public-key scenario.

In this paper, we introduce a complexity-theoretic model for public-key steganography with active
attacks, where the participants a priori do not need shared secret information and the adversary may
write to the channel and mount a so-calkhptive chosen-covertext attackhis attack seems to be



the most general attack conceivable against a public-key stegosystem. It allows the adversary to send an
arbitrary sequence of adaptively chosen covertext messages to a receiver and to learn the interpretation
of every message, i.e., if the receiver considers a message to be covertext or stegotext, plus the decoding
of the embedded message in the latter case. (Note that here and in the sequel, a message on the channel is
sometimes also called a “covertext” when we do not want to distinguish between stegotext and covertext

in the proper sense.)

We do not address denial-of-service attacks in this work, where the adversary tries to disrupt the
hidden communication among the participants. Although they also qualify as “active” attacks and are
very important in practice, we think that protection against them can be addressed orthogonally to the
methods presented here.

Our model is based on the intuition that a public-key stegosystem essentially is a public-key cryp-
tosystem with the additional requirement that its output conforms to a given covertext distribution.
As in previous formalizations of steganography [4, 11, 16, 21], the covertext distribution is publicly
known in the sense that it is accessible through an oracle that samples the distribution. We intro-
duce the notions o$teganographic security against adaptive chosen-covertext attacks (SSaG€A)
steganographic security against publicly-detectable replayable adaptive chosen-covertext attacks (SS-
PDR-CCA)and show that they are closely linked to the analogous notions for public-key cryptosystems,
calledsecurity against adaptive chosen-ciphertext attgcksCCA-security [15] andsecurity against
publicly-detectable replayable adaptive chosen-ciphertext attidiki®r PDR-CCA-security respec-
tively. (PDR-CCA-security is the same bsnign malleabilityf18] andgeneralized CCA-securify].)

In particular, we show that stegosystems are related to public-key cryptosystems in the following
ways:

Theorem 1 (informal statement). Any SS-(PDR-)CCA stegosystem is a (PDR-)CCA-secure public-key
cryptosystem.

Theorem 2 (informal statement). An SS-PDR-CCA stegosystem for covertext distributions with suffi-
ciently large min-entropy can be constructed from any PDR-CCA-secure public-key cryptosystem whose
ciphertexts are pseudorandom (i.e., computationally indistinguishable from a random bit string).

A corollary of Theorem 2 is that SS-PDR-CCA stegosystems exist in the standard model and in
the random oracle model. The stegosystem constructed in the proof of Theorem 2 uses the “rejection
sampler” construction found in essentially all previous work in the area [11, 16, 21], which is already
described by Anderson and Petitcolas [2]. However, our system embeds more hidden bits per stegotext
than any previous system. This follows from an improved analysis of the rejection sampler. It is not
known if a result analogous to Theorem 2 holds for CCA-security; finding an SS-CCA stegosystem that
works for an arbitrary covertext distribution with sufficiently large min-entropy remains an interesting
open problem.

Our model for public-key steganography is introduced in Section 2, where also the relation to pre-
vious models for steganography is discussed in detail. Section 3 recalls the definitions of CCA- and
PDR-CCA-security for public-key cryptosystems, states our results formally, and presents the proof of
Theorem 1. Section 4 gives the construction of an SS-PDR-CCA stegosystem and proves Theorem 2.

2 Definitions

2.1 Notation

A function f: N — Rx is callednegligibleif for every constant > 0 there exists:. € N such that
flk) < ki forall £ > k.. Given some sef, a subset ohlmost allelements contains all but a negligible
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fraction of elements fron$. A (randomized) algorithm is callegfficientif its running time is bounded
by a polynomial except with negligible probability (over the coin tosses of the algorithm).

Letx — y denote the algorithm that assigns a vajue z. If A(-) is a (randomized) algorithm, the
notationz < A(y) denotes the algorithm that assignsita randomly selected value according to the
probability distribution induced b () with inputy over the set of its outputs.

If S is a probability distribution, then the notatien- S denotes any algorithm which assignsito
an element randomly selected accordingstaf S is a finite set, then the notatian<- S denotes the
algorithm which assigns te an element selected at random fréfvith uniform distribution ovels.

If p(-,-,---) is a predicate, the notation

R R

Pr[x<—S;y<—T;“' . P(%ya"')]

denotes the probability tha{z, y, - - - ) will be true after the ordered execution of the algorithmé-
S,y & T,.--. If X is a (randomized) algorithm, a distribution, or a set, tier [z] is short for
Pr n. 2], which is short folPr[s & X : s = a].

Thestatistical distancdetween two distribution&” and)’ over the same se¥ is defined ag X’ —
V|| = maxx,cx|Y,ex, Pra(z) — Pry(z)|. Themin-entropyof a distribution’ over an alphabek
is defined adi(X) = — log max,cx Pry|[z]. (All logarithms are to the base 2.)

2.2 Public-key Stegosystems

We define a public-key stegosystem as a triple of algorithms for key generation, message encoding,
and message decoding, respectively. The notion corresponds to a public-key cryptosystem in which the
ciphertext should conform to a target covertext distribution.

For the scope of this work, the covertext is modeled by a distribtioner a given se€’. The dis-
tribution is only available via an oracle; it sampl&spon request, with each sample being independent.

In other words, it outputs a sequence of independent and identically distributed covertexts. W.l.o0.g.,
Prcle] > O0forallc e C.

The restriction to independent repetitions is made here only to simplify the notation and to focus on
the contribution of this work. All our definitions and results can be extended in the canonical way to the
very general model of a covertesttannelas introduced by Hopper et al. [11]. They model a channel as
an unbounded sequence of values drawn from &'sehose distribution may depend in arbitrary ways
on past outputs; access to the channel is given only by an oracle that samples from the channel.

Such a channel underlies only one restriction: The sampling oracle must allow random access to
the channel distribution, i.e., the oracle can be queried with an arbitrary prefix of a possible channel
output and will return the next symbol according to the channel distribution. In other words, the channel
sampler cannot only be rewound to an earlier state of its execution but also restarted from a given state.
(Hence it may be difficult to use an email conversation among humans for a covertext channel since that
cannot easily be restarted.)

The sampling oracle for the covertext distribution is available to all users and to the adversary.
In order to avoid technical complications, assume w.l.0.g. that the sampling oracle is implemented by
a probabilistic polynomial-time algorithm and therefore does not help an adversary beyond its own
capabilities (for example, with solving a computationally hard problem).

Definition 1. [Public-Key Stegosystem] Lét be a distribution on a s&t' of covertexts A public-key
stegosystens a triple of probabilistic polynomial-time algorithm$K, SE, SD) with the following
properties.



e Thekey generation algorithr8K takes as input the security parameéteand outputs a pair of bit
strings(spk, ssk), called the[stego] public keyand the[stego] secret keyW.l.0.g. SK induces
the uniform distribution over the set of possible key pairs for security pararheter

e The steganographic encoding algorithBE takes as inputs the security parametem public
key spk and amessagen € {0,1}'(*), wherel(k) is an arbitrary polynomial, and outputs a
covertextc € C. The plaintexin is often called thembedded message

e The steganographic decoding algorith®D takes as inputs the security parametem secret
key ssk, and a covertext € C and outputs either a messagec {0, 1}/(*) or a special symbal..
An output value ofL indicates a decoding error, for example, wigd has determined that no
message is embeddeddn

We require that for almost alkpk, ssk) output bySK(1%) and for allm € {0, 1}/*), the probability
thatSD (1%, ssk, SE(1¥, spk,m)) # m is negligible ink.

Note that except for the presence of the covertext distribution, this definition is equivalent to that
of a public-key cryptosystem. Although all algorithms have oracle acceSs doly SE needs it in
the stegosystems considered in this paper. For ease of notation, the security parameter will be omitted
henceforth.

The probability that the decoding algorithm outputs the correct embedded message is referred to
as thereliability of the stegosystem. Although one might also allow a non-negligible decoding error
in the definition of a stegosystem (as done in previous work [11]), we require that the decoding error
probability is negligible in order to maintain the analogy between a stegosystem and a cryptosystem.

Security definition. Coming up with the “right” security definition for a cryptographic primitive has
always been a challenging task because the sufficiency of a security property cannot be demonstrated
by running the cryptosystem. Only its insufficiency can be shown by pointing out a specific attack,
but finding an attack is usually hard. Often, security definitions had to be strengthened when a primi-
tive was used as part of a larger system. Probably the most typical example is the security of public-
key cryptosystems: the original notion of semantic security [10], which considers only a passive or
eavesdropping adversary, was later augmented to security against adaptive chosen-ciphertext attacks or
non-malleability, which allows also for active attacks [15, 9, 3].

We introduce here the notion sfeganographic security against adaptive chosen-covertext aftacks
abbreviateS-CCAand its slightly relaxed variasteganographic security against publicly-detectable
replayable chosen-covertext attackbbreviatedS-PDR-CCABoth notions are based on the intuition
that a stegosystem is essentially a cryptosystem with a prescribed ciphertext distribution. We first recall
the definition ofcompatible [publicly computable] relationadopted from public-key cryptosystem to
stegosystems, on which the definition of SS-PDR-CCA is based.

Definition 2. [Compatible Relation [18]] LeE = (SK, SE, SD) be a stegosystem. A family of binary
relations=,,;, (indexed by the public keys af) on covertext pairs is calledampatiblerelation family
for X if for almost all key pairg spk, ssk) we have:

e For any two covertextsandd’, if ¢ =i, ¢’ thenSD(ssk, c) = SD(ssk, ¢), except with negligible
probability over the random choices of the algoritBm.

e For any two covertexts and¢/, it can be determined except with negligible probability whether
¢ =i, ¢ UsINg a probabilistic polynomial-time algorithm taking inpsté:, ¢, andc’.



SS-CCA and SS-PDR-CCA are defined by the following experiment. Let an arbitrary distriBution
on a setC be given and consider a (stego-)adversary, defined by two arbitrary probabilistic polynomial-
time algorithmsSA andSA,. For the SS-PDR-CCA experiment, let also an arbitrary compatible relation
family =, be given. The experiment consists of five stages, where both notions only differ in the fourth
stage.

Key generation: A key pair(spk, ssk) is generated by the key generation algoritBi

First decoding stage: Algorithm SA is run with the public keyspk as input and has access to the
sampling oracle fof and to a decoding orac®0,. The decoding oracle knows the secret kéy.
Whenever it receives a covertextit runsSD(ssk, ¢) and returns the result ®A .

WhenSA finishes its execution, it outputs a tugle*, s), wherem* € {0, 1}! is a message and
s is some additional information which the algorithm wants to preserve.

Challenge: A bit b is chosen at random andchallenge covertext* is determined depending on it: If
b = 0 thenc* — SE(spk, m*) elsec* & . ¢* is given to algorithmSA, who should guess the
value ofb, i.e., determine whether the messagé has been embedded i or whetherc* has
simply been chosen accordingdo

Second decoding stageSA is run on inputc*, ands, i.e., it knows the challenge covertext and the
state provided bypA .

For SS-CCA,SA may access a decoding ora@€%® which is analogous t80O, except that
upon receiving query*, oracleSG;“® returns.L.

For SS-PDR-CCASA has access to a decoding orasti , which is identical td8G;*2
except that it does not allow any query that is equivalent‘tander=,,;. In particular, upon
receiving queny, SG =7 returns L if ¢ =,,, c*; otherwise, it return&D sk, c).

dr-cca=,,

Guessing stage:WhenSA finishes its execution, it outputs a bit

The stego-adversary succeeds in distinguishing stegotext from covertéxtifb in the above
experiment. We require that for a secure stegosystem, no efficient adversary can distinguish stegotext
from covertext except with negligible probability over random guessing.

Definition 3. [Steganographic Security against Active Attacks] Cebe a distribution on a covertext
setC and letX = (SK, SE, SD) be a stegosystem. We say thais steganographically secure against
adaptive chosen-covertext attacks (SS-C@a respect tcC if for all probabilistic polynomial-time
adversarie$SA , SA)), there exists a negligible functiersuch that

Pr|(spk, ssk) — SK; (m*,s) SR (sph); b {0,1};
1

if b =0thenc* — SE(spk, m™) elsec” Le. SASCgca(spk,m*,c*, s) = b} =3 + e(k).

Similarly, we say thak is steganographically secure against publicly-detectable replayable adap-
tive chosen-covertext attacks (SS-PDR-C@i) respect tc if there exists a compatible relation fam-
ily =,,x such that for all probabilistic polynomial-time adversari8#, SA), there exists a negligible

functione such that the above equation holds v replaced bysd)™ 2=+,

Note that this leaves the adversary free to query the decoding oracle with any element of the covertext
spacebeforethe challenge is issued. By definition, an SS-CCA stegosystem is also SS-PDR-CCA.
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2.3 Discussion

The relation to public-key cryptosystems. A stegosystem should enable two parties to communicate
over a public channel in such a way that the presence of a message in the conversation cannot be detected
by an adversary. It seems natural to conclude from this that the adversary must not learn any useful
information about an embedded message, should there be one. The latter property is the subject of
cryptography: hiding the content of a message transmitted over a public channel. This motivates the
approach of von Ahn and Hopper [21] and of this paper that models a public-key stegosystem after a
public-key cryptosystem in which the ciphertext conforms to a particular covertext distribution.

The most widely accepted formal notion of a public-key cryptosystem secure against an active
adversary idgndistinguishability of encryptions against an adaptive chosen-ciphertext afaCla-
security) [15] and is equivalent tion-malleability of ciphertext® the same attack model [9, 3]. CCA-
security is defined by an experiment with almost the same stages as above, except that the first part of
the adversary outputs/o messages:, andmy, of which one is chosen at random and then encrypted.
The resulting value*, also called théarget ciphertextis returned to the adversary and the adversary
has to guess what has been encrypted. In the second query stage, the adversary is allowed to obtain
decryptions ofiny ciphertext except foe*.

This appears to be the minimal requirement to make the definition of a cryptosystem meaningful,
but it has turned out to be overly restrictive in some cases. For example, consider a CCA-secure cryp-
tosystem where a useless bit is appended to each ciphertext during encryption and that is ignored during
decryption. Although this clearly does not affect the security of the cryptosystem, the modified scheme
is no longer CCA-secure.

Several authors have relaxed CCA-security to allow for such “benign” modifications [18, 1, 5]. The
corresponding relaxed security notion has been caliddicly-detectable replayable CCA-securiy
PDR-CCA-securitypy Canetti et al. [5] because the modifications are apparent without knowledge of
the secret key. The difference to CCA-security is that in the second query stage, the adversary is more
restricted and does not allow any query that is equivalent to the target ciphertext under some compatible
relation that can be derived from the public key. The intuition is that such a cryptosystem allows anyone
to modify a ciphertext into an equivalent one if this is apparent from the public key, and therefore to
“replay” the target ciphertext.

Our notion of an SS-CCA stegosystem is analogous to a CCA-secure cryptosystem, in that it only
excludes the target covertext from the queries to the second decoding oracle. Likewise, our notion of an
SS-PDR-CCA stegosystem contains a restriction that is reminiscent of a PDR-CCA-secure cryptosys-
tem, by not allowing queries that are publicly identifiable transformations of the challenge covertext.
These similarities are no coincidence: We show in Section 3 that any SS-CCA stegosystem is a CCA-
secure public-key cryptosystem, and similarly for their replayable counterparts.

Canetti et al. [5] also propose a further relaxation of CCA-security cadipthyable CCA-security
(or R-CCA-security, where anyone can generate new ciphertexts that decrypt to the same value as a
given ciphertext, but the equivalence may not be publicly detectable. We note that it is possible to
formulate the corresponding notion sfeganographic security against replayable chosen-ciphertext
attacks(SS-R-CCAby suitably modifying Definition 3. Our results of Sections 3 and 4 can be adapted
analogously.

Related work on steganography. The first published model of a steganographic system is the “Prison-

ers’ Problem” by Simmons [20]. This work addresses the particular situation of message authentication
among two communicating parties, where a so-caflebliminal channemight be used to transport

a hidden message in the view of an adversary who tries to detect the presence of a hidden message.



Although a subliminal channel in that sense is only made possible by the existence of message authen-
tication in the model, it can be seen as the first formulation of a general model for steganography.

Cachin [4] presented an information-theoretic model for steganography, which was the first to ex-
plicitly require that the stegotext distribution is indistinguishable from the covertext distribution to an
adversary. Since the model is unconditional, a statistical information measure is used.

Hopper et al. [11] give the first complexity-theoretic model for private-key steganography with pas-
sive attacks; they point out that a stegosystem is similar to a cryptosystem whose ciphertext is indistin-
guishable from a given covertext. In Section 3 we establish such an equivalence formally for public-key
systems with active attacks.

Reyzin and Russell [16] investigate a problem with the private-key stegosystem in [11], provide an
enhanced scheme, and give an improved analysis.

Recently, von Ahn and Hopper [21] have formalized public-key steganography with a passive ad-
versary, i.e., one who can mount a chosen-message attack. The resulting notion is the analogue of a
cryptosystem with security against chosen-plaintext attacks (i.e., a cryptosystem with semantic secu-
rity). They also formalize the notion of a stegosystem that offers security against “attacker-specific”
chosen-stegotext attacks; this means that the decoder must know the identity of the encoder, however,
and restricts the usefulness of their notion compared to SS-CCA and SS-PDR-CCA.

No satisfying formal model for public-key steganography with active attacks has been published so
far, although the subject was discussed by several authors, and some systems with heuristic security have
been proposed [8, 2]. A crucial element that seems to make our formalizations useful is the restriction
of the stage-two decoding oracle depending on the challenge covertext.

3 Results

This section investigates the relation between SS-(PDR-)CCA stegosystems and (PDR-)CCA-secure
public-key cryptosystems. Two results are presented:

1. Any SS-CCA stegosystem is a CCA-secure public-key cryptosystem and, similarly, any SS-PDR-
CCA stegosystem is a PDR-CCA-secure public-key cryptosystem.

2. An SS-PDR-CCA stegosystem for covertext distributions with sufficiently large min-entropy can
be constructed from any PDR-CCA-secure public-key cryptosystem whose ciphertexts are pseu-
dorandom.

We first recall the formal definitions for public-key encryption with CCA- and PDR-CCA-security,
respectively. Apublic-key cryptosysteiaa triple(K, E, D) of probabilistic polynomial-time algorithms.
Algorithm K, on input the security parametey generates a pair of keysk, sk). The encryption and
decryption algorithmsk andD, have the property that for almost all pafrsg:, sk) generated by and
for any plaintext message < {0,1}/(¥) wherel is an arbitrary polynomial irk, the probability that
D(1%, sk, E(1%, pk,m)) # m is negligible ink. (The security parameter is omitted henceforth.)

CCA-security and PDR-CCA-security for a public-key encryption scheme are defined by the fol-
lowing experiment. Consider an adversary defined by two arbitrary polynomial-time algoAthamsl
Ao. First, a key painpk, sk) is generated bK. Next, A; is run on input the public keyk and may
access a decryption oradl®. OracleO; knows the secret keyk, and whenever it receives a cipher-
text ¢, it appliesD with key sk to ¢ and returns the result t&;. WhenA; finishes its execution, it
outputs a triple(mg, m1, s), wheremg, m; € {0,1}! are two arbitrary messages anis some addi-
tional state information. Now a bitis chosen at random and, is encrypted using under keypk,
resulting in a ciphertext*. Algorithm A, is givenmg andm,, ciphertextc*, and states, and has to



guess the value df, i.e., whethemy or m, has been encrypted. For CCA-security, may access a
decryption oracle5°, which is analogous t@; and knowssk, but returnsL upon receiving query*.
For PDR-CCA-security, the cryptosystem also specifies a compatible relation famiky according
to Definition 2 with the stegosystem being replaced by the cryptosystgmrmay access a decryption
oracleO5"™*®¥="* which is identical to0*@ except that it answers for any querye with ¢ =, c*,
Finally, A, outputs a bit’ as its guess faob.

A secure cryptosystem requires that no efficient adversary can distinguish an encrypti@frarn
an encryption oin; except with negligible probability.

Definition 4. [(PDR-)CCA-Security for Public-Key Cryptosystems [3, 5]] Let = (K,E,D) be a
public-key cryptosystem. We say thatis CCA-securef for all probabilistic polynomial-time adver-
sariesA = (A1, A2), there exists a negligible functiersuch that

Pr [(pk;, sk) «— K; (mg,mq,s) A(lj1 (pk); b & {0,1};
cca 1
" — E(pk,my); ASQ (pk,mg, mq,c*,s) =b| = 3 + e(k).

We say thaf? is PDR-CCA-securd there exists a compatible relation family,;, such that the above
condition holds withO3° replaced byof* **3=r+.

The following is our first main result.

Theorem 1. LetX = (SK, SE, SD) be a public-key stegosystem3lfis SS-CCA (SS-PDR-CCA) with
respect to some distributiafy thenX is a CCA-secure (PDR-CCA-secure) public-key cryptosystem.

Proof. Note first that: satisfies the definition of a public-key cryptosystem. We proveXhat(PDR-
)JCCA-secure by a reduction argument. Assume Hé not a (PDR-)CCA-secure cryptosystem and
hence there exists an (encryption-)adversasy A;) that breaks the (PDR-)CCA-security Bf i.e., it
wins in the experiment of Definition 4 with probabilié/+ 0(k) for some non-negligible functiod.

Let =, denote a compatible relation family far in the case of PDR-CCA security. We construct a
(stego-)adversar{SA, SA) against: as a stegosystem with respectCtthat has black-box access to
(A1, Az) as follows.

Key generation: WhenSA receives a public-keyk, it invokesA; with this key.

First decoding stage: WheneverA; queries its decryption oracte; with a ciphertexic, SA passes
on to its decoding oracl8Q, waits for the response and forwards the respongeg to

WhenA; halts and outputémg, m1, s), the stego-adversai$A chooses a random bit, and
outputs(my, (mg, m1, b, s)).

Challenge: A challenge covertext® is computed according to the definition of a stegosystem and given
to SA.

Second decoding stageSA receives inputsny, ¢*, and(mg, m1, ', s) and invokes?; on inputsmy,
mq, ¢*, ands. Otherwise SA behaves in the same way 8%y during the first decoding stage,
forwarding the decryption requests thgt makes toO, to the respective decoding ora@€%®
or SG"®=#* and the responses backAg. If the distinction betweeSG andSd)™ ="
is irrelevant, we simply writ&Q,, similarly for the decryption oraclés.

Guessing stage:WhenA; outputs a bib*, the stego-adversaBA tests ifo* = b’ and outputs O if true,
and 1 otherwise.



We now analyze the environment simulated by the stego-adve{S&ySA) to the encryption-
adversaryA;, Az), and the probability that the stego-adversary can distinguish stegotext from covertext.

Clearly, key generation and the first decoding stage perfectly simulate the decryption oracle to ad-
versaryA;. During the challenge, a random biis chosen and a challenge covertext is computed as
¢* — SE(pk, my) in caseb = 0 and as=* <~ C in caseb = 1.

Note that wherb = 1, algorithmA, and its final output* are independent df. Hence, we have
Pr[t/ =b*b=1] = % and the stego-adversary has no advantage over randomly gu&ssitigat case.
Whenb = 0, we show that during the second decoding ph&#g,correctly simulates the decryption
oracleO, to As. For SS-CCA, correct simulation for queriesz ¢* is clear by definition. For a query
¢ = ¢*, the decoding oracl8G;“@ will output L, and so will the decryption oracle$®?, which gives a
correct simulation again. For SS-PDR-CCA, correct simulation for querigs;, c* is again clear by

definition. For queries with ¢ =,;, c*, the decoding oracl8 G ***="* will output L, and so will the

. pdr-cca=,;
decryption oracl&;, P

Since the encryption-adversaty by assumption breaks the (PDR-)CCA-security of the cryptosys-
tem, andA; is independent ob’ whenb = 1 as argued above, it obtains all its advantage in the case
b = 0 and we havePr[t) = b*|b = 0] = 3 + (k). By the definition ofSA, this is also the proba-
bility that the stego-adversary guessesrrectly wherb = 0. Hence, the overall probability th&A
guesse$ correctly is% + @ which exceedé2 by a non-negligible quantity and shows thais not
SS-(PDR-)CCA with respect to aidy O

Theorem 1 shows that an SS-CCA stegosystem is a special case of a CCA-secure public-key cryp-
tosystem, and similarly for their replayable variants. In the converse direction, we show now that some
PDR-CCA-secure public-key cryptosystems, namely those with “pseudorandom ciphertexts,” can also
be used to construct SS-PDR-CCA stegosystems. Constructing an SS-CCA stegosystem from a CCA-
secure public-key cryptosystem — or from other assumptions, for that matter — for an arbitrary cover-
text distribution with sufficiently large min-entropy remains an open problem.

In a cryptosystem with pseudorandom ciphertexts, the encryption algorithm outputs a bit string that
is indistinguishable from a random string of the same length for any efficient distinguisher that has
knowledge of the public key. We make the assumption that the encryption of a plaintext of 16ngth
always results in a ciphertext of lengtlik), for some polynomiak in k.

Definition 5. [Public-key Cryptosystem with Pseudorandom Ciphertexts [21]] A public-key cryptosys-
tem (K, E, D) is said to haveseudorandom ciphertexifsfor all probabilistic polynomial-time adver-
sariesA = (A1, Az), there exists a negligible functiarsuch that

Pr|(ph, sk) — K; (m,) < Au(pk); co  E(pk,m); e < {0,1}");

b & {0,1}; Ag(pk, m,cp,s) =b| = % + e(k).
It seems difficult to construct SS-(PDR-)CCA stegosystemarfigicovertext distribution. We show
that it is possible for covertexts whose distribution conforms to a sequence of independently repeated
experiments and has sufficiently large min-entropy. (According to the remark in Section 2.2, this result
generalizes to an arbitrary covertettannel) Given a covertext distributiod and positivet, let C*
denote the probability distribution consisting of a sequenadrdependent repetitions Gf
The next theorem is our second main result. Its proof is the subject of Section 4.

Theorem 2. SS-PDR-CCA stegosystems with respect to a covertext distrikttition any C with suf-
ficiently large min-entropy can be efficiently constructed from any PDR-CCA-secure cryptosystem with
pseudorandom ciphertexts.



Theorem 2 leaves us with the task of finding a PDR-CCA-secure cryptosystem with pseudorandom
ciphertexts. Such cryptosystems exist under a variety of standard assumptions if one asks for security
against gpassiveadversary only, i.e., security agaimstosen-plaintext attacks (CPAjor example, von
Ahn and Hopper [21] demonstrate a scheme that is as secure as RSA and one that is secure under the De-
cisional Diffie-Hellman (DDH) assumption. It is also straightforward to verify that the generic method
of encrypting a single bit by xoring it with the hard-core predicate of a trapdoor one-way permutation
has pseudorandom ciphertexts.

But any PDR-CCA-secure cryptosystem can be turned into one with pseudorandom ciphertexts
using the following method, suggested by Lindell [12]: Take the ciphertext output by the PDR-CCA-
secure encryption algorithm and encrypt it again, using a second cryptosystem with pseudorandom
ciphertexts, which is secure against chosen-plaintext attacks. Decryption proceeds analogously, by first
applying the decryption operation of the second cryptosystem and then the decryption operation of
the PDR-CCA-secure cryptosystem. It can be verified that the composed cryptosystem retains PDR-
CCA-security because the stage-two decryption oracle knows both secret keys. This method yields
SS-PDR-CCA stegosystems in three different models as follows.

By applying the above generic CPA-secure cryptosystem with pseudorandom ciphertexts to a generic
non-malleable cryptosystem [9, 17], we obtain an SS-PDR-CCA stegosystem under general assump-
tions.

Corollary 3. Provided that trapdoor one-way permutations exist, there is an SS-PDR-CCA stegosystem
in the common random string model.

Using the mentioned DDH-based cryptosystem with pseudorandom ciphertexts combined with the
Cramer-Shoup cryptosystem [7], we obtain also an efficient SS-PDR-CCA stegosystem in the standard
model.

Corollary 4. Under the Decisional Diffie-Hellman assumption, there is an SS-PDR-CCA stegosystem.

A more practical cryptosystem with pseudorandom ciphertexts exists also in the random oracle
model: the OAEP+ scheme of Shoup [19]. OAEP+ is a CCA-secure cryptosystem based on an arbitrary
trapdoor one-way permutation.

Corollary 5. Provided that trapdoor one-way permutations exist, there is an SS-PDR-CCA stegosystem
in the random oracle model.

4 An SS-PDR-CCA Stegosystem

In this section, we propose a stegosystem that is steganographically secure against publicly-detectable
replayable adaptive chosen-covertext attacks.

This stegosystem works for any covertext distribution that consists of a sequence of independent
repetitions of a base-covertext distribution. Deviating from the notation of Section 2, we denote the
base-covertext distribution iyand the covertext distribution used by the stegosystef by I1¢_, C.

As noted in Section 2.2, through the introduction of a history, our construction also generalizes to
arbitrary covertext channels.

Let (K, E,D) be a PDR-CCA-secure public-key cryptosystem with pseudorandom ciphertexts and
compatible relatiors ;.. Suppose its cleartexts arbit strings and its ciphertexts arebit strings.

A classG of functionsX — Y is calledstrongly2-universal[22] if, for all distinctz, 22 € X and
all (not necessarily distinct);, y2 € Y, exactly|G|/|Y|? functions fromG takez; to y; andzs to ys.

Such a function family is sometimes simply calledteongly 2-universal hash functidor brevity.
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encrypt ——> sample —>

Figure 1: The encoding process of the stegosystem: a message is first encrypted and then embedded
using Algorithmsample. The decoding process works analogously in the reverse direction.

4.1 Description

The SS-PDR-CCA stegosystem consists of a triple of algorittikeygen, encode, decode). The idea
behind it is to encrypt a message using the public-key cryptosystem first and to embed the resulting
ciphertext into a covertext sequence, as shown in Figure 1.

The encoding method is based on the following algorifample, which has oracle accessd@and
samples a base-covertext according such that a giverf-bit stringb is embedded in it. This algorithm
is the well-known rejection sampler [2, 11, 16], generalized to embed multi-bit messages instead of only
single-bit messages.

Algorithm sample®

Input: security parametek, a functiong : C — {0,1}/, and a valué € {0,1}/
Output: a covertextr
j«—0
repeat
x&C
je—Jj+1
until g(z) =borj==k
returnz

o gk wnNR

Intuitively, algorithmsample returns a covertext chosen from distributi@nbut restricted to that
subset ofC which is mapped to the givelnby g. sample may also fail and return a covertextwith
g(c) # b, but this happens only with negligible probability/in As will be shown in Section 4.2, when
b is a randomyf-bit string, g is chosen randomly from a 2-universal hash function, @més sufficient
min-entropy, then the output distribution dmple is statistically close t@.

We now turn to the description of the stegosystem. fet ~log k for a positive constany < 1
and letG : C — {0,1}/ denote a strongly 2-universal hash function.

Algorithm keygen chooses a random <~ G and computes a tuplgk, sk) — K, by running
the key generation algorithm of the cryptosystem. The outpwtegfen is the tuple(spk, ssk) =
((pk,g), sk).

Algorithm encode first encrypts an input messageusing the given encryption algorithi which
outputs in a ciphertexj. Assuming w.l.0.g. thag is ann-bit string (bounded by a polynomial f) and
n = tf, encode then repeatedly invokesample to embedy in pieces off bits a time into a sequence
of ¢t covertext symbols. Formally:

Algorithm encode
Input: security parametek, a public keyspk = (pk, g), and a message < {0, 1} to encode
Output: a covertexicy,...,ct)

1. y «— E(pk,m)

2: parsey asyi|| - - - ||y, wherey; € {0,1}/

11



3: fori=1totdo
5: return(cy, ..., ct)

Algorithm decode proceeds analogously. From each of tteymbols in the covertext, a string of
f bits is extracted by; then the concatenation of these bit strings is decrypte,lgnd the resulting
value is returned (this is either &bit message or the symbal):

Algorithm decode

Input: security parametek, a secret keysk = (sk, g), and a covertexici, . .., ¢;) € C* to decode
Output: a decoded-bit message ot

: fori=1totdo

yi < g(ci)

Py =yl [y

x — D(sk,y)

returnz

apkrwne

The compatible relatioes,,,;, of the stegosystem is computed as follows: given a pair of covertexts
(c1,...,¢t) @and(d), ..., c;), they are first mapped to a pair of ciphertextandy’, respectively, by
running lines 1-3 of Algorithntlecode. Then the relation is determined accordingte ;. y/'.

4.2 Analysis

This section is devoted to an analysis of the above stegosystem. Theorems 6 and 10 below together
imply Theorem 2.

Theorem 6. (keygen, encode, decode) is a valid stegosystem for covertext distributions with suffi-
ciently large min-entropy.

Proof (Sketch).According to Definition 1, the only non-trivial steps are to show that the algorithms are
efficient and that the stegosystem is reliable, i.e., that

decode(ssk, encode(spk,m)) = m

for almost all pairgspk, ssk) and allm € {0, 1} except with negligible probability.

Efficiency follows immediately from the construction, the assumptfos ~log k, and the effi-
ciency of the public-key cryptosystem.

For reliability, it suffices to analyze the outpute@fcode because the decoding operation is deter-
ministic.

Consider iterationi in Algorithm encode, in which Algorithmsample tries to find a covertext
that is mapped t@; by g. Becausg is chosen from a strongly 2-universal class of hash functions,
the entropy smoothing theorem [13] implies that over the random choicgamdc < C, the random
variable(g, g(c)) is exponentially close to the uniform distribution ovgibit strings, provided’ has
enough min-entropy. Hence, there exists a negligible quaatity < 2=/ such that for almost all
g, the distance ofj(c) from the uniform distribution is at mos{(k) over the choice: < C. Thus,
the probability that in any particular iteration sample, anx is chosen withy(z) # y;, iS at most
1—277 +e(k).

For any suclhy, since thek iterations and choices a@f in sample are independent, the algorithm
returnsc with g(¢) # y; only with some negligible probability’ (k) for f < ~vlogk. Hence, by the
union bound, the probability that any iteration of Algorittencode fails to embed the correct value is
at mostte'(k), which is negligible. O
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Before we can analyze the security of the stegosygteygen, encode, decode), we investigate
the output distribution of Algorithnrsample and derive the following result that may be of independent
interest. It shows that the distribution of the output from Algoriteample is statistically close t@
whensample is run with uniformly chosen inputs. The result also generalizes a theorem of Reyzin and
Russell [16].

Let sample be run with independently chosén- {0,1}/ andyg £ @, and denote by (k) the
distribution of its output.

Proposition 7. If the min-entropy of the covertext distributichis large enough compared tf, then
the statistical distance betweei{k) andC is negligible; in particular, there exists a positive constant
A < 1 such that for all sufficiently largé

|S(k) —C| < 2f~HC) £ \F,

The proof of this result is based on Lemmas 8 and 9 below. An important step in the analysis is to
show that the random variabig:), whereg <~ G andz < C, has negligible distance to the uniform
distribution over{0,1}/.

Given a functiory used by Algorithmsample and a valué, define

v(g,b) = Prlz & C : g(z) = b].

Lete(g,b) =1 —(g,b).

Lemma 8. For a given functiory € G and a valueb € {0, 1}/, the probability that Algorithnsample
outputs a particular is

1—e(g.b)F) 2l it g(e) = b
Pr[samplec(k;,g,b) =c] = ( 6£€3rc%€])v(g,b) g(c) .
6(.97 b) e(g,b) otherwise

Proof. The probability of a value: under distributionC conditioned on the event(C) = b is equal

to Prclc]/v(g,b) if g(c) = b and O otherwise; similarly, the probability efunder the conditional
distribution ofC given g(C) # b is Prc[c]/e(g,b) if g(c) # b and0 otherwise. By construction, the
second case, i.esample outputsc with g(c) # b, occurs if and only if the loop terminated with= k;
this happens with probabilit(g, b)* because the realizations©fre independent. The first case covers
any other outcome of the algorithm. O

Lemma 9. For every distributiorC, there exist$) < A < 1 such that for all sufficiently largé and all
ceC,

N Pre[c] 1 : . _f o Preld 1
0= o 2 gty < Prewld < 270X 9570 oy @
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Proof.
Prglc = Prb & Byg < G;z < sample®(k, g,b) : z = ]

ey 1 S Prfz & sampleC(k, g,b) : @ = ]

beB |G| geG
_ o5t o bk Prc|c] ] x Prel(d]
i rmé(g%b(l @0 ) * 2 coh o) @
_ o-sPreld 1—e(g,b)* el b1
Te ZG<M_Z() TPORAIP YL ) ®)
_ o-rPreld] 1—e(g,.9(c))* (0. p)F-1
> ) 2( Sa.ge) t 2 0 ) @

where(2) follows from Lemma 8(3) from switching the order of summation, at) from noting that
the first sum contains only the tertim= g(c).

Recall thatPrc[c] > 0 for all ¢ € C and that2/ < k. Hence,0 < €(g,b) < 1 and there exists
0 < A < 1 such that for all sufficiently largg,

(9.9 +7(9.9(c)) Y elg,g(e)™ | < AN
bibEg(c)

The lemma follows from combining this with (4). O

Proof of Proposition 7.For a particular functiory and a covertext, defineA.(g) = ~(g,9(c)) and
considerA.(g) as a random variable induced by the random choice with uniform distributigrirom
G. The expectation afi.(g) is

E[A.(9)] = > Pralglv(g g(c))

geG
= Prlg < Gz < C: g(a) = g(0)]
= Prlz&Ciz=( +Pr(g EGga& Cloviey 1 9(x) = g(c)] (1 = Prlz Ecix= c])
< pinax(C) +277 = 271=O 27, (5)

whereC|c (.} denotes the conditional distribution Gfrestricted toC' \ {c} and the inequality follows
from the definition ofp,,.x and from the 2-universality off.

Note that the bound of Lemma 9 involves the expected valdelofy))~! (over the random choice
of g). The Jensen inequality [6] states that for any convex fungtiapplied to a random variablg, the
expected value of (X) is at least as big asapplied to the expected value &t Thus,E[(A:(g))"!] >

(E[4c(g)]) ' forallc e C.
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We get

IC = SF)l > Prele] = Py [d]

c:Prele]|>Prgs)le]

< > <Prc 1(1- 2fyc:|Z )) (6)

c:Prelc]>Prgi)lc] geG ,7 9 g

< P 1—1_A23A -1 7
< E: re[c] i [(Ac(g)™!] (7)
C:Prc[c}>Prs<k)[C]
1—\F
= 2 <Pr‘3[c] (1- 2 (27 + 2—Hoo(6>)>> ®
c:Prele]>Prg)lc]
- 1—\F
= 7 14 2f~H(0)

< 9f—H>() 4 \k

where (6) follows from Lemma 9, (7) from the Jensen inequality and from the definitiot. @f),
and (8) from (5). O

Theorem 10. For a covertext distributiorC? such thatC has sufficiently large min-entropy and pro-
vided that(K, E, D) is a PDR-CCA-secure public-key cryptosystem with pseudorandom ciphertexts, the
stegosystertkeygen, encode, decode) is SS-PDR-CCA.

Proof (Sketch).We prove that the stegosysteikeygen, encode, decode) is SS-PDR-CCA by a re-
duction argument. Assume that it is not SS-PDR-CCA and and hence there exists a (stego-)adversary
(SA, SA) that succeeds in the experiment of Definition 3 with probability- (k) for some non-
negligible functions. We construct an (encryption-)adversddy , As) that has black-box access to

(SA, SA) and breaks the PDR-CCA-security @, E, D) as follows.

Key generation: WhenA; receives a public-keyk generated by, it choosesy <~ @, computes
spk — (pk, g), and invokesSA with spk.

First decryption stage: WhenSA sends a querfc, . .., ¢) to its decoding oracl8Q,, thenA; com-
putesy < y1|| - - - ||yt for yv; < g(c;), givesy to its decryption oracl®;, waits for the response
and forwards the response$a\ .

Challenge: When SA halts and outputgm*, s), the encryption-adversarg; chooses an arbitrary
plaintext message:’ € {0,1}!, different fromm*, and output§m*, m’, g). According to the
definition of a public-key cryptosystem, a challenge ciphergé&xs computed. Nowh; is invoked

with inputspk, m*, m’, y*, andg. It parses/* as a sequenag|| - - - ||y; of f-bit strings, computes
¢t — sampleC(k, g,yF) fori = 1,...,t, and invokesSA with inputs(pk, g), m*, (%, ..., ¢},
ands.

Second decryption stage:A; behaves in the same way Asduring first decryption stage: It computes
a ciphertexty from any decoding request th8®, makes as above, submijgdo the decryption
oracleO,, and returns the answer 8%.

Guessing stage:WhenSA outputs a bit*, indicating its guess as to whether messagas contained
in the challenge covertexts, . . ., ¢f), the encryption-adversad, returnsh* as its own guess of
whetherm™* or m’ is encrypted in/*.
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We now analyze the environment simulated by the encryption-adve(gary,) to the stego-
adversary(SA, SA) and the probability that the encryption-adversary can distinguish the encrypted
messages.

Clearly, during key generation and the first decoding stage, the simulation for the stego-adversary
SA is perfect. During the encoding stage, a randonb lt chosen according to Definition 4 and the
challenge ciphertext is computed@s— E(pk, m*) if b = 0 andy* «— E(pk,m’) if b= 1.

Whenb = 0, then, according to the definition &f;, the challenge covertext is computed in the
same way as expected by the stego-adversary in the experiment of Definition 3 and the simulation is
perfect.

Whenb = 1, however,SA expects(c}, ..., cf) to be a random covertext drawn according’to
but receives:; = samplec(k,g,y;*) fori = 1,...,t instead, where the concatenation of fffeis an
encryption ofm’ under keypk with E.

Proposition 7 implies that for everyc {1,...,t}, the statistical distance betweérand the dis-
tribution of ¢/ as computed by Algorithraample when run with input ainiformly chosery-bit string
is bounded by a negligible quantitf(k). Furthermore, since the cryptosystéi E, D) has pseu-
dorandom ciphertexts, for every distinguisi8 there exists a negligible quantitj(k) such that its
advantage (over guessing randomly) in distinguishing betwéeas used by, and the uniform distri-
bution onn-bit strings is at most; (k).

By combining these two facts, it follows that the behavior of the stego-adve®ganyho observes
(cf,...,cf)inthe simulation wheh = 1 does not differ from its behavior in experiment of Definition 3,
where it observes covertegt, with more than probability* (k) = te; (k) + €5 (k).

By definition, the output of the encryption-adversasyis the same as that of the stego-adversary
SA. SinceSA succeeds with probabilit§+ d(k) in attacking the stegosystem and since the simulated
view of SA is correct except with probability* (k) whenb = 1, the probability thaSA, breaks PDR-
CCA-security is% + (k) — E*ék), which exceed% by a non-negligible quantity and establishes the
theorem. O
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