
A Verifiable Secret Sharing Scheme with

Statistical Zero-Knowledge∗

Chunming Tang † Zhuojun Liu ‡ Mingsheng Wang§

Abstract

In this paper, we first propose a protocol in which the prover can
show that a = b holds for two committed integers a and b; also, we
present a protocol in which the prover can prove that a 6= 0 holds for
committed integer a; then, we construct a protocol to prove that the
degree of a polynomial f(x) equals to t− 1 exactly, which has been as
an open problem(see[21]); finally, we provide a protocol in which the
prover proves that a pair (x, y) is generated by a polynomial f(x), i.e.,
y ≡ f(x)(mod m), where m is a prime.

Based on above four protocols, we put forward a verifiable (t, n)-
secret sharing scheme, which can avoid all known the dealer’s cheats.

In particular, all above protocols are statistical zero-knowledge.
Keywords: secret sharing, verifiable secret sharing, statistical

zero-knowledge

1 Introduction

Informally, a (t, n)-secret sharing is a protocol in which a dealer splits
a secret K into n shares, and gives each player a share, where t is called a
threshold. This means that t− 1 or less players can not recover K, but any
set of t or more players are guaranteed to easily computes K.

The notion of secret sharing was independently invented by Shamir[1]
and Blakey[3], and some other secret sharing schemes were appeared after-
wards [4, 5].

∗This work was supported in part by 973 project G1998030600.
†ctang@mmrc.iss.ac.cn, Key Laboratory of Mathematics Mechanization, Institute of

Systems Science, Chinese Academy of Sciences, P.R.China
‡zliu@zgc.gov.cn, Key Laboratory of Mathematics Mechanization, Institute of Systems

Science, Chinese Academy of Sciences, P.R.China
§mswang@is.iscas.ac.cn, State Key Laboratory of Information Security, Institute of

Software, Chinese Academy of Sciences, P.R.China

1

According to Shamir scheme, the dealer must select a polynomial f(x) ∈
Zm[x] with degree t − 1, where m is a prime and K ≡ f(0)(mod m) is the
secret. Each player is given a share (x, y), where x is the public ID of the
player and y ≡ f(x)(mod m). A secret sharing is perfect if no t − 1 or less
than t − 1 players can not obtain nothing about of the value of K, but at
least t players can compute the secret K. The Shamir scheme is perfect,
however, Blakey scheme is not.

In some cases, the dealer(or some players) may be bad and deviate from
his(or their) prescribed instructions in a (t, n)-secret sharing, such as, the
dealer selects a polynomial f(x) with degree not equal to t−1, or the dealer
gives a player a false share (x, y), i.e., y 6= f(x)(mod m), or some players
send wrong shares during the secret recovery. In order to prevent these cheat
behaviors, some improved methods were proposed[6, 7, 8, 9].

In [9], Benaloh presented a cut-and-choose protocol in which any player
can be convinced the dealer’s polynomial f(x) with degree at most t − 1.
But, the protocol does not satisfy the following properties: 1) the dealer
convinces all players the polynomial f(x) with degree t − 1 exactly; 2) the
protocol is a zero-knowledge proof. In [21], it has already been proposed as
an open problem how to construct a protocol satisfying 1) and 2). In this
paper, we put forward a protocol satisfying 1) and 2).

Intuitively, a secret sharing is a verifiable secret sharing (VSS for short)
if all players believe that their shares are true when they get them from
the dealer. Therefore, in a VSS scheme, there is not the case, which the
dealer transmit a false share to any player. The notion of VSS was first
introduced by Chor, Goldwasser, Micali, and Awerbuch[6], and a constant
round interactive scheme for VSS is presented based on the assumed in-
tractability of factorization. The powerful zero-knowledge proof systems
of Goldreich, Micali and Wigderson [7] can be used to create a constant
round interactive verifiable secret sharing protocol, and their solution may
be based on the existence of any one-way function. Their scheme is com-
putational zero-knowledge. Feldman[8] introduced a non-interactive VSS
protocol with homomorphic encryption functions, however the protocol has
more computation complexity than the interactive VSS protocol.

In this paper, we present a new interactive scheme for VSS. Our scheme
satisfies three properties: 1) it is based on the discrete logarithm; 2) any
player can check that y ≡ f(x)(mod m) even they do not know the polyno-
mial f(x); 3) it is statistical zero-knowledge. As a result, 1) our scheme is
more secure than the scheme in [7], because our scheme is statistical zero-
knowledge and their scheme computational zero-knowledge; 2) computation
complexity of our scheme is less than that of Feldman’s scheme which is

2

non-interactive zero-knowledge.
The structure of this paper is following, some preliminaries are intro-

duced in section 2; some basic tools are given in section 3; we generalize the
results in [2] in section 4; in section 5 we propose four protocols, i.e., 1) a
protocol proving two committed integers being equal, 2) a protocol proving
a committed integer a 6= 0, 3) a protocol proving a pair (x, y) satisfying
y ≡ f(x)(mod m) and 4) a protocol proving degree of f(x) being t − 1 ex-
actly; and a statistical zero-knowledge scheme for VSS is proposed in section
6; finally, concluding remarks will be given in section 7.

2 Preliminaries

2.1 The Network

We consider a network of n + 1 processors, which consists of n players with
identities 1, 2, ..., n and a dealer. Each player is a polynomial-time algorithm.
We assume that every processor has a broadcast channel; a message sent on
such a channel is received by all processors. Additionally, we assume that
there is a private channel from each processor to every other processor.

2.2 Zero-knowledge Proof

2.2.1 Indistinguishability

Goldwasser, Micali, and Rackoff[10] defined the notion of perfect(statistical,
computational) indistinguishability. Let L ⊂ {0, 1}∗ be a language.

We call two ensembles {Ux}x∈L and {Vx}x∈L perfectly indistinguishable
if prob(U(x) = α) = prob(V(x) = α) holds for each arbitrary size α ∈ {0, 1}∗.

Two families of random ensembles {Ux}x∈L and {Vx}x∈L are statistically
indistinguishable on L if

∑

α∈{0,1}∗
|prob(Ux = α)− prob(Vx = α)| < |x|−c

for all constants c > 0 and all sufficiently long x ∈ L.
To formalize the notion of computational indistinguishability we make

use of non-uniformity. Thus, our judge will be a poly-size family of circuits.
That is a family C = {Cx} of Boolean circuits Cx with one Boolean output
such that, for some constant e > 0, all Cx ∈ C have at most |x|e gates.
In order to feed samples from our probability distributions to such circuits,
we will consider only poly-bounded families of random variables, thai is,

3

families U = {U(x)} such that, for some constant d > 0, all random variable
U(x) ∈ U assigns positive probability only to strings whose lengths are
exactly |x|d. If U = {U(x)} is a poly-bounded family of random variables
that Cx outputs 1 on input a random string distributed according to U(x).

Two poly-bounded families of random variables {Ux}x∈L and {Vx}x∈L

are computationally indistinguishable on L if for all poly-size family of cir-
cuits C, for all constants c > 0 and all sufficiently long strings x ∈ L

|prob(U,C, x)− prob(V, C, x)| < |x|−c.

2.2.2 Zero-knowledge proof system

Intuitively, a protocol is zero-knowledge if for any adversary A acting on it,
there is no a probabilistic polynomial time algorithm(PPTA) which could
output strings distinguishable from those then output by A.

We define zero-knowledge for interactive protocol (P, V).

Definition 2.1 Let P be a probabilistic Turing machine and V a proba-
bilistic polynomial-time Turing machine that share the same input and can
communicate with each other. Let L be a language. We say that a pair
(P, V) is a perfect(statistical, computational) zero-knowledge proof system
for L if

1. (Completeness) For all x ∈ L,

Prob[t ← (P, V)(x);V (x, t) = ACCEPT] = 1.

2. (Soundness) For all X /∈ L, and any Turing machine P ′, it holds that

Prob[t ← (P ′, V)(x);V (x, t) = ACCEPT] ≤ 1/2.

3. (Perfect(statistical, computational zero-knowledge)) For any probabil-
ity polynomial time algorithm V ′, there exists a polynomial time al-
gorithm S, called the simulator, such that for all x ∈ L the following
holds:

• SV ′(x) =⊥(special symbol) with probability at most 1/2;

• Conditioned on SV ′(x) 6=⊥, the two distributions SV ′(x) and V iewV ′(x) =
{(r, t)|t ← (P, V (r))(x)} are perfect(statistical, computational) indis-
tinguishable.

Remark: An all-powerful adversary can obtain negligible something
from prover in statistical zero-knowledge proof, however, it can get some
information from computational zero-knowledge proof. Hence, the statistical
zero-knowledge has better properties than computational zero-knowledge.

4

2.3 Verifiable Secret Sharing

2.3.1 Shamir secret sharing

In [1] and [3], Shamir and Blakley presented independently a secret sharing
scheme, however, the former is based on the Lagrange interpolation formula
and the latter is based on the projective ways of linear geometry. In this
paper, we consider mainly the former because the latter is not perfect.

Informally, Shamir (t, n)-secret sharing scheme is the following:
Preliminary: Assume that p is a prime number and the dealer has a

secret K ∈ Zp, all players have a one and only public identity ∈ {1, ..., n}.
The secret sharing: The dealer lets a0 = K, chooses independently at

random integers a1, a2, ..., at−1 ∈ Zp, and constructs a polynomial f(x) =
a0 + a1x + ... + at−1x

t−1. Assume x is the identity of the i-th player, then
the share (x, y), which satisfies y ≡ f(x)(mod p), is sent to the i-th player,
where all x are public.

The secret reconstructing: When the secret K is reconstructed, at
least t players pool their shares, and they can compute easily the secret K
according to the Lagrange interpolation formula. Obviously, no less than or
equal to t− 1 players can recover the secret K.

2.3.2 Verifiable Secret Sharing

Informally, a verifiable secret sharing protocol must meet the following two
requirements:

Verifiablility constraint: upon receiving a share of the secret, a player
must be able to test whether it is a valid share or not.

Unpredictability: there is no polynomial-time strategy for picking t−1
or less than t− 1 shares of the secret, such that they can be used to predict
the secret with any perceivable advantage.

This framework allows for an interactive protocol proving validity of the
shares. Obviously, the same shares are not valid for different secrets; we
introduce a zero-knowledge proof which is based on discrete logarithm to
deal with it.

3 Basic tools

3.1 Commitment schemes

Pederson[11] proposed a computationally binding and unconditionally hid-
ing scheme based on the discrete logarithm problem. Given a group G of

5

prime order q and two random generators g and h such that logg h is un-
known and computing discrete logarithms is infeasible. A value α ∈ Zq is
committed to as Cα := gαhr, where r is randomly chosen from Zq. We will
use this commitment scheme for our construction and hence they will be
statistical zero-knowledge proof of knowledge.

3.2 Zero-knowledge proofs of knowledge about some modu-
lar relations

In this section, we mainly review some results from in [2, 15, 16, 22]. Other
zero-knowledge proofs of knowledge based on discrete logarithm are referred
in [12, 13, 14, 17, 18, 19, 20].

3.2.1 proving that a discrete logarithm lies in a given range

A statistical zero-knowledge protocol proving that a discrete logarithm lies
in a given range in [15, 16] was proposed and is denoted by

PK{(α) : y = gα ∧ −2l̈ < α < 2l̈}.

In [22], a statistical zero-knowledge protocol for proving x ∈ [a, b] was pro-
posed, which is denoted PK{(α, β : cx = gαhβ ∧ α ∈ [a, b])}.

3.2.2 Proving in statistical zero-knowledge that a+b ≡ d(mod m),
ab ≡ d(mod m) and ab ≡ d(mod m) hold

Let l be an integer such that −2l < a, b, d,m < 2l holds and ε > 1 be security
parameters. Furthermore, we assume that a group G of order q > 22εl+5(=
22l̈+1) and two generators g and h are available such that loggh is not known.
This group could for instance be chosen by the prover in which case she
would have to prove that she has chosen it correctly. Finally, let the prover’s
commitments to a, b, d and m be ca := gahr1 , cb := gbhr2 , cd := gdhr3 , and
cm := gmhr4 , where r1, r2, r3, and r4 are randomly chosen elements of Zq.

Camenisch and Michels([2]) assume that the verifier has already obtained
the commitments ca, cb, cd, and cm. Then the prover can convince the verifier
that a + b ≡ d(mod m) holds by running the protocol denoted:

S+ := PK{(α, β, γ, δ, ε, ζ, η, ϑ, %, λ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈ ∧ cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈ ∧ cm = gηhϑ ∧ −2l̈ < η < 2l̈∧

cd
cacb

= c%
mhλ ∧ −2l̈ < % < 2l̈}

6

Alternatively, she can convince the verifier that ab ≡ d(mod m) holds
by running the protocol:

S∗ := PK{(α, β, γ, δ, ε, ζ, η, ϑ, ξ, ρ, σ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈ ∧ cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈ ∧ cm = gηhϑ ∧ −2l̈ < η < 2l̈∧

cd = cα
b cρ

mhσ ∧ −2l̈ < ρ < 2l̈}.
At the same time, they presented a protocol in which the prover can

convince the verifier that ab ≡ d(mod m) holds for the committed integers
without revealing any further information. The protocol is denoted by Sexp

and is referred in Appendix A. In the following, when denoting a proto-
col, we will abbreviate the protocol Sexp by a clause like to the statement
that is proven and assume that the prover send the verifier all necessary
commitments; e.g.,

PK{(α, β, γ, δ, ε, ζ, θ, κ) : ca = gαhβ ∧ cb = gγhδ ∧ cd = gεhζ∧

cm = gθhκ ∧ (αγ ≡ ε(mod θ))}

Theorem 3.1 Let a, b, d, and m be integers that are committed to by the
prover as described above, Then all three Potocols S+, S∗, and Sexp are
statistical zero-knowledge proofs that a + b ≡ d(mod m), ab ≡ d(mod m)
and ab ≡ d(mod m) hold, respectively.

Proof: We explain mainly this reason that a+b ≡ d(mod m) holds, however,
other proofs(including the next theorem) are omitted.

The statistical zero-knowledge claims follows from the statistical zero-
knowledgeness of the building blocks.

Let us argue why the modular relations hold. Running the prover with
this protocol and using standard techniques, the knowledge extractor can
compute integers â, b̂, d̂, m̂, r̂1, r̂2, r̂3, r̂4 such that ca = gâhr̂1 , cb = gb̂hr̂2 ,
cd = gd̂hr̂3 , and cm = gm̂hr̂4 holds. Moreover, −2l̈ < â < 2l̈, −2l̈ < b̂ < 2l̈,
−2l̈ < d̂ < 2l̈, and −2l̈ < m̂ < 2l̈ holds for these integers.

When running the prover with S+, the knowledge extractor can further
compute integers r̂5 ∈ Zq and û with −2l̈ < û < 2l̈ such that cd/(cacb) =
cû
mhr̂5 holds.

Therefore we have gd̂−â−b̂hr̂3−r̂1−r̂2 = gm̂ûhûr̂4+r̂5 and hence, provided
that the discrete log of h to the base g is not known, we must have

d̂ ≡ â + b̂ + ûm̂(mod q).

7

Thus we have d̂ = â + b̂ + ûm̂ + w̄q for some integer w̄. Since 22l̈+1 < q
and due to the constraints on â, b̂, d̂, m̂, û we can conclude that the integer
w̄ must be 0 and hence

d̂ ≡ â + b̂(mod m̂)

must hold.

3.2.3 proving the pseudo-primality of a committed number

In [2], J.Camenish and M.Michels show how the prover and the verifier can
do Lehmann’s primality test1 for a number committed by prover such that
the verifier is convinced that the test was correctly done but does not learn
any other information. The general idea is that the prover commits to s

random bases ai and then prove that for these bases a
(m−1)/2
i ≡ ±1(mod m)

holds. Furthermore, the prover must commit to a base, say ã, such that
ã(m−1)/2 ≡ −1(mod m) holds to satisfy the second condition in Lehmann’s
primality test. We call this protocol Sprime which is described in Appendix
B. In the following section, PK : {(α, β) : cm = gαhβ ∧ α ∈ {prime}}
denotes proving that an integer m is a prime by Sprime.

Theorem 3.2 Given a commitment cm to an integer, the protocol Sprime is
a statistical zero-knowledge proof that the committed integer is a prime with
error-probability at most 2−s for the primality-test.

All described protocols can be combined in natural ways. First of all,
one can use multiple bases instead of a single one in any of the above proofs.
Then, executing any number of instances of these protocols in parallel and
choosing the same challenges for all of them in each round corresponding to
the ∧-composition of the statements the single protocols prove.

4 The statistical zero-knowledge proof for a+b = d,
ab = d, and d = ab

In this section, we will generalize these results in 3.2.2 and construct the
statistical zero-knowledge proof for a + b = d, ab = d, and d = ab, further-
more, the verifier also obtains nothing information except commitments to
some integers.

1An odd integer m > 1 is prime if and only if

∀a ∈ Z∗m : a(m−1)/2 ≡ ±1 (mod m) and ∃a ∈ Z∗m : a(m−1)/2 ≡ −1 (mod m).

8

Assume l, q and commitment scheme be uniform in 3.2.2, and the verifier
gets commitments ca, cb, cd to a, b, d, respectively. Then, in the following two
protocols S′+ and S′∗ the prover can convince the verifier that a + b = d and
ab = d hold.

S′+ := PK{(α, β, γ, δ, ε, ζ, λ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈∧
cd

cacb
= hλ}

S′∗ := PK{(α, β, γ, δ, ε, ζ, σ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈∧
cd = cα

b hσ}
The following protocol S′exp will guarantee that the prover convinces the

verifier that ab = d holds.
S′exp := PK{(α, β, ξ, χ, γ, δ, η, (λi, µi, ξi, σi, τi, ϑi, ψi)

lb−1
i=1 , (ωi, ρi)

lb−2
i=1 ,) :

ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cd = gγhδ ∧ −2l̈ < γ < 2l̈∧

(
∏lb−1

i=0 c2i

bi
)/cb = hη∧

cv1 = gλ1hµ1 ∧ ... ∧ cvlb−1
= gλlb−1hµlb−1∧

cv1 = cα
ahξ1 ∧ cv2 = cλ1

v1
hξ2 ∧ ... ∧ cvlb−1

= c
λlb−2
νlb−2 hξlb−1∧

−2l̈ < λ1 < 2l̈ ∧ ... ∧ −2l̈ < λlb−1 < 2l̈∧
cµ1 = gω1hρ1 ∧ ... ∧ cµlb−2

= gωlb−2hρlb−2∧
−2l̈ < ω1 < 2l̈ ∧ ... ∧ −2l̈ < ωlb−2 < 2l̈∧

((cb0 = hσ0 ∧ cµ0/g = hτ0) ∨ (cb0/g = hϑ0 ∧ cµ0/ca = hψ0))∧
((cb1 = hσ1 ∧ cµ1/cµ0 = hτ1)∨

(cb1/g = hϑ1 ∧ cµ1 = cλ1
µ0

hψ1)) ∧ ...∧
((cblb−2

= hσlb−2 ∧ cµlb−2
/cµlb−3

= hτlb−2)∨
(cblb−2

/g = hϑlb−2 ∧ cµlb−2
= c

λlb−2
µlb−3h

ψlb−2))∧
((cblb−1

= hσlb−1 ∧ cd/cµlb−2
= hτlb−1)∨

(cblb−1
/g = hϑlb−1 ∧ cd = c

λlb−1
µlb−2h

ψlb−1))}

Theorem 4.1 Let a, b, and d be integers that are committed to by the prover
as described above, Then all three Protocols S′+, S′∗, and S′exp are statistical
zero-knowledge proofs that a+b = d, ab = d = and ab = d hold, respectively.

9

Proof: We explain mainly this reason that a + b = d holds, however, the
proofs of ab = d and ab = d are omitted.

The statistical zero-knowledge claims follows from the statistical zero-
knowledgeness of the building blocks.

Running the prover with this protocol and using standard techniques,
the knowledge extractor can compute integers â, b̂, d̂, r̂1, r̂2, r̂3 such that ca =
gâhr̂1 , cb = gb̂hr̂2 , and cd = gd̂hr̂3 hold. Moreover, −2l̈ < â < 2l̈, −2l̈ < b̂ <
2l̈, and −2l̈ < d̂ < 2l̈, hold for these integers.

When running the prover with S′+, the knowledge extractor can further
compute integers r̂4 ∈ Zq such that cd/(cacb) = hr̂4 holds.

Therefore we have gd̂−â−b̂hr̂3−r̂1−r̂2 = hr̂5 and hence, provided that the
discrete log of h to the base g is not known, we must have

d̂ ≡ â + b̂(mod q).

Thus we have d̂ = â+ b̂+ w̄q for some integer w̄. Since 22l̈+1 < q and due to
the constraints on â, b̂, d̂ we can conclude that the integer w̄ must be 0 and
hence

d̂ = â + b̂

must hold.
In the following, when denoting a protocol, we will abbreviate the pro-

tocol S′exp by a clause like to the statement that is proven and assume that
the prover send the verifier all necessary commitments; e.g.,

PK{(α, β, γ, δ, ε, ζ) : ca = gαhβ ∧ cb = gγhδ ∧ cd = gεhζ ∧ (αγ = ε)}

Remark: By using protocol S′+, S′∗, we can construct a statistical zero-
knowledge proof proving that a committed integer a is either odd or even.

5 Several practical statistical zero-knowledge proof
protocols

In this section, we construct several statistical zero-knowledge proofs in order
to construct a statistical zero-knowledge scheme for VSS in the next section.

5.1 Proving that two committed integers are equal

Assume ca and cb are commitments to integers a and b, and the verifier has
obtained these commitments before the protocol beginning. A protocol, in

10

which the prover convinces the verifier that a = b holds, will be proposed in
this section, and it is denoted by S=.

S= : PK{(α, β, γ, δ, λ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈∧ (1)

cb = gγhδ ∧ −2l̈ < γ < 2l̈∧ (2)
ca

cb
= hλ} (3)

Theorem 5.1 If ca and cb are commitments to integers a and b as described
above, the protocol S= is a statistical zero-knowledge proof that a = b holds.

Proof: The statistical zero-knowledge claims follows from the statistical
zero-knowledgeness of commitment scheme.

Running the prover with this protocol and using standard techniques, the
knowledge extractor can compute integers â, b̂, r̂1, r̂2 such that ca = gâhr̂1

and cb = gb̂hr̂2 , hold. Moreover, −2l̈ < â < 2l̈, and −2l̈ < b̂ < 2l̈ hold for
these integers.

When running the prover with S=, the knowledge extractor can further
compute integers r̂3 ∈ Zq such that ca/cb = hr̂3 holds.

Therefore we have gâ−b̂hr̂1−r̂2 = hr̂3 and hence, provided that the discrete
log of h to the base g is not known, we must have

â ≡ b̂(mod q).

Thus we have â = b̂+ w̄q for some integer w̄. Since 22l̈+1 < q and due to the
constraints on â, b̂ we can conclude that the integer w̄ must be 0 and hence

â = b̂

must hold.
Assume an integer a is known, the following protocol S′= is a statistical

zero-knowledge proof that the committed integer b is equal to a.
S′= : PK{(α, β, λ) :

cb = gαhβ ∧ −2l̈ < α < 2l̈∧ (4)
cb

ga
= hλ} (5)

5.2 Proving that a committed integer is not equal to 0

In this section, we will present a protocol by which the prover can convince
the verifier that an integer a is not 0, furthermore, it is statistical zero-
knowledge.

11

For an arbitrary integer a, it can be written
∏i=t

i=1 pki
i , where p1, ..., pr are

primes and k1, ..., kr are integers. Now, if the prover can prove that a has
form

∏r
i=1 pki

i and all p1, ..., pr are primes, then a 6= 0 holds.
Assume l, q and commitment scheme be set in 3.2.2, and let prover’s

commitments to a, s1 = pk1
1 , ..., sr = pkr

r , p1, ..., pr, k1, ..., kr, and suppose the
verifier has already obtained all commitments before the protocol begins.
The following protocol will prove that the integer a is not 0.

Sa 6=0 := PK{(α, β, ρ, (δi, εi, ζi, ηi, θi, µi)i=r
i=1) :

ca = gαhβ ∧ −2l̈ < α < 2l̈∧ (6)

cs1 = gδ1hε1 ∧ ... ∧ csr = gδrhεr∧ (7)

(−2l̈ < δ1 < 2l̈) ∧ ... ∧ (−2l̈ < δr < 2l̈)∧ (8)
ca/cs1 ...csr = hρ∧ (9)

cp1 = gζ1hη1 ∧ ... ∧ cpr = gζrhηr∧ (10)

(−2l̈ < ζ1 < 2l̈) ∧ ... ∧ (−2l̈ < ζr < 2l̈)∧ (11)

ck1 = gθ1hµ1 ∧ ... ∧ ckr = gθrhµr∧ (12)

(−2l̈ < θ1 < 2l̈) ∧ ... ∧ (−2l̈ < θr < 2l̈)∧ (13)

(δ1 = ζθ1
1) ∧ ... ∧ (δr = ζθr

r)∧ (14)
(ζ1 ∈ {prime}) ∧ ... ∧ (ζr ∈ {prime})} (15)

Theorem 5.2 Let a be an integer that is committed by ca. Then Sa 6=0 is a
statistical zero-knowledge proof that a 6= 0 holds.

Proof: Completeness: If a 6= 0, the prover can prove that a =
∏r

i=1 pki
i

holds in (6)-(14); in (15), the prover proves that all of p1, ..., pr are prime
numbers. As a result, the verifier believes that a 6= 0 holds .

Soundness: If a = 0, the prover may prove that a is a composite integer
in (6)-(14); however, she can not prove that each of p1, ..., pr is prime; so,
the verifier rejects.

Zero-knowledgeness: Sa 6=0 is statistical zero-knowledge from Theorem
4.1.

5.3 Proving a polynomial f(x) with degree t− 1 exactly

Assume cb = (cb0 , cb1 , ..., cbm) and ca = (ca0 , ca1 , ..., cam) are commitments
to all exponents of x and all coefficients, respectively, in polynomial f(x),
furthermore, we assume that the i-th term is aix

bi , that is, f(x) = a0x
b0 +

12

a1x
b1 + ...+amxbm . If all above commitments satisfy the following: 1) there

exists a committed integer bj is equal to t−1; 2) other all committed integers
bi ∈ [0, t−2], where i 6= j; 3) aj 6= 0 holds, then the degree of the polynomial
f(x) is t−1 exactly. In total subsection, we assume arbitrary two committed
integers bi and bk is not equal, where i 6= k and m ≤ r.

Protcol 1

1. the prover chooses randomly a permutation π, obtains two new vectors
ca′ = πca = (ca′0 , ca′1 , ..., ca′m) and cb′ = πcb = (cb′0 , cb′1 , ..., cb′m), and
sends ca′ and cb′ to the verifier.

2. The prover proves to the verifier that a committed integer b′j = t − 1
holds by S′=.

3. The prover proves to the verifier that the committed integer a′j 6= 0
holds by Sa 6=0.

4. The prover proves to the verifier that all committed integer b′i ∈ [0, t−
2], where i 6= j, i.e.,
PK : {((αi, βi)m

i=0,i6=j) : cb′0 = gα0hβ0 ∧ α0 ∈ [0, t − 2] ∧ ... ∧ cb′j−1
=

gαj−1hβj−1 ∧ αj−1 ∈ [0, t− 2] ∧ cb′j+1
= gαj+1hβj+1 ∧ αj+1 ∈ [0, t− 2] ∧

... ∧ cb′m = gαmhβm ∧ αm ∈ [0, t− 2]}.
5. The prover obtains the primitive ca and cb by ca = c′aπ− and cb = c′bπ

−.

Theorem 5.3 Let cb = {cb0 , cb1 , ..., cbm} and ca = {ca0 , ca1 , ..., cam} are
commitments to all exponents of x and all coefficients, respectively, in poly-
nomial f(x), then the Protocol 1 is a statistical zero-knowledge proof that
the degree of the polynomial f(x) is t− 1 exactly.

Proof: 1) Completeness: If f(x) =
∑m

i=0 aix
bi is a polynomial with degree

t−1 exactly, then, in the above protocol the prover can convince the verifier
the polynomial with degree t− 1 exactly. In particular, the verifier does not
know j, which satisfies bj = t− 1, because we rearrange the ca and cb by a
random permutation π in the first step in protocol 1.

2)Soundness: If f(x) is not a polynomial with degree t−1 exactly, there
exist three cases: 1) if there is not a committed bj = t− 1, the second step
is wrong; 2) if there is a bj = t− 1, however, aj = 0 holds, the third step is
wrong; 3) if bj = t− 1 and aj 6= 0 hold, but there exists a committed bk not
in [0, t− 2], then fourth step is wrong. So, if f(x) is not a polynomial with

13

degree t−1 exactly, the prover can convince the verifier the polynomial with
degree t− 1 exactly with negligible probability.

3) Zero-knowledge: By Sa 6=0, S′= and the result in [22] we know that our
protocol satisfies statistical zero-knowledge.

Remark: In an ordinary (t, n)-secret sharing scheme, if the dealer pro-
duces the share with a polynomial f(x) with the degree less than t − 1,
however, the verifier doesn’t know it and thinks his share generated by a
polynomial f(x) with degree t − 1, then less than t − 1 players will obtain
the secret, as a result, the secret sharing will not be perfect. Now, we can
utilize the Protocol 1 to prevent this case.

5.4 The protocol which prove that a point (x, y) satisfies y ≡
f(x)(mod m)

In an ordinary (t, n)-secret sharing scheme, if the dealer tries to cheat all
players with a polynomial f(x), whose degree does not equal to t−1, we can
overcome it by Protocol 1. But, if the the dealer sends the share (x, y), which
does not satisfy y ≡ f(x)(mod m), she can still cheat all players, because
each player does not know the polynomial f(x) and can’t check whether his
share (x, y) satisfies y ≡ f(x)(mod m) or not.

In this subsection, we present a protocol by which the prover can con-
vince the verifier that (x, y) is produced by the equation

f(x) =
t−1∑

i=0

aix
i ≡ y mod m

where all integers x, a0, ..., at−1, y, m might only given as commitments can
be shown.

Assume the algebraic setting be similar to 3.2.2, then the following pro-
tocol will guarantee that (x, y) is correctly generated by polynomial f(x),
i.e., y ≡ f(x)(mod m), however the verifier know nothing but commitments
to the polynomial.

Protocol 2

P1: The prover commits to all the summands a0, s1 :≡ a1x(mod m),...,st−1 :≡
at−1x

t−1(mod m) and shows that a0 + s1 + ... + st−1 ≡ y(mod m), i.e., as-
sume that the verifier already obtained the commitments ca0 , cs1 , ..., cst−1 , cy,
and cm, then the prover can convince the verifier that a0 + s1 + ... + st−1 ≡
y(mod m) holds.
V1: If P1 is real, go on, else, reject.

14

P2: The prover commits to all terms ai, pi ≡ xi(mod m) and shows si ≡
aipi(mod m)(let S(∗,i) denote the proof of si ≡ aipi(mod m)), where 0 ≤ i ≤
t− 1, i.e., the prover runs S∗ for i times.
V2: If all S(∗,i) in P2 are real, go on, else, reject.
P3: The prover commits to x, all terms i and shows pi ≡ xi(mod m)(let
S(exp,i) denote the proof of pi ≡ xi(mod m)), where 0 ≤ i ≤ t − 1, i.e., the
prover runs Sexp for t− 1 times.
V3: If all S(exp,i) are real, end, else, reject.

Sy≡f(x)(mod m) := PK{(α, β, (αi, βi, γi, δi, µi, νi, τi, φi)t−1
i=1, ε, ζ, η, ϑ, µ, λ) :

ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cs1 = gγ1hδ1 ∧ ... ∧ cst−1 = gγt−1hδt−1∧
−2l̈ < γ1 < 2l̈ ∧ ... ∧ −2l̈ < γt−1 < 2l̈∧
cy = gεhζ ∧ −2l̈ < ε < 2l̈∧
cm = gηhϑ ∧ −2l̈ < η < 2l̈∧

cy

cacs1 ...cst−1
= cµ

mhλ ∧ −2l̈ < µ < 2l̈∧
ca1 = gα1hβ1 ∧ ... ∧ cat−1 = gαt−1hβt−1∧
−2l̈ < α1 < 2l̈ ∧ ... ∧ −2l̈ < αt−1 < 2l̈∧
cp1 = gµ1hν1 ∧ ... ∧ cpt−1 = gµt−1hνt−1∧
−2l̈ < µ1 < 2l̈ ∧ ... ∧ −2l̈ < µt−1 < 2l̈∧
cs1 = cα1

p1
cτ1
mhφi ∧ ... ∧ cst−1 = c

αt−1
pt−1 c

τt−1
m hφt−1∧

−2l̈ < τ1 < 2l̈ ∧ ... ∧ −2l̈ < τt−1 < 2l̈∧
cx = gϕhψ ∧ −2l̈ < ϕ < 2l̈∧
c1 = gϕ1hψ1 ∧ ... ∧ ct−1 = gϕt−1hψt−1∧
−2l̈ < ϕ1 < 2l̈ ∧ ... ∧ −2l̈ < ϕt−1 < 2l̈∧
(µ1 ≡ ϕ1(mod m) ∧ ... ∧ (µt−1 ≡ ϕt−1(mod m)}

Theorem 5.4 Let x, y, a0, ..., at−1, 1, ..., t − 1, and m be integers that are
committed to by the prover as described in subsection 3.2.2. Then the Pro-
tocol 2 is a statistical zero-knowledge proof that y ≡ a0 + a1x + a2x

2 + ... +
at−1x

t−1(mod m) holds.

Proof: In P1, the prover can convince the verifier that y ≡ a0 + s1 + s2 +
... + st−1(mod m) holds; In P2, the prover can convince the verifier that
si ≡ aipi(mod m) holds, where 1 ≤ i ≤ t− 1; In P3, the prover can convince
the verifier that pi ≡ xi(mod m), where 1 ≤ i ≤ t − 1. So the prover can
convince the verifier that y ≡ a0 + a1x + a2x

2 + ... + at−1x
t−1(mod m).

Obviously, P1, P2, and P3 are statistical zero-knowledge proofs because of
the statistical zero-knowledge proof properties of S+, S∗, and Sexp.

15

6 A verifiable secret sharing scheme

In this subsection, we will construct a verifiable (t, n)-secret sharing
scheme.

6.1 The VSS scheme

Assume that the dealer has a secret K. Now, she wants to split it to n
players so that any set of less than t players can’t recover the secret K,
however, any set of u players are guaranteed that they can easily computes
K, where t ≤ u ≤ n.

6.1.1 Initialization

Let Generator(k) be a prime number generator, where k is bit number of
prime number. Assume p ← Generator(l), and q ← Generator(l̈), where
l̈ > 2εl +1 and ε is a security parameter. K ∈ Zp is the secret of the dealer.

6.1.2 The Secret Sharing scheme

D1: The dealer randomly selects t − 1 integers a1, ..., at−1 in Zp, and lets
a0 = K, constructs polynomial f(x) = a0 + a1x + a2x

2 + ... + at−1x
t−1.

Then, she commits to 0, 1, 2, ..., t − 1, a0, a1, ..., at−1, p, and broadcasts their
commitments to all players in broadcast channel.
D↔P(1): The dealer runs Protocol 1 with all players.
P1: If Protocol 1 is real to each player(i.e., the polynomial f(x) with degree
exact t− 1), go on, else, reject.
D2: For each player, the dealer generates the share (xi, yi)(i.e., f(xi) ≡
yi(mod p)), where xi is the identity of the i-th player.
D↔P(2): The dealer runs Sf(xi)≡yi

with the i-th player, and sends com-
mitments(to xi, x

2
i , ..., x

t−1
i , yi) the i-th player.

P2: If Sf(xi)≡yi
is real, go on, else, reject.

D3: The dealer decommits to commitments (to (xi, yi)).
P3: If the dealer can decommit it correctly, the i-th player accepts the share
(xi, yi), else, reject.
Remark: The prime q is used in D↔P(1) and D↔P(2).

6.2 Properties of our protocol

Our protocol has the following properties.

16

6.2.1 It is a verifiable (t, n)-secret sharing

In D1 and D2, the dealer generates the share (xi, yi) with the polynomial
f(x) = K +a1x+a2x

2 + ...+at−1x
t−1, where a1, a2, ..., at−1 and x ∈ Zp, and

K is the secret. It is obvious that any set of less than t players can’t recover
the secret K because any solutions less than t can’t obtain all coefficients
K, a1, ..., at−1 in this polynomial. However, any solutions of u(≥ t) can get
the secret K according to Lagrange interpolation formula. So, it is a (t, n)-
secret sharing scheme. Obviously, it is verifiable because the player can
decide his share (x, y) which satisfies y ≡ f(x)(mod m) or not.

6.2.2 it is a statistical zero-knowledge proof

D↔P(1) is Protocol 1, i.e., the dealer explains to all players that degree
of her polynomial equals to t− 1, so it is statistical zero-knowledge.

D↔P(2) is Protocol 2, i.e., the dealer proves to each player whose share
(xi, yi) is exactly generated by the polynomial f(x) = K +a1x+a2x

2 + ...+
at−1x

t−1, Obviously, it is statistical zero-knowledge.
In Protocol 4, because D↔P(1) and D↔P(2) are statistical zero-knowledge,

furthermore, in other steps, each player knows nothing but that the share
(xi, yi) is generated by the polynomial f(x) = K+a1x+a2x

2+...+at−1x
t−1.

Hence it is still statistical zero-knowledge.

6.3 Security of our protocol

Our protocol can prevent all known the dealer’s cheats. As usually, there
exist three type dealer’s cheats, one is that the dealer tells all players that
her threshold is t, however, the degree of her selected polynomial f(x) does
not equal to t− 1; the second is that she sends the share (x, y) to a player,
but y ≡ f(x) does not hold, then the secret recovered will not be K when at
least t players recover the secret; the last is that the dealer claims a secret
K, however a0 in f(x) is different from this secret. The following section
will analysis how our protocol can avoid these cases.

6.3.1 a polynomial f(x) whose degree is not t− 1

Assume the dealer uses a polynomial f(x), whose degree does not equal to
t − 1, the D↔P(1) in secret sharing scheme will be unsuccessful, because
this step is that the dealer proves to each player her polynomial with degree
t− 1 exactly.

17

6.3.2 the share (x, y), sent by the dealer, does not satisfy y ≡
f(x)(mod m)

Assume the dealer sends the (x, y) to the player, however, y is not generated
by the polynomial f(x) in x, i.e., f(x) 6= y. As a result, there exists a
contradiction because in D↔P(2) in secret sharing scheme is that the dealer
proves to the player that y ≡ f(x)(mod m).

6.3.3 The secret K claimed by the dealer is different from the
a0(real secret) in polynomial f(x)

Assume the dealer uses a secret K1 in polynomial f(x), however, she claims
that her secret is K. When at least t players recover the secret, they get the
secret K1, which is different from K, then all players think that the dealer
is cheating. But, the dealer may speak that all players are cheating her(i.e.,
all players gives a secret different from one recovered by them). For this
case, we may ask the dealer to decommit the commitment to K1 in D1, if
the dealer can do it correctly, the dealer is cheating.

Remarks: Our protocol can avoid all known dealer’s cheats, however, there
exist some players’ cheats while reconstructing the secret K, for example,
some players provide some false shares. In order to prevent this case, we
advance an improved scheme, which is followed:

In initialization in 6.1.1, the dealer chooses a private key e, and publish
a public key d, such as RSA system;

In Protocol 4, we add two steps at the last:
D4: the dealer sends encryption E to share (xi, yi) by using RSA with

secret key e to Pi.
S4: the player Pi decryption to E with public key d, if the value is equal

to (xi, yi), accepts, else, rejects.
The advanced scheme can avoid this cheat which any player presents

a faulty share when he sends his share to compute the secret K, if he is
requested to send (E, (xi, yi)). Because any player can decrypt E with the
public key d, if the decryption value is not equal to (xi, yi), the i-th player
is cheating, else, accepts.

7 Results

In this paper, we first generalize the results in [2], obtain three statistical
zero-knowledge proofs in which the prover can convince the verifier that

18

a + b = d, ab = d and ab = d hold for committed integers a, b, d; then,
we propose four statistical zero-knowledge proof; finally, based on all above
protocols, we present a verifiable (t, n)-secret sharing scheme, which can
prevent all known the dealer’s cheats, furthermore, it is statistical zero-
knowledge too.

References

[1] A Shamir. How to Share a Secret. Comm. ACM 1979, 22: 612-613.

[2] J Camenisch, and M Michels, Proving in Zero-knowledge that a Number
is the Product of Two Safe Primes. BRICS Report Series, RS-98-29.

[3] G.R Blakey, Safeguarding Cryptographic Keys. Proc. NCC, AFIPS
Press, Montvale, 1979, 48: 313-317.

[4] G.I Davida, R.A Demillo, and R.J Lipton, Protecting Shared Crypto-
graphic Keys. Proc. Symp. on Security and Privacy, IEEE Computer
Soc. Press, Silver Spring, MD, April pp.14-16 1980.

[5] S.C Kothari. Generalized Linear Threshold Scheme, Proc of CRYPTO’84
pp 231-242, Berlin: Springer Verlag, 1984.

[6] B Chor, S Goldwasser, S Micali, and A Awerbuch, Verifiable Secret Shar-
ing and Achieving Simultaneity in the Presence of Faults, Proceedings of
the 26 IEEE Symposium on Foundation of Computer Science (FOCS),
IEEE, pp. 383–395, 1985.

[7] O Goldreich, S Micali and A Wigderson, Proofs that Yield Nothing but
Their Validity and a Methodology of Cryptographic Protocol Design,
Proceedings of the 27 IEEE Symposium on Foundation of Computer Sci-
ence (FOCS), IEEE, pp. 174–187, 1986.

[8] P Feldman, A Practical Scheme for Non-interactive Verifiable Secret
Sharing. Proceedings of the 28 IEEE Symposium on Foundation of Com-
puter Science (FOCS), IEEE, pp. 427–437, 1987.

[9] J.C Benaloh, Secret Sharing Homomorphisms: Keeping Shares of a Se-
cret. Proc of CRYPTO’86, Berlin: Springer, 1986.

[10] S Goldwasser, S Micali, and C Rackoff, The Knowledge Complexity
of Interactive Proof Systems. SIAM Journal on Computing, Vol. 18,pp
186-208, 1989. Preliminary version in 17th STOC, 1985.

19

[11] T.P Pedersen, Non-interactive and information-theoretic secure verifi-
able secret sharing. Advances in Cryptology-CRYPTO’91, pp 129-140,
Berlin: Springer, 1991.

[12] D Chaum, J.H Evertse, and J van de Graaf, and Peralta R, Demon-
strating possession of a discrete logarithm without revealing it. Advances
in Cryptology-CRYPTO’86, pp 200-212, Berlin: Springer, 1987.

[13] C.P Schnorr, Efficient signature generation for smart cards. J of Cryp-
tology, 4(3):239-252, 1991.

[14] J Camenisch, and M Stadler, Efficient group signature schemes for
large groups. Advances in Cryptology-CRYPTO’97, pp 410-424, Berlin:
Springer, 1997.

[15] A Chan, Y Frankel, and Y Tsiounis, Easy come-easy go divisible cash.
Advances in Cryptology-EUROCRYPT’98, pp 561-575, Berlin: Springer,
1998.

[16] E Fujisaki, and T Okamoto, Statistical zero-knowledge protocols
to prove modular polynomial relations. Advances in Cryptology-
CRYPTO’97, pp 16-30, Berlin: Springer, 1997.

[17] S Brands, Electronic cash systems based on the representation problem
in groups of prime order, Advances in Cryptology-CRYPTO’93, pp 1-15,
Berlin: Springer, 1993.

[18] D Chaum, J.E Evertse, and J van de Graaf, An improved protocol
for demonstrating possession of discrete logarithms and some general-
izations, Advances in Cryptology-EUROCRYPT’87, pp 127-141, Berlin:
Springer, 1988.

[19] D Chaum, and T.P Pedersen, Wallet databases with observers, Ad-
vances in Cryptology-CRYPTO’92, pp 89-105, Berlin: Springer, 1993.

[20] R Cramer, I Damgard, and B Schoenmakers, Proofs of partial knowl-
edge and simplified design of witness hiding protocols, Advances in
Cryptology-CRYPTO’94, pp 174-187, Berlin: Springer, 1994.

[21] L Xishong, H Liang, and Z Zhencheng, Computer Cryptography and
Its Applications, Industry Publish of National Defence, Beijing, 2001.

[22] F.Boudot, Efficient Proofs that a Committed Number Lies in an In-
terval. Advances in Cryptology-EUROCRYPT’00, pp 431-444, Berlin:
Springer, 2000.

20

Appendix A
This Protocol will prove that ab ≡ d(mod m) holds.
Sexp := PK{(α, β, ξ, χ, γ, δ, ε, ζ, η, (λi, µi, νi, ξi, σi, τi, ϑi, ϕi, ψi)

lb−1
i=1 , (ωi, ρi)

lb−2
i=1 ,) :

ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cd = gγhδ ∧ −2l̈ < γ < 2l̈∧
cm = gεhζ ∧ −2l̈ < ε < 2l̈∧

(
∏lb−1

i=0 c2i

bi
)/cb = hη∧

cν1 = gλ1hµ1 ∧ ... ∧ cνlb−1
= gλlb−1hµlb−1∧

cν1 = cα
a cν1

n hξ1 ∧ cν2 = cλ1
ν1

cν2
n hξ2 ∧ ... ∧ cνlb−1

= c
λlb−2
νlb−2 c

νlb−1
n hξlb−1∧

−2l̈ < λ1 < 2l̈ ∧ ... ∧ −2l̈ < λlb−1 < 2l̈∧
−2l̈ < ν1 < 2l̈ ∧ ... ∧ −2l̈ < νlb−1 < 2l̈∧

cµ1 = gω1hρ1 ∧ ... ∧ cµlb−2
= gωlb−2hρlb−2∧

−2l̈ < ω1 < 2l̈ ∧ ... ∧ −2l̈ < ωlb−2 < 2l̈∧
((cb0 = hσ0 ∧ cµ0/g = hτ0) ∨ (cb0/g = hϑ0 ∧ cµ0/ca = hψ0))∧

((cb1 = hσ1 ∧ cµ1/cµ0 = hτ1)∨
(cb1/g = hϑ1 ∧ cµ1 = cλ1

µ0
cϕ1
n hψ1 ∧ −2l̈ < ϕ1 < 2l̈)) ∧ ...∧

((cblb−2
= hσlb−2 ∧ cµlb−2

/cµlb−3
= hτlb−2)∨

(cblb−2
/g = hϑlb−2∧cµlb−2

= c
λlb−2
µlb−3c

ϕlb−2
n hψlb−2∧−2l̈ < ϕlb−2 < 2l̈))∧

((cblb−1
= hσlb−1 ∧ cd/cµlb−2

= hτlb−1)∨
(cblb−1

/g = hϑlb−1 ∧ cd = c
λlb−1
µlb−2c

ϕlb−1
n hψlb−1 ∧ −2l̈ < ϕlb−1 < 2l̈))}

21

Appendix B
The following protocol will prove that m is a prime.

1. The prover picks random âi ∈R Zm for i = 1, ..., s and commits to them
as câi

= gâihrâ with râ ∈R ZQ for i = 1, ..., s. She sends câ1 , ..., câs to
the verifier.

2. The verifier picks random integers −2l < ăi < 2l for i = 1, ..., s and
sends them to the prover.

3. The prover computes ai := âi + ăi(mod m), cai := gaihrai with rai ∈R

ZQ, di := a
(m−1)/2
i (mod m), and cdi

:= gdihrdi with rdi
∈R ZQ for

all i = 1, ..., s. Moreover, the prover commits to (m − 1)/2 by cb :=
g(m−1)/2hrb with rb ∈R ZQ. Then the prover searches a base ã such
that ã(m−1)/2 ≡ −1(mod m) holds and commits to ã by cã := gãhrã

with rã ∈R ZQ.

4. The prover sends cb, cã, ca1 , ..., cas , cd1 , ..., cds to the verifier and then
they carry out the following protocol.

Sprime := PK{(α, β, γ, ν, ξ, ρ, κ, (δi, εi, ζi, ηi, ϑi, ωi, ρi, κi, µi, ψi)s
i=1 :

cb = gαhβ ∧ −2l̈ < α < 2l̈∧
cm = gνhξ ∧ −2l̈ < ν < 2l̈∧

c2
bg/cn = hγ∧

cã = gρhκ ∧ (ρα ≡ −1(mod ν))∧
câ1 = gδ1hε1 ∧ ... ∧ câs = gδshεs∧

ca1/gă1 = gδ1cζ1
n hη1 ∧ ... ∧ cas/găs = gδscζs

n hηs∧
−2l̈ < δ1 < 2l̈ ∧ ... ∧ −2l̈ < δs < 2l̈∧
−2l̈ < ζ1 < 2l̈ ∧ ... ∧ −2l̈ < ζs < 2l̈∧
ca1 = gρ1hκ1 ∧ ... ∧ cas = gρshκs∧

(cd1/g = hϑ1 ∨ cd1g = hϑ1) ∧ ... ∧ (cds/g = hϑs ∨ cdsg = hϑs)∧
cd1 = gµ1hψ1 ∧ ... ∧ cds = gµshψs∧

(ρα
1 ≡ µ1 (mod ν)) ∧ ... ∧ (ρα

s ≡ µs (mod ν))}

22

