
Cryptanalysis of the Repaired Public-key Encryption

Scheme Based on the Polynomial Reconstruction

Problem

Jean-Sébastien Coron

Gemplus Card International

34 rue Guynemer

Issy-les-Moulineaux, F-92447, France

jean-sebastien.coron@gemplus.com

Abstract. At Eurocrypt 2003, Augot and Finiasz proposed a new public-key encryp-
tion scheme based on the polynomial reconstruction problem [1]. The scheme was subse-
quently broken in [5], who showed that given the public-key and a ciphertext, one could
recover the corresponding plaintext in polynomial time. Recently, Augot, Finiasz and
Loidreau published on the IACR eprint archive a reparation [2] of the cryptosystem.
The reparation is based on the trace operator, and is resistant against the previous
attack. However, we describe a new cryptanalysis of the repaired scheme. Given the
public-key and a ciphertext, we can still recover the corresponding plaintext in poly-
nomial time. Our technique is a variant of the Berlekamp-Welsh algorithm, and works
very well in practice, as for the proposed parameters, we recover the plaintext in less
than 8 minutes on a single PC.

Key-Words: Cryptanalysis, Augot and Finiasz cryptosystem, Polynomial Recon-
struction Problem, Reed-Solomon codes.

1 Introduction

We describe a cryptanalysis of a public-key encryption scheme recently published by
Augot, Finiasz and Loidreau [2]. The scheme is based on the polynomial reconstruction
(PR) problem [10], which is the following:

Problem 1 (Polynomial Reconstruction). Given n, k, ω and (xi, yi)i=1...n, output any
polynomial p such that deg p < k and p(xi) = yi for at least n − ω values of i.

This problem has an equivalent formulation in terms of the decoding of Reed-
Solomon error-correcting codes [11]. The problem can be solved in polynomial time
when the number of errors ω is such that ω ≤ (n − k)/2, using the Berlekamp-Welsh
algorithm [3]. This has been improved to ω ≤ n−

√
kn by Guruswami and Sudan [7].

When the number of errors is larger, no polynomial time algorithm is known for
the PR problem. Therefore, some cryptosystem have been constructed based on the
hardness of the PR problem; for example, an oblivious polynomial evaluation scheme
[10], and a semantically secure symmetric cipher [8].

At Eurocrypt 2003, Augot and Finiasz proposed a new public-key encryption
scheme based on the polynomial reconstruction problem [1]. A security level exponen-
tial in terms of the parameters was conjectured. However, the scheme was subsequently



2

broken in [5], who showed that given the public-key and a ciphertext, one could re-
cover the corresponding plaintext in polynomial time. Recently, Augot, Finiasz and
Loidreau published on the IACR eprint archive a reparation [2] of the cryptosystem.
The reparation is based on the trace operator, and is resistant against the previous
attack. However, we describe a new cryptanalysis of the repaired scheme. Given the
public-key and a ciphertext, we can still recover the corresponding plaintext in polyno-
mial time. Our technique is again a variant of the Berlekamp-Welsh algorithm [3], and
works very well in practice, as for the proposed parameters, we recover the plaintext
in less than 8 minutes on a single PC.

2 The Original Cryptosystem

In this section, we recall the original cryptosystem proposed by Augot and Finiasz
at Eurocrypt 2003. As in [1], we first recall some basic definitions of Reed-Solomon
codes.

2.1 Reed-Solomon Codes

Let Fq be the finite field with q elements and let x1, · · · , xn be n distinct elements of
Fq. We denote by ev the following map:

ev :

{

Fq[X] → Fn
q

p(X) → (p(x1), . . . , p(xn))

Definition 1. The Reed-Solomon code of dimension k and length n over Fq is the
following set of n-tuples (codewords):

RSk = {ev(f); f ∈ Fq[X],deg f < k}

where Fq[X] is the set of univariate polynomials with coefficients in Fq.

The weight of a word c ∈ Fn
q is the number of non-zero coordinates in c. The

Hamming distance between two words x and y is the weight of x − y. Formally, the
problem of decoding Reed-Solomon code is the following:

Problem 2 (Reed-Solomon decoding). Given a Reed-Solomon code RSk of length n, ω
an integer and a word y ∈ Fn

q , find any codeword in RSk at distance less than ω of y.

The smallest weight of non-zero codewords in RSk is n − k + 1. Therefore, when
ω ≤ (n − k)/2, the solution to Reed-Solomon decoding is guaranteed to be unique.
It is easy to see that the Polynomial Reconstruction problem and the Reed-Solomon
decoding problem are equivalent. Both problems can be solved in polynomial time
when w ≤ (n − k)/2, using the Berlekamp-Welsh algorithm [3].

2.2 The original Cryptosystem

In the following, we briefly review Augot and Finiasz public-key cryptosystem [1].



3

Parameters: q is the size of Fq, n is the length of the Reed-Solomon code, k its
dimension, W is the weight of a large error, so that the PR problem for n, k,W is
believed to be hard, i.e. we must have:

W >
n − k

2

ω is the weight of a small error, for which the PR problem with n−W coordinates is
easy:

ω ≤ n − W − k

2
(1)

It is recommended in [1] to take n = 1024, k = 900, ω = 25, W = 74 and q = 280.

Key generation: Generate a unitary polynomial p of degree k − 1, and a random
n-dimensional vector E of weight W . Compute the codeword c = ev(p) of RSk. The
public key is z = c + E, while the private key is (p,E).

Encryption: Let m a message of length k − 1 over the alphabet Fq. The message
m is seen as a polynomial m(X) = m0 + m1X + . . . + mk−1X

k−2 of degree at most
k − 2. Generate a random α ∈ Fq and a random error e of weight ω. The ciphertext
y is then:

y = ev(m) + α × (c + E) + e

Decryption: One considers only the positions where Ei = 0 and define the shortened
code of length n − W , which is also a Reed-Solomon code of dimension k, which we
denote RSk. Let y, ev(m), c, e be the shortened y, ev(m), c, e. One must solve the
equation:

y = ev(m) + α × c + e

We have ev(m)+α×c ∈ RSk, and from (1), the weight of the small error e is less than
the error correction capacity of RSk; therefore, using the Berlekamp-Welsh algorithm,
one can recover the unique polynomial r of degree k − 1 such that:

ev(r) = ev(m) + α × c

which gives
r = m + α · p

Since deg(m) ≤ k − 2 and p is a unitary polynomial of degree k − 1, the field element
α is the leading coefficient of r. Therefore one can recover m as:

m = r − α · p

3 Attack on the Original Cryptosystem

In this section, we recall [5]’s attack on the original cryptosystem. The attack is a
variant of the Berlekamp-Welsh algorithm for solving the PR problem (see [6]). Let
n, k,W,ω and q be the parameters of the system. Let (p,E) be the private key and
z = ev(p) + E be the public-key. Let m be the plaintext encoded as a polynomial of



4

degree less than k − 2. Let e be an error vector of weight ω, and α be a field element.
Let

y = ev(m) + α × z + e (2)

be the corresponding ciphertext.

Theorem 1. Given the public-key z and the ciphertext y, one can recover the corre-
sponding plaintext m in polynomial time.

Proof. Let yi, zi and ei be the components of the words y, z and e. Given y and z, one
must solve the following set of equations:

∃e,m,α, yi = m(xi) + α · zi + ei for all 1 ≤ i ≤ n (3)

where the weight of e is less than ω. Note that from the definition of the cryptosystem,
there is a unique solution.

Consider the following set of equations:

∃V,m,α,

{

deg(V ) ≤ ω, V 6= 0, deg(m) ≤ k − 2

∀i, V (xi) · (yi − α · zi) = V (xi) · m(xi)
(4)

Any solution V,m,α of (4) gives a solution to (3). Namely, the fact that V 6= 0
and deg V ≤ ω implies that V can be equal to zero at most ω times. Therefore, letting
ei = yi − m(xi) − α · zi, the weight of e is less than ω.

Conversely, any solution to (3) gives a solution to (4). Namely, one can take
V (X) =

∏

i∈B(X − xi) with B = {i|ei 6= 0}. The problem of solving (3) can thus
be reduced to finding V,m,α satisfying (4). Consider now the following set of equa-
tions:

∃V,N, λ,

{

deg(V ) ≤ ω, V 6= 0, deg(N) ≤ k + ω − 1

∀i, V (xi) · (yi − λ · zi) = N(xi)
(5)

The system (5) is a linearized version of (4), in which one has replaced the product
V (xi) · m(xi) by N(xi). It is easy to see that any solution of (4) gives a solution to
(5), as one can take λ = α and N = m · V . However, the converse is not necessarily
true.

For a given λ, the system (5) gives a linear system of n equations in the k+2 ·ω+1
unknown, which are the coefficients of the polynomials V and N . More precisely,
denoting:

V (X) =
ω

∑

i=0

vi · Xi, N(X) =
k+ω−1
∑

i=0

ni · Xi

and Y the vector of coordinates:

Y = (v0, · · · , vω, n0, · · · , nk+ω−1)

one let M(λ) be the matrix of the system:

M(λ)i,j =

{

(yi − λ · zi) · (xi)
j if 0 ≤ j ≤ ω

−(xi)
j−ω−1 if ω < j < k + 2ω + 1



5

The matrix M(λ) is a rectangular matrix with n lines and k+2ω+1 columns; from (1)
we have that n > k +2ω +1. The coefficients of M(λ) are a function of the public-key
and the ciphertext only. The system (5) is then equivalent to:

∃Y, λ, M(λ).Y = 0, Y 6= 0 (6)

Let one consider the matrix M(λ) with λ = 0. Using Gaussian elimination, one
computes the rank of the matrix M(0). One distinguishes two cases: rank M(0) =
k + 2ω + 1, and rank M(0) < k + 2ω + 1.

If rank M(0) = k + 2ω + 1, then there exists a square sub-matrix of M(0) of
dimension k + 2ω + 1 which is invertible. Without loss of generality, one can assume
that the matrix obtained by taking the first k + 2ω + 1 lines of M(0) is invertible. Let
M ′(λ) be the square matrix obtained by taking the first k+2ω +1 lines of M(λ). Any
solution Y, λ of (6) satisfies:

M ′(λ).Y = 0, Y 6= 0

which implies that the matrix M ′(λ) is non-invertible, i.e. det(M(λ)) = 0. Then, the
solution α in system (4) must be a root of the function:

f(λ) = Det(M ′(λ))

which is a polynomial of degree at most ω+1. The polynomial f is not identically zero,
because M ′(0) is invertible, which implies f(0) 6= 0. The polynomial f can easily be
obtained from the public-key z and the ciphertext y by computing f(λ) = Det(M ′(λ))
for ω + 2 distinct values of λ and then using Lagrange interpolation.

The factorization of a polynomial over a finite-field can be done in polynomial time
(see for example [13]). Therefore, one obtains a list of at most ω + 1 candidates, one
of which being the solution α of (4), and equivalently, of (3). For the right candidate
α, the vector y − α × z is equal to ev(m) + e, where the weight of e is less than the
error correcting capacity of the Reed-Solomon code. Therefore, using Berlekamp-Welsh
algorithm, one recovers the plaintext m from y − α × z in polynomial time.

More precisely, let α,m, e be the solution of (3). Given a solution V,N, λ of (5)
with λ = α, we have for all 1 ≤ i ≤ k + 2 · ω + 1 :

V (xi) · (m(xi) + ei) = N(xi)

Since the error vector e has a weight at most ω, we have for at least ω + k + 1 values
of i:

V (xi) · m(xi) = N(xi)

N and V ·m are therefore two polynomials of degree less than ω+k−1 which take the
same value on at least ω+k+1 distinct points; consequently, the two polynomials must
be equal. This means that one can recover m by performing a polynomial division:

m =
N

V

Therefore, one can recover the plaintext in polynomial time.



6

Let us now consider the second case, i.e. rank M(0) < k+2ω+1. Then there exists
Y 6= 0 such that M(0).Y = 0. The vector Y gives the coefficients of two polynomials
V and N such that for all 1 ≤ i ≤ n:

V (xi) · yi = N(xi)

From (2) we have yi = m(xi) + α · (p(xi) + Ei) + ei, which gives for all i:

V (xi) ·
(

(m + α · p)(xi) + α · Ei + ei

)

= N(xi)

The weight of E is at most W and the weight of e is at most ω. Moreover, from (1)
we have n ≥ k + 2ω + W . Therefore, for at least ω + k values of i, we have:

V (xi) · (m + α · p)(xi) = N(xi)

As previously, V · (m + α · p) and N are two polynomials of degree less than k + ω− 1
which take the same value on at least ω + k distinct points; consequently, they must
be equal, which gives:

m + α · p =
N

V

Since the polynomial p is unitary and deg p = k − 1 and deg m ≤ k − 2, this enables
to recover α. Then, as previously, given α, we recover m in polynomial time1. ut

Kiayias and Yung describe in [9] a modification of Augot and Finiasz cryptosystem,
resistant against the previous attack, but which they manage to break in the same
paper.

4 The Repaired Cryptosystem

In this section, we describe the repaired cryptosystem published in [2]. The new cryp-
tosystem is resistant against the previous attack. The reparation is based on working
in the subfield of a given field, and using the trace operator. Following [2], we recall
these notions in the next section.

4.1 Subfields and Trace Operator

We consider the finite field GF(qu), where q is the power of a prime integer. The
finite field GF(q) is a subfield of GF(qu). The finite field GF(qu) can be viewed as
a u-dimensional vector space over GF(q). Let γ1, . . . , γu be a basis of GF(qu) over
GF(q), then every element α ∈ GF(qu) can be uniquely written α =

∑u
i=1

αiγi, where
αi ∈ GF(q).

Definition 2. The trace operator of GF(qu) into GF(q) is defined by:

∀x ∈ GF(qu),Tr(x) = x + xq + . . . + xqu−1

1 In this second case, we can also recover the private key (p,E). It has been shown in [9] that this
second case happens with negligible probability.



7

The trace operator is a GF(q)-linear mapping (and not GF(qu)-linear) of GF(qu)
into GF(q). For any basis γ1, . . . , γu of GF(qu), there exists a unique dual basis
γ∗

1 , . . . , γ∗

u with respect to the Trace operator. The dual basis is such that:

Tr(γiγ
∗

j ) = 1 if i = j, and 0 otherwise

The dual basis can be efficiently computed. We extend the trace operator to vectors:

Tr(c1, . . . , cn) = (Tr(c1), . . . ,Tr(cn))

and to polynomials: for any polynomial p ∈ GF(qu)[X], p(x) =
k
∑

i=0

pix
i, we define the

polynomial Tr(p) ∈ GF(q)[X] as:

Tr(p)(x) =
k

∑

i=0

Tr(pi)x
i

Let x1, · · · , xn be n distinct elements of GF(q) ∈ GF(qu). As in section 2.1 we denote
by ev the following map:

ev :

{

GF(qu)[X] → GF(qu)n

p(X) → (p(x1), . . . , p(xn))

Proposition 1. For all p ∈ GF(qu)[X], we have Tr(ev(p)) = ev(Tr(p))

Proof. The j-th component of Tr(ev(p)) is

Tr(p(xj)) = Tr(

k
∑

i=0

pi · xi
j)

From the GF(q)-linearity of the Trace operator and the fact that xj ∈ GF(q), we
obtain:

Tr(p(xj)) =

k
∑

i=0

Tr(pi)x
i
j

which is the j-th component of ev(Tr(p)). ut

As in section 2.1, we define the Reed-Solomon code of dimension k and length n
over GF(qu) as the following set of n-tuples (codewords):

RSk = {ev(f); f ∈ GF(qu)[X],deg f < k}

4.2 The Repaired Cryptosystem

In this section, we recall the repaired cryptosystem [2].



8

Parameters: A finite field GF(qu), an integer n as the length of the Reed-Solomon
code, k its dimension, W is the weight of a large error, ω is the weight of a small error,
for which the PR problem with n − W coordinates is easy:

ω ≤ n − W − k

2
(7)

The authors of the repaired cryptosystem recommend in [2] to take q = 220, u = 4,
n = 2048, k = 1400, W = 546 and ω = 49. 2

Key generation: Generate a random polynomial p of degree k−1 over GF(qu), such
that the u coefficients pk−1, . . . , pk−u form a basis of GF(qu) over GF(q). Compute
c = ev(p) ∈ RSk. Generate a random n-dimensional vector E of weight W with
coefficients in GF(qu). The public-key is the vector K = c + E over GF(qu). The
private key is (p,E).

Encryption: Let m a message of length k−u over the alphabet GF(q). The message
m is seen as a polynomial m(X) = m0 + m1X + . . . + mk−1X

k−u−1 in GF(q)[X].
Generate a random α ∈ GF(qu) and a random vector e of weight ω over GF(q). The
ciphertext y is then:

y = ev(m) + Tr(α · K) + e

Decryption: One considers only the positions where Ei = 0 and define the shortened
code of length n − W , which is also a Reed-Solomon code of dimension k, which we
denote RSk. Let y, c, e be the shortened y, c, e and let ev be the shortened map ev.
One must solve the equation:

y = ev(m) + Tr(α · c) + e

Using proposition 1, we have:

Tr(α · c) = Tr(α · ev(p)) = Tr(ev(αp)) = ev(Tr(αp))

Thus ev(m) + Tr(α · c) = ev(m + Tr(αp)) ∈ RSk, and from (7), the weight of the
small error e is less than the error correction capacity of RSk; therefore, using the
Berlekamp-Welsh algorithm, one can recover the polynomial q = m + Tr(αp).

Letting q =
∑k−1

i=0
qix

i, since deg(m) ≤ k − u − 1, we have qi = Tr(αpi) for
i = k−u, . . . , k−1. This gives the u coordinates of α in the dual basis of pk−u, . . . , pk−1,
from which we derive α. From α one recovers m as m = q − Tr(αp).

5 The Attack

In this section, we describe an attack that breaks the repaired cryptosystem. Given
the public key and a ciphertext, we recover the plaintext in polynomial time. As the

2 Actually, the authors of [2] forgot to clearly specify k, but they state that with these parameters,
“a plaintext consists of k − u elements in GF(220), that is 27920 bits”, from which we infer that
k = 27920/20 + 4 = 1400



9

attack of section 3, it is a variant of the Berlekamp-Welsh algorithm. As opposed to
the attack of section 3, the attack is heuristic, but it works very well in practice.

Let GF(qu), n, k, W , ω be the parameters of the system. Let (p,E) be the private
key and K = ev(p) + E be the public-key. Let m be the plaintext encoded as a
polynomial of degree less than k − u − 1. Let e be an error vector of weight ω, and
α ∈ GF(qu). Let

y = ev(m) + Tr(α · K) + e

be the corresponding ciphertext.

Let γ1, . . . , γu be a basis of GF(qu) over GF(q). We write α =
u
∑

t=1

αt · γt where

αt ∈ GF(q). We have

Tr(α · K) =
u

∑

t=1

αtTr(γt · K)

For t = 1, . . . , u, we define

Kt = Tr(γt · K)

Note that the u vectors Kt are vectors over GF(q) which can be computed from the
public-key K. Finally the ciphertext can be written as:

y = ev(m) +
u

∑

t=1

αt · Kt + e (8)

Note that in equation (8), all computation is done in the subfield GF(q). Let yi,Kt,i

and ei be the components of the vectors y,Kt and e. Given y and Kt, one must solve
the following set of equations:

∃e,m,α1, . . . , αu, yi = m(xi) +

u
∑

t=1

αt · Kt,i + ei for all 1 ≤ i ≤ n (9)

where the weight of e is ω. Note that from the definition of the cryptosystem, there
is a unique solution.

Let V , R1, . . . , Ru be polynomials of degree at most ω, with V 6= 0. Let N be a
polynomial of degree at most ω + k − u − 1. Consider the following set of equations,
where the unknown are the polynomials V , R1, . . . , Ru and N :

∀i ∈ [1, n], V (xi) · yi = N(xi) +

u
∑

t=1

Kt,i · Rt(xi) (10)

It is clear that given a solution to system (9), one can obtain a non-zero solution
to system (10). Namely, one can take V (X) =

∏

i∈B(X − xi) with B = {i|ei 6= 0},
and Rt = αt · V for t = 1, . . . , u and N = m · V . This shows that the system (10) has
at least a non-zero solution.

The system (10) gives a homogeneous linear system of n equations in the k + (u+
2) · ω + 1 unknowns, which are the coefficients of the polynomials V , R1, . . . , Ru and
N . Let M be the matrix of the corresponding system. The matrix has k+(u+2) ·ω+1



10

columns and n rows and can be computed from the ciphertext and the public-key. In
the following, we assume that:

n ≥ k + (u + 2) · ω (11)

This inequality is valid for the proposed parameters. Since the system (10) has at least
a non-zero solution, the matrix cannot be of maximum rank, therefore rank M ≤
k + (u + 2) · ω.

In the following, we assume that rank M = k+(u+2) ·ω. This is the only assump-
tion that we make for our cryptanalysis. It seems that in practice, this assumption is
always satisfied. In this case, the kernel of M is a linear space of dimension 1. We have
already seen that V (X) =

∏

i∈B(X − xi) with B = {i|ei 6= 0}, and Rt = αt · V for
t = 1, . . . , u and N = m · V is a solution to the system (10), and so (V,R1, . . . , Rt, N)
generates the kernel of M .

Therefore, if we compute by Gaussian elimination an element (V ′, R′

1, . . . , R
′

u, N ′)
in ker M , we must have that V ′ = λ · V , R′

t = λRt for t = 1, . . . , u and N ′ = λ ·N for
some λ ∈ GF(q) with λ 6= 0. Therefore, we have N ′ = λ · N = λ · m · V = m · V ′ and
we can recover m by doing a polynomial division:

m =
N ′

V ′

To summarize, assuming that rank M = k +(u+1) ·ω, we recover the plaintext from
the public-key and the ciphertext in polynomial time.

6 Practical Experiments

In appendix, we illustrate the attack for small parameters, in a simplified setting. We
have also implemented our attack using Shoup’s NTL library [12], against the full
cryptosystem. The attack works well in practice. For the recommended parameters, it
takes roughly 8 minutes on a single PC to recover the plaintext from the ciphertext
and the public-key.

7 Discussion

In this section, we try to see if it is possible to modify the parameters of the scheme
in order to resist to the previous attack. The only condition on the parameters for the
attack to work is inequality (11). Therefore, one may try to increase k, u or ω while
keeping n constant. In the following, we show that this is not possible. Namely, we
describe another attack on the repaired cryptosystem that recovers the private-key
from the public-key. The attack does not work for the recommended parameters, but
applies for large u.

The attack is the following. Let K = ev(p) + E be the public-key with n compo-
nents, where deg p = k−1 and the weight of E is W . The Berlekamp-Welsh algorithm
for recovering p from K is the following: it looks for two polynomials V and N such
that deg V = W , deg N = k + W − 1 and V 6= 0, such that:

∀i ∈ [1, n], V (xi) · Ki = N(xi)



11

This gives a homogeneous linear system of n equations in k + 2 · W + 1 unknown.
This system has a non-zero solution as we can take V (X) =

∏

i∈B(X − xi) with
B = {i|Ei 6= 0} and N = p ·V . Letting V , N be any non-zero solution, we have for at
least n − W values of i:

V (xi) · p(xi) = N(xi)

Therefore, if n − W > k + W − 1, which gives:

n ≥ k + 2 · W (12)

the polynomials V · p and N must be equal, which enables to recover p as p = N/V .

As in the attack of section 5, from K we derive u vectors Kt for t = 1, . . . , u such
that:

Kt = Tr(γt · K)

where γ1, . . . , γu is a basis of GF(qu) over GF(q). Then we have:

Kt = Tr(γt · (ev(p) + E)) = ev(Tr(γt · p)) + Tr(γt · E)

Letting pt = Tr(γt · p) and Et = Tr(γt · E), we can write:

∀t ∈ [1, u],Kt = ev(pt) + Et

Therefore, we obtain a set of u vectors Kt which are evaluation of a polynomial pt

plus some error Et. The key observation is that the errors occur is the same positions
in all vectors Et. This enables to derive the following improved attack: we look for a
polynomial V 6= 0, deg V ≤ W and polynomials N1, . . . , Nu, deg Nt ≤ k + W − 1 such
that:

∀i ∈ [1, n],







V (xi) · K1,i = N1(xi)
. . .

V (xi) · Ku,i = Nu(xi)

We can take the same polynomial V for each t ∈ [1, u] because the errors are in the
same positions for all Et. This gives a system of u·n equations in the u·k+(u+1)·W +1
unknowns. Let M be the corresponding matrix. It has u·n rows and u·k+(u+1)·W +1
columns. We assume that:

u · n ≥ u · k + (u + 1) · W (13)

The system has a non-zero solution. Therefore, the matrix cannot be of maximum
rank, therefore rank M ≤ u · k + (u + 1) · W . In the following, we assume that
rank M = u · k + (u + 1) · W . This makes our attack heuristic, but the heuristic
works well in practice. In this case, as in section 5, the kernel of M is a linear space of
dimension one, and given a solution (V,N1, . . . , Nu), one can recover the polynomials
pt as pt = Nt/V . A similar approach was already used in [4] for the decoding of
interleaved Reed-Solomon codes.

The inequality (13) gives the following condition for the attack to work:

n ≥ k +
u + 1

u
· W



12

which is an improvement over (12). Note that for the recommended parameters in [2],
the attack does not apply. Therefore, to prevent this attack, one must have:

n < k +
u + 1

u
· W (14)

Then, combining inequality (14) with inequality (7) which is necessary to be able to
decrypt, one must have:

n ≥ k + 2 · (u + 1) · ω
which shows that condition (11) of the attack of section 5 is always satisfied. Therefore,
there is no set of parameters which make the repaired cryptosystem secure against
both attacks.

8 Conclusion

We have broken the repaired cryptosystem of [2]. Our attack recovers the plaintext
from the ciphertext and the public-key in polynomial time. Therefore, the cryptosys-
tem does not achieve one-wayness. Moreover, our attack works well in practice, as for
the recommended parameters, one recovers the plaintext in a few minutes on a single
PC.

References

1. D. Augot and M. Finiasz, A Public Key encryption scheme based on the Polynomial Reconstruc-
tion problem, Proceedings of Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag.

2. D. Augot, M. Finiasz and P. Loidreau, Using the Trace Operator to repair the Polynomial
Reconstruction based Cryptosystem presented at Eurocrypt 2003, Cryptology ePrint Archive,
Report 2003/209, 30 Sep 2003, http://eprint.iacr.org/.

3. E.R. Berlekamp and L.R. Welch, Error correction for algebraic block codes. US Patent 4 633 470,
1986.

4. D. Bleichenbacher, A. Kiayias and M. Yung, Decoding of Interleaved Reed Solomon Codes over
Noisy Data, proceedings of ICALP 2003.

5. J.S. Coron, Cryptanalysis of a public-key encryption scheme based on the polyno-
mial reconstruction problem, Cryptology ePrint Archive, Report 2003/036, 5 Mar 2003,
http://eprint.iacr.org/.

6. P. Gemmell and M. Sudan, Highly resilient correctors for multivariate polynomials, Information
Processing Letters, 43(4): 169–174, September 1992.

7. V. Guruswami and M. Sudan, Improved deconding of Reed-Solomon and Algebraic-Geometric
codes, IEEE Transactions on Information Theory, 45:1757-1767, 1999.

8. A. Kiayias and M. Yung, Cryptographic hardness based on the decoding of Reed-Solomon codes
with applications, Proceedings of ICALP 2002, LNCS 2380, pp 232-243, 2002.

9. A. Kiayias and M. Yung, Cryptanalysis of the polynomial reconstruction based public-
key cryptosystem of Eurocrypt 2003 in the optimal parameter setting, available at
http://www.cse.uconn.edu/~ akiayias/.

10. M. Naor and B. Pinkas, Oblivious transfer and polynomial evaluation. In ACM, editor, STOC
99, pp 245-254, 1999.

11. I.S. Reed and G. Solomon, Polynomial codes over certain finite fields, J. SIAM, 8:300-304, 1960.

12. V. Shoup, NTL: A Library for doing Number Theory (version 5.3.1), publicly available at
www.shoup.net.

13. V. Shoup, A fast deterministic algorithm for factoring polynomials over finite fields of small
characteristic, in Proc. 1991 International Symposium on Symbolic and Algebraic Computation,
pp. 14-21, 1991.



13

A A Toy Example

In this section we illustrate the attack for small parameters, in a simplified setting.
As in section 5, we let γ1, . . . , γu be a basis of GF(qu) over GF(q). Letting K be the
public-key, we let:

Kt = Tr(γt · K) ∈ GF(q)n

Given α ∈ GF(qu), we write α =
∑u

t=1
αt · γt where αt ∈ GF(q). The ciphertext can

then be written as:

y = ev(m) +
u

∑

t=1

αt · Kt + e (15)

Note that the ciphertext is computed using only operations in GF(q).

To simplify the illustration, we randomly generate the vectors Kt in GF(q), without
generating K as a public-key in GF(qu). Then we encrypt using (15) and show how to
recover m from y and the vectors Kt. The difference with the normal setting is that
the generated Kt may not correspond to a valid public-key K.

We take n = 8, k = 5, ω = 1, u = 2. We work modulo q = 11. We take xi = i for i =
1, . . . , 8. We take K1 = (2, 5, 0, 4, 9, 0, 4, 0, 5, 4, 6) and K2 = (5, 6, 9, 10, 6, 8, 2, 9, 4, 5, 1).
We take m = 5 + x + 9x2. We take α1 = 8, α2 = 3, and e = (0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0).
The ciphertext is then:

y = ev(m) + α1 · K1 + α2 · K2 + e = (2, 2, 6, 6, 6, 3, 7, 0, 3, 5, 1)

The matrix of the linear system is:

M =







































2 2 9 9 6 6 10 10 10 10
2 4 6 1 5 10 10 9 7 3
6 7 0 0 2 6 10 8 2 6
6 2 7 6 1 4 10 7 6 2
6 8 2 10 5 3 10 6 8 7
3 7 0 0 3 7 10 5 8 4
7 5 7 5 9 8 10 4 6 9
0 0 0 0 2 5 10 3 2 5
3 5 6 10 7 8 10 2 7 8
5 6 7 4 6 5 10 1 10 1
1 0 5 0 10 0 10 0 0 0







































The kernel of the matrix modulo q is generated by the vector:

(3, 5, 2, 7, 9, 4, 4, 6, 10, 1)

which gives V (x) = 3 + 5 · x and N(x) = 4 + 6x + 10x2 + x3 and eventually:

m =
N

V
mod q = 5 + x + 9x2


