
Chemical Combinatorial Attacks on Keyboards

Eric Brier David Naccache, Pascal Paillier

Gemplus Card International Gemplus Card International

Applied Research & Security Centre Applied Research & Security Centre

La Vigie. Avenue des Jujubiers 34 rue Guynemer

La Ciotat, F-13705, France Issy les Moulineaux cedex, F-92447, France

eric.brier@gemplus.com {david.naccache,pascal.paillier}@gemplus.com

Abstract. This paper presents a new attack on keyboards.

The attack consists in depositing on each keyboard key a small ionic salt
quantity (e.g. some NaCl on key 0, some KCl on key 1, LiCl on key 2,
SrCl2 on key 3, BaCl2 on key 4, CaCl2 on key 5...). As the user enters
his PIN, salts get mixed and leave the keyboard in a state that leaks
secret information. Nicely enough, evaluating the entropy loss due to the
chemical trace turns out to be a very interesting combinatorial exercise.

Under the assumption that mass spectroscopic analysis can reveal with
accuracy the mixture of chemical compounds generated by the user, we
show that, for moderate-size decimal PINs, the attack would generally
disclose the PIN.

The attack may apply to door PIN codes, phone numbers dialed from a
hotel rooms, computer keyboards or even ATMs.

While we did not implement the chemical part of the attack, a number
of mass spectrometry specialists confirmed to the authors its feasibility.

1 Introduction

This paper presents a new attack on keyboards and PIN-pads.
The attack consists in depositing on each keyboard key a small ionic salt

quantity (e.g. some NaCl on key 0, some KCl on key 1, LiCl on key 2, SrCl2 on
key 3, BaCl2 on key 4, CaCl2 on key 5...). As the user enters his PIN, salts get
mixed and leave the keyboard in a state that leaks secret information.

This first phase of the attack is illustrated below for the PIN 1592.
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The second part of the attack consists in collecting samples from the keyboard
and analyzing these using a mass spectrometer (e.g. [1]).

In mass spectrometry, a substance is bombarded with an electron beam hav-
ing sufficient energy to fragment the molecule. The positive fragments which are
produced (cations and radical cations) are accelerated in a vacuum through a
magnetic field and are sorted on the basis of mass-to-charge ratio. Since the bulk
of the ions produced in the mass spectrometer carry a unit positive charge, the
value m/e is equivalent to the molecular weight of the fragment. The analysis of
mass spectroscopy information involves the re-assembling of fragments, working
backwards to generate the original molecule. A schematic representation of a
mass spectrometer is shown below:

Figure A.

A very low concentration of sample molecules is allowed to leak into the ion-
ization chamber (which is under a very high vacuum) where they are bombarded
by a high-energy electron beam. The molecules fragment and the positive ions
produced are accelerated through a charged array into an analyzing tube. The
path of the charged molecules is bent by an applied magnetic field. Ions having
low mass (low momentum) will be deflected most by this field and will collide
with the walls of the analyzer. Likewise, high momentum ions will not be de-
flected enough and will also collide with the analyzer wall. Ions having the proper
mass-to-charge ratio, however, will follow the path of the analyzer, exit through
the slit and collide with the Collector. This generates an electric current, which
is then amplified and detected. By varying the strength of the magnetic field,
the mass-to-charge ratio which is analyzed can be continuously varied.

The output of the mass spectrometer shows a plot of relative intensity versus
the mass-to-charge ratio (m/e). The most intense peak in the spectrum is termed
the base peak and all others are reported relative to it’s intensity. The peaks
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themselves are typically very sharp, and are often simply displayed by the device
as vertical lines.

The process of fragmentation follows simple and predictable chemical path-
ways and the ions which are formed will reflect the most stable cations and
radical cations which that molecule can form. The highest molecular weight
peak observed in a spectrum will typically represent the parent molecule, minus
an electron, and is termed the molecular ion.

Having inferred what chemicals each keys contain, the attacker can proceed
and try the PIN candidates one by one. The next section focuses on this third
combinatorial aspect of the attack1.

2 Combinatorial Analysis

We denote by Pd
` the set of PINs of length ` chosen amongst d digits. The

chemical trace of a PIN is a map which associates to each digit the set of its
predecessors on the keyboard. We denote by τ(p) the chemical trace of PIN p
and define the set of all possible traces as T d

` = τ
(Pd

`

)
.

2.1 Action of Permutations

The permutation group Sd on digits has a natural action on PIN values and this
action extends to the traces. We define the cosets under this action as:

P̃d
` = Pd

` /Sd and T̃ d
` = T d

` /Sd

The trace map extends to cosets as a map:

τ̃ : P̃d
` −→ T̃ d

`

Representatives of cosets in P̃d
` are easy to define: these are PINs wherein the

digit 0 is used before 1, which is used before 2 etc. We call such PINs canonical
PINs.

The cardinality of P̃d
` , which equals the number of canonical PINs of length

`, is easy to compute by virtue of the following proposition:

Proposition 1. ]P̃d
` is the exponential Bell number B` as soon as d ≥ `.

Proof. It suffices to exhibit a bijective map between canonical PINs and par-
titions of the set {1, 2, · · · , `}. To associate a partition to a canonical PIN, we
pack together positions where the digits take the same value. To map back a
partition to a canonical PIN, we just associate a value to each partition, such
that new digits occur in ascending order. ut
1 It should be stressed that while we did not experiment the chemical part of the at-

tack, a number of spectrometry experts (Henri Boccia, Jorge Davilla etc.) confirmed
to the authors its practical feasibility.
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The following definitions will be useful in order to study the set T̃ d
` .

Definition 1. Let p be a PIN. The signature of a digit δ in p is given by (a, b) ∈
N × N, where a is the number of predecessors of δ and b the number of its
successors.

In the following definition, we use an ordering of the set N × N. The chosen
ordering is not relevant, the lexicographic order being just fine for our purpose.

Definition 2. Let p be a PIN. The signature of p is the ordered list of the
signatures of p’s digits.

Example: The signature of p = 47524 is {(2, 4), (3, 3), (4, 2), (4, 4)}. This
signature was computed as follows: Digit 7 has two predecessors (4 and itself)
and four successors (itself, 5, 2, and 4) hence the element (2, 4) in the signature.
Digit 5 has three predecessors (4, 7 and itself) and three successors (itself, 2
and 4) hence the element (3, 3) in the signature. Digit 2 has four predecessors
(4, 7, 5 and itself) and two successors (itself and 4) hence the element (4, 2) in
the signature. Finally, digit 4 has four predecessors (itself, 7, 5 and 2) and four
successors (7, 5, 2 and itself) hence the element (4, 4) in the signature.

The definition of the signature only considers predecessors and successors and
can thus be naturally extended to traces. We give without a proof the following
proposition:

Proposition 2. The signature is invariant under the action of the group Sd.
Furthermore, two traces t1 and t2 have the same signature if and only if there
exists a permutation σ ∈ Sd such that:

t2 = σ · t1

2.2 How Many PINs Are There?

We intend to count the number of PINs p such that τ(p) = t. Let P be the
pre-image of t̃ through the function τ̃ . Within each coset ci in P, there exists
(at least) a PIN πi such that τ(πi) = t.

Let p denote a PIN such that t = τ(p). We have t̃ = τ̃(p̃). This implies that
there exists an index i such that p̃ = π̃i, which can be expressed as p = σ · πi.

Transposing to traces, we get:

t = τ(p) = τ(σ · πi) = σ · τ(πi) = σ · t.

Putting things together, the number of PINs p satisfying τ(p) = t is equal to
the product of the number of cosets in the preimage of t̃ by the number of
permutations σ such that σ · t = t. We call the set of such permutations the
stabilizer of t.

The signature of the trace t is an ordered set of couples of integers. This set
can be permuted. The stabilizer of this signature consists in the permutations
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leaving the set ordered. It is possible to prove that the stabilizer of the trace and
the stabilizer of its signature have the same number of elements. The advantage
here is that the signature’s stabilizer is much easier to determine than the trace’s
stabilizer.

3 Evaluating the Entropy Loss Due to the Attack

To quantify the amount of secret information revealed by the attack, we denote
by w(p) the number of PINs q such that τ(p) = τ(q). We need to evaluate
for each integer n the function ed

` (n) counting the number of PINs satisfying
w(p) = n. The observations made in the in the previous section allow to perform
this task.

Step 1 Produce all the canonical PINs recursively. The function doing that is
simply (Mathematica notation):

Rec[lst , k , n ] := Module[{i},
If[k == 0, Treat[lst]; Return[]];
For[i = 1, i ≤ n, i++, Rec[Append[lst, i], k - 1, n]];
Rec[Append[lst, n + 1], k - 1, n + 1];
];

Note that whenever a canonical PIN is generated, Rec launches Treat on it.

Step 2 Treat Computes the signature of a canonical PIN. The intermediate
variable pre contains the number of predecessors of each digit and suc contains
the number of successors of each digit. Using Transpose, one obtains for each
digit the number of its predecessors and successors. Sorting the so-obtained list
yields the PIN’s signature:

Treat[lst ] := Module[{t, l, s, i, j},
l = Max[lst];
t = 1;
pre = Table[i, {i, 1, l}];
For[i = 1, i ≤ Length[lst], i++,

t = Max[t, lst[[i]]];
pre[[lst[[i]]]] = t;
];

suc = {};
For[i = 1, i ≤ l, i++,

s = 0;
For[j = 1, j ≤ l, j++, If[pre[[j]] ≥ i, s++]];
AppendTo[suc, s];
];

τ = Sort[Transpose[{pre, suc}]];
AppendTo[types, τ];
];
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Step 3 We can now count for each signature the number of corresponding
canonical PINs and multiply the result by the cardinality of the signature’s
stabilizer (given by AutoSym):

Nice[lst ] := Sort[({Length[Position[lst, #]], #}) & /@ Union[lst]];

AutoSym[lst ] := Times @@ ((#[[1]]!) & /@ Nice[lst]);

Compute[l , d ] := Module[{ν, σ, nb, z, a, m, n},
(* computing canonical PINs *)
types = {};
Rec[{1}, l - 1, 1];

(* grouping traces *)
ν = Nice[types];

(* computing entropy *)
nb = z = 0;
For[i = 1, i ≤ Length[ν], i++,

σ = AutoSym[ν[[i, 2]]];
a = ν[[i, 1]]*σ;
m = Max @@ ν[[i, 2]];
n = ν[[i, 1]]*(d!/(d - m)!);
nb += n;
z += Log[2, a]*n;
];

Print[N[z/nb, 20], " bits"];
];

Which evaluation (e.g. In[1]:= Compute[9,10]) yields:

5.2080553744037319192 bits

4 Results For Decimal PINs (d = 10)

In this section, we report for 3 ≤ ` ≤ 8, the number of PINs having a given w
value and H(Pd

` ), the amount of information (PIN entropy) not recovered by
the chemical attack. The authors actually computed e10

` (n) for 3 ≤ ` ≤ 12 and
all n values but the tables for ` ≥ 9 are too voluminous to be included here (68,
122, 226 and 429 nonzero n values were respectively found for ` = 9,10,11 and
12).
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n ` = 3 ` = 4 ` = 5 ` = 6 ` = 7 ` = 8
1 730 5770 45370 337690 2268010 13487050
2 270 1440 15120 120960 967680 7862400
3 2430
4 20520 35280 635040 6713280
5 151650
6 4320 907740
7 5040 4234230
8 360 80640
9 45360 816480

10 7200 57600 655200 6048000
11 332640 5654880
12 1440 110880 181440 5564160
13 1965600
14 846720
15 464400
16 6652800
20 100800
21 3190320
22 990 665280
24 483840
28 423360
30 21600
32 23040 40320 1935360
35 1234800
36 1360800
38 383040
44 332640
47 4263840
48 483840
52 2340 3144960
56 141120 1693440
58 7308000
60 1814400
68 1028160
70 2116800
84 60480

102 73440
108 12960
114 5130
120 201600
128 967680
132 1995840
140 1411200
144 30240 362880
152 191520
198 1140480
240 10800
303 218160
336 1693440
456 1149120
600 72000
720 1209600

2304 483840
2664 319680

Table 2. Values of e10
` (n).

` 3 4 5 6 7 8 9 10 11 12

H(P10
` ) 0.27 0.63 1.15 1.84 2.74 3.86 5.21 6.80 8.62 10.68

Table 3. Values of H(P10
` ).
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4.1 Attacking Ratified PINs

PIN codes are usually protected against guessing by ratification counters. A
ratification counter simply counts the number of presentations of false PINs and
blocks the system as soon as this number reaches a threshold r. The following
table lists the attacker’s success probability for d = 10 as a function of ` and r.

Typically, in the case of usual ATMs (` = 4, r = 3), the attack will succeed
in 98% of the cases. In GSM cards (where ` = 8, r = 3) the attacker’s success
odds will still be 37%.

` ½ 3 4 5 6 7 8 9 10 11 12
r = 1 0.865 0.734 0.604 0.469 0.339 0.226 0.137 0.074 0.035 0.014
r = 2 1.000 0.892 0.754 0.600 0.452 0.318 0.204 0.117 0.059 0.025
r = 3 1.000 0.978 0.829 0.671 0.517 0.370 0.242 0.142 0.073 0.032
r = 4 1.000 0.982 0.903 0.742 0.581 0.422 0.280 0.167 0.088 0.040
r = 5 1.000 0.986 0.926 0.804 0.629 0.458 0.305 0.184 0.098 0.045
r = 6 1.000 0.991 0.950 0.836 0.678 0.493 0.330 0.201 0.108 0.050
r = 7 1.000 0.996 0.966 0.868 0.711 0.529 0.355 0.217 0.118 0.055
r = 8 1.000 1.000 0.974 0.899 0.744 0.558 0.380 0.234 0.127 0.060

Table 4. Ratification Counter Probabilities for d = 10.

5 Countermeasures

A tactile screen keyboard where digits are assigned random positions seems
to be the most efficient protection against the attack described in this pa-
per. Low-tech but nonetheless efficient countermeasures consist in assigning a
different finger to each key or, alternatively, keying the obfuscation sequence
0123456789876543210 before using the terminal...
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APPENDIX
Canonical PINs for d = 10 and ` = 4
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