
Cryptanalysis of a Message Authentication
Code due to Cary and Venkatesan

Simon R. Blackburn
and

Kenneth G. Paterson∗

Department of Mathematics
Royal Holloway, University of London

Egham, Surrey, TW20 0EX
United Kingdom

September 25, 2003

Abstract

We present a cryptanalysis of a MAC proposal at CRYPTO 2003
due to Cary and Venkatesan. Our attacks find collisions for the MAC
and yield MAC forgeries, both faster than a straightforward applica-
tion of the birthday paradox would suggest.

1 Introduction

This paper is concerned with a proposal for a Message Authentication Code
(MAC) prsented at CRYPTO 2003 by Cary and Venkatesan [1]. Their idea
is to take a MAC construction of Jakubowski and Venkatesan [2] based on
linear operations over a finite field, and alter it by replacing finite field op-
erations by operations in the ring of integers modulo some power of 2 (as
the latter operations are more efficient on the current generation of proces-
sors.) Cary and Venkatesan [1] have proved a lower bound on the security

∗This author supported by the Nuffield Foundation NUF-NAL 02.

1

of their MAC. This paper presents two attacks on the MAC, and so estab-
lishes an upper bound on the MAC’s security. The first attack shows that
an adversary with access to a MAC oracle is able to find collisions in the
MAC considerably faster than a straightforward application of the birthday
paradox would suggest. The second attack does more: it derives most of
the secret key material for the MAC (which enables MACs to be forged).
This second attack works by exploiting certain collisions in the MAC: these
collisions are found almost as efficiently as in the first attack.

The next section describes the Cary–Venkatesan MAC. Sections 3 and 4
describe our two attacks on this MAC. The final section explains how our
attacks impact on the practical level of security offered by the MAC when
the suggested parameter sizes are used.

2 The Cary–Venkatesan MAC

Let `, k and t be integers. The Cary–Venkatesan MAC operates on blocks
consisting of t words x1, x2, . . . , xt each word being of length ` bits. We
regard the words xi as `-bit integers. The MAC has a t` + k-bit secret key;
we regard the key as being made up of odd `-bit integers a1, a2, . . . , at ∈ Z2`

together with a k-bit string K.
The MAC consists of two parts, a compression function H and a block

cipher E. The compression function H takes as input a1, a2, . . . , at and a
block X = x1x2 . . . xt where xi ∈ {0, 1, . . . , 2` − 1}; it returns a 4`-bit string
h = Ha(X). The block cipher operates on 4`-bit blocks. It takes as input
the key K and the output h of the compression function; the cipher returns
the 4`-bit value EK(h) and this is the output of the MAC.

Cary and Venkatesan allow the block cipher E to be any secure block
cipher acting on 4`-bit blocks with a k-bit key. They model E as an ideal
cipher and concentrate their efforts on designing an efficient compression
function H of the following form.

Let A1, A2, . . . , At−1 be fixed 2 × 2 matrices, and let z0 and σ0 be fixed
column vectors of length 2; suppose all the entries of these matrices and
vectors lie in the ring Z2` of integers modulo 2`. (These matrices and vec-
tors are public, and some suggested examples are given in [1].) The vec-
tors v1, v2, . . . , vt ∈ (Z2`)2 are calculated as follows. Let i ∈ {1, 2, . . . , t}
be fixed. Multiply the `-bit integers ai and xi, to produce a 2`-bit inte-
ger; this product is then broken into two `-bit integers, and the result vi

2

is regarded as an element of (Z2`)2. The way in which the product aixi is
split to form vi is not specified in [1]; we assume that a natural choice of

vi =
[
aixi mod 2`, aixi div 2`

]T
is used. (Another natural choice would be

vi =
[
aixi div 2`, aixi mod 2`

]T
. Our results are unaffected if this choice is

used instead.)
The output h of H is defined to be the pair (z, σ), where

z = z0 + v1 + A1v2 + A1A2v3 + · · ·+ A1A2 · · ·At−1vt

and where
σ = σ0 + v1 + v2 + · · ·+ vt.

Here all operations are over Z2` .
Cary and Venkatesan propose two variants of their MAC: a way of chain-

ing the compression function so that it can compress more than one block
into 4`-bits (by making the ‘initial values’ z0 and σ0 used in the next block
depend on z and σ above), and a method for doubling the length of output
of the compression function (by computing the compression function above
twice on the same block, using different keys, and then concatenating their
outputs). Our comments below will apply to these variants as well, although
we will not discuss them explicitly.

3 The first attack

For MACs such as the one considered here, which consist of a relatively
weak keyed compression function followed by a block cipher encryption, it
is generally assumed that the block cipher E is computationally infeasible
to invert without knowledge of the secret ket K. (If the block cipher can
be inverted efficiently, the output of the compression function H is available
to the cryptanalyst. The keys used in the compression function can then
usually be derived from MACs of a few chosen messages. Once these keys
are known, MACs of a wide variety of messages may be forged. This shows
that in practice, the security level offered by a MAC of this type cannot be
greater than the length of the block cipher key. This is certainly the case
with the proposal of [1].)

The final cipher E is often modelled as an ideal cipher, namely a set
of random permutations indexed by the key K. An adversary has access
to an oracle that adds MACs to messages; the adversary aims to generate

3

a valid MAC for any message that has not been sent as a query to the
oracle. In this model it is intuitively clear that finding two messages that are
compressed by H to the same value h (finding a collision) is a prerequisite to
breaking the MAC. Since the block length of the cipher E in the proposal of
[1] is 4` bits long, the birthday paradox implies that a collision will be found
with reasonable probability after approximately 22` oracle queries on random
messages. A good scheme in this model should therefore have the property
that it is impossible for an adversary to produce collisions with reasonable
probability unless the number of oracle queries is close to this upper bound.
However, we show that when the MAC proposed in [1] is used, an adversary
can produce collisions using significantly fewer than 22` messages.

The basic idea of our collision finding attack is to construct a large set
of messages with the property that the compression function H maps each
message into a small subset of inputs to the block cipher (irrespective of the
key a1, a2, . . . , at used). Because the block cipher is a permutation, there is
a collision in the MAC output if and only if there is a collision at the input
to the block cipher.

Let r be an integer that is as large as possible subject to the conditions
that 0 ≤ r < ` and that 2t(`−r) is at least n = d

√
24`−re. (For most choices

of parameters, r = `− 1 or r = `− 2 will suffice.)
There are 2t(`−r) messages X = x1x2 · · ·xt with the property that 2r

divides xi for all i ∈ {1, 2, . . . , t}. Let Y be a set of n such messages: such a
subset exists, by our choice of r. We ask for the MACs of all the messages
in Y . Define B to be the set of all pairs (z, σ) ∈ ((Z2`)2)2 such that the
first component of σ − σ0 is divisible by 2r. Our condition on the elements
xi implies that the first component of each vector vi is divisible by 2r, and
so the same is true for the vector σ − σ0. Hence the image of X under H
lies in B for any of the n messages X, whatever the value of the secret key
a1, a2, . . . , at. Now,

|B| = 24`−r < n2.

Since we have requested n MACs, the birthday paradox implies that we will
find a collision with reasonable probability (in fact, with probability about
0.63). Note that n is considerably less than 22`. (Indeed, when r = `− 1 or
r = `−2, we have that n is approximately 23`/2.) So we have found collisions
considerably faster than a straightforward use of the birthday paradox would
imply.

We have assumed in this analysis that the image of X under H is uni-

4

formly distributed in B. A non-uniform distribution only enhances the prob-
ability of collisions.

4 The second attack

Our first attack found collisions efficiently. However, it is not clear how
knowledge of these collisions could be used to forge MACs. We now present
a second method for finding collisions, almost as efficient as the method
above, with the extra feature that collisions may be used to find the values
ai, and hence to forge MACs.

Let s and d be positive integers such that d is slightly larger than t − 1
and 2ts is at least w = d

√
2dt(23`+s)e. When t is of a reasonable size, we may

take s to be small (s = 2 or s = 3, say) and d = t or d = t + 1 (say). The
exact choice of parameters will affect the success probability for our attack;
we shall evaluate this probability below.

We then ask for the MACs of a subset Y ′ taken from the set of messages
X = x1x2 · · ·xt with the property that 0 ≤ xi < 2s for all i ∈ {1, 2, . . . , t}.
There are 2ts ≥ w such messages X and we take |Y ′| = w. Define B′ to
be the set of all pairs (z, σ) ∈ ((Z2`)2)2 such that the second component of
σ− σ0 lies between 0 and t2s. Our condition on the elements xi implies that
xiai < 2s+` for all i, so the second component of vi is less than 2s and hence
the second component of σ − σ0 is less than t2s. Thus the image of any of
our messages X ∈ Y ′ under the compression function H always lies in B′, a
set of size u = t23`+s.

Our choice of parameters implies that, by the birthday paradox, we will
find collisions in the MAC function, and hence in the compression function,
for the set Y ′. Indeed, we have chosen s, u and w so that the probability
that we find d or more collisions in Y ′ is approximately equal to 0.5. To see
this, notice that the probability that any particular element in B′ arises as a
collision from messages in Y ′ is well approximated by p = w2/2u2. Assuming
such collisions to be independent, the probability distribution of the number
of pairs of collisions is well approximated by a normal distribution with mean
and standard deviation equal to pu = w2/2u. Because of our choice of u and
w, this mean is at least d. Hence the probability that the number of collisions
exceeds d is roughly equal to 0.5.

We now assume that at least d collisions of the above type have been
found. We proceed by examining the first component of σ for each of these

5

collisions. Each gives an equation of the form

x
(j)
1 a1 + x

(j)
2 a2 + · · ·+ x

(j)
t at = x

′ (j)
1 a1 + x

′ (j)
2 a2 + · · ·+ x

′ (j)
t at mod 2`,

for j ∈ {1, 2, . . . , d}. By writing y
(j)
i = x

(j)
i − x

′ (j)
i , we obtain a system of d

equations in t unknowns a1, . . . , at ∈ Z2` :

y
(j)
1 a1 + y

(j)
2 a2 + · · ·+ y

(j)
t at = 0 mod 2`, 1 ≤ j ≤ d. (1)

Define vectors y(j) ∈ (Z2`)t by y(j) = (y
(j)
1 , y

(j)
2 , . . . , y

(j)
t). The number of

solutions to the system (1) depends on the linear independence properties of
the vectors y(j) considered modulo 2: it is elementary to show that the system
has a unique solution up to a Z2` scalar multiple if and only if the vectors
y(j) taken modulo 2 span a space of dimension t−1. (Note that these vectors
cannot span a space of dimension t modulo 2, since then the equations (1)
would imply that a1 = a2 = · · · = at = 0, contradicting the fact that the
ai are odd.) It is not hard to show that the probability that our d vectors
y(j) taken modulo 2 span a space of the requisite dimension is approximately
equal to 1− 1/2d−t+1 (assuming the vectors to be random). This probability
is close to 1 as soon as d is slightly greater than t − 1. Given that the
dimension is equal to t− 1, a standard Gaussian elimination procedure over
Z2` can be used to produce b1, b2, . . . , bt ∈ Z2` such that there exists an odd
constant c with the property that ai = cbi mod 2` for all i ∈ {1, 2, . . . , t}.

The first stage of our attack has given us d pairs of messages that collide
under the compression function. To find c, we simply try each of the 2`−1

possibilities in turn and check whether the compression function with key
ai = cbi produces collisions for these pairs of messages. It is highly likely
that a single value of c will produce all the correct collisions; this value will
be the correct value of c. Thus we have recovered the value of the key words
ai.

Finally, we produce a MAC forgery as follows. We search for collisions in
the compression function as in Section 3; however, since we now know the
key to the compression function, we do not need to query the MAC oracle
to obtain these collisions. After about 23`/2 trials, we find a collision in the
compression function: H(x) = H(x′) for distinct messages x and x′. We then
query the MAC oracle on the message x. The resulting MAC will be valid
for the message x′, and so we have forged a MAC as required.

To summarise, we have forged a MAC after making w+1 = d
√

2dt(23`+s)e+
1 oracle queries, and a comparatively small amount of additional effort (which

6

mainly consists of storing the oracle outputs, together with computing the
compression function about 23`/2 times). The probability that our attack
works is approximately (1 − 1/2d−t+1)/2. The probability of success can be
made arbitarily close to 1, firstly by increasing the value of d and secondly
by taking a larger number of MAC queries to increase the probability that d
pairs of collisions will result. We omit the routine details of this enhancement.

5 Consequences for suggested parameter sizes

In [1, Section 5], Cary and Venkatesan give details of an implementation of
their MAC for the parameters ` = 32 and t = 50. They are able to prove
that the resulting MAC offers “54 bits of security”, which can be interpreted
as meaning that collisions for the MAC should not be found until after at
least 227 MAC queries have been made.

Our attack in Section 3 shows that, for these parameters, MAC collisions
can be found using about 248.5 MAC queries. (The attack will set r = 31;
then the space B will be of size 297 and 248.5 MAC queries will be needed
to obtain a collision with probability 0.63.). Taking d = t = 50, our attack
in Section 4 uses s = 2 and finds MAC forgeries with probability about 0.5
using approximately 255 MAC queries.

For both attacks, the complexity is significantly less than the 264 queries
implied by a standard application of the birthday paradox, though a good
deal greater than the level of security that has been established for the MAC.
More sophisticated attacks than the ones presented here may reduce the
complexity of finding and exploiting collisions further.

In response to the attacks presented in this paper, the authors of [1] have
suggested that the output of their compression function should be passed
through SHA-1, and 54 bits of the result be taken as output. The inten-
tion of this construction is to match the proved security level of the original
compression function with the length of the MAC. Of course, this construc-
tion no longer enjoys the provable collision properties of the original scheme.
Moreover, the security level of this construction can be no greater than the
54 bits proved for the original MAC.

7

Acknowledgements

The authors would like to thank Sean Murphy for his help with background
to the birthday paradox arguments in Section 4, and Chris Mitchell for his
comments on an earlier draft of this paper.

References

[1] M. Cary and R. Venkatesan, ‘A message authentication code based on
unimodular matrix groups’, in (D. Boneh, Ed) Advances in Cryptol-
ogy — Proc. CRYPTO 2003, Lecture Notes in Computer Science 2729,
(Springer, Berlin, 2003), 500-512.

[2] M.H. Jakubowski and R. Venkatesan, ‘The chain and sum primitive
and its applications to MACs and stream ciphers’ in (K. Nyberg, Ed)
Advances in Cryptology — Proc. EUROCRYPT ’98, Lecture Notes in
Computer Science 1403, (Springer, Berlin, 1998), 281-293.

8

