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Abstract

We consider the problem of constructing perfect nonlinear multi-output Boolean functions satisfying
higher order strict avalanche criteria (SAC). Our first construction is an infinite family of 2-ouput perfect
nonlinear functions satisfying higher order SAC. This construction is achieved using the theory of bilinear
forms and symplectic matrices. Next we build on a known connection between 1l-factorization of a
complete graph and SAC to construct more examples of 2 and 3-output perfect nonlinear functions.
In certain cases, the constructed S-boxes have optimal trade-off between the following parameters:
numbers of input and output variables, nonlinearity and order of SAC. In case the number of input
variables is odd, we modify the construction for perfect nonlinear S-boxes to obtain a construction for
maximally nonlinear S-boxes satisfying higher order SAC. Our constructions present the first examples
of perfect nonlinear and maximally nonlinear multioutput S-boxes satisfying higher order SAC. Lastly,
we present a simple method for improving the degree of the constructed functions with a small trade-off
in nonlinearity and the SAC property. This yields functions which have possible applications in the
design of block ciphers.

Keywords : S-box, SAC, bent function, bilinear form, symplectic matrix, nonlinearity, symmetric
ciphers.

1 Introduction

A Boolean function is a map from {0,1}" to {0,1} and by a multi-output Boolean function we mean a
map from {0,1}" to {0,1}™. Multi-output Boolean functions are usually called S-boxes and are used as
basic primitives for designing symmetric ciphers. For example, the S-boxes used in DES have n = 6 and
m = 4 and the S-box used in the design of AES has n = m = 8. We next describe some properties of
S-boxes which have been studied previously.

Nonlinearity is one of the basic properties of an S-box. The nonlinearity of a Boolean function measures
the distance of the function to the set of all affine functions. The nonlinearity of an S-box is a natural
generalization of this notion. For even n, functions achieving the maximum possible nonlinearity are called
perfect nonlinear S-boxes [9]. If m = 1, such functions are called bent functions [11]. For odd n and m > 1,
functions achieving the maximum possible nonlinearity are called mazimally nonlinear functions.

The concept of propagation characteristic was introduced in the cryptology literature in [10]. An S-box
f(z) is said to satisfy propagation characteristic of degree [ and order k (PC(l) of order k) if the following



holds: Let g(y) be a function obtained from f(z) by fixing at most k inputs to constant values and let «
be a non zero vector of weight at most {. Then g(y) ® g(y ® «) is a balanced function.

If k = 0, then the function is simply said to satisfy PC(l). PC(I) of order k functions have been studied
in [3, 4] and constructions of Boolean functions and S-boxes satisfying PC(I) of order k are known [7, 6, 12].
S-boxes satisfying PC(1) of order k are said to satisfy strict avalanche criteria of order k& (SAC(k)). If k = 0,
then the S-box is said to satisfy SAC. The notion of SAC was introduced in [13]. It is known [8] that any
bent function or any perfect nonlinear S-box satisfies PC(n). It is also possible to construct bent functions
satisfying SAC(n — 2). However, for m > 1, construction of perfect nonlinear S-boxes satistying SAC(k)
for k£ > 0 has been a open problem.

In this paper, we (partially) solve this problem by providing constructions of perfect nonlinear S-boxes
with m = 2,3 and satisfying SAC(k) for k£ > 1. Our contributions are the following.

e Construction of an infinite family of 2-output perfect nonlinear S-boxes satisfying higher order SAC.
More precisely, for each even n > 6, we construct a 2-output perfect nonlinear S-box satisfying

SAC((n/2) - 2).

e In an earlier paper [7], a 1-factorization of the complete graph on n-vertices was used to construct
S-boxes satisfying higher order SAC. However, the S-boxes constructed in [7] did not satisfy perfect
nonlinearity. We make a more detailed analysis of the connection between 1-factorization and higher
order SAC to construct 2 and 3 output perfect nonlinear S-boxes satisfying higher order SAC.

e In certain cases, the functions that we construct achieve the best possible trade-off among the fol-
lowing parameters: number of input variables, number of output variables, nonlinearity and order
of SAC. Hence for such functions, it is not possible to improve any one parameter without changing
some other parameter.

e For small n, our constructions provide S-boxes which cannot be obtained from the currently known
constructions [7, 6, 12]. Some examples of such functions are the following.

— 8-input, 2-output perfect nonlinear S-box satisfying SAC(2).
— 8-input, 3-output perfect nonlinear S-box satisfying SAC(1).
— 10-input, 3-output perfect nonlinear S-box satisfying SAC(3).

The last example is also an example of an S-box achieving the best possible trade-off.

e QOur constructions are based on bilinear forms and symplectic matrices used in the study of second
order Reed-Muller code. We show that if n is odd, then the construction for (n + 1) can be modified
to obtain maximally nonlinear S-boxes satisfying higher order SAC.

e We provide a simple technique for improving the degree of an S-box with a small sacrifice in nonlin-
earity and the SAC property. This results in S-boxes which have possible applications in the design
of symmetric ciphers

2 Preliminaries

Let F» = GF(2). We consider the domain of a Boolean function to be the vector space (F3',®) over Fo,
where @ is used to denote the addition operator over both F» and the vector space F3'. The inner product
of two vectors u,v € FJ will be denoted by (u,v). The weight of an n-bit vector u is the number of ones
in u and will be denoted by wt(u). The (Hamming) distance between two vectors z = (x1,%2, -+, Tp)
and y = (y1,Y2,"**,Yn) is the number of places where they differ and is denoted by d(z,y). The bitwise
complement of a bit string  will be denoted by Z.



2.1 Boolean Functions

An n-variable Boolean function is a map f : F' — F5. The weight of f, denoted by wt(f) is defined as
wt(f) = [{z : f(z) = 1}|. The function f is said to be balanced if wt(f) = 2"~!. The (Hamming) distance
between two n-variable Boolean functions f and g is d(f,g) = [{z : f(z) # g(z)}|.

A parameter of fundamental importance in cryptography is the nonlinearity of a Boolean function.
This quantity measures the distance of a Boolean function from the set of all affine functions. An n-
variable affine function is of the form I, (z) = (u,z) ® b, where u € F}' and b € Fy. Let A, be the
set of all n-variable affine functions. The nonlinearity nl(f) of an n-variable Boolean function is defined
as nl(f) = miney, d(f,!). The maximum nonlinearity achievable by an n-variable Boolean function is
2n—1 _ 9(n=2)/2 " Functions achieving this value of nonlinearity are called bent and can exist only when 7 is
even [11]. When 7 is odd, the maximum nonlinearity achievable by an n-variable Boolean function is not
known. However, functions achieving a nonlinearity of 27! — 2(»=1)/2 are easy to construct and are called
almost optimally nonlinear [4].

An n-variable Boolean function f satisfies strict avalanche criteria (SAC) if f(z) ® f(z @ «) is balanced
for any a € F3 with wt(a) = 1 [13]. A function f satisfies SAC(k) if every subfunction obtained from
f(z1,--+,z,) by keeping at most k input bits constant satisfies SAC.

An n-variable Boolean function can be represented as a multivariate polynomial over F». The degree
of this polynomial is called the degree of the function. Affine functions have degree one and functions of
degree two are called quadratic.

2.2 S-Boxes

An (n,m) S-box (or vectorial function) is a map f : {0,1}" — {0,1}™. Let f : {0,1}" — {0,1}™ be an
S-box and g : {0,1}" — {0,1} be an m-variable Boolean function. The composition of ¢ and f, denoted
by g o f is an n-variable Boolean function defined by (g o f)(z) = g(f(z)).

Let f be an (n,m) S-box. The nonlinearity of f is defined to be nl(f) = min{nl(l o f) : [ is a non-
constant m-variable linear function}. The maximum achievable nonlinearity of an n-variable function is
2n=1 _ 2(n=2)/2 4nd S-boxes achieving this value of nonlinearity are called perfect nonlinear S-boxes. Such
S-boxes exist only if n is even and m < (n/2) [9]. For odd n and m = n, the maximum possible nonlinearity
achievable is 271 — 2"~ 1)/2 and S-boxes achieving this value of nonlinearity are called maximal nonlinear
S-boxes. For odd n and 1 < m < n, the maximum possible achievable nonlinearity is an open problem.
However, for odd n, 1 < m < n, and quadratic functions the maximum possible achievable nonlinearity is
2n=1 _ 2(n=1)/2  We will also call such functions to be maximally nonlinear.

We define the degree of an (n,m) S-box f to be the minimum of the degrees of [ o f, where [ ranges over
all non constant m-variable linear functions. This definition is more meaningful to cryptography than the
definition where the degree of an S-box is taken to be the maximum of the degrees of all the component
functions. The later definition has been used in [2].

An (n,m) S-box f is said to be SAC(k), if [ o f is SAC(k) for every non-constant m-variable linear
function [. By an (n,m,k) S-box we mean an (n,m) S-box which is SAC(k). We will be interested in
(n,m, k) S-boxes with maximum possible nonlinearity. More specifically, we will be interested in (n, m, k)
perfect nonlinear S-boxes if n is even and in (n, m, k) maximally nonlinear S-boxes if n is odd. Such S-boxes
have important applications in the design of secure block ciphers.

2.3 Binary Quadratic Form

An n-variable Boolean function g of degree < 2 can be written as (see [8, page 434]) g(z) = 2QzT © LaT @b
where ) = (gi;) is an upper triangular n X n binary matrix, L = (I1,---,l,) is a binary vector and b is 0 or
1. The expression zQz” is called a quadratic form and Lz7 is called a linear form. Let B = Q®Q”. Then



B is a binary symmetric matrix with zero diagonal. Such a matrix is called a symplectic matrix (see [8,
page 435]). Thus from a quadratic Boolean function we can define a symplectic matrix. Conversely, given
a symplectic matrizx B we can construct a quadratic Boolean function by reversing the above steps. We
denote this Boolean function by fp.

It is known that the rank of a symplectic matrix is always even [8, page 436]. The nonlinearity of the
Boolean function g is related to the rank of B by the following result [8, page 441].

Proposition 1 Let g be a quadratic n-variable Boolean function and B be its associated symplectic form.
Then the nonlinearity of g is equal to 2"t — 2"~"=1 where the rank of B is 2h.

Consequently, a quadratic Boolean function is bent if and only if the associated symplectic matrix is of
full rank.

3 Basic Results

We will be interested in nonlinear quadratic functions satisfying higher order SAC. From Proposition 1,
a convenient way to study the nonlinearity of quadratic functions is through the rank of the associated
symplectic matrix. We now develop the basic relationships between the nonlinearity and SAC property of
a quadratic S-box and the symplectic matrices associated with the component functions.

Proposition 2 Let f be a quadratic Boolean function and B its associated symplectic matriz. Then f
satisfies SAC(k) if and only if for all 1 < i < n, we have wt(r®)) > k + 1, where %) is the ith row of B.
(Since B is symmetric, a similar property holds for the columns of B.)

Proof : Let f(z) = zQz” ® Lz” © b. Let a be such that only the ith component of « is 1 and all
other components are zero. Further, let the ith column of Q be a(¥ and the ith row of Q be b(). Then
r@ = ()T @ b). We have

f@efzoa) = 2Qz" ® (20 )Q(z® )’ © La’
= zQoa’ ® aQz” ® Lo’ @ aQa’
= 9 @ (a7, 2) ® Lo’ ® aQa’
(r® z) ® Lo’ ® aQaT

Note that La” @ aQa” is a constant. Now suppose wt(r()) > k + 1. Let g(x) be a function obtained by
setting any k bits of f(z) @ f(x ® a) to constant values. Then (r(?), z) is a non constant linear function
and hence g(z) is balanced. Conversely, if wt(r(?)) < k, then we can set k variables to constant values in
such a manner that g(z) is a constant function. This proves the result. ]

Let f = (f1, -+, fm) be an (n,m) quadratic S-box. Then each of the component functions f; is an
n-variable quadratic Boolean function. For 1 < i < m, let B; be the symplectic matrix associated with the
component function f;. Clearly, any linear combination of symplectic matrices is also a symplectic matrix.
We have the following extension of Proposition 2.

Lemma 3 Let f be an (n,m) S-box with quadratic component functions f; and associated symplectic forms
B; for 1 <i < m. Then f satisfies SAC(k) if and only if the weight of every row in any non zero linear
combination of the B;’s is at least k + 1.

A similar result for nonlinearity can be stated by extending Proposition 1.

Lemma 4 Let f be an (n,m) S-box with quadratic component functions f; and associated symplectic forms
B; for 1 < i < m. The nonlinearity of f is 20~ — 2"~h=1 where 2h is the minimum of the ranks of any
non zero linear combination of the B;’s. Consequently for even n, the S-box f is perfect nonlinear if and
only if every non zero linear combination of the B;’s has full rank. Similarly, for odd n, the S-bozx f is
mazimally nonlinear if and only if every non zero linear combination of the B;’s has rank (n — 1).



Lemmas 3 and 4 will be used in proving the correctness of our constructions in the next sections.

4 Construction of (n,2,§ —2) S-box

Our construction will be via symplectic matrices. Given any (n,r) quadratic S-box, it is clear from the
above discussion that the symplectic matrices associated with the output component function defines the
S-box. Thus to describe the construction, it is sufficient to define these symplectic matrices and use
Lemmas 3 and 4 to prove the correctness of the construction.

In this section, we describe the construction of (n,2) S-boxes. Hence it is sufficient to define two
symplectic matrices. We proceed to do this as follows. For each even n > 6, we define two sequences of
n X n matrices and show that these matrices are the symplectic matrices required in the construction. For
the rest of this paper, we will use the following notation.

e For each n > 1, define v, to be a string of length n which is the alternating sequence of 0’s and 1’s
starting with a 0. For example, v4 = 0101 and vs = 01010. Define w,, = 17, —1.

e For each even n > 2, define u, as u, =1...10...0. For odd n > 3, define z,, = 14, 1.
N N —~
(n/2) (n/2)
Define M, = [0010,0010,1101,0010]7 and N4 = [0101,1011,0101,1110]7. Further, for even n > 4 define

0 v, 0 | 0 wvpo 0 |
M, = 'UZ—2 Mo U%—Q S ’Uz;—z Mo UZ—Q ;
0 Un—2 0 ) 0 Un—2 0 _ (1)
0 Un—2 1 0 VUn—2 1
Nn = Up—y Nn—o vp_o |, Gn = Up_o Na—o up_o
1 Up—9 0 i 1 Up—2 0 i

The following result is easy to prove by induction on even n > 6.
Lemma 5 F,, G,, and F, & G,, are symplectic matrices, where F,, and G,, are defined by equation 1.

The matrices Fj, and G,, are our required symplectic matrices which define the two output component
functions of the required (n,2) S-box. In particular, we have the following result.

Theorem 6 Let n > 6 be an even integer. The S-boz f : FY — F2 defined by f(z) = (f, (), fa, (%)) is
a perfect nonlinear S-box satisfying SAC(G — 2).

We now turn to the proof of correctness of Theorem 6. The proof is in two parts — in the first part we
prove the statement about SAC and in the second part we prove the statement about nonlinearity.

Lemma 7 The S-boz f defined in Theorem 6 satisfy SAC(5 — 2).

Proof : Let r; denote the j-th row of M;,. We make the following claim which can be routinely proved
by induction on even n > 4.

wt(rj) > 5 -1 if1<;j<3 and j is odd;
wt(r;) > § -2 if1<;j<7% and j is even; )
wt(rj) > % if%+1<j<n and jisodd;
wt(rj) > §—-1 if53+1<5<n and jiseven.

We will use the notation r;- for j-th row which is obtained by dropping first and last column of M,,. Let
sj denote the jth row of F;,. We now have several cases.



Case1:1<35< % and j odd: There are two subcases.
Subcase 1(a) : j = 1. In this case wt(s;) = wt(v, 9) = 5= = § —
Subcase 1(b) : j > 1. In this case wt(s;) = 1+ 1+ wt(rf) > 2+ %52 -2 =% — L.
Case 2 : 1 <j <% and j even: In this case wt(s;) = 1+ wt(rf) > 14+ 252 —1=12 — 1,
Case 3: 5 +1<j <nandjodd: In this case wt(s;) = 1+ wt(r}) >
Case 4: § +1<j <nandjeven: There are two subcases.
Subcase 4(a) : j < n. In this case wt(s;) = wt(r}) > 2=,
Subcase 4(b) : j = n. In this case wt(s;) = wt(up—o) = %52 =2 — 1.
This proves that the weight of each row of F), is at least (n/2) — 1 and hence the corresponding Boolean
function satisfies SAC((n/2) — 2). By a similar argument the Boolean function associated with G, also
satisfies SAC((n/2) — 2). Also note

0 Jn_2 1
Fn @ Gn = JE_Q Mn—2 @ Nn—2 Jg_z )
1 Jn—o 0

where J,, is all 1 vector. From this it is simple to verify by induction that F, @ G, satisfies SAC(§ — 2).
Now using Lemma 3 we obtain the required result. [ |
We next turn to the nonlinearity of the S-box defined in Theorem 6.

Lemma 8 For even n > 6, the rank of F,, is n.

Proof : First we prove that the rank of M,, is n — 2. It is easy to check that the rank of M, is 2. Assume
that the rank of M,,_5 is n — 4. It is clear that 1-st column and n-th column of M,, are identical. Likewise
1-st column and n — 2-th column of M,,_o are identical. Consider the matrix

0 VUn—2
M = " .
" [ 05—2 My, ]

From the definition of v,, we have that the first bit of v,_9 is 0 and (n — 2)-th bit is 1. So v,_5 is linearly
independent of rows of M,,_s. So rank of M;Z isat least n —4+1=n— 3. But M;L is symplectic matrix
and hence its rank must be even (see [8, page 436]). So the rank of M,, (and hence M) is n — 2.

Now we turn to the rank of Fj,. As M;L has rank n — 2, the rank of F,, is at least n — 2. It is simple to
verify by induction that %-th column and (% + 2)-th column of M,, are identical. From definition, the Z-th
bit of Ou,_20 is 1 and the (5 + 2)-th bit is 0. Hence the last row Ou,,_20 of F, is linearly independent of
the previous (n — 1) rows. Thus the rank of F), is at least n —2+1 = n — 1. But F,, is a binary symplectic
matrix and hence its rank must be even. Hence the rank of F), is n. [ |

Lemma 9 For even n > 6, the rank of F,, ® G,, is n.

Proof : Note M4 & N4 = [0111, 1001, 1000, 11()0]T and hence the rank of My @ Ny is 4. Assume that the
rank of M, o ® N, o is n — 2. Note

0 In—2 1
F,G,=M,®N, = JE_Q My _2® Np_o JE_Q s
1 Jn—2 0

where J, is the all 1 vector. The row 1J, 50 is linearly independent of rows of matrix JE,Q(Mn_z @
Ny—2)JI_,. So rank of

n

JI Yy My y®N,_y JT

n—2

1 Jn—2 0



is at least n — 2+ 1 = n — 1 and hence the rank of Fj, ® Gy, is at least n — 1. Again since F,, & G, is a
symplectic matrix its rank must be even. Hence its rank is n. [ |
We define T5 = [01010,10101,01011, 10101, 011107,

0 Un—2 0 T T
To=| vl 5 Tha wl, forodd n > 5 and H, = [ xn_l m%_l ] for even n > 6. (3)
0 wpo O ot

First we prove the following result.
Lemma 10 G, = H, for all even n > 6.
Proof : We first prove the following statement by induction on n.

T, = 0 Tn foroddn >5and N, = Ta-t oy for even n > 6 (4)

" vl | Np_q - n Wp_1 0 =
It is easy to verify that T5 = 0w and Ng = Ts ws Assume that (4) holds for
y Y 57 vl Ny 6 = ws 0 |°
0 Z
(n — 1). By definition and using 7,1 = 7, 20 we have that for odd n > 7, | —— Un—1 =
Up—1 Nn—l
0 VUn—2 0
IU’I’{*Q Tr_o w£—2 = T,,. Similarly, by definition and using 17,3 = W,_10 we have that for even
0 Wn—2 0
T T 0 VUn—2 1
n > 8§, w’}_l w%_l ] = | v, Ny vl , | = Ny This completes the proof of (4). Now to prove
n-t 1 Un—2 0
0 Up_o
G, = H,, it is sufficient to show T;,_1 = T ;:;l 2 ] and z,,_10 = 1u,,—30. The first statement follows
Up—2 n—2

from (4) and the second statement follows from the definition of z,. [

Lemma 11 For odd n > 5, the following statements hold for T,,.
(1) The first column of T,,_5 is vl_y and the second column is v_,; (2) The | 2]-th column and (|2]+2)-th
column of Ty, are identical; (3) The rank of T), is (n —1).

Proof : All three statements are proved using induction on odd n > 5. We only describe the proof for the
third statement. For n = 5 it is easy to verify that the rank of Ty is 4. Assume that the rank of T;,_o is

T
n — 3. Consider the matrix A, = [ Un— Tn-2
0 Wn—2

] . By the first statement of the lemma, the first and third

columns of the matrix [l , T,_o] are identical. At the same time the first and third bits of the vector

Ow,_o are 0 and 1 respectively. So the last row of A, is linearly independent of other rows. Hence the

rank of A, is n — 3+ 1 =n — 2. Consequently, T,, has rank at least n — 2. Again since T}, is a symplectic

matrix, its rank must be even and hence must be n — 1. [ |
Now we are in a position to prove that G, is of full rank.

Lemma 12 The rank of G, is n.

T
Tn,1 Ty —

Proof : Consider G,, = H,, = l - 0
n—1

. ] . Since the rank of T),_; is (n — 2) the rank of H,, is at least

n — 2. Again from Lemma 11, the |2;1]-th column and the (|25} | + 2)-th column of T,,_; are identical.

7



But the |25!]-th and the (|Z5%] + 2)-th bits of z,,_1 are 0 and 1 respectively. Hence z,_1 is linearly

independent of T}, ;. Thus the rank of G, is at least n — 2+ 1 = n — 1. Again since G,, is a symplectic

matrix its rank must be even and hence its rank is n. [
Thus we have the following result which completes the proof of Theorem 6.

Lemma 13 The S-box f defined in Theorem 6 is a perfect nonlinear S-boz.

Proof : Using Lemmas 8, 9 and 12, we know that F,, G, and F},, & G,, have full rank. Hence the Boolean
functions fr,, fg, and fr, ® fg, = fr,eaq, are bent. Thus the function f defined in Theorem 6 is a perfect
nonlinear function. m

5 Relation With One Factorization of a Complete Graph

A one-factor of a graph G is a one-regular spanning subgraph of G. A one-factorization of G is a partition
of the edges of G into one-factors.

Let K, be the complete graph with n vertices. For even n > 2, it is well known that K, can be
decomposed into (n — 1) edge disjoint, one-factors [1]. One such decomposition of K, is described as
follows. For even n and 1 <7 < mn — 1, define

Fr o= {(n,)}U{((n—2—j+i)mod(n—1)+1,(i+j—1)mod (n—1)+1):1 gjgg—u (5)
The collection 7, = {F7,...,F}_;} is a one factorization of K, where the vertices are labeled by the
integers 1,...,n. When 7 is clear from the context we will write F; instead of F*. The elements of Tg (i.e.

a one factorization of Kg) are given below.

Fo= {(87 1)7(772)7(673)’(534)} Fa = {(872)7(173)7(774)a(6’5)}
F3 = {(873)7(274)7(175)7(736)} Fy = {(874)7(375)7(276)5(1’7)}
Fs = {(8,5),(4, 6),(3,7),(25 1)} Fe = {(856)5(557)5(45 1)5(3,2)}
Fr = {(877)7(67 1)7(572)7(45 3)}

In [7], one factorization of K, was used as a tool for construction of S-boxes satisfying SAC. We point
out the connection of the construction of Section 4 to the one factorization of K,. This connection will
be developed in later sections to obtain other constructions of perfect nonlinear S-boxes satisfying higher
order SAC.

Suppose S C T,. We use S to define a symplectic matriz Bs in the following manner: For 1 < k,l <mn,
the entry Bgslk,l] = 1 if and only if either (k,1) or (I,k) is in F]' for some F' € S.

Theorem 14 Let n > 4 be an even integer, Sy = {F2,...,Fz} and S, =T \ S1. Let Bs, and Bsg, be the
symplectic matrices associated with S1 and Sa respectively. Then

1. F, is obtained from Bs, by changing the zeros in positions (§ + 1, %) and (3,5 + 1) to ones.

2. Gy is obtained from Bs, by changing the zeros in positions (5 + 1,5 +2) and (§ + 2,5 + 1) to ones.

Theorem 14 shows the relationship between one factorization and two output S-boxes of Section 4. This
can be generalized to more than two output S-boxes. In fact, the earlier work of [7] provides such a
generalization. However, there is one major difficulty with the generalization. It becomes very difficult to
ensure that the resulting S-box is a perfect nonlinear S-box. Thus while the generalization of [7] ensures
the SAC property, it results in functions with quite weak nonlinearity. On the other hand, our motivation
is to obtain perfect nonlinear S-boxes satisfying higher order SAC. The rest of the paper is devoted to
identifying other perfect nonlinear S-boxes satisfying higher order SAC.



5.1 Improvements for Two Output S-Boxes

We know from [7] that for an (n,2, k)-SAC function, k < |_2(”3—_1)J — 1. Thus the construction in Section 4
is suboptimal with respect to the SAC property. (However, it is optimal with respect to nonlinearity).

Here we provide some examples of two output S-boxes with higher order SAC. All these examples
were obtained using experimental method. The constructions are based on the relationship between the
symplectic matrices and one factorization described above. These examples are summarized in Table 1.
The interpretation of the entries in Table 1 is as follows. Each row describes a construction for the particular
value of n. The second column describes two subsets S; and Sy of 7,,. Let Bs, and Bg, be the symplectic
matrices associated with these two sets. We set By = Bg, and Bs is Bg, with the following modification:
If (k,1) is in the third column, then Bg,[k,!] and Bsg,[l, k] are changed from 0 to 1. The desired S-box
f: F? — F2 is given by f(x) = (fB,(z), f,(x)). Each of these S-bozes is a perfect nonlinear S-boz. The
fourth column provides the order of SAC that is achieved by the corresponding S-box. The fifth column
provides the maximum order of SAC that can be achieved by an (n,2) S-box. In the situation where this
mazimum s equal to the achieved order of SAC, the construction provides optimal trade-off among the
following parameters : nonlinearity, order of SAC, number of input variables, number of output variables.
None of these parameters can be improved without changing some other parameter.

Table 1: Improved and Optimal Constructions of Two Output S-boxes.

n | Description Modification | & | max k

8 | &1 = {Fo, F3, Fu, Fs5,F7} - 3 3
So = {F1,F4, Fs5, Fe} (5,6)

10 | §; = {fl,fz,f4,f7,f3} — 4 5

12 | §; = {fl,fg,f5,f6,.77,f8,.711} — 6 6
So = {F1, Fo, Fu, Fr,Fs, Fo, Fro} (2,7
So = {F5, Fe, Fr, Fs, Fo, F10, F11, F12} (8,9)

16 | S; = {fQ,fg,,f4,f5,f6,f7,f8,fg,f15} — 8 9
So = {F1, Fr, Fs, Fa, Fro, Fi1, Fio, Fi3, Fia} (3,9)

6 Construction of (n,3,k) S-boxes

We describe constructions of (n,3,k) perfect nonlinear S-boxes. These constructions were obtained by
experimental trial and error methods. Some of the constructions seem to have a general pattern, though
it has not been possible to prove a general result. There are several cases in the construction though the
description of the constructions in all the cases is similar. We first identify three subsets S1,S2 and S3 of 7.
These three subsets define three symplectic matrices Bgs,, Bs, and Bs,. These matrices are then modified
by changing a number of zeros to ones to obtain three other symplectic matrices Bi, Bo and Bs. The
positions where the changes are to be made are given by the third column. If (k,!) is in the third column,
then Bs,[k,!] and Bg,[k,l] (1 < j < 3) are changed from 0 to 1. The required (n,3) S-box f : Fj — Fy
is obtained from these three matrices in the following manner: f(z) = (fg, (), fB,(z), fB;(z)). There are
three cases.

1. Table 2 describes several cases of constructions for n = 0 mod 8. For n > 8, there is a general heuristic
which provides the required construction. For n = 8, a special construction is required.



2. Table 3 describes constructions for n» = 4 mod 8. These constructions have a general pattern.
3. Table 4 describes several constructions for n = 2 mod 4. There does not appear to be any general
pattern for these constructions.

The constructions for n = 10,22 provide optimal trade-off between the following parameters: numbers
of input and output variables, nonlinearity and the order of SAC. Further, for n = 12,16,20 and 24 the
achieved value of k is only one less than the upper bound on k.

Table 2: Constructions for n = 0 mod 8.

n Description Modification k max k
8 S = {fg,f3,f7} (4,5) 1 2
Sy = {F3, Fa, Fs} -

Sz = {F1,F3, Fe} (4,7)
16,24,32 | & = {Fo, Fs, ... ,]—"%_1,.7-"”,1} (3,54+1) 5 —2 min(
4 _
So =A{Fui1 o Fon_y} (3,5 +1),(3, % +1) [t -,
83:{Flaf%—l—la---;f%—laf%ﬂa---7Fn—2} (%’dTn) QLQTnJ—].)
Table 3: Constructions for n = 4 mod 8.
n Description Modification k max k
12,20,28 | Sy = {Fo, F3, ... ,f%,g,fn_l} (5,5 +1) 5 — 2 min(
SQZ{F%-I-la---aFST"—l} (%a%+2) L@J_la
83:{flaf%—kla"'af%—b]:%‘a"'a]:n—Q} (%7%—'—1) 2L27TLJ_1)

7 Maximally Nonlinear Functions

The constructions described so far hold when the number of input bits n is even. In case n is odd, there do
not exist any perfect nonlinear S-boxes. The best nonlinearity achieved by an (n,m) quadratic S-box with
m > 1is 271 —2(0=1)/2 3nd S-boxes achieving this value of nonlinearity are called maximally nonlinear.
In this section, we describe a simple modification of the previously described constructions which provide
maximally nonlinear S-boxes.

Theorem 15 Let f be a (2r,m, k) perfect nonlinear quadratic S-box where the symplectic matrices associ-

ated with the component functions are By,...,By,. For 1 <i<m, let B; be obtained from B; by deleting

the first row and column. Then the S-box f : F2'~1 — Fy* defined by f (z) = (fg(@),..., fp (x)) is a
1 m

(2r — 1,m, k — 1) mazimally nonlinear quadratic S-boz.

Proof : There are two things to be proved — the nonlinearity and the order of SAC. Since f is a perfect
nonlinear S-box, each nonzero linear combination of the B;’s has full rank (see Lemma 4). Dropping one
row and one column decreases the rank by two for symplectic matrices. Hence the rank of any nonzero
linear combination of the BZ’-’S is 2r — 2 and the nonlinearity of the corresponding Boolean function is
227=2 _ 971 Now using Lemma 4 we have that f’ is a maximally nonlinear S-box.
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Table 4: Constructions for n = 2 mod 4.

n | Description Modification | k | maxk
10 | §§ = {f3,f7,f8,fg} (6,9) 3 3
Sy = {F1, Fo, Fu, Fr, Fs} -
Sy = {F1,Fo, Fe, Fo, Fro, Fi1, Fio} -
Ss = {F1,Fs, Fr, Fs, Fi1, Fi2} (1,9)
18 | §; = {fg,fg,fm,fu,f12,f13,f14,f17} (5,10) 7 8
So = {F1, Fo, Fu, Fi1, Fi2, Fi3, Fia, Fis, Fie } -
Sz = {Fs, Fe, Fr, Fg, Fi1, Fi2, F13, F14} (9,11)
22 | &1 = {.7:1,.73,?4,.75,.7&?13,?14,?15,f16,.7:17,.7:21} (1,5) 9 9
So = {F1, Fo, Fg, F13, Fia, Fis, Fie, Fi7, F18, F19, Foo } -
Sz = {Fr, Fy, Fro, F11, F12, F13, F1a, Fis, Fie, F17} (1,16)

Further, since f satisfies SAC(k), the number of ones in any nonzero linear combination of the B;’s is
at least k + 1. Dropping one row and one column decreases the number of ones in any row (or column) by
at most one. Again using Lemma 3, it follows that the S-box f satisfies SAC(k — 1). [ ]

8 Improving Algebraic degree

The constructions described in the previous sections provide quadratic functions. In this section, we
describe a method of improving the degree of the constructed functions with a small trade-off in the
nonlinearity and the SAC property. We first need to relax the notion of SAC. (See [5] for the notion of
almost PC(l) of order k functions.)

Definition 16 An n-variable Boolean function f is said to be (e,k)-SAC if the following property holds:
Let g be an (n — i)-variable Boolean function obtained from f by fizing i < k input variables to constants.
Then ‘% - %‘ < € for any «a of weight 1. An (n,m) S-boz is said to be (n,m, e, k)-SAC if every
nonzero linear combination of the component functions is an (€, k)-SAC function.

The next result shows how to convert an (n,m, k) S-box into an (n,m, €, k) S-box for a small € and with a
small change in nonlinearity.

Theorem 17 Let f = (f1,...,fm) be an (n,m,k) S-box where the degree of any f; is less than (n — 1

)-
Then it is possible to construct an (n,m, €, k) S-box g with algebraic degree n — 1, € = 2,714,;11 and nl(g) >

nl(f) — (m+1) if m is odd; nl(g) > nl(f) —m if m is even.

Proof : We construct an (n,m) S-box g with component functions g1, g2, ..., gm in the following manner.
For 1 < i < m, define g;(z1, -, zn) = fi(z1, -+, Zn) D X1 ... Ti—1Zi11 - - - Ty. By construction, the algebraic
degree of any g; is n — 1. Further, the degree (n — 1) terms in the g;’s are distinct. Hence any nonzero
linear combination of the g;’s also has degree (n — 1). Thus the degree of g is (n — 1).

We now prove the nonlinearity. The term xy...%;—1%;+1 ... 2%, which is XORed to f; to obtain g;
changes exactly two output values of f;. Thus nl(g;) = nl(f;) — 2. Further, the inputs for which the outputs
are changed are the all one vector and the vector with a zero only in the ith position. Thus if h (resp. h')
is a linear combination of i of the g;’s (resp. f;’s), then h and h' differ in at most (¢ + 1) positions. Since
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1 <4 < m, we have nl(g) > nl(f) — (m + 1) whem m is odd. Since the nonlinearity of a function of n
variables and degree < n is always even we have nl(g) > nl(f) — m when m is even.

Now suppose that h, () (resp. hj(x)) is obtained from h(z) (resp. k' (x)) by fixing at most j (1 < j < k)
input bits to constant values. Since h(z) and h'(z) differ in exactly (i + 1) positions, it follows that ki (z)
and hj(z) differ in at most (i + 1) positions. Further, since h;(z) and h(z) differ in at most (i + 1)
positions, so does hi(z @ ) and hi'(z @ ). Let u(z) = h(z) ® h(z ® ) and p' = B (z) ® h'(z @ «).
Then it follows that u(z) and p'(z) differ in at most 2(; + 1) positions. Since f satisfies SAC(k), it
follows that ' (z) is balanced and has weight 2"~7~1. Also since 1 < ¢ < m and 1 < j < k, we obtain

‘wt(u(z)) _;‘ _ | wiu@) _ wi @) | _ | wiu(@) —wi( (@) | o 2i+1)
2n—J 2 2n—j 2n—J on—j — 9on—j

< 25’3‘};}1. This completes the proof. m

Table 5 provides some examples to illustrate Theorem 17. The interpretation of Table 5 is as follows.

Table 5: Values of k, € and nonlinearity for 2 and 3 output S-boxes for different values of n (see Theorem 17).

n | degree m=2 m=3

8 7 (3, 0.1875, 118) | (1, 0.0625, 116)
9 8 (3, 0.0938, 238) | (2, 0.0625, 236)
10 9 (4, 0.0938, 494) | (3, 0.0625, 492)
11 10 (5, 0.0938, 990) | (3, 0.0313, 988)

12| 11 | (6, 0.0938, 2014) | (4, 0.0313, 2012)

Each entry is of the form (k,¢€,z), where k is the order of SAC, € is defined in Theorem 17 and z is the
nonlinearity of the modified function. (When m is even, the value of nonlinearity is one more than the
lower bound given in Theorem 17.) Note that in each case the algebraic degree is n — 1. The drop in
nonlinearity is very small; for example for n = 8, the lower bound from Theorem 17 is 117 while the
maximum possible nonlinearity is 120. Similarly, in each of the above cases, the value of € is small. Hence
the deviation from perfect nonlinearity and the (perfect) SAC property is small. On the other hand, the
degree increases to the maximum possible. Thus such S-boxes are amply suited for use in the design of
practical block cipher algorithms.

9 Conclusion

In this paper, we have considered the problem of constructing perfect nonlinear S-boxes satisfying higher
order SAC. Previous work in this area [7] also provided constructions of S-boxes satisfying higher order
SAC. However, the nonlinearity obtained was lower. To the best of our knowledge, we provide the first
examples of S-boxes satisfying higher order SAC and perfect nonlinearity. Some of the constructed S-boxes
also achieve optimal trade-off between the numbers of input and output variables, nonlinearity and the
order of SAC. Our construction uses bilinear forms and symplectic matrices and yields quadratic functions.
We show that the degree can be significantly improved by a small sacrifice in nonlinearity and the SAC
property. This yields S-boxes which have possible applications in the design of block ciphers. Lastly,
we would like to remark that more research is necessary to generalize our construction using symplectic
matrices to more than 3 outputs and also to obtain direct constructions of higher degree S-boxes which
satisfy higher order SAC and perfect nonlinearity.

Acknowledgements: We wish to thank the reviewers for reading the paper and providing several sug-
gestions.
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