
Efficient Extension of Standard Schnorr/RSA signatures into

Universal Designated-Verifier Signatures∗

Ron Steinfeld, Huaxiong Wang, Josef Pieprzyk

Dept. of Computing, Macquarie University, Australia

{rons, hwang, josef}@ics.mq.edu.au

December 15, 2003

Abstract

Universal Designated-Verifier Signature (UDVS) schemes are digital signature schemes with ad-
ditional functionality which allows any holder of a signature to designate the signature to any desired
designated-verifier such that the designated-verifier can verify that the message was signed by the
signer, but is unable to convince anyone else of this fact.

Since UDVS schemes reduce to standard signatures when no verifier designation is performed, it
is natural to ask how to extend the classical Schnorr or RSA signature schemes into UDVS schemes,
so that the existing key generation and signing implementation infrastructure for these schemes can
be used without modification. We show how this can be efficiently achieved, and provide proofs of
security for our schemes in the random oracle model.

1 Introduction

Universal Designated-Verifier Signature (UDVS) schemes introduced by Steinfeld et al [26] are digital
signature schemes with additional functionality which allows any holder of a signature to designate
the signature to any desired designated-verifier such that the designated-verifier can verify that the
message was signed by the signer, but is unable to convince anyone else of this fact, because the verifier’s
secret key allows him to forge the designated-verifier signatures without the signer’s cooperation. Such
signature schemes protect the privacy of signature holders from dissemination of signatures by verifiers,
and have applications in certification systems [26].

The previous work [26] has shown how to construct efficient deterministic UDVS schemes from Bilinear
group-pairs. However, since UDVS schemes reduce to standard signatures when no verifier designation
is performed, it is natural to ask how to extend the classical Schnorr [24] or RSA [22] signature schemes
into UDVS schemes, so that the existing key generation and signing implementation infrastructure
for these schemes can be used without modification — the UDVS functionality can be added to such
implementations as an optional feature. In this paper we show how this can be efficiently achieved, and
provide concrete proofs of security for our schemes in the random oracle model [2].

As shown in [26], any secure efficient construction of an unconditionally-private UDVS scheme with
unique signatures (e.g. fully deterministic UDVS schemes with unique secret keys) gives rise to a
secure efficient ID-Based Encryption (IBE) scheme. Constructing secure and efficient IBE schemes
from classical Diffie-Hellman or RSA problems is a long-standing open problem [3], and until this

∗This is the full version of a paper to appear in PKC 2004.

1

problem is solved we also cannot hope to construct unconditionally-private UDVS schemes with unique
signatures based on classical problems. However, the results in this paper show that by giving up the
unique signature requirement and allowing randomization in either the signing (in the case of Schnorr
signatures) or designation (in the case of RSA) algorithms, one can construct efficient UDVS schemes
from classical problems. Although the UDVS schemes presented in this paper do not have unique
signatures, they still achieve perfect unconditional privacy in the sense of [26].

The proofs of all theorems in the paper are included in the Appendix.

1.1 Related Work

As pointed out in [26], the concept of UDVS schemes can be viewed as an application of the general
idea of designated-verifier proofs, introduced by Jakobsson, Sako and Impagliazzo [15], where a prover
non-interactively designates a proof of a statement to a verifier, in such a way that the verifier can
simulate the proof by himself with his secret key and thus cannot transfer the proof to convince anyone
else about the truth of the statement, yet the verifier himself is convinced by the proof. The distinctive
feature of UDVS schemes is universal designation: anyone who obtains a signature can designate it.

Two of our proposed UDVS schemes (namely SchUDVS2 and RSAUDVS) make use of the paradigm
in [15] of using a trapdoor commitment in a non-interactive proof of knowledge to achieve verifier
designation. Since the underlying construction techniques used in these schemes is known, we view
our main contribution here is in providing a concrete security analysis which bounds the insecurity of
these schemes in terms of the underlying primitives. Our third proposed scheme SchUDVS1 shows an
alternative and more efficient approach than the paradigm of [15], for extending the Schnorr signature
scheme into a UDVS scheme, using the Diffie-Hellman function. It is an analogoue of the the bilinear-
based approach for constructing UDVS schemes proposed in [26].

Besides providing UDVS schemes based on classical problems, another contribution of this paper is
in defining a stronger unforgeability notion for UDVS schemes, which allows the forger access to the
attacked designated verifier’s verification oracle, as well as to the signer’s signing oracle (whereas the
model in [26] only allows access to the signing oracle). We analyse our schemes in this stronger model.

There have been other approaches proposed to address the privacy threat associated with dissemination
of verifiable signed documents. Chaum and van Antwerpen [9, 7] introduced undeniable signatures for
this purpose, which require a signer or confirmer’s [8, 18, 17, 6, 12] interactive cooperation to verify a
signature, but this approach places significant inconvenience and workload on verifiers and confirmers,
compared to an off-line non-interactive verification. The work of Brands on digital credentials [5, 4]
suggests further approaches to enhance user privacy, such as selective disclosure of attributes (see
also [27]) and unlinkability of user transactions. Chameleon signatures [16] allow designation of signa-
tures to verifiers by the signer, and in addition allow a signer to prove a forgery by a designated verifier.
Ring signatures [21], when restricted to two users, can also be viewed as designated-verifier signatures,
where one user is the actual signer and the other user is the designated-verifier who can also forge the
two-user ring signature, thus providing the privacy property, called signer anonymity in the context of
ring signatures. However, signer designation is still performed by the signer in these schemes.

2

2 Preliminaries

2.1 Algorithms and Probability Notation

We say that a function f : IN → IR is a negligible function if, for any c > 0, there exists k0 ∈ IN such
that f(k) < 1/kc for all k > k0. We say that a probability function p : IN → IR is overwhelming if the
function q : IN → IR defined by q(k) = 1−p(k) is a negligible function. For various algorithms discussed,
we will define a sequence of integers to measure the resources of these algorithms (e.g. running-time
plus program length, number of oracle queries to various oracles). All these resource parameters can
in general be functions of a security parameter k of the scheme. We say that an algorithm A with
resource parameters RP = (r1, . . . , rn) is efficient if each resource parameter ri(k) of A is bounded
by a polynomial function of the security parameter k, i.e. there exists a k0 > 0 and c > 0 such that
ri(k) < kc for all k > k0.

2.2 Discrete-Log and Diffie-Hellman Problems

Our schemes use the following known hard problems for their security. For all these problems GC denotes
an algorithm that on input a security parameter k, returns an instance (DG, g) of a multiplicative group
G of prime order q with generator g (the description string DG determines the group and contains the
group order q).

1 Discrete-Log Problem (DL) [10]: Given (DG, g) = GC(k) and y1 = gx1 for uniformly random
x1 ∈ ZZq, compute x1. We say that DL is hard if the success probability Succ

A,DL
(k) of any

efficient DL algorithm A with run-time t(k) is upper-bounded by a negligible function InSecDL(t)
of k.

2 Computational Diffie-Hellman Problem (CDH) [10]: Given (DG, g) = GC(k), y1 = gx1 and y2 =

gx2 for uniformly random x1, x2 ∈ ZZq, compute CDHg(g
x1 , gx2)

def
= gx1x2 . We say that CDH is

hard if the success probability Succ
A,CDH

(k) of any efficient CDH algorithm A with run-time t(k)
is upper-bounded by a negligible function InSec

CDH
(t) in k.

3 Strong Diffie-Hellman Problem (SDH) [1, 19]: Given (DG, g) = GC(k), y1 = gx1 and y2 = gx2 for
uniformly random x1, x2 ∈ ZZq, compute gx1x2 given access to a restricted Decision Diffie-Hellman
(DDH) oracle DDHx1

(., .), which on input (w,K) ∈ G × G, returns 1 if K = wx1 and 0 else. We
say that SDH is hard if the success probability Succ

A,SDH
(k) of any efficient SDH algorithm A

with run-time t(k) and which makes up to q(k) queries to DDHx1
(., .), is upper-bounded by a

negligible function InSec
SDH

(t, q) in k.

We remark that the Strong Diffie-Hellman problem (SDH) as defined above and in [1] is a potentially
harder variant of the Gap Diffie-Hellman (GDH) problem as defined in [19]. The difference between
the two problems is in the DDH oracle: In the GDH problem the DDH oracle accepts four inputs
(h, z1, z2,K) from the attacker and decides whether K = CDHh(z1, z2), whereas in the SDH problem
the attacker can only control the (z2,K) inputs to the DDH oracle and the other two are fixed to the
values h = g and z1 = y1 (we call this weaker oracle a restricted DDH oracle).

3

2.3 Trapdoor Hash Functions

Some of our proposed UDVS schemes make use of a general cryptographic scheme called a trapdoor
hash function. We recall the definition and security notions for such schemes [25]. A trapdoor hash
function scheme consists of three efficient algorithms: a key generation algorithm GKF, a hash function
evaluation algorithm F , and a collision solver algorithm CSF. On input a security parameter k, the
(randomized) key-gen. algorithm GKF(k) outputs a secret/public-key pair (sk, pk). On input a public-
key pk, message m ∈ M and random r ∈ R (Here M and R are the message and randomness spaces,
respectively), the hash function evaluation algorithm outputs a hash string h = Fpk(m; r) ∈ H (here
H is the hash string space). On input a key-pair (sk, pk), a message/randomizer pair (m1, r1) ∈
M × R and a second message m2 ∈ M , the collision solver algorithm outputs a second randomizer
r2 = CSF((sk, pk), (m1, r1),m2) ∈ R such that (m1, r1) and (m2, r2) constitute a collision for Fpk, i.e.
Fpk(m1; r1) = Fpk(m2; r2).

There are two desirable security properties for a trapdoor hash function scheme TH = (GKF, F,CSF).
The scheme TH is called collision-resistant if the success probability SuccCR

A,TH of any efficient attacker
A in the following game is negligible. A key-pair (sk, pk) = GKF(k) is generated, and A is given
k and the public-key pk. A can run for time t and succeeds if it outputs a collision (m1, r1) and
(m2, r2) for Fpk satisfying Fpk(m1, r1) = Fpk(m2, r2) and m1 6= m2. We denote by InSecCR

TH
(t) the

maximal success probability in above game over all attackers A with run-time plus program length at
most t. The scheme TH is called perfectly-trapdoor if it has the following property: for each key-pair
(sk, pk) = GKF(k) and message pair (m1,m2) ∈ M × M , if r1 is chosen uniformly at random from R,

then r2
def
= CSF((sk, pk), (m1, r1),m2) ∈ R has a uniform probability distribution on R.

Remark 1. Several examples of trapdoor hash function schemes are given in [25]. To make the UDVS
scheme SchUDVS2 provably secure based on the discrete-log assumption, one can use the following
simple trapdoor hash function scheme THDL, similar to that given in [25]. Let h : {0, 1}∗ → ZZq be
any collision-resistant hash function. The key gen. algorithm GKF chooses a group G of prime order
q and outputs key-pair sk = (DG, g, x) and pk = (DG, g, y) where x is random in ZZ∗

q and y = gx ∈ G
(here DG is description string for group G, including the prime group order q). On input the public
key pk, and message/randomizer pair (m, r) ∈ {0, 1}∗ × ZZq, the evaluation algorithm computes the
hash hs = Fpk(m; r) = gh(m) · yr ∈ G. On input (sk, pk) and (m1, r1,m2), the collision solver outputs
r2 = r1 + (h(m1)− h(m2)) · x

−1 mod q. The scheme THDL is collision-resistant as long as h is collision-
resistant and the discrete-log is hard in G. THDL is also perfectly-trapdoor.

3 Universal Designated-Verifier Signature (UDVS) Schemes

We review the definition of UDVS schemes and their security notions [26]. For unforgeability we also
introduce a stronger notion of security than used in [26].

A Universal Designated Verifier Signature (UDVS) scheme DVS consists of seven algorithms and a
‘Verifier Key-Registration Protocol’ PKR. All these algorithms may be randomized.

1. Common Parameter Generation GC — on input a security parameter k, outputs a string
consisting of common scheme parameters cp (publicly shared by all users).

2. Signer Key Generation GKS — on input a common parameter string cp, outputs a secret/public
key-pair (sk1, pk1) for signer.

3. Verifier Key Generation GKV — on input a common parameter string cp, outputs a se-
cret/public key-pair (sk3, pk3) for verifier.

4

4. Signing S — on input signing secret key sk1, message m, outputs signer ’s publicly-verifiable
(PV) signature σ.

5. Public Verification V — on input signer ’s public key pk1 and message/PV-signature pair (m,σ),
outputs verification decision d ∈ {Acc,Rej}.

6. Designation CDV — on input a signer ’s public key pk1, a verifier ’s public key pk3 and a
message/PV-signature pair (m,σ), outputs a designated-verifier (DV) signature σ̂.

7. Designated Verification VDV — on input a signer ’s public key pk1, verifier ’s secret key sk3,
and message/DV-signature pair (m, σ̂), outputs verification decision d ∈ {Acc,Rej}.

8. Verifier Key-Registration PKR = (KRA,VER) — a protocol between a ‘Key Registration Au-
thority’ (KRA) and a ‘Verifier’ (VER) who wishes to register a verifier’s public key. On com-
mon input cp, the algorithms KRA and VER interact by sending messages alternately from one
to another. At the end of the protocol, KRA outputs a pair (pk3, Auth), where pk3 is a veri-
fier’s public-key, and Auth ∈ {Acc,Rej} is a key-registration authorization decision. We write
PKR(KRA,VER) = (pk3, Auth) to denote this protocol’s output.

Verifier Key-Reg. Protocol. The purpose of the ‘Verifier Key-Registration’ protocol is to force the veri-
fier to ‘know’ the secret-key corresponding to his public-key, in order to enforce the non-transferability
privacy property. In this paper we assume, following [26], the direct key reg. protocol, in which the
verifier simply reveals his secret key to the KRA.

Consistent UDVS Schemes. The ‘PV-Consistency’ property requires that the PV-signatures produced
by the signer are accepted as valid by the PV-verification algorithm V. The ‘DV-Consistency’ property
requires that the DV-signatures produced by the designator using the designation algorithm CDV are
accepted as valid by the DV-verification algorithm VDV. A UDVS scheme is consistent if it has both
of the above consistency properties.

3.1 Unforgeability

In the case of a UDVS scheme there are actually two types of unforgeability properties to consider.
The first property, called called ‘PV-Unforgeability’, is just the usual existential unforgeability notion
under chosen-message attack [13] for the standard PV signature scheme D = (GC,GKS,S,V) induced
by the UDVS scheme (this prevents attacks to fool the designator). The second property, called ‘DV-
Unforgeability’, requires that it is difficult for an attacker to forge a DV-signature σ̂∗ by the signer
on a ‘new’ message m∗, such that the pair (m∗, σ̂∗) passes the DV-verification test with respect to a
given designated-verifier’s public key pk3 (this prevents attacks to fool the designated verifier, possibly
mounted by a dishonest designator). As pointed out in [26], it is sufficient to prove the DV unforgeability
of a UDVS scheme, since the ‘DV-unforgeability’ property implies the ‘PV-unforgeability’ property.

In this paper we introduce a stronger version of DV-unforgeability than used in [26], which we call
ST-DV-UF. This model allows the forger also access to the verification oracle of the designated-verifier
(this oracle may help the forger because it uses the designated-verifier’s secret key, which in turn can
be used to forge DV signatures, as required by the privacy property). Note that the model in [26]
does not provide this oracle. We believe it is desirable for UDVS schemes to be secure even under
such attacks, and place no restrictions on the attacker in accessing the verifier’s oracle — in particular
the attacker can control both the message/DV sig. pair as well as the signer’s public key in accessing
this oracle. We remark (proof omitted) that the strong DV-unforgeability of the UDVS scheme in [26]
follows (in the random-oracle model) from the hardness of a gap version of the Bilinear Diffie-Hellman

5

(BDH) problem, in which the attacker has access to a BDH decision oracle (whereas just hardness of
BDH suffices for this scheme to achieve the weaker DV-unforgeability notion in [26]).

Definition 3.1 (Strong DV-Unforgeability). Let DVS = (GC,GKS,GKV,S,V,CDV,VDV,PKR) be a
UDVS scheme. Let A denote a forger attacking the unforgeability of DVS. The Strong DV-Unforgeability
notion ST-UF-DV for this scheme is defined as follows:

1. Attacker Input: Signer and Verifier’s public-keys (pk1, pk3) (where (sk1, pk1) = GKS(cp),
(sk3, pk3) = GKV(cp) and cp = GC(k)).

2. Attacker Resources: Run-time plus program-length at most t, Oracle access to signer’s signing
oracle S(sk1, .) (qs queries), oracle access to designated-verifier’s verification oracle VDV(., sk3, ., .)
(qv queries) and, if scheme DVS makes use of n random oracles RO1, . . . , ROn, allow qROi queries
to the ith oracle ROi for i = 1, . . . , n. We write attacker’s Resource Parameters (RPs) as RP =
(t, qs, qv, qRO1

, . . . , qROn).

3. Attacker Goal: Output a forgery message/DV-signature pair (m∗, σ̂∗) such that:

(1) The forgery is valid, i.e. VDV(pk1, sk3,m
∗, σ̂∗) = Acc.

(2) Message m∗ is ‘new’, i.e. has not been queried by attacker to S.

4. Security Notion Definition: Scheme is said to be unforgeable in the sense of ST-UF-DV if,
for any efficient attacker A, the probability SuccST−UF−DV

A,DVS
(k) that A succeeds in achieving above

goal is a negligible function of k. We quantify the insecurity of DVS in the sense of ST-UF-
DV against arbitrary attackers with resource parameters RP = (t, qs, qv, qRO1

, . . . , qROn) by the
probability

InSecST−UF−DV
DVS

(t, qs, qv, qRO1
, . . . , qROn)

def
= max

A∈ASRP

SuccST−UF−DV
A,DVS

(k),

where the set ASRP contains all attackers with resource parameters RP .

3.2 Non-Transferability Privacy

Informally, the purpose of the privacy property for a UDVS scheme is to prevent a designated-verifier
from using the DV signature σdv on a message m to produce evidence which convinces a third-party
that the message m was signed by the signer. The privacy is achieved because the designated-verifier
can forge DV signatures using his secret-key, so even if the designated-verifier reveals his secret key
to the third-party, the third-party cannot distinguish whether a DV signature was produced by the
designator or forged by the designated-verifier.

We review the privacy model from [26]. The attacker is modelled as a pair of interacting algorithms

(A1,A2) representing the designated-verifier (DV) and Third-Party (TP), respectively. Let Â1 denote
a forgery strategy. The goal of A2 is to distinguish whether it is interacting with A1 who has access to
designated signatures (game yes) or with Â1, who doesn’t have access to designated signatures (game
no). More precisely, the game yes runs in two stages as follows.

Stage 1. (A1,A2) are run on input pk1, where (sk1, pk1) = GKS(cp) and cp = GC(k). In this stage, A1

has access to: (1) signing oracle S(sk1, .), (2) KRA key-reg. oracle to register verifier public keys pk via
PKR interactions, (3) A2 oracle for querying a message to A2 and receiving a response. At end of stage
1, A1 outputs a message m∗ not queried to S during the game (m∗ is given to A2). Let σ∗ = S(sk1,m

∗).

Stage 2. A1 continues to make S,KRA and A2 queries as in stage 1, but also has access to a designation
oracle CDV(pk1, .,m

∗, σ∗) which it can query with any verifier public-key pk which was answered Acc
by a previous KRA key-reg. query. At end of stage 2, A2 outputs a decision d ∈ {yes, no}.

6

The game no is defined in the same way except that (1) A1 is replaced by Â1, (2) Â1 receives as input

pk1 and the program for A1, (3) Â1 cannot make any designation queries.

Definition 3.2 (PR-Privacy[26]). Let DVS = (GC,GKS,GKV,S,V,CDV,VDV,PKR) be a UDVS

scheme. Let (A1,A2) denote an attack pair against the privacy of DVS. Let Â1 denote a forgery
strategy. The privacy notion PR for this scheme is defined as follows:

1. Attacker Input: Signer public-key pk1 (where (sk1, pk1) = GKS(cp), and cp = GC(k)). Note

that Â1 also accepts the program for A1 as input.

2. Resources for (A1,Â1): Run-time (t1, t̂1), access to signing oracle S(sk1, .) (up to (qs, q̂s) queried
messages different from m∗), access to key-reg. protocol interactions with the KRA (up to (qk, q̂k)
interactions), access to A2 oracle (up to (qc, q̂c) messages). In stage 2, A1 also has access to
designation oracle CDV(pk1, .,m

∗, σ∗) (up to qd queried keys successfully registered with KRA),
where σ∗ = S(sk1,m

∗) is a signer’s signature on the challenge message m∗ output by A1 at end

of Stage 1. Note that Â1 cannot make any designation queries.

3. Resources for A2: Run-time t2.

4. Attacker Goal: Let P (A1,A2) and P (Â1,A2) denote the probabilities that A2 outputs yes when

interacting with A1 (game yes) and Â1 (game no), respectively. The goal of (A1,A2) is to achieve

a non-negligible convincing measure C
Â1

(A1,A2)
def
= |P (A1,A2) − P (Â1,A2)|.

5. Security Notion Definition: Scheme is said to achieve privacy in the sense of PR if there
exists an efficient forgery strategy Â1 such that the convincing measure C

Â1

(A1,A2) achieved by

any efficient attacker pair (A1,A2) is negligible in the security parameter k. We quantify the
insecurity of DVS in the sense of PR against arbitrary attacker pairs (A1,A2) with resources

(RP1, RP2) (attacker set ASRP1,RP2
), with respect to arbitrary forgery strategies Â1 with resources

R̂P1 (attacker set AS
R̂P1

) by the probability

InSecPR
DVS(RP1, R̂P1, RP2)

def
= min

Â1∈AS
R̂P1

max
(A1,A2)∈ASRP1,RP2

C
Â1

(A1,A2).

If InSecPR
DVS(RP1, R̂P1, RP2) = 0 holds for any computationally unbounded A2, it is said to be

perfect unconditional privacy. If privacy holds when q̂s1 = qs1 it is said to be complete privacy.

4 Two Extensions of Schnorr Signature Scheme into UDVS Schemes

We will present two UDVS schemes which are both extensions of the Schnorr [24] signature scheme (that
is, the signer key-generation, signing and public-verification algorithms in both schemes are identical to
those of the Schnorr signature). The first UDVS scheme SchUDVS1 has an efficient and deterministic
designation algorithm and its unforgeability relies on the Strong Diffie-Hellman (SDH) assumption. The
second UDVS scheme SchUDVS2 has a less efficient randomized designation algorithm, but its unforge-
ability follows from the weaker Discrete-Logarithm (DL) assumption (in the random-oracle model).

7

4.1 First Scheme: SchUDVS1

Our first UDVS scheme SchUDVS1 is defined as follows. Let {0, 1}≤ℓ denote the message space of
all bit strings of length at most ℓ bits. The scheme makes use of a cryptographic hash function
H : {0, 1}≤ℓ ×{0, 1}lG → {0, 1}lH , modelled as a random-oracle [2] in our security analysis. We assume
that elements of the group G output by algorithm GC are represented by bit strings of length lG ≥ lq

bits, where lq
def
= ⌊log2 q⌋ + 1 is the bit length of q.

1. Common Parameter Generation GC. (Identical to Schnorr). Choose a group G of prime
order q > 2lH with description string DG (e.g. if G is a subgroup of ZZ∗

p, the string DG would
contain (p, q)), and let g ∈ G denote a generator for G. The common parameters are cp = (DG, g).

2. Signer Key Generation GKS. (Identical to Schnorr). Given the common parameters cp, pick
random x1 ∈ ZZ∗

q and compute y1 = gx1 . The public key is pk1 = (cp, y1). The secret key is
sk1 = (cp, x1).

3. Verifier Key Generation GKV. Given the common parameters cp, pick random x3 ∈ ZZ∗
q and

compute y3 = gx3 . The public key is pk3 = (cp, y3). The secret key is sk3 = (cp, x3).

4. Signing S. (Identical to Schnorr). Given the signer’s secret key (cp, x1), and message m, choose
a random k ∈ ZZq and compute u = gk, r = H(m,u) and s = k+r ·x1 (mod q). The PV signature
is σ = (r, s).

5. Public Verification V. (Identical to Schnorr). Given the signer’s public key y1 and a mes-
sage/PV sig. pair (m, (r, s)), accept if and only if H(m,u) = r, where u = gs · y−r

1 .

6. Designation CDV. Given the signer’s public key y1, a verifier’s public key y3 and a message/PV-
signature pair (m, (r, s)), compute u = gs · y−r

1 and K = ys
3. The DV signature is σ̂ = (u,K).

7. Designated Verification VDV. Given a signer’s public key y1, a verifier’s secret key x3, and
message/DV-sig. pair (m, (u,K)), accept if and only if K = (u · yr

1)
x3, where r = H(m,u).

Unforgeability. The PV-Unforgeability of SchUDVS1 is equivalent to the unforgeability of the Schnorr
signature, which in turn is equivalent to the Discrete-Logarithm (DL) assumption in G, assuming
the random-oracle model for H(.) [20]. However, for the DV-Unforgeability of SchUDVS1, it is clear
that the stronger ‘Computational Diffie-Hellman’ (CDH) assumption in G is certainly necessary — an
attacker can forge a DV signature (u,K) on a message m by choosing a random u ∈ G, computing
r = H(m,u) and then K = CDHg(u · yr

1, y3) (indeed this is the idea behind the proof of the privacy of
SchUDVS1 — see below). Moreover, in the strong DV-unforgeability attack setting, the even stronger
‘Strong Diffie-Hellman’ (SDH) assumption in G is necessary. This is because the forger’s access to the
verifier’s VDV oracle allows him to simulate the fixed-input DDH oracle DDHx3

(w,K) which decides
whether K = wx3 or not (see Sec. 2.2), namely we have DDHx3

(w,K) = VDV(y′1, x3,m, (u,K)) with
y′1 = (w · u−1)r

−1 mod q and r = H(m,u). Note that this does not rule out the possibility that there
may be another attack which even bypasses the need to break SDH. Fortunately, the following theorem
shows that this is not the case and SDH is also a sufficient condition for Strong DV-Unforgeability of
SchUDVS1, assuming the random-oracle model for H(.). The proof uses the forking technique, as used
in the proof in [20] of PV-Unforgeability of the Schnorr signature.

Theorem 4.1 (Strong DV-Unforg. of SchUDVS1). If the Strong Diffie-Hellman problem (SDH) is
hard in groups generated by the common-parameter algorithm GC, then the scheme SchUDVS1 achieves

8

Strong DV-unforgeability (ST-UF-DV notion) in the random-oracle model for H(.). Concretely, the
following insecurity bound holds:

InSecST−UF−DV
SchUDVS1

(t, qs, qv, qH) ≤ 2 [(qH + qv)InSecSDH(t[S], q[S])]1/2 +
qs(qH + qs + qv) + 2(qH + qv) + 1

2lH
,

where t[S] = 2t + 2(qH + qs + qv + 1)(TS + O(lH)) + (qs + 1)O(lqTg) + O(l2q), where TS = O(log2(qH +
qs + qv) · (ℓ + lG)) and q[S] = 2qv. Here we denote by Tg the time needed to perform a group operation
in G.

Privacy. The privacy of SchUDVS1 follows from the existence of an algorithm for forging DV signatures
(with identical probability distribution as that of real DV signatures) using the verifier’s secret key,
which is a trapdoor for solving the CDH problem on which the DV-Unforgeability relies.

Theorem 4.2 (Privacy of SchUDVS1). The scheme SchUDVS1 achieves complete and perfect uncon-
ditional privacy (in the sense of the PR notion). Concretely:

InSecPR
SchUDVS1

(RP1, R̂P 1,∞) = 0, (1)

where RP1 = (t1, qs1, qc1, qk1, qd1) denotes A1’s resource parameters and R̂P 1 = (t̂1, q̂s1, q̂c1, q̂k1) denotes

the forgery strategy Â1’s resources, which are given by: t̂1 = t1 + qd1O(lqTg + qd1lG) + qk1O(lqTg),
q̂s1 = qs1 (complete privacy), q̂c1 = qc1, q̂k1 = 0.

4.2 Second Scheme: SchUDVS2

Our second UDVS scheme SchUDVS2 trades off efficiency for a better provable unforgeability security
guarantee. Rather than using the Diffie-Hellman trapdoor function to achieve privacy, we instead
get the designator to produce a Schnorr proof of knowledge of the PV signature (r, s). This proof of
knowledge is made non-interactive in the random-oracle model using the Fiat-Shamir heuristic [11], but
using a trapdoor hash function [16, 25] Fy3

(.; .) composed with a random oracle J(.) in producing the
‘verifier random challenge’ r̂ for this proof of knowledge. The designated-verifier’s secret key consists of
the trapdoor for the hash function Fy3

, which suffices for forging the DV signatures, thus providing the
privacy property. We remark that a similar technique was used by Jakobsson Sako and Impagliazzo [15],
who used a trapdoor commitment scheme in constructing a designated-verifier undeniable signature
scheme. Our scheme can use any secure trapdoor hash function.

The resulting scheme is defined as follows. Let {0, 1}≤ℓ denote the message space of all bit strings
of length at most ℓ bits. The scheme makes use of two cryptographic hash functions H : {0, 1}≤ℓ ×
{0, 1}lG → {0, 1}lH and J : {0, 1}≤ℓ × ZZ2lH × {0, 1}lG × {0, 1}lF → {0, 1}lJ , both modelled as random-
oracles [2] in our security analysis. We also use a trapdoor hash function scheme TH = (GKF, F,CSF)
with Fy3

: {0, 1}lG × RF → {0, 1}lF (we refer the reader to Section 2 for a definition of trapdoor hash
function schemes). We assume that elements of the group G output by algorithm GC are represented

by bit strings of length lG ≥ lq bits, where lq
def
= ⌊log2 q⌋ + 1 is the bit length of q.

1. Common Parameter Generation GC. (Identical to Schnorr). Choose a group G of prime
order q with description string DG (e.g. if G is a subgroup of ZZ∗

p, the string DG would contain
(p, q)), and let g ∈ G denote a generator for G. The common parameters are cp = (k,DG, g) (k
is the security parameter).

9

2. Signer Key Generation GKS. (Identical to Schnorr). Given the common parameters cp, pick
random x1 ∈ ZZq and compute y1 = gx1 . The public key is pk1 = (cp, y1). The secret key is
sk1 = (cp, x1).

3. Verifier Key Generation GKV. Given the common parameters cp = k, run TH’s key-gen.
algorithm to compute (sk, pk) = GKF(k). The public key is pk3 = (cp, pk). The secret key is
sk3 = (cp, sk, pk).

4. Signing S. (Identical to Schnorr). Given the signer’s secret key (cp, x1), and message m, choose
a random k ∈ ZZq and compute u = gk, r = H(m,u) and s = k+r ·x1 (mod q). The PV signature
is σ = (r, s).

5. Public Verification V. (Identical to Schnorr). Given the signer’s public key y1 and a mes-
sage/PV sig. pair (m, (r, s)), accept if and only if H(m,u) = r, where u = gs · y−r

1 .

6. Designation CDV. Given the signer’s public key y1, a verifier’s public key pk3 = (cp, pk) and

a message/PV-signature pair (m, (r, s)), compute u = gs · y−r
1 , û = gk̂ for a random k̂ ∈ ZZq,

ĥ = Fpk(û; r̂F) for a random r̂F ∈ RF , r̂ = J(m, r, u, ĥ) and ŝ = k̂+ r̂ ·s mod q. The DV signature
is σ̂ = (u, r̂F , r̂, ŝ).

7. Designated Verification VDV. Given a signer’s public key y1, a verifier’s secret key sk3 =
(cp, sk, pk), and message/DV-sig. pair (m, (u, r̂F , r̂, ŝ)), accept if and only if J(m, r, u, ĥ) = r̂,
where r = H(m,u), ĥ = Fpk(û; r̂F) and û = gŝ · (u · yr

1)
−r̂.

Unforgeability. The idea behind the DV-Unforgeability of SchUDVS2, is that the DV signature is
effectively a proof of knowledge of the s portion of the PV Schnorr signature (r, s) by the signer on m.
Namely, using the forking technique we can use a forger for SchUDVS2 to extract s and hence forge a
Schnorr PV signature for some unsigned message m, or alternately to break the collision-resistance of
the trapdoor hash scheme TH. We have the following concrete result. Note that we need only assume
that J(.) is a random-oracle in proving this result, but we provide a count of H(.) queries to allow
the use of our reduction bound in conjunction with known results on the unforgeability of the Schnorr
signature which assume the random-oracle model for H(.).

Theorem 4.3 (Strong DV-Unforg. of SchUDVS2). If SchUDVS2 is PV-unforgeable (UF-PV notion)
and TH is collision-resistant (CR notion) then SchUDVS2 achieves Strong DV-unforgeability (ST-UF-
DV notion) in the random-oracle model for J(.). Concretely, the following insecurity bound holds:

InSecST−UF−DV
SchUDVS2

(t, qs, qv, qJ , qH) ≤

2[(qJ + qv)qs]
1/2

[
InSecUF−PV

SchUDVS2
(t[S], qs[S], qH [S]) + InSecCR

TH(t[T])
]1/2

+
2(qJ + qv)qs + 1

2lJ
,

where t[S] = t[T] = 2t + O((qJ + qv)(ℓ + lF + lG) + lqTg + l2q), qs[S] = 2qs and qH [S] = 2qH . Here we
denote by Tg the time needed to perform a group operation in G.

Privacy. The privacy of SchUDVS2 follows from the existence of an algorithm for forging DV signatures
(with identical probability distribution as that of real DV signatures) using the verifier’s secret key,
which is a trapdoor for solving collisions in TH. In particular we need here the perfectly-trapdoor
property of TH. This result holds in the standard model (no random-oracle assumptions).

10

Theorem 4.4 (Privacy of SchUDVS2). If the scheme TH is perfectly-trapdoor then SchUDVS2 achieves
complete and perfect unconditional privacy (in the sense of the PR notion). Concretely:

InSecPR
SchUDVS2

(RP1, R̂P 1,∞) = 0, (2)

where RP1 = (t1, qs1, qc1, qk1, qd1) denotes A1’s resource parameters and R̂P 1 = (t̂1, q̂s1, q̂c1, q̂k1) denotes

the forgery strategy Â1’s RPs, which are given by: t̂1 = t1 +qd1O(lqTg +TF +TCSF +TJ +TH +qd1lpk)+
qk1TGKF , q̂s1 = qs1 (complete privacy), q̂c1 = qc1, q̂k1 = 0. Here we let Tg, TF , TGKF , TCSF , TJ , TH

denote the time to compute a group operation, and evaluate F , GKF,CSF, J and H respectively, and
lpk denotes an upper-bound on the length of public keys for scheme TH.

5 RSA-Based Scheme: RSAUDVS

The idea for the construction of an RSA-based UDVS scheme is analogous to the second Schnorr-based
scheme SchUDVS2, and is described as follows. The PV RSA signature known to the designator is
the eth root σ = h1/e mod N of the message hash h, where (N, e) is the signer’s RSA public key.
To produce a DV signature on m, the designator computes a zero-knowledge proof of knowledge of
the PV signature σ (made non-interactive using Fiat-Shamir method [11]), which is forgeable by the
verifier. The Guilliou-Quisquater ID-based signature [14] is based on such a proof and is applied here
for this purpose. To make the proof forgeable by the verifier, we use a trapdoor hash function in the
computation of the challenge, as done in the SchUDVS2 scheme. We note that a restriction of the GQ
proof that we use is that the random challenge r must be smaller than the public exponent e. To allow
for small public exponents and achieve high security level, we apply α proofs in ‘parallel’, where α is
chosen to achieve a sufficient security level — see security bound in our security analysis (a similar
technique is used in the Fiat-Shamir signature scheme [11]).

The resulting scheme is defined as follows. Let {0, 1}≤ℓ denote the message space of all bit strings of
length at most ℓ bits. The scheme makes use of two cryptographic hash functions H : {0, 1}≤ℓ ×RS →
{0, 1}lH and J : {0, 1}≤ℓ × ZZα

lN
× {0, 1}lF → ZZα

2lJ /α . Note that we only need to assume that J(.) is a
random-oracle model in our security analysis, and that we allow randomized RSA signatures with hash
generation h = H(m; s) for random s. The corresponding verification is to check if R(h,m) = Acc or
not, where R(.) is a binary relation function that outputs Acc if h is a valid hash of message m and
outputs Rej else. Thus by a suitable choice of H(., .) and R(., .) our scheme can instantiated with any of
the standardised variants of RSA signatures such as RSASSA-PSS or RSASSA-PKCS1-v15, as specified
in the PKCS1 standard [23]. We also use a trapdoor hash function scheme TH = (GKF, F,CSF) with
Fy3

: {0, 1}lG ×RF → {0, 1}lF (we refer the reader to Section 2 for a definition of trapdoor hash function
schemes). Here lN denotes the length of RSA modulus N of the signer’s public key.

1. Common Parameter Generation GC. (Identical to RSA). The comm. pars. are cp = k (k is
the security parameter).

2. Signer Key Generation GKS. (Identical to RSA). Given the common parameters cp, choose
a prime e > 2lJ/α. Pick random primes p and q such that N = pq has bit-length lN and
gcd(e, φ(N)) = 1, where φ(N) = (p − 1)(q − 1). Compute d = e−1 mod φ(N). The public key is
pk1 = (cp,N, e). The secret key is sk1 = (cp,N, e, d).

3. Verifier Key Generation GKV. Given the comm. pars. cp = k, run TH’s key-gen. algorithm to
compute (sk, pk) = GKF(k). The public key is pk3 = (cp, pk). The secret key is sk3 = (cp, sk, pk).

11

4. Signing S. (Identical to RSA). Given the signer’s secret key (cp,N, e, d), and message m, choose
a random s ∈ RS and compute h = H(m, s) and σ = hd mod N . The PV signature is σ.

5. Public Verification V. (Identical to RSA). Given the signer’s public key (cp,N, e) and a mes-
sage/PV sig. pair (m,σ), accept if and only if R(m,h) = Acc, where h = σe mod N .

6. Designation CDV. Given the signer’s public key (cp,N, e), a verifier’s public key pk3 = (cp, pk)
and a message/PV-signature pair (m,σ), choose α random elements ki ∈ ZZ∗

N and compute
û = (û1, . . . , ûα), where ûi = ke

i mod N for i = 1, . . . , α. Compute ĥ = Fpk(û; r̂F) for random

r̂F ∈ RF . Compute r̂ = (r̂1, . . . , r̂α) = J(m,h, ĥ), where h = σe mod N and r̂i ∈ ZZ2lJ /α for
i = 1, . . . , α. Compute ŝ = (ŝ1, . . . , ŝα), where ŝi = ki · σ

r̂i mod N for all i = 1, . . . , α. The DV
signature is σ̂ = (h, r̂F , r̂, ŝ).

7. Designated Verification VDV. Given a signer’s public key (cp,N, e), a verifier’s secret key
sk3 = (cp, sk, pk), and message/DV-sig. pair (m, (h, r̂F , r̂, ŝ)), accept if and only if J(m,h, ĥ) = r̂
and R(m,h) = Acc, where ĥ = Fpk(û; r̂F) with û = (û1, . . . , ûα) and ûi = ŝe

i · h
−r̂i mod N for

i = 1, . . . , α.

Unforgeability. Similar to the scheme SchUDVS2, thanks to the soundness of the GQ proof of knowledge
of RSA inverses, we can prove the DV unforgeability of RSAUDVS assuming the PV-unforgeability of
RSAUDVS (i.e. the existential unforgeability under chosen-message attack of the underlying standard
RSA signature (GKS,S,V)) and the collision-resistance of the trapdoor hash TH. The concrete result
is the following.

Theorem 5.1 (Strong DV-Unforg. of RSAUDVS). If RSAUDVS is PV-unforgeable (UF-PV notion)
and TH is collision-resistant (CR notion) then RSAUDVS achieves Strong DV-unforgeability (ST-UF-
DV notion) in the random-oracle model for J(.). Concretely, the following insecurity bound holds:

InSecST−UF−DV
RSAUDVS

(t, qs, qv, qJ , qH) ≤

2[(qJ + qv)qs]
1/2

[
InSecUF−PV

RSAUDVS
(t[S], qs[S], qH [S]) + InSecCR

TH(t[T])
]1/2

+
2(qJ + qv)qs + 1

2lJ
,

where t[S] = t[T] = 2t + O((qJ + qv)(lF + lN) + l2e + leTN), qs[S] = 2qs and qH [S] = 2qH . Here we
denote by TN the time needed to perform a multiplication in ZZ∗

N and le = log2(e).

Privacy. The privacy of RSAUDVS is unconditional and complete, assuming the perfectly-trapdoor
property of the trapdoor hash scheme TH.

Theorem 5.2 (Privacy of RSAUDVS). If the scheme TH is perfectly-trapdoor then RSAUDVS achieves
complete and perfect unconditional privacy (in the sense of the PR notion). Concretely:

InSecPR
RSAUDVS(RP1, R̂P 1,∞) = 0, (3)

where RP1 = (t1, qs1, qc1, qk1, qd1) denotes A1’s resource parameters and R̂P 1 = (t̂1, q̂s1, q̂c1, q̂k1) denotes

the forgery strategy Â1’s RPs, which are given by: t̂1 = t1+qd1O(lJTN +TF +TCSF +TJ +TH +qd1lpk)+
qk1TGKF , q̂s1 = qs1 (complete privacy), q̂c1 = qc1, q̂k1 = 0. Here we let TN , TF , TGKF , TCSF , TJ , TH

denote the time to compute a multiplication modulo N , and evaluate F , GKF, CSF, J and H respectively,
and lpk denotes an upper-bound on the length of public keys for scheme TH.

12

6 Scheme Comparison

The following tables compare the security and performance features of the proposed schemes (also
shown for comparison is an entry for the bilinear-based UDVS scheme DVSBM [26]. It is evident
that SchUDVS1 is more computationally efficient than SchUDVS2 but its security relies on a stronger
assumption and it also produces slightly longer DV signatures. The RSA-based scheme RSAUDVS has
a disadvantage of long DV signature length (typically about 10 times the length of a standard RSA
signature) assuming a low public exponent e = 216 +1. However, the computation is about the same as
in the Schnorr-based schemes. This is because the O(lJ/ log2(e)) exponentiations for RSAUDVS shown
in Table 2 use a low exponent e, so the total computation is only O(lJ) modular multiplications.

Scheme Extended Sig. Hard Problem Det. Desig? DV Sig. Length (typ)

SchUDVS1 Schnorr SDH Yes 2lG (2.0 kb)
SchUDVS2 Schnorr DL No lG + lF + 2lq (1.5 kb)
RSAUDVS RSA RSA No lN + lF + lJ + ⌈lJ/ log

2
(e)⌉ lN (11.6 kb)

DVSBM BLS BDH Yes lGT
(1.0 kb)

Table 1: Comparison of UDVS Schemes Features. See Secs. 4 and 5 for symbol definitions. The column ‘Det
Desig?’ indicates if the schemes designation algorithm is deterministic or not. The ‘DV Sig. Length (typ)’
column entries give DV signature lengths for the following typical scheme parameter values. For SchUDVS1 and
SchUDVS2, we assume a subgroup G of order q in ZZ∗

p for p prime, with lG = 1.024 kb, lq = lJ = 0.16 kb. For
RSAUDVS, we assume lN = 1.024, lJ = 0.16 kb and e = 216 + 1. For DVSBM we assume image group of length
lGT

= 1.024 kb.

Scheme Desig. Time Ver. Time

SchUDVS1 2 exp. 1 exp.
SchUDVS2 2 exp. + TH 1 exp. + TH

RSAUDVS 2(⌈lJ/ log
2
(e)⌉ + 1) exp. + TH ⌈lJ/ log

2
(e)⌉ + 1 exp. + TH

DVSBM 1 pairing 1 pairing + 1 exp.

Table 2: Comparison of UDVS Schemes Approximate Computation Time. Here we count the cost of computing
a product axbycz as equivalent to a single exponentiation (exp.) in the underlying group. For RSAUDVS exponent
lengths are all log

2
(e). TH denotes the cost of evaluating the trapdoor hash function Fpk (typ. 1 exp.).

7 Conclusions

We have shown how to efficiently extend the standard Schnorr and RSA signature schemes into Uni-
versal Designated-Verifier Signature schemes, and provided a concrete security analysis of the resulting
schemes. One problem of our RSA scheme is that the length of designated signatures is larger than
standard RSA signatures by a factor roughly proportional to k/ log2(e), where k is the security param-
eter and e is the public exponent. An interesting open problem is to find an RSA based UDVS scheme
with designated signatures only a constant factor longer than standard RSA signatures, independent
of e.

References

[1] M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions and an Analysis
of DHIES. In Topics in Cryptology - CT-RSA 2001, volume 2020 of LNCS, pages 143–158, Berlin,
2001. Springer-Verlag. See full paper available at www-cse.ucsd.edu/users/mihir.

13

[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proc. 1-st ACM Conf. on Comp. and Comm. Security, pages 62–73, New York,
November 1993. ACM.

[3] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In CRYPTO 2001,
volume 2139 of LNCS, pages 213–229, Berlin, 2001. Springer-Verlag.

[4] S. Brands. A technical overview of digital credentials, 1999. Available at
http://www.xs4all.nl/∼brands/.

[5] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates. MIT Press, 2000.

[6] J. Camenisch and M. Michels. Confirmer Signature Schemes Secure against Adaptive Adversaries.
In Eurocrypt 2000, volume 1807 of LNCS, pages 243–258, Berlin, 2000. Springer-Verlag.

[7] D. Chaum. Zero-Knowledge Undeniable Signatures. In Eurocrypt ’90, volume 473 of LNCS, pages
458–464, Berlin, 1991. Springer-Verlag.

[8] D. Chaum. Designated Confirmer Signatures. In Eurocrypt ’94, volume 950 of LNCS, pages 86–91,
Berlin, 1994. Springer-Verlag.

[9] D. Chaum and H. van Antwerpen. Undeniable Signatures. In Crypto ’89, volume 435 of LNCS,
pages 212–216, Berlin, 1990. Springer-Verlag.

[10] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. on Information Theory,
22:644–654, 1976.

[11] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification and Signature
Problems. In CRYPTO’86, volume 263 of LNCS, pages 186–194, Berlin, 1987. Springer-Verlag.

[12] R. Gennaro and T. Rabin. RSA-Based Undeniable Signatures. J. of Cryptology, 13:397–416, 2000.

[13] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against Adaptively
Chosen Message Attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[14] L.C. Guillou and J.J. Quisquater. A “Paradoxical” Identity-Based Signature Scheme Result-
ing from Zero-Knowledge. In CRYPTO ’88, volume 403 of LNCS, pages 216–231, Berlin, 1990.
Springer-Verlag.

[15] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their Applications.
In Eurocrypt ’96, volume 1070 of LNCS, pages 143–154, Berlin, 1996. Springer-Verlag.

[16] H. Krawczyk and T. Rabin. Chameleon Signatures. In NDSS 2000, 2000. Available at
http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/.

[17] M. Michels and M. Stadler. Generic Constructions for Secure and Efficient Confirmer Signature
Schemes. In Eurocrypt ’98, volume 1403 of LNCS, pages 406–421, Berlin, 1998. Springer-Verlag.

[18] T. Okamoto. Designated Confirmer Signatures and Public-Key Encryption are Equivalent. In
Crypto ’94, volume 839 of LNCS, pages 61–74, Berlin, 1994. Springer-Verlag.

[19] T. Okamoto and D. Pointcheval. The Gap-Problems: A New Class of Problems for the Security
of Cryptographic Schemes. In PKC2001, volume 1992 of LNCS, pages 104–118, Berlin, 2000.
Springer-Verlag.

14

[20] D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures. J.
of Cryptology, 13(3):361–396, 2000.

[21] R. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In Asiacrypt 2001, volume 2248 of
LNCS, pages 552–565, Berlin, 2001. Springer-Verlag.

[22] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Communications of the ACM, 21(2):120–128, 1978.

[23] RSA Laboratories. PKCS♯1 v. 2.1: RSA Cryptography Standard, 2002.

[24] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO’89, volume
435 of LNCS, pages 239–251, Berlin, 1990. Springer-Verlag.

[25] A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. In CRYPTO 2001,
volume 2139 of LNCS, pages 355–367, Berlin, 2001. Springer-Verlag.

[26] R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal Designated-Verifier Signatures. In
Asiacrypt 2003, volume 2894 of LNCS, pages 523–542, Berlin, 2003. Springer-Verlag. Full version
available at http://www.comp.mq.edu.au/∼rons.

[27] R. Steinfeld, L. Bull, and Y. Zheng. Content Extraction Signatures. In International Conference
on Information Security and Cryptology ICISC 2001, volume 2288 of LNCS, pages 285–304, Berlin,
2001. Springer-Verlag.

A Proof of Theorem 4.1

We show how to use any efficient forging attacker A for breaking scheme SchUDVS1 in the sense of
ST-UF-DV with non-negligible probability to construct an efficient attacker AS for breaking the Strong
Diffie-Hellman problem (SDH) with non-negligible probability, thus contradicting the assumed hardness
of SDH. More precisely, we show that:

SuccAS,SDH(k) ≥ (1/4(qH + qv)) ·

[
SuccST−UF−DV

A,SchUDVS1
(k) −

qs(qH + qs + qv) + 2(qH + qv) + 1

2lH

]2

, (4)

where AS has the run-time t[S] and makes q[S] DDH queries, as defined in the theorem statement. The
theorem then follows immediately from (4), by taking maximums over all attackers AS with the given
running time. It remains to construct the attacker AS and show that it satisfies (4).

Overview. We convert A into AS in two stages. In the first stage, we modify the S oracle simulator
FS so that it does not use x1 (by outputting a random pair (r, s) as the signature for message m and
modifying the H oracle to answer consistently r whenever (m, gs · y−r

1) is later queried to H). We also
modify the VDV oracle simulator FVDV such that it does not use x3 directly but only indirectly via
queries to a DDHx3

(., .) oracle. At the end of the first stage we obtain an efficient algorithm for the
following primitive problem P [qo, qd]:

1. Problem P [qo, qd]: Given (DG, g) = GC(k), y1 = gx1 and y3 = gx3 for uniformly random x1, x3 ∈
ZZq, qo distinct queries (u[1], . . . , u[qo]) to oracle O(.) (where r[i] = O(u[i]) is a uniformly random
integer in ZZ2lH), and qd queries to restricted DDH oracle DDHx3

(., .), (where DDHx1
(w,K),

15

returns 1 if K = wx1 and 0 else), compute i∗ ∈ {1, . . . , qo} and K∗ ∈ G such that K∗ =

(u[i∗] · y
r[i∗]
1)x3.

In the second stage we show how to convert any efficient algorithm for primitive problem P [qo, qd]
into an efficient algorithm for SDH. This reduction is an application of the forking technique [11, 20],
which involves running the attacker for P [qo, qd] twice, answering its i∗th O(.) query differently in the

two runs to obtain two distinct solutions (i∗,K∗
1) (with K∗

1 = (u[i∗] · y
r1[i∗]
1)x3) and (i∗,K∗

2) (with

K∗
2 = (u[i∗] · y

r2[i∗]
1)x3) for the P [qo, qd] instance, from which the solution gx1x3 to the SDH instance can

be recovered.

We begin with the details of the ‘Stage 1’ reduction.

Lemma A.1 (Stage 1). Any ST-UF-DV attacker A on scheme SchUDVS1 with resources (t, qs, qv, qH)
and success probability SuccST−UF−DV

A,SchUDVS1
(k) can be converted into an algorithm AP for problem P [qo, qd]

with run-time t[P] = t + (qs + qv + qH + 1)(TS + O(lH)) + O(qslqTg) (where TS = O(log2(qs + qv +
qH)(ℓ + lG))), qo = qH + qv O oracle queries, qd = qv DDH oracle queries, and success probability
Succ

AP,P [qo,qd](k) ≥ SuccST−UF−DV
A,SchUDVS1

(k) − [qs(qs + qv + qH) + 1]/2lH .

Proof. Modified Attacker Â. We first define a modified attacker Â which is obtained from the original
attacker A in order to satisfy two properties (which may not be satisfied by A): (1) Each H-query
(mi, ui) of Â is ‘new’ (i.e. unequal any earlier query (mj , uj) to H(.), made either directly by Â or

indirectly by S), and (2) For each VDV-query (y1,i,mi, ui,Ki) of Â, the pair (mi, ui) is not new (i.e.

it is equal to an earlier query (mj , uj) to H(.) by either Â or S oracle). We obtain Â as follows: Â

runs A and stores in a sorted table T the queries (mi, ui) and corresponding responses ri = H(mi, ui)
to A’s and S oracle’s H-queries. When A makes an S-query, A forwards it to the S-oracle and returns
the signature (ri, si) to A, adding query (mi, ui) and response ri to table T , where ui = gsi · y−ri

1 .

When A makes a H query (mi, ui), Â first searches table T for a matching earlier query (mj, uj) and

if found, answers ri = rj from the table without querying H(.) (if not found, Â queries (mi, ui) to H
answers response ri to A, adding (mi, ui) and response ri to T). This modification implies property
(1). Similarly, when A makes a VDV oracle query (y1,i,mi, ui,Ki), Â searches T for matching earlier

query (mj , uj) = (mi, ui) and if not found, it queries (mi, ui) to H(.) and updates T . Then Â forwards
(y1,i,mi, ui,Ki) to VDV oracle and returns response to A. This modification implies property (2). It

is clear that Â has the same success probability as A (SuccST−UF−DV

Â,SchUDVS1

= SuccST−UF−DV
A,SchUDVS1

) and also the

same number of S- and VDV- queries (qs[Â] = qs and qv[Â] = qv). However, the H-query bound of Â

is larger due to modification (2) (qH [Â] = qH + qv), and the running-time of Â is also larger due to
modifications (1) and (2) (t[Â] = t + O((qv + qH) log2(qs + qv + qH) · (ℓ + lG)) + O(lqTgqs)), assuming a

binary search by Â through the sorted list of past H-queries.

We now consider several attack games, starting at the original attack Game0 and modifying Â’s view
simulators to obtain the game Game3 where Â and its view simulators constitute the desired algorithm
AP against P [qo, qd].

Game0. This is the original forgery attack game UF-DV, where the view simulator F = (FS,FH) for
Â consists of the actual scheme’s S and H oracles respectively. The game Game0 runs as follows on
outcome I (we use bold letters to denote random variables which constitute the view of Â, i.e. the
inputs, oracle queries and responses of Â, and output of Â).

Setup. We run Â on input IA = (DG,g,y1,y3), where (DG,g) = GC(k),y1 = gx1 for uniformly random
x1 ∈ ZZq and y3 = gx3 for uniformly random x3 ∈ ZZq.

16

Oracle Queries. When Â makes its ith oracle query Qi, F responds as follows:

(1) S-Query simulator FS. If Qi = mi is an S-Query, FS responds with Ri = (ri, si) computed as follows:
ri = H(mi,ui)
si = ki + ri · x1

where ui = gki for uniformly random ki ∈ ZZq

(2) H-Query simulator FH. If Qi = (mi,ui) is a H-Query, FH responds with Ri = ri defined as follows:

ri = H(mi,ui)

(3) VDV-Query simulator FV. If Qi = (y1,i,mi, (ui,Ki)) is a VDV-Query, FV responds with Ri = di ∈
{Acc, Rej} defined as follows:

di = Acc if and only if Ki = (ui · y
ri

1
)x3

where ri = H(mi,ui)

Output. Eventually Â outputs a forgery message/DV-sig. pair (m∗, (u∗,K∗)).

This completes the description of Game0.

Let S0 denote the event in Game0 that Â breaks SchUDVS1 in the sense of ST-UF-DV. By definition,
this means:

S0 ⇒ (a) K∗ = (u∗ · yr∗
1)x3 (where r∗ = H(m∗,u∗))

(b) m∗ 6= mi for all i ∈ WS , (5)

where WS denotes the set of S-query indices.

Let Bad0 denote the event in Game0 that Â did not make a H-query (m∗,u∗) during the attack.

Bad0 ⇒ (mi,ui) 6= (m∗,u∗) for all i ∈ WH , (6)

where WH denotes the set of H-query indices.

Thanks to the randomness of H(.), we get:

Claim A.1.
Pr[S0 ∧ Bad0] ≤ 1/2lH .

Proof of Claim. If Bad0 occurs, we know (m∗,u∗) is not queried to H by A and also (by property (2)
of Â - see definition of Â) not queried to H by FV. If S0 also occurs, we know from (5)(b) that (m∗,u∗)
is not queried to H by FS either. Hence if S0 ∧ Bad0 occurs, then (m∗,u∗) is not queried to H during
the game, and therefore Â’s view (and hence its output (K∗,u∗)) is independent of r∗ = H(m∗,u∗),
which is in turn uniformly distributed in ZZ2lH . Since the mapping r∗ 7→ (u∗yr∗

1)x3 is one-to-one over
ZZ2lH (because 2lH < q and x1 and x3 are non-zero elements of ZZq), there is only one outcome for r∗

(out of 2lH equiprobable outcomes) such that (u∗yr∗
1)x3 = K∗ is satisfied. The claim follows. ⊓⊔

Let Bad1
0

denote the event in Game0 that a ui = gki used by S-oracle in answering an S-query matches

a previous uj appearing in an earlier query to H by either Â or S-oracle:

Bad1
0 ⇒ There exists i ∈ WS such that ui = uj for some j < i. (7)

Thanks to the randomness of the ki’s we get:

Claim A.2.
Pr[Bad1

0] ≤ qs(qs + qv + qH)/2lH .

17

Proof of Claim. For each ith S-query, there are at most qs[Â] + qH [Â] = qs + qv + qH previous uj ’s that
ui can collide with. Since ui = gki is uniformly distributed in G which has order q, ui has probability
at most (qs + qv + qH)/q < (qs + qv + qH)/2lH to collide with a previous uj . Since there are qs[Â] = qs

S-queries overall, the claim follows. ⊓⊔

Let S2
0

denote the event in Game0 that S0 occurs but neither Bad0 nor Bad1
0

occur. That is:

S2
0 ⇒ (a) There exists i∗ ∈ WH such that K∗ = (ui∗ · y

ri∗

1)x3

and (mi∗ ,ui∗) = (m∗,u∗)

(b) m∗ 6= mi for all i ∈ WS

(c) ui 6= uj for all j < i and i ∈ WS . (8)

The above results immediately give:

Claim A.3.

Pr[S2
0] ≥ Pr[S0] −

qs(qs + qv + qH) + 1

2lH
.

Proof of Claim. We have Pr[S2
0
] = Pr[S0 ∧ ¬Bad0 ∧ ¬Bad1

0
] ≥ Pr[S0 ∧ ¬Bad0] − Pr[Bad1

0
] ≥ Pr[S0] −

Pr[Bad0] − Pr[Bad1
0
]. The claim now follows from Claims A.1 and A.2. ⊓⊔

Game1. In this game we modify the S-oracle simulator FS for Â. The new simulator returns signatures
(ri, si) where ri is just a uniformly random string ρi in ZZ2lH , without querying (mi, ui) to H. The game
Game1 runs as follows.

Setup. We run Â on input IA = (DG,g,y1,y3), where (DG,g) = GC(k) and y1 = gx1 for uniformly
random x1 ∈ ZZq and y3 = gx3 for uniformly random x3 ∈ ZZq.

Oracle Queries. When Â makes its ith oracle query Qi, F responds as follows:

(1) S-Query simulator FS. If Qi = mi is an S-Query, FS responds with Ri = (ri, si) computed as follows:
ri = ρi for uniformly random ρi ∈ ZZ

2
lH

si = ki + ri · x1

where ui = gki for uniformly random ki ∈ ZZq

(2) H-Query simulator FH. As in Game0.

(3) VDV-Query simulator FV. As in Game0.

Output. Eventually Â outputs a forgery message/DV-sig. pair (m∗, (u∗,K∗)).

This completes the description of Game1. Let S2
1

denote the event in Game1 corresponding to S2
0

in

Game0 (i.e. S2
1

is also defined by (8) over the view of Â).

Claim A.4.
Pr[S2

1] ≥ Pr[S2
0].

Proof of Claim. For outcomes in S2
0

in Game0, the ui for each ith S-query is ‘new’ and hence by
randomness of H(.) the responses ri = H(mi,ui) are uniform and independent in ZZ2lH . Furthermore,
H(.) is never queried again at (mi,ui) during the game. Thus for each outcome in S2

0
in Game0 there is

a corresponding outcome in S2
1

in Game1, where the outcomes for ρi in Game1 coincide with outcomes
for H(mi,ui) in Game0 for all i ∈ WS , maintaining the view of A unchanged. Since the ρi’s are uniform
and independent in ZZ2lH this outcome has the same probability in Game1 as the original outcome in
Game0. The claim follows. ⊓⊔

18

Game2. In this game we further modify the S-oracle simulator FS for Â. The new simulator returns
signatures (ri, si) where si set equal to a uniformly random element ζi in ZZq, thus eliminating the use
of x1 by FS.

Setup. We run Â on input IA = (DG,g,y1,y3), where (DG,g) = GC(k) and y1 = gx1 for uniformly
random x1 ∈ ZZq and y3 = gx3 for uniformly random x3 ∈ ZZq.

Oracle Queries. When Â makes its ith oracle query Qi, F responds as follows:

(1) S-Query simulator FS. If Qi = mi is an S-Query, FS responds with Ri = (ri, si) computed as follows:
ri = ρi for uniformly random ρi ∈ ZZ

2
lH

si = ζi for uniformly random ζi ∈ ZZq

(2) H-Query simulator FH. As in Game0.

(3) VDV-Query simulator FV. As in Game0.

Output. Eventually Â outputs a forgery message/DV-sig. pair (m∗, (u∗,K∗)).

This completes the description of Game2. Let S2
2

denote the event in Game2 corresponding to S2
1

in

Game1 (i.e. S2
2

is also defined by (8) over the view of Â).

Claim A.5.
Pr[S2

2] ≥ Pr[S2
1].

Proof of Claim. In Game1, the si = ki + ri · x1 mod q signature portions are uniformly random in ZZq

and independent of ri, thanks to the uniformly random and independent choice of ki ∈ ZZq and the
fact that mapping ki 7→ ki + ri · x1 mod q is a permutation of ZZq. Hence, in Game2, setting si = ζi for

uniformly random and independent ζi ∈ ZZq leaves the view of Â unchanged and immediately gives the
claimed result. ⊓⊔

Game3. In this game we modify the VDV-oracle simulator FV for Â to use x3 only indirectly via calls
to a DDHx3

(., .) oracle. We also eliminate calls to H(.) by FV, using the fact that Â never makes ‘new’
(mi,ui) queries to VDV.

Setup. We run Â on input IA = (DG,g,y1,y3), where (DG,g) = GC(k) and y1 = gx1 for uniformly
random x1 ∈ ZZq and y3 = gx3 for uniformly random x3 ∈ ZZq.

Oracle Queries. When Â makes its ith oracle query Qi, F responds as follows:

(1) S-Query simulator FS. As in Game2.

(2) H-Query simulator FH. As in Game0.

(3) VDV-Query simulator FV. If Qi = (y1,i,mi, (ui,Ki)) is a VDV-Query, FV responds with Ri = di ∈
{Acc, Rej} defined as follows:

di = Acc if and only if DDHx3
(ui · y

ri

1
,Ki) = 1

where ri = rj and j ∈ WS ∨ WH is the index
of a previous matching query (mj ,uj) = (mi,ui)

Output. Eventually Â outputs a forgery message/DV-sig. pair (m∗, (u∗,K∗)).

This completes the description of Game3. Let S2
3

denote the event in Game3 corresponding to S2
2

in

Game2 (i.e. S2
3

is also defined by (8) over the view of Â).

Claim A.6.
Pr[S2

3] ≥ Pr[S2
2].

19

Proof of Claim. In Game2, the test by FV if (ui · yri
1)x3 = Ki or not, is equivalent to testing if

DDHx3
(ui · y

ri
1 ,Ki) = 1, as used in Game3. The method of computing ri in Game3 is equivalent to

querying (mi,ui) to H(.) because by construction of Â, (mi,ui) must have previously appeared in a
H- or S- query. ⊓⊔

So in Game3, Â with its view simulators constitutes an algorithm AP for problem P [qo, qd], which on

input (DG, g, y1 = gx1 , y3 = gx3), makes qo
def
= qH [Â] = qH + qv distinct queries ui to a random oracle

O(.) (the H(.)-queries of FH)receiving answers ri uniform in ZZ2lH , and qd
def
= qv[Â] = qv queries to the

DDHx3
(., .) oracle (the DDH queries of FV), and outputs (i∗,K∗) such that K∗ = (ui∗ · y

ri∗

1)x3 with
probability at least Pr[S2

3
] ≥ SuccST−UF−DV

A,SchUDVS1
(k)−[qs(qs+qv +qH)+1]/2lH , using claims A.1 to A.6. The

run-time of AP is the sum of the run-time t[Â] = t+O((qv + qH) log2(qs + qv + qH) · (ℓ+ lG))+O(lqTgqs)

of Â, the run-time t[FV] = O((qv + qH) log2(qs + qv + qH) · (ℓ+ lG))+O(lqTgqs) of FV (assuming a binary

search is used as for obtaining Â from A), and the time O(log2(qs + qv + qH) · (ℓ + lG)) for AP to search
for i∗ such that (m∗,u∗) = (mi∗ ,ui∗) . This establishes the lemma. ⊓⊔

We will need the following lemma [20] in the analysis of the forking technique for the ‘Stage 2’ reduction.
A proof can be found in [20] but we provide one here also for completeness.

Lemma A.2 (Splitting Lemma[20]). Let a and b denote independent random variables over finite
sets A and B, respectively, with probability mass functions PA(.) and PB(.), respectively. Let S ⊆ A×B
be a set with Pr[S] ≥ ǫ. For each a ∈ A, let S(a) ⊆ B denote the set of b ∈ B such that (a, b) ∈ S.
Then there exists a ‘good’ subset G of S such that:

Pr[G] ≥ ǫ/2

and, for all (a, b) ∈ G,
Pr[S(a)] ≥ ǫ/2.

Proof. Let us define the good set G to be the set of all (a, b) ∈ S such that Pr[S(a)] ≥ ǫ/2. Then it is
enough to show that Pr[G] ≥ ǫ/2.

Suppose, towards a contradiction, that Pr[G] < ǫ/2. Then Pr[S] = Pr[G]+Pr[S∧¬G] < ǫ/2+Pr[S∧¬G].
But (a, b) ∈ S ∧ ¬G means that a ∈ WA, where WA ⊆ A is the set of a ∈ A such that Pr[S(a)] < ǫ/2.
So Pr[S ∧ ¬G] =

∑
a∈WA

∑
b∈S(a) PA(a)PB(b) =

∑
a∈WA

PA(a) · Pr[S(a)] < ǫ/2 since
∑

b∈S(a) PB(b) =
Pr[S(a)] < ǫ/2 for all a ∈ WA. It follows that Pr[S] < ǫ/2 + ǫ/2 = ǫ, a contradiction. This shows that
Pr[G] ≥ ǫ/2, which completes the proof. ⊓⊔

We will also use the following inequality.

Lemma A.3. Let p =
∑q

j=1 pj for some q real numbers p1, . . . , pq and let δ > 0 be given. If p ≥ q · δ
then the following inequality holds:

q∑

j=1

pj · (pj − δ) ≥ (1/q) · (p − q · δ)2.

Proof. We have
∑q

j=1 pj · (pj − δ) =
∑q

j=1 p2
j − p · δ. Using the Cauchy-Schwartz inequality we have∑q

j=1 p2
j ≥ (1/q) · (

∑q
j=1 pj)

2 = (1/q) · p2, so
∑q

j=1 pj · (pj − δ) ≥ (1/q)(p2 − q · δ · p). But from the

20

assumption that p ≥ q·δ, we have (q·δ)p ≥ (q·δ)2 and hence p2−q·δ·p ≥ p2−2(q·δ)p+(q·δ)2 = (p−q·δ)2,
which gives the claimed inequality. ⊓⊔

Lemma A.4 (Stage 2). Any algorithm AP for problem P [qo, qd] with run-time t[P] and success
probability Succ

AP,P [qo,qd](k) ≥ 2qo/2
lH can be converted into an algorithm AS for SDH with run-

time t[S] = 2t[P] + O(l2q + lqTg) which makes q[S] = 2qd DDH queries, and has success probability

SuccAS,SDH(k) ≥ (1/qo) · [Succ
AP,P [qo,qd](k)/2 − qo/2

lH]2. Here Tg denotes the time to perform a group
operation in G.

Proof. Given SDH input instance (DG, g, y1 = gx1 , y2 = gx2), our SDH algorithm AS works as follows
(we assume without loss of generality that AS’s DDH oracle is DDHx2

(., .)).

Setup. AS first sets up two random vectors −→r = (r[1], . . . , r[qo]) and
−→
r̂ = (r̂[1], . . . , r̂[qo]) with r[i]’s and

r̂[i]’s chosen uniformly and independently at random from ZZ2lH (these vectors will be used to answer
AP’s O(.) queries).

First Run. AS runs AP on input (Dg, g, y1, y2;ω), where ω is a random bit string used as the randomness
input of AP (if AP is randomized), and answers its oracle queries as follows:

(1) O(.)-Query simulator FO. When AP makes its ith O(.) query u[i], AS responds with r[i].

(2) DDHx2
(., .)-Query simulator FD. When AP makes its ith DDHx2

(., .) query (w[i], K[i]), AS simply for-
wards the query to its DDHx2

(., .) oracle and forwards the oracle’s response d[i] to AP.

First Run Output. At the end of first run, AP outputs (i∗,K∗) (note that if this run is successful then

K∗ = (u[i∗] · y
r[i∗]
1)x2).

Second Run. AS runs AP again on the same input (Dg, g, y1, y2;ω) as used in first run, but answers its
oracle queries differently as follows:

(1) O(.)-Query simulator FO. When AP makes its ith O(.) query u[i], AS responds with r[i] for i < i∗ and
with r̂[i] for i ≥ i∗.

(2) DDHx2
(., .)-Query simulator FD. Answered as in first run.

Second Run Output. At the end of second run, AP outputs (î∗, K̂∗) (note that if this run is successful

and î∗ = i∗ then K̂∗ = (u[i∗] · y
r̂[i∗]
1)x2).

AS’s output. AS computes and returns an estimate K
def
= (K̂∗/K∗)(r̂[i∗]−r[i∗])−1 mod q for the SDH instance

solution gx1x2 (if r̂[i∗] = r[i∗] then AS fails).

This completes the description of AS. The running-time of AS is twice the run-time of AP plus the time
to compute K at the end, which can be done in time O(l2q + lq ·Tg). The number of DDHx2

(., .) queries
made by AS is up to twice the number of queries made by AP. This establishes the claimed resources
of AS.

We now lower bound the success probability of AS. For i ∈ {1, . . . , qo}, we call a run of AP i-successful
if AP succeeds and i∗ = i. Note that if both first and second runs of AP are i-successful for some

i, then we have i∗ = î∗ = i, K∗ = (u[i] · y
r[i]
1)x2 and K̂∗ = (u[i] · y

r̂[i]
1)x2 (note that u[1], . . . , u[i]

are the same in both runs because the view of AP is the same up to ith O(.) query response) and
consequently AS’s estimate K is correct (whenever r[i] 6= r̂[i] so (r̂[i] − r[i])−1 mod q exists) because

K = [(u[i] · y
r[i]
1)x2/(u[i] · y

r̂[i]
1)x2](r̂[i]−r[i])−1 mod q = yx2

1 = gx1x2.

So it remains to lower bound the probability of the event S∗ that both runs of AP are i-successful for
some i ∈ {1, . . . , qo} and r̂[i] 6= r[i]. To do this, we split S∗ into qo disjoint subevents S∗

i
according the

21

value of i and bound each one. For each i, let Ai denote the outcome space for the random variable
ai = (Dg, g, y1, y2, ω, r[1], . . . , r[i − 1]) consisting of the view of AP up to the ith query to O(.), and let
Bi denote the outcome space for the independent random variable bi = (r[i], . . . , r[qo]) consisting of the
view of AP after the ith query to O(.) (including the response r[i] to the ith query). Note that the event

Si that a run of AP is i-successful is a subset of Ai×Bi with probability pi
def
= Pr[(ai, bi) ∈ Si]. Applying

the Splitting Lemma A.2, we know that there exists a subevent Gi of Si such that Pr[(ai, bi) ∈ Gi] ≥ pi/2,
and for each (a, b) ∈ Gi, the probability that (a, b̂) ∈ Si over a random choice of b̂ in Bi is also at least
pi/2. Hence, the probability that the outcome (a, b) of the first run of AP in our algorithm is in
Gi is at least pi/2, and then for each of those outcomes, the probability over the random choice of
b̂ = (r̂[i], . . . , r̂[qo]) that the second run outcome (a, b̂) is in Si is at least pi/2. Since r̂[i] is uniformly
chosen in ZZ2lH , the chance that it collides with r[i] is 1/2lH , so with probability at least pi/2 − 1/2lH

over b̂ we know that (a, b̂) ∈ Si and also r̂[i] 6= r[i]. Summarizing, we have that the probability that
(1) (a, b) ∈ Gi and (2) (a, b̂) ∈ Si and (3) r̂[i] 6= r[i] all occur is at least pi/2(pi/2 − 1/2lH). This latter
event implies that both runs are i-successful and r̂[i] 6= r[i], i.e. that event S∗

i
occurs. Hence

Pr[S∗
i] ≥ pi/2(pi/2 − 1/2lH) for all i ∈ {1, . . . , qo}, (9)

and since pi is the probability that a run of AP is i-successful, we know that
∑qo

i=1 pi = Succ
AP,P [qo,qd](k).

Assuming that Succ
AP,P [qo,qd](k) ≥ 2qo/2

lH , we apply Lemma A.3 to (9) to get

Pr[S∗] =

qo∑

i=1

Pr[S∗
i] ≥ (1/qo) ·

(
Succ

AP,P [qo,qd](k)/2 − qo/2
lH

)2
, (10)

which is the desired lower-bound on AS’s success probability. ⊓⊔

To complete the proof of the theorem, we apply to A the Stage 1 reduction (Lemma A.1) followed
by the Stage 2 reduction (Lemma A.4) and obtain an algorithm AS for SDH with the claimed success
probability bound (4) and resources t[S] and q[S], as claimed. ⊓⊔

B Proof of Theorem 4.2

The proof is straightforward but we give the details for completeness. To show the perfect unconditional
privacy, assuming the direct verifier key-reg. protocol is used, we show how to use construct the forgery
strategy Â1 which, for any given privacy attacker pair (A1,A2), will perfectly simulate the DV signature
answers to A1’s designation queries y3,i without the message m∗ being signed by the signer, using the
corresponding secret key x3,i that A1 registered with y3,i during a previous key-reg. query. This shows
that the convincing measure C

Â1

(A1,A2) is zero for any (A1,A2), as required.

Game yes. We recall first the original attack Game yes in which A1 and A2 interact.

Stage 1. The pair (A1,A2) is run on input (DG, g, y1 = gx1). A1’s oracle queries are answered as follows.

(1) S(x1, .) Queries. When A1 makes ith S-query mi, it is answered with σi = S(x1, mi).
(2) KRA Queries. When A1 makes ith key-reg. query (x3,i, y3,i) it is answered Acc if gx3,i = y3,i and Rej

else.
(3) A2 Queries. When A1 sends message mi to A2, A2 responds with an answer ai.

22

End of Stage 1. A1 outputs a challenge message m∗ which is given to A2. A PV signature σi =
(r∗, s∗) = S(x1,m

∗) is generated, where r∗ = H(m∗, u∗) for u∗ = gk∗

for uniformly random k∗ ∈ ZZq,
and s∗ = k∗ + r∗ · x1 mod q. Stage 2 begins.

Stage 2. A1 continues to make S,KRA and A2 queries as in Stage 1 but can also make designation
queries which are answered as follows:

(1) CDV Queries. When A1 makes ith CDV-query y3,i, it is answered with DV signature σ̂i =

CDV(y1, y3,i, m
∗, σ∗) = (ûi, K̂i), where ûi = gs∗ · y−r∗

1
and K̂i = ys∗

3,i.

End of Stage 2. A2 outputs a decision d ∈ {yes, no}.

Game no. We now describe the other game where Â1 interacts with A2.

Stage 1. The pair (Â1,A2) is run on input (DG, g, y1 = gx1), where Â1 is also given the program for A1

as input. Â1 now runs A1 on same input and answers A1’s oracle queries as follows.

(1) S(x1, .) Queries. When A1 makes ith S-query mi, Â1 forwards it to S oracle and forwards response
σi = S(x1, mi) back to A1.

(2) KRA Queries. When A1 makes ith key-reg. query (x3,i, y3,i) Â1 answers Acc if gx3,i = y3,i and stores
(x3,i, y3,i, Acc) in a table T , else it answers Rej.

(3) A2 Queries. When A1 outputs a message mi for A2, Â1 forwards it to A2 and forwards the answer ai back
to A1.

End of Stage 1. A1 outputs a challenge message m∗ , which is also output by Â1 and given to A2. Â1

computes u∗ = gk∗

and r∗ = H(m∗, u∗), for a uniformly random k∗ ∈ ZZq. Stage 2 begins.

Stage 2. A1 continues to make S,KRA and A2 queries, answered by Â1 as in Stage 1, but can also make
designation queries which are answered as follows:

(1) CDV Queries. When A1 makes ith CDV-query y3,i, Â1 searches table T for an entry (x3,j , y3,j , Acc) with
y3,j = y3,i (note that this entry is guaranteed to exist in T due to the restriction on A1 to only query
CDV with public keys which have been answered with Acc by a previous KRA query) and answers with

σ̂i = (ûi, K̂i), where ûi = u∗ and K̂i = (u∗ · y−r∗)x3,j .

End of Stage 2. A2 outputs a decision d ∈ {yes, no}.

Note that A1’s (and hence also A2) view is perfectly simulated in Game no as in Game yes. This is
because in both games u∗ and r∗ are computed identically and the DV signatures (ui,Ki) are also
identical in both games because ûi = gs∗ · y−r∗

1 = u∗ in Game yes and ui = u∗ in Game no for all i, and

K̂i = ys∗
3,i = gx3,is∗ = (u∗y−r∗)x3,i in Game yes and K̂i = (u∗ · y−r∗)x3,j = (u∗ · y−r∗)x3,i in Game no. All

other oracles are simulated identically in both games. So A2 outputs yes with same probability in both
games and hence C

Â1

(A1,A2) = 0, as claimed. The run-time of Â1 is the run-time of A1 plus the time

qd1O(lqTg + qd1lG) + qk1O(lqTg) to answer A1’s CDV and KRA queries. Note that q̂s1 = qs1, q̂c1 = qc1,
and q̂k1 = 0, as claimed. ⊓⊔

C Proof of Theorem 4.3

We show how to use any efficient forging attacker A for breaking scheme SchUDVS2 in the sense of
ST-UF-DV with non-negligible probability to construct (1) an efficient attacker AS for breaking the PV
unforgeability of scheme SchUDVS2 (i.e. the unforgeability of the Schnorr signature scheme), and (2)
an efficient attacker AT for breaking the collision-resistance of the trapdoor hash scheme TH, such that
at least one of AS or AT succeed with non-negligible probability. More precisely, we show that:

SuccUF−PV
AS,SchUDVS2

(k) + SuccCR
AT,TH(k) ≥

1

4(qJ + qv)qs
·

[
SuccST−UF−DV

A,SchUDVS2
(k) −

2(qJ + qv)qs + 1

2lJ

]2

, (11)

23

where AS and AT have resources (t[S], qs[S], qH [S]) and (t[T]) respectively, as defined in the theorem
statement. The theorem then follows immediately from (11), by taking maximums over all attackers
AS with the given running time. It remains to construct AS and AT and show (11).

Modified Attacker Â. Similar to the proof of Theorem 4.1, we first define a modified attacker Â which is
obtained from the original attacker A in order to satisfy two properties (which may not be satisfied by
A): (1) Each J-query (mi, ri, ui, ĥi) of Â is ‘new’ (i.e. unequal any earlier query to J(.) made by Â), and
(2) Â does not make any VDV queries. Since the VDV oracle of A can be simulated knowing only the
verifier’s public key pk3, and using one query to H(.) and J(.) per VDV query, we can easily transform
A into Â such that Â’s resources (denoted with hats) are related to A’s resources as follows: q̂s = qs,
q̂v = 0, q̂H = qH + qv, q̂J = qJ + qv, and t̂ = t + O((qJ + qv) log2(qJ + qv) · (ℓ + lG + lF)) + O(lqTgqv).

Game0. Let Game0 denote the original forgery attack game. In this game, let (mi, ri, ui, ĥi) denote the
ith J(.) query of Â and r̂i the corresponding answer, let (m∗, u∗, r̂∗F , r̂∗, ŝ∗) denote the output forgery of

Â, and let m′
i denote the ith S-query of Â. Let S0 denote the event in Game0 that Â breaks SchUDVS2

in the sense of ST-UF-DV. By definition, this means:

S0 ⇒ (a) J(m∗, r∗, u∗, ĥ∗) = r̂∗, where r∗ = H(m∗, u∗), ĥ∗ = Fpk(û
∗; r̂∗F), û∗ = gŝ∗(u∗yr∗

1)−r̂∗

(b) m∗ 6= m′
i for all i ∈ W S, (12)

where W S denotes the set {1, . . . , qs} of S-query indices.

Let Bad0 denote the event in Game0 that Â did not make a J-query (m∗, r∗, u∗, ĥ∗) during the attack.

Bad0 ⇒ (mi, ri, ui, ĥi) 6= (m∗, r∗, u∗, ĥ∗) for all i ∈ W J , (13)

where W J denotes the set {1, ..., qJ} of J-query indices.

Thanks to the randomness of J(.), we get:

Claim C.1.
Pr[S0 ∧ Bad0] ≤ 1/2lJ .

Proof of Claim. If Bad0 occurs, we know (m∗, r∗, u∗, ĥ∗) is not queried to J(.) during the game, and
therefore Â’s view (and hence its output (m∗, u∗, r̂∗F , r̂∗, ŝ∗)) is independent of J(m∗, r∗, u∗, ĥ∗), which

is in turn uniformly distributed in ZZ2lJ . Hence if Bad0 occurs the chance that r̂∗ = J(m∗, r∗, u∗, ĥ∗)
(so S0 also occurs) is 1/2lJ . The claim follows. ⊓⊔

Let S1
0

denote the event in Game0 that S0 occurs but Bad0 does not. That is:

S1
0 ⇒ (a) There exists i∗ ∈ W J such that (m∗, r∗, u∗) = (mi∗ , ri∗ , ui∗)

and Fpk(g
ŝ∗ · (ui∗y

ri∗

1)−r̂i∗ ; r̂∗F) = ĥi∗ and ri∗ = H(mi∗ , ui∗)

(b) m∗ 6= m′
i for all i ∈ W S (14)

The above results immediately give:

Claim C.2.

Pr[S1
0] ≥ Pr[S0] −

1

2lJ
.

Proof of Claim. We have Pr[S1
0
] = Pr[S0∧¬Bad0] ≥ Pr[S0]−Pr[Bad0] ≥ Pr[S0]−1/2lJ using Claim C.1.

⊓⊔

24

Game1. In Game1, we construct the algorithm AS against the PV-unforgeability of SchUDVS2. On
input (k,DG, g, y1) AS runs as follows.

Setup. AS first sets up two random vectors
−→
r̂ [1] = (r̂1[1], . . . , r̂q̂J

[1]) and
−→
r̂ [2] = (r̂1[2], . . . , r̂q̂J

[2]) with
r̂i[1]’s and r̂i[2]’s chosen uniformly and independently at random from ZZ2lJ (these vectors will be used
to answer AP’s J(.) queries). AS also generates a TH key-pair (sk, pk) = GKF(k).

First Run. AS runs Â on input (DG, g, y1, pk;ω), where ω is a random bit string used as the randomness
input of Â, and answers Â’s oracle queries as follows:

(1) J(.)-Query simulator FJ. When Â makes its ith J(.) query (mi[1], ri[1], ui[1], ĥi[1]), AS responds with
r̂i[1].

(2) S-Query simulator FS. When Â makes its jth S query m′

j [1], AS simply forwards the query to its S

oracle and forwards the oracle’s response σj [1] back to Â. AS stores the query-answer pair (m′

j [1], σj [1]) in
a table T .

First Run Output. At the end of first run, Â outputs the forgery (m∗[1], u∗[1], r̂∗F [1], r̂∗[1], ŝ∗[1]). Note

that if this run is successful then there exists i∗ ∈ W J such that Â’s forgery satisfies (14). We also
define j∗ ∈ W S as the number of S-queries made by Â before issuing its i∗th J-query. AS finds (i∗, j∗)
from a table of Â’s queries in time O(q̂J(ℓ + lF + lG) + lqTg) (if i∗ doesn’t exist, AS fails).

Second Run. AS runs Â again on the same input (Dg, g, y1, pk;ω) as used in first run, but answers its
oracle queries differently as follows:

(1) J(.)-Query simulator FJ. When Â makes its ith J(.) query (mi[2], ri[2], ui[2], ĥi[2]), AS responds with
r̂i[1] for i < i∗ and with r̂i[2] for i ≥ i∗.

(2) S-Query simulator FS. When Â makes its jth S query m′

j [2], AS responds with σj [1] for j ≤ j∗. For

j > j∗, AS forwards the query to its S oracle and forwards the oracle’s response σj [2] back to Â.

Second Run Output. At the end of second run, Â outputs the forgery (m∗[2], u∗[2], r̂∗F [2], r̂∗[2], ŝ∗[2]).

AS’s output. AS computes and returns an estimate (m̂∗, (r̂∗, ŝ∗)) for a message/PV sig. forgery for
SchUDVS2, where m̂∗ = m∗[1], r̂∗ = H(m∗[1], u∗[1]) and ŝ∗ = (ŝ∗[1] − ŝ∗[2]) · (r̂i∗ [2] − r̂i∗ [1])

−1 mod q
(if r̂i∗ [1] = r̂i∗ [2] then AS fails).

This completes the description of AS. The running-time of AS is twice the run-time of Â plus the time
to compute (i∗, j∗) and ŝ∗ at the end, which takes total time O(q̂J(ℓ+ lF + lG)+ lqTg + l2q). The number

of H- and S- queries made by AS is up to twice the number of queries made by Â. This establishes the
claimed resources of AS.

The collision-finder attacker AT runs Â twice in the same way as AS, and at the end computes the

following collision estimate (α[1], β[1]), (α[2], β[2]), where α[ρ] = (ui∗ [1] · y
ri∗ [1]
1)−r̂i∗ [ρ] and β[ρ] = r̂F [ρ]

for ρ ∈ {1, 2}.

We now lower bound the sum of success probabilities of AS and AT. For each (i, j) ∈ W J × W S, we
call a run of Â (i, j)-successful if Â’s output satisfies (14) and (i∗, j∗) = (i, j). Let S∗ denote the event
that both runs of Â above are (i, j)-successful for some (i, j) and r̂i[1] 6= r̂i[2]. Note that if S∗ occurs

then, defining s∗ as the discrete-log ui[1] · y
ri[1]
1 to base g in G, we have from (14) that

m̂∗ = m∗[1] = mi[1] = m∗[2] = mi[2] has not been queried to S during either run of Â (15)

and
Fpk(g

ŝi[1] · (gs∗)−r̂i[1]; r̂∗F [1]) = Fpk(g
ŝi[1] · (gs∗)−r̂i[2]; r̂∗F [2]) (16)

25

(note that (mi[1], ri[1], ui[1]) = (mi[2], ri[2], ui[2]) because the view of Â is the same in both runs up to
ith J(.) query response). We now split event S∗ into two disjoint subevents S∗

S
and S∗

T
, depending on

whether
gŝi[1] · (gs∗)−r̂i[1] = gŝi[1] · (gs∗)−r̂i[2] (17)

holds or not, respectively. If the subevent S∗
S

occurs, then (17) holds and hence AS’s estimate ŝ∗ is equal

to the discrete-log s∗ = (ŝ∗[1]− ŝ∗[2]) · (r̂i∗ [2]− r̂i∗ [1])
−1 mod q of ui[1]y

ri[1]
1 and ri[1] = H(mi[1], ui[1]).

Thus S∗
S

implies that AS’s forgery is valid and coupled with (15) means that AS succeeds to break the
PV unforgeability of SchUDVS2 in this case. In the other case that subevent S∗

T
occurs, (17) does not

hold but (16) holds, meaning that AT’s output is a valid collision for the trapdoor hash so AT succeeds.

So we have shown that the sum of success probabilities of AS and AT is equal to the probability of the
event S∗ that both runs of Â are (i, j)-successful for some (i, j) ∈ W J × W S and r̂i[1] 6= r̂i[2], and it
remains to lower bound Pr[S∗]. To do this, we split S∗ into |WJ × W S| = q̂Jqs disjoint subevents S∗

i,j

according the value of (i, j) and bound each one. For each (i, j), let Ai,j denote the outcome space for the

random variable ai,j = (Dg, g, y1, pk, ω, (r1, . . . , ri−1), (k1, . . . , kj)) consisting of the view of Â up to the
ith query to O(.) and the random elements ki used by S oracle to answer first j signature queries, and let
Bi,j denote the outcome space for the independent random variable bi,j = ((ri, . . . , rq̂J

), (kj+1, . . . , kqs))
consisting of the view of AP after the ith query to O(.) (including the response r[i] to the ith query)
and ki’s used to answer all remaining signature queries . Note that the event Si,j that a run of Â is

(i, j)-successful is a subset of Ai,j × Bi,j with probability pi,j
def
= Pr[(ai,j , bi,j) ∈ Si,j]. Proceeding from

this point analgously to the calculation in Lemma A.4, we apply the Splitting Lemma A.2 and obtain

Pr[S∗
i,j] ≥ pi,j/2(pi,j/2 − 1/2lJ) for all (i, j) ∈ W J × W S, (18)

and hence applying Lemma A.3 to (18) noting that
∑

i,j pi,j = Pr[S1
0
] we get

Pr[S∗] =
∑

(i,j)∈W J×W S

Pr[S∗
i,j] ≥

1

q̂Jqs
·
(
Pr[S1

0]/2 − q̂Jqs/2
lJ

)2
, (19)

which using Claim C.2 gives the desired lower-bound (11) on Pr[S∗]. This completes the proof. ⊓⊔

D Proof of Theorem 4.4

To show the perfect unconditional privacy, assuming the direct verifier key-reg. protocol is used, we
show how to construct the forgery strategy Â1 which, for any given privacy attacker pair (A1,A2), will
perfectly simulate the DV signature answers to A1’s designation queries pki without the message m∗

being signed by the signer, using the corresponding secret key ski that A1 registered with pki during a
previous key-reg. query. This shows that the convincing measure C

Â1

(A1,A2) is zero for any (A1,A2),
as required.

Game yes. We recall first the original attack Game yes in which A1 and A2 interact.

Stage 1. The pair (A1,A2) is run on input (DG, g, y1 = gx1). A1’s oracle queries are answered as follows.

(1) S(x1, .) Queries. When A1 makes ith S-query mi, it is answered with σi = S(x1, mi).

(2) KRA Queries. When A1 makes ith key-reg. query (ri, ski, pki) it is answered Acc if (ski, pki) = GKF(k; ri)
and Rej else.

26

(3) A2 Queries. When A1 sends message mi to A2, A2 responds with an answer ai.

End of Stage 1. A1 outputs a challenge message m∗ which is also given to A2. A PV signature
σi = (r∗, s∗) = S(x1,m

∗) is generated, where r∗ = H(m∗, u∗) for u∗ = gk∗

for uniformly random
k∗ ∈ ZZq, and s∗ = k∗ + r∗ · x1 mod q. Stage 2 begins.

Stage 2. A1 continues to make S,KRA and A2 queries as in Stage 1 but can also make designation
queries which are answered as follows:

(1) CDV Queries. When A1 makes ith CDV-query pki, it is answered with DV signature σ̂i =

CDV(y1, pki, m
∗, σ∗) = (ui, r̂F,i, r̂i, ŝi), where ûi = gs∗ ·y−r∗

1
, r̂i = J(m∗, r∗, u∗, ĥi) and ŝi = k̂i+r̂i·s

∗ mod q,

where ĥi = Fpk(ûi; r̂F,i) and ûi = gk̂i for uniformly random k̂i ∈ ZZq.

End of Stage 2. A2 outputs a decision d ∈ {yes, no}.

Game no. We now describe the other game where Â1 interacts with A2.

Stage 1. The pair (Â1,A2) is run on input (DG, g, y1 = gx1), , where Â1 is also given the program for

A1 as input. Â1 runs A1 on same input and answers A1’s oracle queries as follows.

(1) S(x1, .) Queries. When A1 makes ith S-query mi, Â1 forwards it to S oracle and forwards response
σi = S(x1, mi) back to A1.

(2) KRA Queries. When A1 makes ith key-reg. query (ri, ski, pki), Â1 answers Acc if (ski, pki) = GKF(k; ri)
and stores (ski, pki, Acc) in a table T , else it answers Rej.

(3) A2 Queries. When A1 outputs a message mi for A2, Â1 forwards it to A2 and forwards the answer ai back
to A1.

End of Stage 1. A1 outputs a challenge message m∗ , which is also output by Â1 and given to A2. Â1

computes u∗ = gk∗

and r∗ = H(m∗, u∗), for a uniformly random independent k∗ ∈ ZZq. Stage 2 begins.

Stage 2. A1 continues to make S,KRA and A2 queries, answered by Â1 as in Stage 1, but can also make
designation queries which are answered as follows:

(1) CDV Queries. When A1 makes ith CDV-query pki, Â1 searches table T for an entry (skj , pkj , Acc) with
pkj = pki (note that this entry is guaranteed to exist in T due to the restriction on A1 to only query
CDV with public keys which have been answered with Acc by a previous KRA query) and answers with

σ̂i = (ui, r̂F,i, r̂i, ŝi), where ûi = u∗, r̂i = J(m∗, r∗, u∗, ĥi), ĥi = Fpk(û′; r̂′F,i) for some fixed û′ ∈ G
and uniformly random and independent r̂′F,i ∈ RF , ŝi is uniformly random and independent in ZZq, and

r̂F,i = CSF((skj , pkj), (û
′, r̂′F,i), ûi), with ûi = gŝi(u∗yr∗

1
)−r̂i .

End of Stage 2. A2 outputs a decision d ∈ {yes, no}.

We show that A1’s (and hence also A2) view is perfectly simulated in Game no as in Game yes. In
particular, the DV signatures (σ̂i = (ui, r̂F,i, r̂i, ŝi) are distributed identically in both games, for the
following reasons. First, note that u∗ and r∗ are computed identically in both games. Second, observe
that for each DV signature, r̂i and ŝi are determined uniquely by (m∗, r∗, u∗, ûi, r̂F,i) in the same way
in both games, namely

r̂i = J(m∗, r∗, u∗, Fpk(ûi; r̂F,i))

and
ŝi is the discrete-log in G of ûi(u

∗yr∗

1)r̂i to base g

in both games. So it remains to show that (for each DV signature) the pair (ûi, r̂F,i) is identically
distributed in both games. In Game yes, (ûi, r̂F,i) is uniform on G×RF by definition. In Game no, we

27

have that (ûi, r̂F,i) = G(ŝi, r̂
′
F,i) for a function G : ZZq × RF → G × RF defined by:

ûi = gŝi(u∗yr∗

1)−J(m∗,r∗,u∗,Fpk(û′;r̂′F,i)) (20)

r̂F,i = CSF((sk, pk), (û′, r̂′F,i), ûi). (21)

From the perfectly-trapdoor property of TH we have that mapping r̂′F,i 7→ CSF((sk, pk), (û′, r̂′F,i), ûi)
is a permutation on RF . This and the fact that g has order q immediately implies that function
G : ZZq ×RF → G×RF is one-to-one. So since (ŝi, r̂

′
F,i) is uniform on ZZq ×RF by definition, it follows

that the image pair (ûi, r̂F,i) is uniform on G × RF in Game no, as required. We conclude that A2

outputs yes with same probability in both games and hence C
Â1

(A1,A2) = 0, as claimed. The run-time

of Â1 is the run-time of A1 plus the time qd1O(lqTg + TF + TCSF + TJ + TH + qd1lpk) + qk1TGKF to
answer A1’s CDV and KRA queries. Note that q̂s1 = qs1, q̂c1 = qc1, and q̂k1 = 0, as claimed. ⊓⊔

E Proof of Theorem 5.1

The proof is analogous to the proof of Theorem 4.1 so we don’t provide all details. We show how
to use any efficient forging attacker A for breaking scheme RSAUDVS in the sense of ST-UF-DV with
non-negligible probability to construct (1) an efficient attacker AS for breaking the PV unforgeability of
scheme RSAUDVS (i.e. the unforgeability of the standard RSA signature scheme), and (2) an efficient
attacker AT for breaking the collision-resistance of the trapdoor hash scheme TH, such that at least
one of AS or AT succeed with non-negligible probability. More precisely, we show that:

SuccUF−PV
AS,RSAUDVS

(k) + SuccCR
AT,TH(k) ≥

1

4(qJ + qv)qs
·

[
SuccST−UF−DV

A,RSAUDVS
(k) −

2(qJ + qv)qs + 1

2lJ

]2

, (22)

where AS and AT have resources (t[S], qs[S], qH [S]) and (t[T]) respectively, as defined in the theorem
statement. The theorem then follows immediately from (22), by taking maximums over all attackers
AS with the given running time. It remains to construct AS and AT and show (22).

Modified Attacker Â. As in Theorem 4.3, we first define a modified attacker Â which is obtained from
the original attacker A in order to satisfy two properties (which may not be satisfied by A): (1) Each
J-query of Â is ‘new’ (i.e. unequal any earlier query to J(.) made by Â), and (2) Â does not make any
VDV queries. The Â’s resources (denoted with hats) are related to A’s resources as follows: q̂s = qs,
q̂v = 0, q̂H = qH + qv, q̂J = qJ + qv, and t̂ = t + O((qJ + qv) log2(qJ + qv) · (ℓ + lG + lF)) + O(lqTgqv).

Game0. Let Game0 denote the original forgery attack game. In this game, let (mi, hi, ĥi) denote Â’s
ith J-query, and r̂i = (r̂i,1, . . . , r̂i,α) the response to this query. Let (m∗, h∗, r̂∗F , r̂∗, ŝ∗) denote Â’s

output forgery, with r̂∗ = (r̂∗1 , . . . , r̂
∗
α), ŝ∗ = (ŝ∗1, . . . , ŝ

∗
α), ĥ∗ = Fpk(û

∗, α; r̂∗F), û∗ = (û∗
1, . . . , û

∗
α) and

û∗
i = (ŝ∗i)

e · (h∗)−r̂∗i for i = 1, . . . , α. Let WJ = {1, . . . , q̂J} and WS = {1, . . . , q̂s}, and let m′
i denote the

ith S query of Â. Analogously to Theorem 4.3, we define the event S0 that A succeeds and the event
S1

0
:

S1
0 ⇒ (a) There exists i∗ ∈ W J such that (m∗, h∗, ĥ∗) = (mi, hi∗ , ĥi∗)

and Fpk(ûi∗,1, . . . , ûi∗,α; r̂∗F) = ĥi∗ with ûi∗,l = (ŝ∗l)
e · h

−r̂i∗,l

i∗ mod N

(b) m∗ 6= m′
i for all i ∈ W S and R(m∗, h∗) = Acc (23)

28

and due to the randomness of J(.) we get

Pr[S1
0] ≥ Pr[S0] −

1

2lJ
. (24)

Game1. In Game1, we construct the algorithm AS against the PV-unforgeability of RSAUDVS2. On
input (k,N, e) AS runs as follows.

Setup. AS first sets up two random vectors
−→
r̂ [1] = (r̂1[1], . . . , r̂q̂J

[1]) and
−→
r̂ [2] = (r̂1[2], . . . , r̂q̂J

[2]) with
r̂i[k] = (r̂i,1[k], . . . , r̂i,α[k]) chosen uniformly and independently at random from ZZα

2lJ /α for k ∈ {1, 2}.

First Run. AS generates a TH key-pair (sk, pk) = GKF(k) and runs Â on input (N, e, pk;ω), where ω is
a random bit string used as the randomness input of Â, and answers Â’s oracle queries as follows:

(1) J(.)-Query simulator FJ. When Â makes its ith J(.) query (mi[1], hi[1], ĥi[1]), AS responds with r̂i[1].

(2) S-Query simulator FS. When Â makes its jth S query m′

j [1], AS simply forwards the query to its S

oracle and forwards the oracle’s response σj [1] back to Â. AS stores the query-answer pair (m′

j [1], σj [1]) in
a table T .

First Run Output. At the end of first run, Â outputs the forgery (m∗[1], h∗[1], r̂∗F [1], r̂∗[1], ŝ∗[1]). Note

that if this run is successful then there exists i∗ ∈ W J such that Â’s forgery satisfies (23). We also
define j∗ ∈ W S as the number of S-queries made by Â before issuing its i∗th J-query. AS finds (i∗, j∗)
from a table of Â’s queries in time O(q̂J(lF + lN)) (if i∗ doesn’t exist, AS fails).

Second Run. AS runs Â again on the same input (N, e, pk;ω) as used in first run, but answers its oracle
queries differently as follows:

(1) J(.)-Query simulator FJ. When Â makes its ith J(.) query (mi[2], hi[2], ĥi[2]), AS responds with r̂i[1]
for i < i∗ and with r̂i[2] for i ≥ i∗.

(2) S-Query simulator FS. When Â makes its jth S query m′

j [2], AS responds with σj [1] for j ≤ j∗. For

j > j∗, AS forwards the query to its S oracle and forwards the oracle’s response σj [2] back to Â.

Second Run Output. At the end of second run, Â outputs the forgery (m∗[2], h∗[2], r̂∗F [2], r̂∗[2], ŝ∗[2]).

AS’s output. AS computes and returns an estimate (m̂∗, σ̂∗) for a message/PV sig. forgery for RSAUDVS

as follows. First, AS tries to find l∗ ∈ {1, . . . , α} such that the integer δr = r̂i∗,l∗ [1]− r̂i∗,l∗ [2] is non-zero
(otherwise, if r̂i∗ [1] = r̂i∗ [2], then AS fails). Because r̂∗i,l∗[1] and r̂∗i,l∗ [2] are in ZZ2lJ /α we know that

|δr| < 2lJ/α < e and hence gcd(δr, e) = 1, since e is prime. So there exist integers cr < e and ce < e
such that cr · δr + ce · e = 1 and AS can compute them in time O(l2e). Then AS computes the PV sig.
estimate σ̂∗ = (ŝ∗l∗ [1]/ŝ

∗
l∗ [2])

cr · (h∗[1])ce mod N on message m̂∗ = m∗[1].

This completes the description of AS. The running-time of AS is twice the run-time of Â plus the time
to compute (i∗, j∗) and σ̂∗ at the end, which takes total time O(q̂J(lF + lN) + l2e + leTN). The number
of H- and S- queries made by AS is up to twice the number of queries made by Â. This establishes the
claimed resources of AS.

The collision-finder attacker AT runs Â twice in the same way as AS (except that it receives the hash
function public key pk as input, and generates a signature key pair (N, e, d) = GKS(k) by itself, with
which it answers Â’s signing queries - note that the hash function secret key sk is not needed by
AT), and at the end computes the following collision estimate (β[1], γ[1]), (β[2], γ[2]), where β[ρ] =
(û∗

1[ρ], . . . , û∗
α[ρ]) and γ[ρ] = r̂F [ρ] for ρ ∈ {1, 2} with û∗

l [ρ] = ŝ∗l [ρ]e · (hi∗)
−r̂i∗,l[ρ] for l ∈ {1, . . . , α}.

We now lower bound the sum of success probabilities of AS and AT. For each (i, j) ∈ W J × W S, we
call a run of Â (i, j)-successful if Â’s output satisfies (23) and (i∗, j∗) = (i, j). Let S∗ denote the event

29

that both runs of Â above are (i, j)-successful for some (i, j) and r̂i[1] 6= r̂i[2]. Note that if S∗ occurs
then, defining σ∗ = (hi[1])

1/e mod N , we have from (23) that

m̂∗ = mi[1] = mi[2] has not been queried to S during either run of Â and R(mi[1], hi[1]) = Acc (25)

and

Fpk(ûi,1[1], . . . , ûi,α[1]; r̂∗F [1]) = Fpk(ûi,1[2], . . . , ûi,α[2]; r̂∗F [2])

with ûi,l[ρ] = (ŝ∗l [ρ])e · hi[ρ]−r̂i,l[ρ] mod N for ρ ∈ {1, 2} and l ∈ {1, . . . , α} (26)

(note that (mi[1], hi[1], ĥi[1]) = (mi[2], hi[2], ĥi[2]) because the view of Â is the same in both runs up
to ith J(.) query response). We now split event S∗ into two disjoint subevents S∗

S
and S∗

T
, depending

on whether
ûi,l[1] = ûi,l[2] for all l ∈ {1, . . . , α} (27)

holds or not, respectively. If the subevent S∗
S

occurs, then (27) holds. This means in particular that there
exists l∗ such that ûi,l∗ [1] = ûi,l∗ [2] but r̂i,l∗ [1] 6= r̂i,l∗ [2], which leads to (ŝ∗l∗ [1]/ŝ

∗
l∗ [2]) ≡ (σ∗)δr mod N

and hence AS’s estimate σ̂∗ = (σ∗)crδr · (σ∗)cee mod N = σ∗ = hi[1]
1/e mod N , which coupled with (25)

means that R(mi[1], hi[1]) = Acc and mi[1] has not been queried to S, so AS succeeds to break the PV
unforgeability of RSAUDVS when S∗

S
occurs. In the other case that subevent S∗

T
occurs, (27) does not

hold but (26) holds, meaning that AT’s output is a valid collision for the trapdoor hash so AT succeeds.

So we have shown that the sum of success probabilities of AS and AT is equal to the probability of
the event S∗ that both runs of Â are (i, j)-successful for some (i, j) ∈ W J × W S and r̂i[1] 6= r̂i[2], and
it remains to lower bound Pr[S∗]. Using the same calculation used to bound Pr[S∗] in the proof of
Theorem 4.3, we get

Pr[S∗] ≥
1

q̂Jqs
·
(
Pr[S1

0]/2 − q̂Jqs/2
lJ

)2
, (28)

which using (24) gives the desired lower-bound (22) on Pr[S∗]. This completes the proof. ⊓⊔

F Proof of Theorem 5.2

Analogously to the proof of Theorem 4.4, we assume the direct verifier key-reg. protocol is used and
we show how to construct the forgery strategy Â1.

Game yes. We recall first the original attack Game yes in which A1 and A2 interact.

Stage 1. The pair (A1,A2) is run on input (N, e). A1’s oracle queries are answered as follows.

(1) S(x1, .) Queries. When A1 makes ith S-query mi, it is answered with σi = S(x1, mi).

(2) KRA Queries. When A1 makes ith key-reg. query (ri, ski, pki) it is answered Acc if (ski, pki) = GKF(k; ri)
and Rej else.

(3) A2 Queries. When A1 sends message mi to A2, A2 responds with an answer ai.

End of Stage 1. A1 outputs a challenge message m∗, which is given to A2. A PV signature σ∗ = S(x1,m
∗)

is generated, where σ∗ = (h∗)1/e mod N and h∗ = H(m∗, s∗) for uniformly random s∗ ∈ RS . Stage 2
begins.

Stage 2. A1 continues to make S,KRA and A2 queries as in Stage 1 but can also make designation
queries which are answered as follows:

30

(1) CDV Queries. When A1 makes ith CDV-query pki, it is answered with DV signature σ̂i = (hi, r̂F,i, r̂i, ŝi),

where hi = h∗, r̂F,i is uniformly random in RF , r̂i = (r̂i,1, . . . , r̂i,α) = J(m∗, h∗, ĥi), ŝi = (ŝi,1, . . . , ŝi,α) with

ŝi,l = ki,l·(σ
∗)r̂i,l mod N , α random elements ki ∈ ZZ∗

N , and ĥi = Fpk(ûi; r̂F,i) with ûi = (ûi,1, . . . , ûi,α),ûi,l =
ke

i,l mod N for l = 1, . . . , α.

End of Stage 2. A2 outputs a decision d ∈ {yes, no}.

Game no. We now describe the other game where Â1 interacts with A2.

Stage 1. The pair (Â1,A2) is run on input (N, e), , where Â1 is also given the program for A1 as input.

Â1 runs A1 on same input and answers A1’s oracle queries as follows.

(1) S(x1, .) Queries. When A1 makes ith S-query mi, Â1 forwards it to S oracle and forwards response
σi = S(x1, mi) back to A1.

(2) KRA Queries. When A1 makes ith key-reg. query (ri, ski, pki), Â1 answers Acc if (ski, pki) = GKF(k; ri)
and stores (ski, pki, Acc) in a table T , else it answers Rej.

(3) A2 Queries. When A1 outputs a message mi for A2, Â1 forwards it to A2 and forwards the answer ai back
to A1.

End of Stage 1. A1 outputs a challenge message m∗, which is also output by Â1 and given to A2. Â1

computes h∗ = H(m∗, s∗), for a uniformly random independent s∗ ∈ RS. Stage 2 begins.

Stage 2. A1 continues to make S,KRA and A2 queries, answered by Â1 as in Stage 1, but can also make
designation queries which are answered as follows:

(1) CDV Queries. When A1 makes ith CDV-query pki, Â1 searches table T for an entry (skj , pkj , Acc) with
pkj = pki (note that this entry is guaranteed to exist in T due to the restriction on A1 to only query CDV

with public keys which have been answered with Acc by a previous KRA query) and answers with σ̂i =

(hi, r̂F,i, r̂i, ŝi), where hi = h∗, r̂i = J(m∗, h∗, ĥi) = (r̂i,1, . . . , r̂i,α), ĥi = Fpk(û′; r̂′F,i) for some fixed û′ =
(û′

1
, . . . , û′

α) ∈ (ZZ∗

N)α and uniformly random and independent r̂′F,i ∈ RF , ŝi = (ŝi,1, . . . , ŝi,α) uniformly
random and independent in (ZZ∗

N)α, and r̂F,i = CSF((skj , pkj), (û
′, r̂′F,i), ûi), with ûi = (ûi,1, . . . , ûi,α),

where ûi,l = ŝe
i,l · (h

∗)−r̂i,l mod N .

End of Stage 2. A2 outputs a decision d ∈ {yes, no}.

We show that A1’s (and hence also A2’s) view is perfectly simulated in Game no as in Game yes. In
particular, the DV signatures (σ̂i = (hi, r̂F,i, r̂i, ŝi) are distributed identically in both games, for the
following reasons. First, note that h∗ is computed identically in both games. Second, observe that
for each DV signature, r̂i and ŝi are determined uniquely by (m∗, h∗, ûi, r̂F,i) in the same way in both
games, namely

r̂i = J(h∗, Fpk(ûi; r̂F,i))

and
ŝi,l are the eth roots of ûi(h

∗)r̂i,l mod N

in both games. So it remains to show that (for each DV signature) the pair (ûi, r̂F,i) is identically
distributed in both games. In Game yes, (ûi, r̂F,i) is uniform on G×RF by definition. In Game no, we
have that (ûi, r̂F,i) = G(ŝi, r̂

′
F,i) for a function G : (ZZ∗

N)α × RF → (ZZ∗
N)α × RF defined by:

ûi,l = ŝe
i,l · (h

∗)−J(h∗,Fpk(û′;r̂′F,i)) mod N (29)

r̂F,i = CSF((sk, pk), (û′, r̂′F,i), ûi). (30)

From the perfectly-trapdoor property of TH we have that mapping r̂′F,i 7→ CSF((sk, pk), (û′, r̂′F,i), ûi) is
a permutation on RF . This and the fact that ŝi,l 7→ ŝe

i,l mod N is a permutation of ZZ∗
N implies that G

is permutation on (ZZ∗
N)α × RF . So since (ŝi, r̂

′
F,i) is uniform on (ZZ∗

N)α × RF by definition, it follows

31

that so is the image pair (ûi, r̂F,i), as required. We conclude that A2 outputs yes with same probability

in both games and hence C
Â1

(A1,A2) = 0, as claimed. The run-time of Â1 is the run-time of A1 plus

the time qd1O(lJTN + TF + TCSF + TJ + TH + qd1lpk + qk1TGKF) to answer A1’s CDV and KRA queries.
Note that q̂s1 = qs1, q̂c1 = qc1, and q̂k1 = 0, as claimed. ⊓⊔

32

