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Abstract. This paper introduces new notions of asymptotic proofs, PT(polynomial-time)-
extensions, PTM(polynomial-time Turing machine)-w-consistency, etc. on formal theories of
arithmetic including PA (Peano Arithmetic). An asymptotic proof is a set of infinitely many
formal proofs, which is introduced to define and characterize a property, PTM-w-consistency,
of a formal theory. Informally speaking, PTM-w-consistency is a polynomial-time bounded
version (in asymptotic proofs) of w-consistency, and characterized in two manners: (1) (in the
light of the extension of PTM to TM) the resource unbounded version of PTM-w-consistency
is equivalent to w-consistency, and (2) (in the light of asymptotic proofs by PTM) a PTM-
w-inconsistent theory includes an axiom that only a super-polynomial-time Turing machine
can prove asymptotically over PA, under some assumptions. This paper shows that P£AZNP
(more generally, any super-polynomial-time lower bound in PSPACE) is unprovable in a
PTM-w-consistent theory T', where T' is a consistent PT-extension of PA (although this pa-
per does not show that P#NP is unprovable in PA, since PA has not been proven to be
PTM-w-consistent). This result implies that to prove P#ZNP by any technique requires a
PTM-w-inconsistent theory, which should include an axiom that only a super-polynomial-
time machine can prove asymptotically over PA (or implies a super-polynomial-time com-
putational upper bound) under some assumptions. This result is a kind of generalization
of the result of “Natural Proofs” by Razborov and Rudich [21], who showed that to prove
“P#£NP” by a class of techniques called “Natural Proofs” implies a super-polynomial-time
(e.g., sub-exponential-time) algorithm that can break a typical cryptographic primitive, a
pseudo-random generator. Our result also implies that any relativizable proof of P#£NP re-
quires the resource unbounded version of PTM-w-inconsistent theory, w-inconsistent theory,
which suggests another negative result by Baker, Gill and Solovay [1] that no relativizable
proof can prove “P#NP” in PA| which is a w-consistent theory. Therefore, our result gives a
unified view to the existing two major negative results on proving P#ZNP, Natural Proofs and
relativizable proofs, through the two manners of characterization of PTM-w-consistency. We
also show that the PTM-w-consistency of T' cannot be proven in any PTM-w-consistent the-
ory S, where S is a consistent PT-extension of 7". That is, to prove the independence of P vs
NP from T by proving the PTM-w-consistency of T' requires a PTM-w-inconsistent theory,
or implies a super-polynomial-time computational upper bound under some assumptions.
This seems to be related to the results of Ben-David and Halevi [4] and Kurz, O’Donnell
and Royer [17], who showed that to prove the independence of P vs NP from PA using any
currently known mathematical paradigm implies an extremely-close-to-polynomial-time (but
still super-polynomial-time) algorithm that can solve NP-complete problems. Based on this
result, we show that the security of any computational cryptographic scheme is unprovable in



the setting where adversaries and provers are modeled as polynomial-time Turing machines
and only a PTM-w-consistent theory is allowed to prove the security.
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1 Introduction

1.1 Background

It looks very mysterious that proving computational lower bounds is extremely difficult, although
many people believe that there exist various natural intractable problems that have no efficient
algorithms that can solve them. A classical technique, diagonalization, can separate some computa-
tional classes like P # EXP, but it fails to separate computational classes between P and PSPACE,
which covers almost all practically interesting computational problems. Actually, we have very few
results on the lower bounds of computational natural problems between P and PSPACE. The best
known result of computational lower bounds (in standard computation models such as Turing ma-
chines and Boolean circuits) of a computational natural problem is about 5n in circuit complexity
[16], where n is problem size. Therefore, surprisingly, it is still very hard for us to prove even the
6n lower bound of TQBF, a PSPACE complete problem, which is considered to be much more
intractable than NP complete problems.

Considering this situation, it seems natural to think that there is some substantial reason why
proving computational lower bounds is so difficult. The ultimate answer to this question would be to
show that such computational lower bounds are impossible to prove, e.g., showing its independence
from a formal proof system like Peano Arithmetic (a formal system for number theory) and ZFC
(a formal system for set theory).

This paper gives a new type of impossibility result, resource bounded impossibility, in the proof
of computational lower bounds.

1.2 Our Results

Let theory T, on which we are assumed to try to prove P#NP, be a consistent PT-extension of
PA, throughout this paper (and hereafter in this section), where theory T is called PT-extension if
there exists a polynomial-time algorithm that, given n € IN| decides whether n is the Godel number
of an axiom of T' (Section 2.3).

This paper shows the following results.

New Notions We introduce notions of asymptotic proofs, polynomial-time proofs, polynomial-
time decisions, PT-extensions, PTM-w-consistency etc. on formal theories of arithmetic including
PA (Peano Arithmetic).

— Asymptotic Proofs (Section 2.8): Q1x1 -+ @ X ¢(X1,...,X;) has an asymptotic proof over
Tif
leleNQkxkEN Tl—gp(xla"'axk)a

where a boldfaced symbol (e.g, x) denotes a variable in theory T' or numeral (e.g., x is the
numeral of # € N), and @; (¢ € {1,...,k}) denotes an unbounded quantifier.



— Polynomial-time proofs (Section 2.7):
PTM.(2) b7 ¢(x)

denotes that a PTM (polynomial-time Turing machine) coded by e € N, given # € N and the
Godel number of the expression of {¢(a) | @ € N} (constant in |z|), produces a proof (tree) of
formula ¢(x) in theory T

— Let theory S be a PT-extension of theory 7. PTM-w-consistency (Definition 62): Theory S is
PTM-w-consistent for A;-formula ¢(e*, x) over theory T, if the following condition holds.

VeeN Je* €N HeN Vo>t VeeN PTM.(n) Hr Ix (n <x<n+nl% ¢le", x)
= Ve€eN Fe" €N FHeN Vn>{f PTM.(n) s Ix>n ¢(e*,x),

where |n| denotes the numeral of |n| (see Section 2.1).
Theory T is PTM-w-consistent for ¢(e*, x), if T'is PTM-w-consistent for ¢(e*,x) over T'.

Formalization of PZNP We formalize P£NP as follows (Definition 53):
P£ZNP = Ve Vn dx>mn —DecSAT(e, x), (1)

where DecSAT(e, x) is a formula in PA which informally means that a PTM coded by e correctly
decides the satisfiability or unsatisfiability of a 3CNF coded by =.

Unprovability of PZNP in a PTM-w-consistent theory P#NP cannot be proven in T' that
is PTM-w-consistent for any AL’ formula (Theorem 67):

TW P#£NP.

Unprovability of PTM-w-consistency in a PTM-w-consistent theory Let theory S be
a consistent PT-extension of theory 7', and S be PTM-w-consistent for any A%-formula. Then,
PTM-w-consistency of T' for a A¥formula cannot be proven in S. (Theorem 73)

Thus, the independence of P vs NP from 7T by proving PTM-w-consistency of T for a A¥-
formula (i.e., through Theorem 67) cannot be proven in S.

In fact, the existence of PTM-w-consistent theory 7' for a AF-formula has not been proven,
and the independence of P vs NP from PA has not been proven.

Unprovability of the Security of Computational Cryptography The one-wayness of any
function family is unprovable in the setting where an adversary and a prover are modeled to be
polynomial-time Turing machines, and the security proof should be made in a PTM-w-consistent
theory T for AF (Theorem 81). In other words, the security of any computational cryptographic
scheme is unprovable under this setting.

1.3 An Implication of Our Results
To interpret our results, let assume the following hypotheses:

— (Hypothesis 1) M |= P#NP, where 91is the standard model of natural numbers (i.e., P#ZNP
is true.)



— (Hypothesis 2) PA is PTM-w-consistent for A%
We then have the following consequence from our results.

— P vs NP is independent from PA.
This is because PZNP is consistent with PA from Hypothesis 1, and =P#NP 1is consistent with
PA, since PA I/ P#NP (from Theorem 67 and Hypothesis 2).

— Hypothesis 2 cannot be proven in a PTM-w-consistent theory T, where T 1s a consistent PT-
extension of PA.
That is, even if P vs NP is independent from PA| the independence (by proving Hypothesis 2)
cannot be proven in a PTM-w-consistent theory 7.

1.4 Characterization of PTM-w-consistency

Informally speaking, PTM-w-consistency is a polynomial-time bounded version (in asymptotic
proofs) of w-consistency, and characterized in two manners:

1. (Characterization in the light of the extension of PTM to TM) The resource unbounded version
of PTM-w-consistency is equivalent to w-consistency.

2. (Characterization in the light of asymptotic proofs by PTM) A PTM-w-inconsistent theory
includes an axiom that only a super-polynomial-time Turing machine can prove asymptotically
over PA, under some assumptions.

First, PTM-w-consistency can be extended to a resource unbounded TM (Turing machine)
version of PTM-w-consistency, TM-w-consistency, which is equivalent to w-consistency (Remark 3
of Definition 62 in Section 7.1).

Second, PTM-w-consistent theory 7' is a formal theory, but is characterized by asymptotic
proofs of PTM provers over 7. A proof in a formal theory itself is a finite length proof and has
no asymptotic property as well as no implication of prover’s computational capability. However,
PTM-w-consistency 1s defined through asymptotic proofs of PTM provers, and an axiom in a
PTM-w-consistent theory may be characterized by asymptotic proofs of a PTM prover.

For example, a PTM-w-inconsistent theory T', which 1s a consistent PT-extension of PA, should
include an axiom outside PA that only a super-polynomial-time Turing machine can prove asymp-
totically over PA | assuming that PA is PTM-w-consistent and deduction in 7" can be made asymp-
totically by PTM (Remark 5 of Definition 62 in Section 7.1). Let T be a theory in which an axiom,
X, outside PA 1s added to PA. Although X cannot be proven in PA, it can be asymptotically
proven over PA if it is true, since any true A;-sentence can be proven in PA. Therefore, a resource
unbounded Turing machine can always produce an asymptotic proof of X over PA, but a resource
bounded (e.g., polynomial-time) Turing machine may produce no asymptotic proof of X over PA.
Hence, axiom X (and theory T') can be characterized by the computational complexity of a prover
for producing an asymptotic proof of X. If T" is PTM-w-inconsistent, the computational complex-
ity of a prover for producing an asymptotic proof of X should be super-polynomial-time, under
the above-mentioned assumption (Remark 5 of Definition 62). Thus, PTM-w-consistency bridges
a formal proof and prover’s (asymptotic) computational capability through asymptotic proofs.

In accordance with the two manners of characterization of PTM-w-consistency, our main result
that P#ZNP cannot be proven in a PTM-w-consistent theory (Theorem 67) suggests two avenues
towards negative results:




— To prove P£ZNP requires a PTM-w-inconsistent theory, which should include an axiom that
only a super-polynomial-time machine can prove asymptotically over PA (or implies a super-
polynomial-time computational upper bound), under the assumption. This is a kind of gener-
alization of the result of “Natural Proofs” by Razborov and Rudich [21]. See Section 1.5.

— To prove P£NP by a relativizable proof, i.e., to prove P4 ANP4 with oracle A requires a
PTM#-w-inconsistent theory (Proposition 68). Therefore, if there exists a relativizable proof
of P£NP, which implies a proof of PA ANP4 for any oracle A, it will require an w-inconsistent
theory, since a PTM4A-w-inconsistent theory with any oracle A4 is equivalent to a w-inconsistent
theory. This suggests the result that no relativizable proof can prove “P#NP” in PA (or any w-
consistent theory), which was shown by Baker, Gill and Solovay [1]. See the remark of Theorem
67.

Therefore, our result, Theorem 67 (and its generalization, Proposition 68), gives a unified view
to the existing two major negative results on proving P#NP, Natural Proofs and relativizable
proofs, through the above-mentioned two manners of characterization of PTM-w-consistency.

PTM-w-consistency has also the following properties:

— PTM-w-consistency and w-consistency do not imply each other. (Remark 2 of Definition 62)

— Although the PTM-w-consistency of PA seems to be as natural as the w-consistency of PA, no
PTM-w-consistent theory T, which is a consistent PT-extension of PA, can prove the PTM-w-
consistency of PA. (Theorem 73 and Remark 4 of Definition 62)

1.5 Related Works

Self-defeating results Our result is considered to be a kind of generalization of or a close relation
to the previously known self-defeating results as follows:

— Our result that PTM-w-consistent theory cannot prove P#ZNP (Theorem 67) implies a self-

defeating property such that to prove a super-polynomial-time lower bound like PZNP requires
a PTM-w-inconsistent theory, which should include an axiom that only a super-polynomial-time
machine can prove asymptotically over PA (or implies a super-polynomial-time computational
upper bound) under the assumption described in the previous section.
“Natural Proofs” by Razborov and Rudich [21] showed that to prove a computational lower
bound (e.g., a super-polynomial-time lower bound like P£NP) by a class of techniques called
“Natural Proofs” implies a comparable level of computational upper bound (e.g., a super-
polynomial-time algorithm to break a typical cryptographic primitive, a pseudo-random gen-
erator). In other words, to prove P£NP by a “Natural Proof” requires an additional axiom X
that implies a super-polynomial-time (e.g., sub-exponential-time) algorithm to break a pseudo-
random generator and that can be proven asymptotically only by a super-polynomial-time
machine, since no polynomial-time machine is considered to be able to asymptotically prove
an upper bound property of a super-polynomial-time machine. Therefore, to prove P£NP by
a specific type of proof called “Natural Proof” requires a specific type of PTM-w-inconsistent
theory, which is PA + X. That is, the negative result regarding “Natural Proofs” is considered
to be a special case of our result, Theorem 67.

— Our results imply another self-defeating property such that PTM-w-consistent theory S over
T cannot prove the independence of P vs NP from 7" by proving PTM-w-consistency of T for
a AP formula (Theorem 73). In other words, to prove the independence of P vs NP from T'
through Theorem 67 (i.e., to prove T' I/ P#£NP by proving PTM-w-consistency of T and to




prove T' I/ —P#NP by some way) requires PTM-w-inconsistent theory over T, or implies a
super-polynomial-time upper bound under the above-mentioned assumption.

Ben-David and Halevi [4] and Kurz, O’Donnell and Royer [17] showed that to prove the in-
dependence of P vs NP from PA using any currently known mathematical paradigm implies
a comparable level of computational upper bound, an extremely-close-to-polynomial time al-
gorithm to solve NP-complete problems. In other words, to prove the independence of P vs
NP from PA using any currently known mathematical paradigm requires an additional ax-
iom Y that implies an extremely-close-to-polynomial time (but still super-polynomial-time)
algorithm to solve NP-complete problems and that can be proven asymptotically only by a
super-polynomial-time machine. Therefore, to prove the independence of P vs NP from PA by
a specific type of proof using currently known mathematical paradigms requires a specific type
of PTM-w-inconsistent theory, which i1s PA + Y. That is, the negative result by Ben-David
et.al. 1s considered to be a special case of our result, Theorem 73, provided that Hypothesis 1
in Section 1.3 is true and PA If PANP implies Hypothesis 2.

Relativizable proofs Our result that PTM-w-consistent theory cannot prove P£ZNP (Theorem
67) suggests the result by Baker, Gill and Solovay [1], who showed that there is no relativizable
proof of “P#NP”, and the result by Hartmanis and Hoperoft [13,14], who showed that for any
reasonable theory T we can effectively construct a TM M such that relative to oracle L(M),
“P#NP” cannot be proven in T'. (See the remark of Theorem 67.)

Our result might be related to the result by da Costa and Doria [6], but the relationship between
their result and ours is unclear for us.

Mathematical logic approaches The results of this paper are constructed on the theory and
techniques of mathematical logic, especially proof theory. Several mathematical logic approaches to
solve the P vs NP problem have been investigated such as bounded arithmetic [5, 18], propositional
proof length [3,18,20] and descriptive complexity [8].

Bounded arithmetic characterizes an analogous notion of PH (polynomial hierarchy of compu-
tational complexity), which is a hierarchy of weak arithmetic theories, so-called bounded arithmetic
classes, wherein only bounded quantifiers are allowed. The target of the bounded arithmetic ap-
proach is to separate one class from another in bounded arithmetic, which may imply a separation
of one class from another in PH (i.e., typically P£NP).

The proof length of propositional logic can characterize the NP vs co-NP problem, since TAUT,
the set of propositional tautologies, is co-NP complete. Therefore, the main target of this approach
is to prove NP#co-NP by showing a super-polynomial length lower bound of a formal propositional
proof of TAUT. In this approach, the lower bounds of the proof lengths and limitation of provability
of some specific propositional proof systems (e.g., resolution, Frege system and extended Frege
system) have been investigated.

The descriptive complexity characterizes NP by a class of problems definable by existential
second order formulas and P by a class of problems definable in first order logic with an operator.
The target of this approach is to separate P and NP using these logical characterizations.

This paper characterizes the concepts of P and P£NP etc., by formulas in Peano Arithmetic
(PA). A novel viewpoint of our approach is to introduce the concept of an asymptotic proof
produced by a polynomial-time Turing machine as a prover, to characterize a property of a formal
theory, PTM-w-consistency, by using this concept, and to show that no PTM-w-consistent theory
can prove a super-polynomial-time computational lower bound such as PZNP.



To the best of our knowledge, no existing approach has studied computational lower bounds
from such a viewpoint. !

Proof systems In order to define the PTM-w-consistency, this paper introduces a new concept of
proof systems, asymptotic proofs and polynomial-time proofs where the computational complexity
of (prover’s) proving a set of statements asymptotically is bounded by polynomial-time. In the
conventional proof theory, the properties and capability of a proof system (e.g., consistency, com-
pleteness, incompleteness etc.) are of prime interest, but the required properties and capability of
the prover are not considered (i.e., no explicit restriction nor condition is placed on the prover).

Note that the bounded arithmetic approach seems to follow this conventional paradigm and
bounds the capability of the proof system (axioms and rule of inferences) to meet the capability
of resource bounded computational classes. That is, the prover is still thought to exceed the scope
of the approach.

In this paper, the computational complexity of a prover is investigated through the concept of
an asymptotic proof system. An asymptotic proof is a set of an infinite number of formal proofs,
and a resource bounded (e.g., polynomial-time bounded or exponential-time bounded etc.) prover
asymptotically produces an asymptotic proof of a set of infinitely many formal statements.

This paper then introduces a new concept, PTM-w-consistency, which is a property of a con-
ventional proof system, but i1s defined and characterized by the concept of asymptotic proofs with a
polynomial-time bounded prover. PTM-w-consistency plays a key role in our results (for example,
see Section 1.4).

Undecidability Although the computational complexity theory is a resource bounded version
of the recursion theory, to the best of our knowledge, little research has been made on resource
bounded undecidability of formal statements.

This paper introduces a resource bounded (asymptotic) decision system, which corresponds to a
resource bounded (asymptotic) proof system, and presents the incompleteness theorems (Sections
4 and 5). Using the incompleteness theorem of resource bounded (asymptotic) decision systems
yields the resource bounded unprovability of P£NP (Section 7).

1.6 Key Ideas of Our Results

In order to obtain our main result (Theorem 67: P£NP cannot be proven in a PTM-w-consistent
theory), this paper introduces the concept of polynomial-time decision systems (Section 4). In a
proof system, we usually consider only one side, a proof of a true statement. In a decision system,
however, we have to consider two sides, CA (correctly accept: accept of a true statement) and CR
(correctly reject: reject of a false statement). CD (correctly decide) means CA or CR.

The key 1dea to prove Theorem 67 is a polynomial-time decision version of incompleteness
theorems. Informally speaking, we introduce a special sentence, p(x), (an analogue of the so-called
Godel sentence) like “this statement, p2(x), cannot be correctly accepted by a polynomial-time
Turing machine (PTM) encoded by e.” (Hereafter, “a PTM encoded by e” is called “PTM ¢”)
If p2(x) can be correctly accepted by PTM e, it contradicts the definition of p2(x). It follows

1 A prover is modeled as a Turing machine in the interactive proof system theory, and the computational
complexity of a prover has been investigated [12,11]. However, no proof system with a polynomial-time
Turing machine prover that produces an asymptotic proof of a computational lower bound has been
studied.



that p2(x) cannot be correctly accepted by PTM e. We also define another sentence, pf(x),
which cannot be correctly rejected by PTM e. (First incompleteness theorems of polynomial-
time decisions: Theorems 39 and 40). Based on these theorems, we show that, for any formula set
{¢Y(x) | # € N} (e.g., formula set on the satisfiability of 3CNT), for any PTM e, there exists another
PTM e* such that PTM e, on input & € N, cannot asymptotically prove that PTM e* cannot
correctly decide ¢(x) (Second incompleteness theorem of polynomial-time decisions: Theorem 45).
By using Theorem 45, we show that no PTM can prove P£NP asymptotically (Lemma 64).

This paper then introduces the PTM-w-consistency of T', which is a PTM version of w-consistency
and plays a key role in our result (for its semantics and rationale, see Section 1.4 and the remarks
of Definition 62). Combining Lemma 65 and PTM-w-consistency of T, we can show that P#ZNP
cannot be proven in PTM-w-consistent theory T' (Theorem 67).

This paper also introduces the notion of polynomial-time proof systems, and obtains a polynomial-
time proof version of incompleteness theorems (Sections 2 and 3). Informally speaking, we introduce

a special sentence, p. 7, like “this statement, p. 7, cannot be proven by a polynomial-time Turing
machine (PTM) e in theory T.” If p. 1 can be proven by PTM e in 7', it contradicts the definition of
pe,7, assuming that 7' is consistent. It follows that p. 7 cannot be proven by PTM e in T, although
another PTM can prove it (First incompleteness theorem of polynomial-time proofs: Theorem 20).
Based on this theorem, we show that, for any formula set {¢(x) | # € N} for any PTM e, there
exists another PTM e* such that PTM e, on input € N, cannot asymptotically prove that PTM
e* cannot prove ¥(x) (Second incompleteness theorem of polynomial-time proofs: Theorem 21).

By using Theorem 21 and PTM-w-consistency, we show that the PTM-w-consistency of T
cannot be proven in a PTM-w-consistent theory S, where S is a consistent PT-extension of T'
(Theorem 73). (In fact, we have not shown the existence of a consistent and PTM-w-consistent
PT-extension of PA; therefore, we have not shown the unprovability of PZNP in PA.)

Finally, based on Theorem 67, the unprovability of the security of the computational cryptogra-
phy is obtained (Theorems 81 and 82) in a setting that provers as well as adversaries are modeled
as PTMs and only PTM-w-consistent theory is allowed to prove the security.

2 Polynomial-Time Proofs

This paper follows the standard notions and definitions of computational complexity theory (e.g.,
definitions of P and NP) and mathematical logic (e.g., definition of a formal proof in Peano Arith-
metic). See [23] for such standard notions and definitions of computational complexity theory and
see [2,7,22] for the standard notions and definitions of mathematical logic.

The central interest of this paper is the difficulty of proving the lower bound of computational
problems by resource bounded Turing machines. For this purpose, first, we need to formalize the
notion of a formal proof produced by a resource bounded Turing machine. This section introduces
our formalization of a proof produced by a polynomial-time Turing machine (polynomial-time
proof: PTP) in a theory that is an extension of Peano Arithmetic (hereafter Peano Arithmetic is
abbreviated to PA).

Remark:

This paper is based on the standard notion of formal proofs in first order logic [2,7,22]. There
are, however, many possible ways of formalizing such formal proofs, especially with regard to the
style of formalizing the deduction system; alternatives to the selection of logical axioms and rules
of inference. There are two typical styles: one is the Hilbert-style, which has several logical axioms
and a few rules of inference, and the other is the Gentzen-style, which has just one logical axiom
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and several rules of inference. However, the results in this paper are not affected by the way of
formalizing the deduction system, and almost all descriptions in this paper are independent of the
style of formal deduction system adopted. When we need to make an explicit description on a
specific deduction system, this paper adopts the Hilbert style, which has two rules of inference;
Modus Ponens and Generalization rules.

2.1 Notations

Let N be the set of natural numbers including 0.

When w is a bit string, |w| denotes the bit length of w.

When w € N, [w] denotes the binary representation of w, i.e., bit string wy_jwg_o - - - wg with
w = w128 w9252 4w, k = | logy w]+1 (w > 0),and w; € {0,1} fori =0,1,2,... k—1.
When w = 0, [w],i.e.,[0], denotes the binary representation, 0. When w € N, |w| denotes the bit
length of [w].

PA has a constant symbol, 0, intended to denote the number 0, and has three function symbols,
S, 4, -, where S is a one-place function symbol intended to denote the successor function S : N — IV,
i.e., the function for which S(n) = n + 1, and symbols + and - are two-place function symbols
of addition and multiplication, respectively. PA also has symbols of predicate logic such as logical
symbols (-, A, V, —, ¥, 3, etc.), relation symbols (=, <, etc.), and variable symbols (x,y,z, etc.).

The numerals of PA are denoted by boldfaced number symbols such as 1, 2, 3, ..., for SO,
SS0, SSSO, ... . Boldfaced alphabet symbols such as x, y, x1, x;, etc., are also used for variables
in theory T

n times

. AH .
Throughout this paper, we assume that the numeral, SS---- S0, of natural number n is ex-
pressed by the following binary form in a theory including PA:

k — 1 times

ng+n;-SS0+---+n,_;-SS0-SS0--- - SS0,

where n = ng+ny -2+ - -np_y - 2871 n; €{0,1}, n; = 0if n; = 0 and n; = 1(= S0) if n; = 1
(i=0,1,...,k—1). Here we denote this expression of the numeral of natural number n by S?0 or
just n. Similarly, if alphabet a denotes a natural number, a denotes S%0.

We will now introduce two additional function symbols in PA. (A function symbol, f, of a
primitive recursive function is considered to be implicitly included in PA, ie., f can be identi-
fied with a formula, py, in PA, since f is representable by a A;formula, p;, in PA and PA
Vxq - Vxply pp(x1, ..., Xk, y). See Subsection 2.4.)

Here it 18 worth noting that these function symbols, which correspond to primitive recursive
functions, are introduced for improving the readability of formulas, not for increasing proving
ability. Therefore, in this paper we assume that no Godel number for a function symbol of a
primitive recursive function (except S, 4+ and - ) is provided (see the next section for Godel
numbers). The Goédel number of a formula including such a function symbol is calculated on the
formula without using the function symbol, i.e., the formula in which only function symbols in
PA are employed. This assumption is applied for any theory T which is a PT-extension of PA
throughout this paper. Hence the Godel number of a formula in 7" is uniquely defined even if some
function symbols of primitive recursive functions are employed in the formula.

If x, y and z are numerals in PA, x—y denotes a two-place function: (x,y) + z, such that
z = Smax{r—v.0l0 x =870, y = §Y0, z € N and y € N.
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If x, y and z are numerals in PA, x¥ denotes a two-place function: (x,y) — =z, such that
z=5""0,x=5"0,y =SY0, z € N and y € IN.
By using these function symbols (notations), the notation of a numeral, n, is defined by

no+mn; -2 4+ 4 251

When n is a numeral, |n| denotes the numeral of |n|. The function symbol, | - |, is justified by
the first claim in the proof of Theorem 11.
Some other notations are:

— P < ¢ denotes
(=) A (Y — ),

— Ay ¢(y) denotes
Jy e(y) A VyiVy2(e(y1) A e(y2) — y1 = y2),

which means y uniquely exists to satisfy o(y).
— Vx > n ¢(x) denotes
Vx (x>n — ¢(x)).

— dx > n ¢(x) denotes
Ix (x>n A p(x)).

— Some basic notations in proof theory [2]:

TF @,

which informally denotes “the truth of formula ¢ is provable in theory 77 .

Prr([e]),

which denotes a formula in 7', which informally means “there exists a proof for the truth of
formula ¢ in theory 7. Here [¢] denotes S#+0.

— T is inconsistent if there exists a formula ¢ in T such that T F ¢ and T F —¢, which is also
denoted by T+ L. T is consistent if there exists no such formula ¢ in T'. Here, 1L = —Vx(x =

x).
— T is w-inconsistent if there exists a formula ¢(x) in T such that
TF 3Ix ¢(x), and
Va €N TF —p(a).

T is w-consistent if there exists no such formula ¢(x) in 7. (If 7' is w-consistent, 7" is also
consistent. The reverse is not always true.)
— 9 1is the standard model of natural numbers. When ¢ is a formula in PA,

Nk

denotes that ¢ is true in 9.
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2.2 Godel numbers

There are many ways of defining the Godel numbers, and the way introduced in this section differs
from those described in Godel’s original paper and textbooks (e.g., [7]), since in this paper we
require a polynomial time algorithm to make unique encoding and decoding. We basically follow
the approach introduced by [5]. (We can also adopt a coding method employed in actual current
computer systems.)

Let #¢ be a Godel number of ¢. First, we define Godel numbers of basic symbols in L as
follows: (for example) #V is 0, #(is 1, #0 is 2, #) is 3, #S is 4, #—is b, # < is 6, # — is 7, #+
18 8, # =18 9, #-1s 10, #, i1s 11, #a, is 20, #x; is 22, #as 1s 24, ##x, 1s 26, etc.

We then use the following method to obtain the Godel number of a sequence of natural numbers,
ai,as,...,ax [5]:

1. Represent a; by the binary representation with the least significant bit on the right, as is
traditional. Then, ay,as,...,a; can be represented by the sequence of three symbols ‘0°, ‘1’
and ‘..

2. Reverse the order of the sequence of ‘0°, ‘1’ and *,’, and replace ‘0’ by ‘10’°, ‘1’ by ‘11" and ‘)
by ‘01’. We then obtain a sequence of ‘0" and ‘1’.

3. The natural number whose binary representation is this sequence is the Godel number of the
number sequence, ay, as, ..., ay. It is denoted by (a1, as, ..., ax).

For example, (3,4,5) is a natural number, whose binary representation is 11101101101011011111,
because 3,4,5 is binary-represented along with commas by 11,100,101 and is encoded to a binary
sequence, 11101101101011011111.

When ¢ is an expression in language L, it is a sequence of symbols, sgsy - - - sg, of L. We then
define the Godel number, #¢, of ¢ as follows:

#QD = <#50a #Sla sy #5k>
For example, when ¢ is =(Vx1(x; < S0)),

#QD = <#_'a #(a #V, #Xla #(a #Xla # < #Sa #Oa #)a #)>
=(5,1,0,13,1,13,6,4,2, 3, 3).
Remember here that numeral n (= §”0) denotes the binary form, i.e.,
k —1 times

ng+n;-SSO+---+mn,_; SSO-SSO----SS0.

Hence, |#n] (ie., |#8"0]) is of the order of log3 n.

Here also remember that we provide no Godel numbers of additionally introduced function
symbols of primitive recursive functions such as 2. That is, the Godel number of a formula
including such a function symbol is calculated on the formula with only function symbols in PA.

For example,
n times

#2" =4 SS0-SS0--- - SSO0 = (#S,#S,#0,4#-, ..., #0).
Therefore, |#2%| = O(n).?
2 If we have the Gddel number of the function symbol EXP such as EXP(x,y) = x¥, then |#2"| =

|#EXP(2,1)| = [#EXP(SS0, 10 + 111 - SSO + - - + 1y - SSO--- SS0)| = [(#EXP, #(, #S. .. ., #0)|
= O(log, n), since k = O(log, n).

13



We then introduce a concatenation operation || of two Godel numbers, #¢ and #v, where

#Ho = (Fso,#51, ..., #sp) and #¢ = (FHto, #1, ..., F#). F#o||[#¢ is defined by
<#50a#51a .. 'a#ska#t()a#tla .. 'a#tl>~

2.3 Polynomial-Time Extension of PA

Let formula Axiomy(n) be true if and only if n is the Gédel number of an axiom of 7. If the
truth of Axiomyg(n) can be correctly decided by a polynomial-time algorithm in |n|, on input
n, we say that 7' 1s polynomial-time axiomizable. If T is an extension of Ty and polynomial-time
axiomizable, then we say that 7' is a polynomial-time (PT) extension of Tp.

Using the notations introduced in Section 4.1, a polynomial-time axiomizable theory, T’ is
defined as follows: Let AX = {Axiomy(n) | n € N} and Size gy (n) = |n|. There exists e € N such
that for all n € N

PTMZ¥(n)> Axiomz(n) Vv PTMZ¥(n)> —Axiomy(n).

2.4 Representability Theorem in Mathematical Logic

This section introduces the representability theorem in the conventional mathematical logic [2,
7,22]. This theorem plays an important role in many situations as well as in constructing the
polynomial-time version of the representability theorem (Theorem 11), which is essential to for-
malize the execution of PTM in PA.

In this paper, we use the standard notions and notations of mathematical logic, such as T'F ¢
(informally, a sentence ¢ is provable in theory T'), with no introduction (see [2,7,22]).

Definition 1. 1. Let R be a k-ary relation on N; i.e., R C NF. A formula pp(zy,...,z) (in
which only xq, ... 2 occur free) will be said to represent a relation R in theory T
if and only if for every ay, ..., aj in NF

(a1,...,a5) ER = TFpgr(ay,... a;),
(a1,...,ap) ¢ R = TF —-pgr(ay,... ag).
A relation R is said to be representable in T of and only if there exists some formula pr that
represents K in T.
2. Let f be a k-place function on the natural numbers. A formula py(x1, ..., 25, y) (in which only

T1,..., g,y occur free) will be said to functionally represent f in theory T if and only if for
every ay, ..., ay in NP

TEVYy(ps(ar,...,ap,y) =y = Sf(al"“’ak)O).

A function f s said to be functionally representable in T if and only if there exists some
formula p that functionally represents f in T.

Proposition 2. (Representability Theorem) For any primitive recursive relation on N¥, R, and
any primitive recursive function on N¥ | f, there exist formulas, pr(x1,...,x;) and ps (X1, ..., Xk, ¥),
such that:

— pr(X1,... Xg) represents R, and pp(x1,...,%g,y) functionally represents f in PA.
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— pr(x1,...,xg) and pp(x1,...,Xp,y) are Ay in PA.

PAF Vxy - VxpAly pr(x1,..., Xk, ¥)-

Proposition 3. Let only x1,...,Xg,y occur free in formula o(X1,..., X5, ¥).
IfTFVxy- - Vx3ly o(x1,...,X5,Y), then theory T

= TU{Vxy - Vx3Vy (o(x1,.. . X%, y) & f(x1--x) =y)}
15 a conservative extension of T.

From Proposition 3, we can identify theory 77, which has function symbol f, with theory
T, in the light of provability and representability. In other words, we can consider that function
symbol f ( and the corresponding axiom, Vx;y - --VxxVy ( o(x1, ..., X, y) < f(X1- X)) =y¥) )
is implicitly included in theory 7. Therefore, from Propositions 2 and 3, we can consider that a
function symbol of any primitive recursive function is implicitly included in PA. Later in this paper,
we will introduce several primitive recursive function symbols in theory 7" which is a PT-extension

of PA.

Proposition 4. Let g be an n-place function, let hy,..., h, be m-place functions, and let [ be
defined by
v=f(z1,...,em) = ghi(zr, ..., 2m), ..y (21, 2m)).

Let formulas, ¥ and 01, ...,0,, functionally represent g and hy, ..., h,, and formula p; be defined
as follows:

pr((x1,..., %X, V) =
Elylzlyk ( 91(X1,~~~axmaY1)/\~~~/\gk(Xl,~~~aXmaYk)/\1/)(Y1a~~~aYkaV) )

Then, p; functionally represents f.

2.5 Turing Machines

A Turing machine (TM) is represented by (@, X, I',8, 4o, Gaccept, Grejeet ), Where Q is a set of states,
Y = {0,1} is the input alphabet, I" is the tape alphabet with blank symbol L and {0,1}, é :
Qx I — @QxI'x {L,R} is transition function, ¢p is the start state, ¢sccepr is the accept state, and
Grejeet 18 the reject state [23].

The computation process of a Turing machine can be represented by the sequence of configura-
tions, Cy, C1, ..., Cy. Fach configuration C; consists of three items, the current state, ¢; € @, the
current tape contents, and the current tape head location. It is convenient to represent a configura-
tion by triple (u,q,v), where the current state is ¢, the current tape contents is uv and the current
head location 1s the leftmost bit of v, where uv denotes the concatenation of bit strings u and wv.
When a configuration Cj is (ua, q,bv) (a,b € {0,1}), transition function § yields configuration C;14
such that

Civ1 = (u, ¢’ acv) if §(q,b) = (¢, ¢, L),

Cit1 = (uac, ¢, v) if 6(¢q,b) = (¢',¢,R).

We can also define a Turing machine whose output is not just accept/reject, but a finite sequence
of Y. Here, qpnair is used in place of qaceepr and grejecr. The output value is the tape contents in
state qpqi¢.
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Let epr be a natural number whose binary representation, [epr], is a part of the input to a
universal Turing machine U, and denotes the description of Turing machine M. In other words,
U can simulate M by reading [epr]. Let w be a natural number and [w] be the input to M. We
then use U(epr, w) (= M(w)) to denote a natural number whose binary representation, [U(ear, w)],
is the output of U with input [eas] and [w]. So, we abuse notation U for a function over natural
numbers, which is defined by universal Turing machine U.

2.6 Polynomial-Time Turing Machines

Let M be a polynomial-time Turing machine (PTM). W.l.o.g., we assume [eps] consists of a pair
of bit strings, (¢, [c]): ¢ is a description of a Turing machine that allows a universal Turing machine
to simulate M, and c¢ is a constant natural number such that M’s running time is bounded by
Size(w)®. Here w € N, [w] € W (W: set of input strings to M) is an input to M.
Size(+) is a function,
Size : N — N,  Size : w — Size(w),

which determines the size (bit length) of input [w] € W such that, for positive constants ¢; and es,
for all [w] € W, |[w]|** < Size(w)| < |[w]|*2, and Size(+) is a polynomial-time (in |w|) computable
function. The size function, Size(-), is uniquely determined by each class of problems such as
3SAT and Hamiltonean circuit. If Size(-) is not explicitly defined, Size(a) = |a|. For example, if
the underlying class of problems is 3SAT, [w] is a binary-code description of a 3CNF formula,
and Size(w) is the number of variables of the 3CNF formula. Then, we may use Sizeggar(w) to
explicitly represent this function for a specific problem, 3SAT. If [w] is not a (syntactically) valid
value that describes a 3CNF formula, the function value of Sizegsar(w) is defined to be |w]|, and a
PTM specific to 3SAT, which reads such an invalid input value, immediately moves to the reject
state (or outputs “invalid input” etc). (In Section 6, function Sizes a7 is more simply defined by
Sizesar(w) = |w] for all w € N.)

It is easy to convert any Turing machine described by ¢ into a Turing machine described by
(t,[c]), by just adding a running step number counter (with a specific tape for counting). Note that
the counter does not count the running steps for counting. M accepts [w] if it accepts [w] within
Sizew (w)° steps, and it rejects [w] otherwise. Given (¢, [c]), universal Turing machine U simulates
PTM M by description ¢ and counts the running step number of the simulated machine up to
Sizew (w)® and halts the machine when the number exceeds Sizew (w)°. Such a special universal
Turing machine for PTMs, which only accepts the form of (¢, [c]) as input [eas], is denoted by Upryp
in this paper. We assume a single (fixed) Upy for PTMs. Then, natural number ey implies a
unique PTM M. Tt is clear that any PTM M can be simulated by Upppy with input [epr] with
form of (¢,[¢]). That is, M (w) is exactly simulated by Upram(ear, w).

Here, w.l.o.g., we assume Upry; can syntactically check whether bit string ¢ is a syntactically
correct description of a Turing machine for Upyy. Such syntactic rules of describing a Turing
machine for Upryr can be clearly specified. Uppy can effectively check whether ¢ is a syntactically
correct description or not, in a manner similar to that used by computer language compilers. Upy
can also effectively check whether the format of [ear] = (¢, [¢]) is syntactically valid or not. If Uptm
recognizes [epr] to be syntactically incorrect (e.g., the part of [¢] is not syntactically recognized),
Uprym outputs a special string denoting “syntactically invalid code”. Here it 1s essential that Uppy
be able to correctly simulate a PTM if (¢, [c]) is valid, and such a valid string [eas], which is
syntactically recognized valid by Upty, always exists for any PTM M. Note: it is not essential
how well Uppy can find an invalid string. If Upry incorrectly recognizes an invalid string as a
valid one, and executes the input, then Uppy may run abnormally (e.g., runs in an infinite loop or
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immediately halts). If it immediately halts (i.e., in a halting state), it is the output of the execution.
If it runs in an infinite loop, the step counter of Uppp; executes independently and halts when the
number of steps exceeds Sizew (w)°.

We then use Uprm(enr, w) to denote a natural number whose binary representation, [Upram(enr, w)],
is the output of Upy with input [es] and [w]. Therefore, similarly to U, we also abuse the nota-
tion of Upry for a function over natural numbers: (epr, w) — Uprm(ear, w). Clearly, it is a totally
recursive (for input (epr, w)) and polynomial-time (in Sizew (w)) function.

When the input to PTM M is a tuple of natural numbers, (w1, ws, ..., w;) € W, we denote

Uprm(enr, (Wi, wa, ..., wy)) as its output natural number. Here, we can consider UpTy as a totally
recursive function over (k + 1)-tuple natural numbers (epr, wy, ws, ..., wy) and a polynomial-time
(in Sizew (wq, wa, ..., wy)) function.

We then introduce a classical result on the relationship between the time complexity of a Turing
machine and Boolean circuit complexity (Theorem 9.25 in [23]).

Proposition 5. Let t : N — N be a function, where t(n) > n, and X = J, oy Xn, where
Xn = {xn | n € N} is a set of problems x, with Sizex (x,) = n. If all problems in X,, can
be computed/decided by a Turing machine within time t(n), then they can be computed/decided by
a Boolean circuit with size O(t*(n)).

This proposition implies that the functionality of a polynomial-time Turing machine can be
realized by a polynomial size (uniform) Boolean circuit. This property is used in the proof of
Theorem 11.

2.7 Polynomial-Time Proofs

A formal proof, m, of a formula, ¢, is expressed in tree form, called a proof tree, as follows: A
proof tree consists of nodes and directed branches. When node a is connected with node b through
a branch directed from b to a (i.e., b — a), a is called a child of b and b is called a parent of
a: we denote the relation as a[b]. If b and ¢ are parents of a, the relation is denoted by a[b,c]. If
afble,[d,],]], then a is called a descendent of ¢ and d, and ¢ and d are called ancestors of a. A node
with no child node is called a root, and a node with no parent node is called a leaf. A proof tree has
only one root node. (Thus, the image of a proof tree is similar to an actual tree: the root is located
at the bottom of a tree and the leaves are at upper on branches.) Node  has form < zg, 21 >,
where zg is a formula and x; is a rule of inference of the predicate logic in theory T'. If a,b, ¢ are
nodes of a proof tree of 7 = afb,¢], and a =< ap, a1 >, b =< bg, by > and ¢ =< ¢, ¢ >, then 7
means that formula ag is deduced from formulas by and ¢y through a rule of inference, a;. If no rule
of inference is used for the deduction, the part of a; is empty. If node a =< ag, a; > is a leaf, then
ap 18 an axiom of the underlying theory 7" of the proof tree, and a; is empty. If node r =< rg, r; >
1s the root of a proof tree of formula ¢, rog = .

If theory 7' is a polynomial-time extension of PA, the Godel numbers of all axioms and rules
of inference in T are polynomial-time (in the size of axioms) decidable. Hence it is clear that
the validity of proof tree m can be verified within polynomial-time in the size of axioms and the
number of nodes of 7. At the end of this subsection, we will show a more precise description of the
polynomial-time algorithm to verify the validity of proof tree 7.

Let @ = {¢(a) | a € N} be a set of an infinite number of formulas in T'. The size function,
Sizes(-), over natural numbers {a € N}, is uniquely defined in each @. If Sizeg(-) is not explicitly
defined, Sizeg(a) = |a|. Let #& be the Godel number of the (finite-size) expression of the symbol
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sequence, {p(a) | a € N} (or the Godel number of any description of @). Note that the size of #&
is finite i.e., a constant in |a].
If Uprm(e, (p, #&,a)) = #7 and 7 is a valid proof tree of ¢(a) € @ in theory T, we denote

PTM,(a) Fr ¢(a).

Here p denotes a natural number (e.g., 0), which indicates that the output target of Uprm(e, ) is
a proof of the formula’s truth.

If a natural number (e.g., 1), d, is input to Upm(e, ) in place of p, it indicates that the output
target of Upn(e, ) is a decision (accept or reject) of the formula’s truth. That is, “Upry(e, (d, #&, a))
accepts” implies that Uprn(e, -), given (d, #®, a), decides that formula ¢(a) is true. (See Section
4.1.)

In other words,

PTM.(a) b7 ¢(a)
< Uprmle, (p, #P,a)) = #7 A Uprm(vr, (F¢(a), #7)) accepts,

where Uprym (vr, (F¢(a), #7))accepts, if and only if PTM Upryp(vr, -) accepts its input (F#¢(a), #)
as m is a valid proof tree of p(a) € @ in theory T'. Here, |#| is clearly polynomially (in Sizeg(a))
bounded, since # is the output of Uptm(e, (p, #®P,a)). In addition, we use the notation

PTM.(a) /1 ¢(a)

if and only if =( PTM.(a) Fr ¢(a) ).
We now describe PTM Uprum(vr, -) more precisely.

1. (Input to Uprm(vr, ) (Fe(a),#7), where p(a) is a formula and 7 is a proof tree.
2. (#¢(a), #m) is interpreted as the Godel numbers of ¢(a) and 7 in the manner described in
Subsection 2.2.
. Check the validity of the syntactic form of .
4. Search all nodes of #, and, for each node, decide whether the node is leaf, root or other (say
“middle nodes”).
5. Repeat the following procedure for all leaf nodes, a(®) (i=1,...,0):

o

Pick up a¥, and check whether a( ) is an axiom of theory T Where al) =< aé ), () > and
a(ll) is empty string.
6. Repeat the following procedure for all “middle nodes” and the root note, b(*) (i=1,. ,m)'

Pick up b along with its parent nodes (say c¢(/) (j = 1,...,p;)), and check Whether b( 0
( 7]) (

deduced from ¢ J = 1,...,p;), by using a rule of inference b( ) (or by using no rule of

inference when b( Vs empty), where b =< b( 2 b( 2 >, and (") =< c(l’]) (Z’]) >

7. Let r =< rg,r; > be the root node. Check Whether ro = p(a).

8. If all of the above-mentioned checks are passed correctly, the machine accepts the input. Oth-
erwise rejects.

A series of formal proofs produced by a PTM is called a series of “polynomial-time proofs”.
Here, each polynomial-time proof is a formal proof, &, of each formula ¢(a) in theory T (i.e., “a
polynomial-time proof” does not mean a set of formal proofs. We will introduce a notion of a set
of formal proofs in the next section).

In addition, we introduce the following notation:

TM(a) br ¢(a)
< Ule, (p,#P,a)) = #7 A Uprm(vr, (Fo(a), #m)) accepts.
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2.8 Asymptotic Proofs
This section introduces a notion called “asymptotic proof”.

Definition 6. Let T be a theory, @ = {p(ay,...,a;) | (ai,...,a;) € N} be a set of (infinite
number of) formulas, p(ay, ..., ap) in T, and

leleNQkxkEN T"QD(Xl,...,Xk),

where @, ..., Qp are unbounded quantifiers (including partially bounded ones like Jx > n ).
Then, a set of an infinite number of formal proofs, II, in T, 1s called an “asymptotic proof” of
Qi1x1 - Qr X p(X1,...,%X1), over T if

Qiar €N - Qrap €N
(m(ay,...,a;) € I AN Uprm(vr, (Fo(ay, ... ag), #7(ag, ..., ag)))accepts ).
The descriptive size of an asymptotic proof, IT, can be infinite. Therefore, such an asymptotic
proof, IT, cannot be formulated as a conventional formal proof in 7', which should be finite-length.

The following lemma demonstrates the difference in provability between formal proofs and
asymptotic proofs.

Lemma 7. LetT be a primitive recursive extenston of PA and consistent.
There exists an asymptotic proof of the consistency of T over PA.
On the other hand, there exists no formal proof of the consistency of T in T.

Proof. Let Provy be a relation over (n, m) € N? such that (n, m) € Provy if and only if n is the
Godel number of a formula (say ) and m is the Godel number of the proof of ¢ in 7'
Then, T is consistent if and only if

VmeN (n*,m) ¢ Provry,

where n* is the Godel number of L (L is ¢ A = for a formula ¢).

Since T'is a primitive recursive extension of PA, Provy 1s a primitive recursive relation. Then,
from Proposition 2, there exists a A;-formula, Provy(x,y), that represents relation Provy in PA.

Therefore, there exists an asymptotic proof of the consistency of T" over PA as follows:

VeeN PAF —Provy([l],x) (2)

if and only if 7" is consistent.
On the other hand, even if T' is consistent,

TV Vx =Provr([Ll],x)
by the second Godel incompleteness theorem.
_|

We now consider the computational complexity of producing an asymptotic proof. Section 2.7
introduced the concept of a polynomial-time proof, that is a proof produced by a PTM. Then, we
have a combined concept, an asymptotic proof produced by a PTM as follows:
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Definition 8. If an asymptotic proof of Q1x1 -+ Qp Xi @©(X1,...,Xy) is produced by a PTM, i.e.,
deeN Qe €N -+ Qrap €N PTMe(l‘l,...,l‘k) Fr gD(Xl,...,Xk),

then we say “a PTM asymptotically produces a proof of Qi1x1 -+ Qp Xp o(x1,...,%xp) over T,”
or ‘“Qix1 - Qr Xp ©(X1,...,X1) has a polynomial-time proof (is polynomial-time provable) over
T’ »

Similarly, if an asymptotic proof of Q1x1 -+ Qp Xi, ©(X1,...,Xy) is produced by a machine in
computational class C, then we say “a machine in C asymptotically produces a proof of Q1x1 - - Qx
Xp (X1, ...,x) over T,” or “Q1x1 - Qr X ¢(X1,...,Xi) has a C proof (is C provable) over
T’ »

A variant of Lemma 7 demonstrates an example of asymptotic proofs produced by a PTM.

If Tis a “PT-extension” of PA,| then Provy ([ L], x) in Lemma 7 can be equivalent to PTM-Acpt(vy, [L],x)
(see Section 2.10 for the notation of PTM-Acpt(vr, -, -)). Next, we obtain the following lemma by
Theorem 11.

Lemma 9. LetT be a consistent PT-extension of PA.
There exists an polynomial-time proof of the consistency of T' over PA. That is,

deeN Ve e N PTM.(z)Fpa -PTM-Acpt(vry, [L1],x). (3)

2.9 Representability Theorem of Polynomial-Time Proofs

Definition 10. 1. Let R be a k-ary relation on N, i.e., R C NF. A formula pgr(xy,...,%x) (in
which only x1,...,xXp occur free) will be said to polynomial-time represent relation R in theory
T if and only if there exists egp € N such that for every ay, ..., ay in NF,

(a1,...,a5) € R = PTM,.(a1,...,az) Fr pr(ay, ..., az),
(ar,...,a5) ¢ R = PTM.,(a1,...,az) Fr —pr(ay, ..., ax).

2. Let f be a k-place function on natural numbers ay,... ap. A formula ps(xq1,...,%3,y) (in
which only x1,..., x5,y occur free) will be said to functionally polynomial-time represent f in
theory T iof and only of there exists e; such that for every ai,...,ap n N

PTM,, (a1,...,ar) Fr Vy(ps(ai, ..., a5, y) =y = Sf(al"“’ak)O).

Theorem 11. (Polynomial-Time Representability Theorem) For any polynomial-time computable
relation on N*| R, and any polynomial-time computable function on N¥, f, there exist formulas,
pr(X1,...,xz) and py(xX1,...,Xg,Yy), such that:

— pr(X1,...,Xg) polynomial-time represents R, and ps(x1,...,Xp,y) functionally polynomial-
time represents f in PA.
— pr(x1,...,xg) and pp(x1,...,Xp,y) are Ay in PA.

PAFVxy - Vx3ly pe(x1,..., %X, y).

Proof. For simplicity of description, we consider the case of relation R with only one free variable
z. It 1s straightforward to extend this result to the cases with multiple free variables and functional
representability.

First, we will introduce two function symbols, | - | and Bit(-,-), which are intended to denote
the length of the binary representation of a numeral and the i-th rightmost numeral (0 or 1) of
the binary representation of a numeral, respectively.
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Claim. )
PAFVx>03m2" 1 <x< 2"

Proof. We will use the induction axiom in PA. We can prove the following by using the axioms of
PA easily (e.g., by proving 1 +1 = 2 = 21):

PAF (2°<1<2h).

In addition, we can also prove the following by using the axioms of PA (e.g., by using the axiom,

VxVy(x + Sy) = S(x+y) etc.):

PAF Vx (3n(2*1<x<2"21)—3m (21 <x+1<2%)),
PAF Vx (3 (x=2"-1) = 2" =x+1
2P < x+1< 2y~ am (20Tl <x+1 < 2Y)).

Combining the above results, we obtain
PAF (20<1<2') A ¥Vx((@m2* 1<x<2®)— (@m 21 <x+1<2%).
The induction axiom of PA implies

PAF (20<1<2) A Vx(In2!<x<2®—~3m2*!<x4+1<2")
—V¥x>03m 21 <x<om

Hence we obtain finally .
PAFVx>03m 2" <x< 2"

_|
Following the claim above, we will introduce a function symbol, |- |, in PA, which is intended

to denote the binary expression length of numeral x, such that
PAFVx>0Vn (21 <x< 2" —n=[x|). (4)

Claim.
PAFVx>0Vn (2% 1 <x< 2% — (21 <x <221 42072)y (2271 4 2n2 < x < 27))
We omit the proof since it is similarly obtained.
Claim.

PAF V¥x>1 Vi< |x| 3 <2 Jly <2 3z < 2lx-i-1
(x = y+x; 2142z ~2i+1).
This claim can be proven by applying the previous claims repeatedly.

Based on the claim above, we will introduce a function symbol, Bit(-), in PA, which is intended
to denote the ¢-th rightmost value of the binary expression of a numeral

PAF Vx>1 Vi< |x| Vx; <2 Ty < ol Jiz « 2|x|;i;1
(x=y4x;-21 42271 — x;, = Bit(x,i) ). (5)
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Hereafter, we will also denote the binary representation

of variable x by [x] = Bit(x,n—1) Bit(x,n—2) - -- Bit(x, 0), where n = |x|.

In order to construct a formula, pr(x), in PA which polynomial-time represents relation R,
we will employ the approach of constructing a family of polynomial size Boolean circuits that
represents relation R, which is introduced in Proposition 5 (Theorem 9.25 in [23]).

Since R is polynomial-time computable relation, there exists a PTM, Upm(er, -), that com-
putes relation R correctly. Then, R can be decided by a family of Boolean circuits, {B,, | n € N},
that are polynomial size in n.

Before showing formula pgr(x), we will show how to construct a family of Boolean circuits,
{B,, | n € N}, based on the description of Theorem 9.25 in [23].

Let the size of input # be n bits, and the computation time be #(n) = n® steps (¢ is a constant
determined by each PTM). The circuit is constructed by (n¢)?k nodes. The value of each node is
F (false/0/off) or T (true/1/on), and each value is denoted by light[é, j, s] (0 < i< n® 0< j < nC,
0<s<k).

light[i, j,s] = T (light]i, j, s] is on) denotes the element of cell[i, j] (i.e., in the é-th computation
step and at the j-th leftmost tape square) is the s-th element, where there are k(= 3+ 3£) elements,
ul x Q, I' = {0,1,1} is the set of tape alphabets, and @ = {qo (initial state), ¢1,..., qi—2
(reject state), g1 (accept state) } is the set of states of the underlying PTM to decide € R.
light[i,j,s] = F (light[i, j,s] is off) denotes that the element of cell[i, j] is not the s-th element.
The set of the elements is {(0), (1), (L), (¢0,0), (90, 1), (g0, ), ..., (¢,0), (g, 1), (i, L), ..., (qz,0),
(ge—1,1), (ge—1,U)}. So, for each cell[i, j], only one light[i, j, s] (i.e., only one s) is T (true/1/on)
and the others are F (false/0/off). Each node is connected to 3k nodes through A and Vv gates.
More precisely, for all (1 < i < n?), for all j(0 < j < n®), for all s(0 <s < k),

lightli,j,s]= \/ (light[i—1,j —1,a] Alight[i —1,j,b] Alight[i — 1,j +1,c],
(a,b,c)EA,
where subset A; = {(ao, bo, co), - ., (az,bs, 1)} (£ < k3) is uniquely determined for each s based on

the transition function é of the underlying PTM to decide z € R. For example,
- A =4(1,1,1),(1,1,0),(2,3 + 3i — 1,1), ...}, where (¢;,1) = (¢;,0,L).
- A, =4(1,2,1),(2,34 31 — 2,1), ...}, where 6(¢;,0) = (¢;, LLR).
— Asysio1 = {(0,1,34 35 —2),...}, where 6(¢;,0) = (¢;, 1,L).
The values of light[0,j,s], for 0 < j < n® and 0 < s < k, are determined by the input
[2] = “@p_1@pn_s -2y, e,

light[0,0,3] = 1 iffx,,_, = 0,
light[0,0,4] = 1 iffx,_, = 1,
light[0,0,s] = 0 for all s with s # 3 and s # 4.
light[0,1,0] = 1 iffz,,_» = 0,
light[0,1,1] = 1 iffx,_5 = 1,
lzght[O, 1,5] = 0 for all s with s 20 and s # 1.

light 1] = 1iffag = 1,
light ,§] =0 for all s with s # 0 and s # 1.

light[0,7,2] = 1 for all j > n.
light[0,7,s] = 0 for all j > n and for all s with s # 2.

bl

bl

lzght[O,n 1,0] = 1 iffzp = 0,
[0,n—1
[0,n—1

22



The input [w] (n°k bit string) to Boolean circuit B, is
[w] = “light[0,1,1],light[0,1,2],..., light[0,n° — 1,k —1]",

The output of the circuit is the value of node light[n®—1,1, k— 6], light[n®— 1,1, k — 5], light[n® —
1,1,k — 4] (reject) or light[n® — 1,1,k — 3], light[n® — 1,1,k — 2], light[n® — 1,1,k — 1] (accept).

We now show formula pr(x) in PA based on the above construction of Boolean circuit B,.

First we define three formulas: ISET(x,y) in which only x, y occurs free, TRANS(y) in which
only y occurs free, and EVAL(y) in which only y occurs free. Formula ISET(x,y) denotes that
the information of z is transformed/copied to the value of a part of y, formula TRANS(y) denotes
that the transition history of computing R(z) is mapped to the value of the other part of y, and
EVAL(y) is true if and only if the evaluation result of R(x) is true.

ISET(x,y) =

( (Bit(x,0) =0 — (Bit(y,3) =1 A Vs(0<s <3 Vv 3<s<k)Bit(y,s) =0)) A
(Bit(x,0) =1 — (Bit(y,4) =1 A Vs(0 <s<4 VvV 4 <s <k)Bit(y,s) =0)))

A

((VjJ(0<j<mn) A Bit(x,J) =0 — Bit(y,j-k) =1 A Vs(0 <s <k)Bit(y,] - k+s)=0)A
(Vj<n A Bit(x,])) =1 — Bit(y,j-k+1)=1 A Vs(s=0 VvV 1 <s<k)Bit(y,j-k+s)=0))

A

(Viin<j<n® (Bit(y,j-k+2)=1 A Vs(s<2 A 2<s<k)Bit(y,j-k+s)=0)).

TRANS(y) =
Vi(l0<i<n® Vj<n® Vs<k
((Fa<k Ib<k Je<k (n(y,i-1,j,a,b,c,s) — Bit(y,i - n°-k+j-k+s)=1)
A
(Va<k YVb<k Ve<k -n(y,i-1,j,a,b,c,;s) — Bit(y,i-n°-k+j-k+s)=0)).

Here, formulan(-) is uniquely fixed for each s based on the transition function é of the underlying
PTM to decide # € R, and corresponds to subset A; (0 < s < k) in the above-mentioned Boolean
circuit B,. In more detail, 5(-) is formulated as follows:

n(y,i—1,j,a,b,c;s) = no(a,s,Bit(y,(i-1) -n° -k + (j—1) -k +a)) A
nl(ba S, Blt(ya (1_1) 0 -k +J ‘k+ b)) A
na(c, s, Bit(y,(i—-1) -n® k+(j+1) -k+e¢)).

Remark: If j = 0 (or j = n°~1), then a (or ¢) is ignored.

EVAL(y) = 3s (k-4 <s<k) Bit(y,(n°~1) - n° - k+s)=1.
Finally

pr(x) = 3Ty < o’k (n = x| AISET(x,y) ATRANS(y) AEVAL(y)).
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By the above-mentioned formula, pr(x), for any input # € N ([x] = x,,_1 - - Xp), numeral y
([y] = ¥(ne)2k=1- - - ¥o), is uniquely determined, and the truth or falsity of pr(x) is also determined
by the truth or falsity of term EVAL(y).

It is clear from Proposition 5 that formula pr(x) represents R, since each atomic formula of
pr(X) represents the corresponding atomic execution of Upryp(eg, #), and such atomic execution
is primitive recursive. That 1s, for all z € N

Uprm(er, #)accepts = PAF Jly < o’k (n = |x| AISET(x,y) ATRANS(y) AEVAL(y)).

Uprm(er, @)rejects = PAF Ty < on’k (n= |x| AISET(x,y) ATRANS(y) A-EVAL(y)).
Since a is represented by the binary form of numerals, and the proof tree of the formula,
on—1 <a< 2" —n=|al
can be constructed in O(|a|), there exists er € N such that for every a in N,
PTM,, (a) Fpa Vn (2*71 < a < 2" —n = |a|).

Similarly, Bit(-) can be also functionally polynomial-time represented.

Given a € N, in order to evaluate formula pg(a), we need to evaluate function | - | once,
polynomially many repetitions of function Bit, and polynomially many repetitions of formula 7,
where the size of formula » is constant in |a| and n is Aj-formula (since all quantifiers in n are

bounded).

Therefore, in total, formula pgr(a) can be functionally polynomial-time represented.
We now introduce formula pg(x,y) that is defined by

n = |x| AISET(x,y) A TRANS(y).

Here, pr(x,y) represents a polynomial-time function, which, given x, computes y. (Usually, a part
of execution history, y, is output in a polynomial-time function.)
Then,

pr(x) =y <2*°% (Fr(x,y) A EVAL(y)).

By repeatedly proving an atomic formula on a pair of kn® bit parts (pair of laws) of the binary
expression of y, we obtain

PAF Vx 3y < 2%k (n = x| AISET(x,y) A TRANS(y) ),
where |x| and Bit(x,1) for x < 2 are defined additionally. That is, we obtain

PAFVx 3y < 2°°% Jh(x,y).

2.10 Formalization of Polynomial-Time Proofs

Let @ be a set of an infinite number of formulas, {¢(a) | @ € N}.
Let formula

PTM-Out(e, [®],a,b)
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polynomial-time represent

Uptm(e, (p, #9,a)) = b

over natural numbers, (e, #®,a,b), and formula
PTM-Acpt(vr, [¢(a)],b)

polynomial-time represent
Uprm(vr, (Fe(a),b))accepts

over natural numbers, (vr, #¢(a),b). (For the definition of vy, see Section 2.7.) Here, these formulas

are constructed by following (the multiple-variable version of) the method of constructing a formula

that was shown in the proof of the polynomial-time representability theorem (Theorem 11).
Then,

Prr[e(a)l(e, [#],a) = 3Tb< 257@)° (PTM-Out(e, [#],a,b) A PTM-Acpt(vy, [¢(a)],b)),

where ¢ is uniquely determined by e (i.e., there is a primitive recursive function f such that
c=f(e))
Clearly, Prr[e(a)](e, [@],a) represents the relation

PTM.(a) Fr ¢(a)

over natural numbers, (e, #®, a) € N* (for the definition, see Section 2.7). Then, for any (e, #®,a) €
N3,

PTM.(a) Fr ¢(a) = PAF Prrle(a)l(e, [P],a),
PTM.(a) /7 p(a) = PAF =Prrle(a)l(e, [@],a).

Here, note that the above-mentioned relation over (e, #®, a) is polynomial-time decidable in a
with a fixed value of (e, #@®), but that the asymptotic computational complexity of this relation in
(e, #®) is not explicitly specified. However, the way of constructing a formula shown in the proof
of Theorem 11 can be applied to any primitive recursive relation.

Here it is worth noting that, although formula Prr[¢(2)](x,y,2), with free variables x, y and
z, 1s specified by the construction shown in the proof of Theorem 11, there still exists ambiguity
with regard to details of the formula. However, notation Prr[¢(2)](x,y,z) means a fixed formula
selected from among the possible formulas. The difference of a formula selected from them does not
affect the results in this paper. It is important to note that the fixed formula of Prr[p(2)](x,y,2)
is assumed throughout this paper.

Informally, formula (sentence) Pry[p(a)](e, [@],a) is true if and only if Uprm(e, ), on input
(p, #®,a) € N> outputs a proof tree of formula ¢(a) € @ in theory T'. Here, note that [ - ] does
not mean a variable part of the formula, but just implies the target for Uprm(e, (p, #P,a)) to
prove, while (-, -, - ) means a variable part of the formula. Therefore, the part of Pry in formula
Prr[e(a)l(e, [@],a) identifies the form of the formula (like p in p(e, [@],a)). The part of [p(a)] in
the formula is perfectly redundant and is not necessary to identify the formula, but helps readers in
understanding the meaning of the formula. (Note that Prp[X](-, -, ) is a single formula, regardless

of X))
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3 Incompleteness Theorems of Polynomial-Time Proofs

This section shows the polynomial-time proof version of the (second) Godel incompleteness theo-
rem. First, we introduce the Godel sentences of polynomial-time proofs, and the first incomplete-
ness theorem of polynomial-time proofs. We then present the second incompleteness theorem of
polynomial-time proofs, based on the the first incompleteness theorem and the derivability condi-
tions of polynomial-time proofs.

3.1 Derivability Conditions of Polynomial-Time Proofs

This section introduces several properties, the derivability conditions of polynomial-time proofs.
(They correspond to the derivability conditions regarding conventional incompleteness theorems.)
These properties are used to prove the (first and second) incompleteness theorems of polynomial-
time proofs in this paper.

Lemma 12. (D.1 of PTPs) Let® = {p(a)|a € N} be a set of an infinite number of formulas.
Suppose that T s a PT-extension of PA. Then the following holds for all e, T':
For any e € N and any a € N there exists e* € N such that

PTM.(a) Fr ¢(a)
= PTM.-(a) Fpa Prr[e(a)l(e, [®],a).
Proof. Since
PTM.(a) Fr ¢(a)

is a polynomial-time relation computed by Uprm(e, (#®,)) and Uprm(vr, (- -)), given a € N,
such that
Uprm(e, (#P,a)) = #7 A Uppm(vr, (F¢(a), #7)) accepts.

Therefore, this result is obtained immediately from Theorem 11.

_|

Lemma 13. (D.2 of PTPs) Letd = {p(a) | a € N}, 2 = {p(a) — ¢(a) | a € N}, and
U = {¢(a) | a € N}. Suppose that T is a PT-extension of PA.
For all e € N and for all eo € N, there exists e3 € N such that

PAF Vx ( Prrle(x)](er, [P],x) APrrle(x) — ¥(x)](es, [£2],%)
— Prr[y(x)](es, [V],x) ).

Proof. First, we introduce a two-place polynomial-time function, h, over N? such that

#7  if there exist proof trees w1 and 75 in T'
such that s = #my, t = #m5. Here
7 =< 1, Modus Ponens > |11, 7).

0 otherwise.

h(s,t) =

(Given s € N, it is polynomial-time (in |s|) computable to check whether u is the Gédel number
of a proof tree in T' in a syntactic sense as a symbol sequence.)

PTM Uprm(es, -) is constructed by using two PTMs, Uptnm(er, (p, #9P, -)) and Uprm(ea, (p, #42,-)),
and function A as follows:
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—_

. (Input: ) (p, #¥, z) € N3,
. (Output: ) Godel number of a proof tree of ¢ (x) or 0.
3. Run the following computation

[\

UPTM(ela (pa #@a $)) =8,
Uprm(es, (p, #02,2)) =t.
4. Compute h(s,t) and output the result.

Since function h is primitive recursive, there exists a Aj-formula, u(s,t,u), in PA which rep-
resents function h such that (from Proposition 2)

PAF VsVt 3lu pu(s,t,u).
We now introduce function symbol A in PA, then
PAF VsVtVu (u(s,t,u) — u=h(st)).
That is,
PAF VsVt 3lu u=h(s, t).
Therefore, for all e; € N and for all e; € N,

PAF Vx VsVt 3lu ( PTM-Out(ey, [¢],x,8) A PTM-Out(eq, [2],x,t) )
— ( PTM-Out(eq, [®],x,8) A PTM-Out(es, [£2],x,t) A u=h(s,t) ).

See Section 2.10 for the definition of notation PTM-Out(-).
Then, by the construction of Uppm(es, ), for all e; € N and for all es € I, there exists eg € N
such that

PAF VxVu
( 3ts At (PTM-Out(ey, [P],x,8) A PTM-Out(es, [2],x,t) A u=h(s,t)))
—  PTM-Out(es, [¥],x,u) ).

Therefore, for all e; € N and for all e5 € I, there exists e3 € N such that

PAF Vx VsVt 3lu ( PTM-Out(eq, [?],x,8) A PTM-Out(es, [£2],%,t)
—  PTM-Out(es, [¥],x,u). (6)

On the other hand, a polynomial-time computation (relation) of Uptnm(vr, (#¢, w)) over (vp, #, u)
1s composed of two computation parts as follows:

1. If u = 0, reject. Otherwise, check whether there exists a proof tree 7, in which u = #, and
whether the inference of the root node of 7 is correct. If both of them are valid, go to next
step. (For example, if m =< rg,rqy > [m1, ™3], then check whether inference from (w1, 7)) to rg
by the rule of inference r; is correct. If w = h(s,t) and h(s,t) # 0, then s = #m, t = #m,
rp = ¢(x) and r1 is Modus Ponens. Hence, if the inference is correct, w2 should be 71 — . )

2. Let m; and 7y be parent nodes of the root node of 7. Check whether #; and @5 are valid proof
trees in 7.
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Since the first computation part is primitive recursive, we can construct formula v(u) to rep-
resent the first computation (relation) part of Uprm(vr, (#%,u)), over u € N. Then from the
definition of h, we obtain

PAF VsVt dlu (v(u) A u=h(s,t) ).
Then,

PAF Vx VsVt 3l ( (PTM-Acpt(vy, #o(x),s) A PTM-Acpt(vy, #o(x) — ¢(x),t))
—  ( PTM-Acpt(vy, #o(x),8) A PTM-Acpt(vy, #o(x) — ¥(x),t)
A (v(u) A u=h(st))).

See Section 2.10 for the definition of notation, PTM-Acpt(-).
Here,

PAF  Vx VsVt Jlu
( PTM-Acpt(vry, #o(x),8) A PTM-Acpt(vy, #p(x) — ¢(x),t) A (v(u) A u=h(s,t
—  PTM-Acpt(vy, #¢¥(x),u) ).
Therefore,

PAF VxVsVtJu ( PTM-Acpt(vy, #e(x),8) A PTM-Acpt(vr, #o(x) — ¥(x),t)
— PTM-Acpt(vy, #¢(x),u) ). (7

Hence, combining Eqgs. (6) and (7), for all e; € N and for all es € N, there exists e3 € N such
that

PAF  Vx VsVt Jlu
( ( PTM-Out(ey, [?],x,8) A PTM-Acpt(vy,#o(x),s) )
A ( PTM-Out(es, [£2],x,t) A PTM-Acpt(vy, #o(x) — ¥(x),t) )
—  PTM-Out(es, [¥#],x,u) A PTM-Acpt(vy,#¢¥(x),u) ).

Therefore, finally we obtain that for all e; € N and for all es € N, there exists eg € N such that
PAF Vx (Prrfp(x)](er, [9],x) APrr[p(x) = ¢(x)](es, [2],x) — Prr[v(x)](es, [¥],x) ).
_|

Corollary 14. Let d = {p(a) | a € N} and ¥ = {¢(a) | a € N}. Suppose that T is a consistent
PT-extension of PA. We assume

TE ¥x (o(x) — ¥(x)).
Then, for all ey € N there exists e5 € N such that
PAF  Vx ( Prrle(x)](er, [®],x) — Pre[v(x)](ez, [¥],x) ).

Proof. From the first derivability condition (D.1) of a traditional proof theory [2] and the assump-
tion of this lemma, we obtain

PAE Pro([Vx (¢(x) — ¢ (x))])-
Then, PTM Uprm(es,-) is constructed by using PTM Uprm(er, (p, #9, -)) as follows:
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1. (Input @) (p, #¥,x)
2. (Output: ) Godel number of a proof tree of ¢(x) or 0.
3. Run the following computation

Uprm(er, (p, #9,2)) = z, Uprm(vr, (F#9(x),2)).

4. Compute the proof (say m3) of Vy (¢(y) — ¢(y)), since there exists a proof for the predicate
from the assumption. (The computation time is finite i.e., constant in Sizeg(z) and Sizeg(x).)
5. Check whether Uppn(vr, (#9(x), 2)) accepts or rejects. If it rejects, output 0 and halt. If it
accepts, then combine my (z = #m1) and w2 and make a new proof tree, 3, for ¢(x), as follows:

73 = < ¥(x),Modus Ponens > [71, < ¢(x) — ¥ (x), Modus Ponens > [w2, Axiom X]],

where Axiom X is a logical axiom, “Vy (¢(y) — ¢(y)) — (p(x) — ¢(x))”.
6. Output w3 for the proof tree of formula ¥ (x).

The other part of the proof can be completed in an analogous manner to that in Lemma 13
except for the constructions of functions h and ¢ to meet the above-mentioned construction of
Uptm(ea, -)) in this proof.

_|

Corollary 15. Let d = {p(a) |a e N}, ¥ = {¢(a) | a € N}, and 2 = {p(a) Ay(a) | a € N}
Suppose that T 1s a PT-extension of PA. For all e; € N and all e5 € N, there exists e3 € N such
that

TF Vx ( Prrle(x)](e1, [@],x) APrp[¢(x)](es, [F],x)
— Prrfe(x) A ¢(x)](es, [2],x) ).

Proof. By using the following logical axiom of first order logic:

p— (b —(pAY)),

and the derivability condition D.1. of the standard proof theory [2], we can obtain

TE Pre([Vy (e(y) — (@(y) = (e(y) AL(¥))])-

By applying Corollary 14, we obtain

TF Vx(( Prple(x)](er, [®],x) APrp[y
2l

] (
— (Prr[((x) — (p(x) A ¥(x)
— Prrp(x) Ap(x)](es, [2],x

x)](e2, [¥],%))
(e, [27],%) A Pro[p(x))(es, [¥], %))
) )-

_|

Lemma 16. (D.3 of PTPs) Let R be a polynomial-time relation over N. Let formula pr(x) (in
which only x occurs free) polynomial-time represent relation R in theory T, and the concrete form of
formula pr(x) follow the construction given in the proof of Theorem 11. Let R = {pr(a) | « € N}.
Suppose that T is a consistent PT-extension of PA. Then, there exists e € N such that

PAF Vx ( pr(x) — Prrlpr(x)](e, [R],x) ).
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Proof. Here we will follow the notations employed in the proof of Theorem 11.

Formula pr(x) has two atomic functions, | -| and Bit(-), and three atomic formulas ng(-), n1(+)
and n2(-). Since pr(x) is a Aj-formula, these atomic functions and formulas are composed by a
finite number of logical symbols, A, vV, —, =, and bounded quantifiers. Here bounded quantifiers
can be replaced by a finite number of A and V.

Hence, by applying Lemma 13 and Corollaries 14 and 15, formula Prp[pr(x)](e, [R],x) can be

deduced from a logical composition of the corresponding atomic formulas,
Prplw = |z|](es, [£], (2, w)), Prr[w = Bit(z)](es, [B],(z, w)),

[ni(za w, V)](eia |—EZ—| ) (Za W, V))a
Pry[=(w = |z])](e3, [£"], (2, w)), Prr[=(w = Bit(z))](e}, [B], (2, w)),
Prp[—ni(z, w,v)](e], [E7], (2, w,V)),
where i = 0,1, 2.

Therefore, to prove this Lemma it is sufficient to prove the following atomic formulas:

PIT

JdeeN PAF VzVw ((w=|z]) — Prp[w=|z|](e,[L], (2, W)) ),

JdeeN PAF VzVw ((w=Bit(z)) — Prp[w = Bit(z)](e, [B], (z,w)) ),

deeN PAF VzVwVv (n(z) — Prpln(z, w,v)|(e, [&], (2, w,V)) ),

JdeeN PAF VzVw (—(w=|z|) — Prr[-(w =|z]](e,[L"], (7, W)) ),

JdeeN PAF VzVw (-(w = Bit(z)) — Prr[-(w = Bit(z))](e, [B*], (z,w)) ),

deeN PAF VzVwVv ( -z, w,v) — Prp[-n(z,w,v)|(e, [&7], (2, w,v)) ),
where ¢ = 0,1, 2.

We will then show a construction of Upry(e, -) that outputs a proof tree of each atomic formula.
First, Uptum(e, -) for atomic function | - | is as follows:

1. (Input:) (p, #L£,z,w), where L={a=|b|] | ¢ € N,b € N}
2. (Output:) #nr or 0, where mz is a proof tree of formula w = |z| in PA, and 0 means “Fail”.
Note that z and w are given in binary form such as
Zod 7z, 24tz g2V
(more precisely, zgp +2; - SSO0+ -+ 2,1 - SSO-SS0----SS0),
Wo+ Wy 24+ we_p 2071

o

. Check whether 2%~1 < z < 2% or not. If it is false, output 0. Otherwise, go to next step.

4. Make a proof tree, 7p, of 2%~1 < z < 2% by showing 2’ = zg+21 -2+ -+ + Zy_2 - 272 and
2 =75+ 77 24 -+Z,_5-2% 2, along with the proof tree of z = 2%~ 4z’ and z4 2" = 2V,
where 7; denotes the complement of z; (e.g., if z; =0, 7; = 1).

(Note that w in the above equations is expressed in binary form.)

PTM-Out(e, [£],z, w,y) represents the above-mentioned computation (function) of Uprp(e,

(p, #L, z,w)) to output y such that y = #xr or y = 0. (For PTM-Out, see Section 2.10). From
the definition of | - |,

PAF VaVw (w = |z| — (2"~ <z < 2V)).

In addition, from the construction of Uptm(e, (p, #£, 2, w)),

PAF Va¥w (2% <z <2%) — PTM-Out(e, [£],2,w, [7L]).
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Since PTM-Acpt(vr, [z = |w|], [#z]) represents computation Uprm(vr, (#2 = |w|, #7L)) (see
Section 2.10),

PAF VzVw 3ly (w=|z] A PTM-Out(e, [£],z,w,y)) — PTM-Acpt(vy, [w = |z[],y) ).

Namely,
PAF VzVw ((w=lz]) — Pre[w=|z|l(e,[L], (2, W)) ).

We can also prove similar results on =(w = |z|), (w = Bit(z)), and =(w = Bit(z)) in a manner
similar to that on (w = |z]).

We will now prove the results on formulas n; (i = 0,1,2).

Since the values of variables of formula n; (i = 0,1,2) are bounded by constant k and the
number of variables is also bounded by 3, all possible evaluation values of n; (i = 0,1,2) with
possible values of variable are bounded by a constant. This means that a proof of each possibility
of formula n; (¢ = 0,1,2) can be created ahead of time and stored by PTM Uptn(e, ). So, the role
of PTM Uprum(e,-) is just pattern matching against the value of the input variables.

Given an input value, Uprm(e, ) outputs the Godel number of a proof tree of formula »;
(1=0,1,2) as follows:

1. (Input:) (p, [&], 2z, w,v), where & = {n;(a,b,¢) | e € N,b €N, ¢ € N}

2. (Output:) #7gi(z, w,v) or 0, where 75 ;(z, w, v) is a proof tree of formula 7;(z, w, v) in theory
PA.

3. (Preprocessing Phase before getting Input) List up all input values of (z,w,v) for which
(2, w,v) is true (say the list “TList”). Make (the Godel number of) a proof tree, 75 ;(z, w, v),
of n;(z, w,v) for all values of (z,w,v) € TList. Make a list of (the Godel number of) the proof
trees along with TList, which is retrieved by entry (z, w,v) (say PList; {((z,w,v), #7g (2, w,V)) |
(z,w,v) € TList} ). Note that the size of PList is finite and constant in the size of input x to
PR(").

4. Gi\(/e)n input (z,w,v), search PList by the input. If entry (z, w, v) is found in PList, output the
corresponding #7g i(z, w, v). Otherwise, output 0.

Let PTM-Out(e, [&;],2, w,v,y) be a formula to represent the computation, Upnm(e, (p, [&],
z, w,v)) =y, where y = 7g ;(z,w,v) or y = 0.

Since the computation is just pattern matching, the formula should be effectively equivalent to
the following form:

Vz Vw Vv dly

((Z’W’V): (ZO,WOaVO) — y:ﬂ'O)

(
A ((z,w,v)=(21,W1,v1) — y=m1)

A ((z,w,v)= (2K, WK,VK) — ¥ = TK),
A ((z,w,v) # (29, Wo,v0) A (2, W, V) % (21, W1,vy) -+
A (z,w,v)# (2, WK, VK) — y=0)),

where TList = {(zo, wo, vo), (21, w1,v1), ..., (2K, WK, vK) }.
From the construction,

PAF VzVw Vv (n(z,w,v)

= ((z,w,v)=(z20,Wo,vo) V (&, W,v)=(21,w1,v1) -+ V (z,W,Vv) = (2g,WK,VK) ) ).
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For all i (0 <7 < K),
PAF VzVw Vv ((z,w,v)=(z;,w;,v;) — PTM-Out(e,[&],2,w,v,[1]) ).
For all ¢ (0 <i < K),
PAF VzVw Vv ((z,w,v)=(z;,w;,v;) — PTM-Acpt(vr, [ni(z, w,v)],[m]) ).

Hence,
PAF VzVw Vv 3y (n(z,w,v) — PTM-Out(e, [&],2,w,v,y) APTM-Acpt(vy, [n:(z, w,v)],y) ).
Namely,

Tt VaVw (ni(z,w,v) — Prr[n(z,w,v)l(e,[&],2,w,v) ).
We can also prove a similar result on —n;(z, w, v) in a manner similar to that on n;(z, w, v).

_|

3.2 Recursion Theorem of Polynomial-Time Proofs

Proposition 17. (Recursion Theorem) Let U(,(-,-)) be a Turing machine that computes a two-
place function: N x N — N. There exists a Turing machine U(k,-) (i.e., there exists k € N) that
computes a function: N — N, where for every w € I,

Uk, w) = U(t, (k, w)).

(Note: for notation U(,-), see Section 2.5.)

For the proof of this proposition, see [23](Section 6.1). The point is that we can construct a
Turing machine Upn(k, ) that can read its own code, k. Note that the computational complexity
of reading its own code is constant in (independent from) input size, |w|. U(k,-), on input w, first
reads k, and then simulates U(¢, (-, -)) on input (k,w).

By using this proposition, we can obtain the PTM version of the recursion theorem.

Lemma 18. (PTM and formula version of Recursion Theorem) Givent € N, let formula & (k, w),
in which only k and w occur free, polynomial-time represent function Uppm(t, (k, w)) on (k,w) €
N2, Then, for any t € N, there exists k € N and formula py such that formula py(w), in which
only w occurs free, polynomial-time represents function Uprm(k,w) on w € N, and

PAFVYw (pr(w) < &i(k,w))

Proof. From the recursion theorem (Proposition 17), for any ¢ € N, there exists k¥ € IN such that
for any w € IV,
Uprm(k,w) = Uprm(t, (k, w)).

Here, PTM Uprp(k, <) runs as follows:

. (Input:) weN

. (Output:) accept/reject

. First, read its own code, k € N via the recursion theorem (Proposition 17).
. Simulate PTM Uptm(t, (-, +)) on input (k, w).

. Accept if and only if Uprm(?, (k, w)) accepts.

T W N =
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Therefore, the difference between Upra(k,w) and Uptm(t, (k, w)) is the step in which Upram (&, w)
reads its own code, k, while Upram(?, (k, w)) obtains k as an input.
Let pr(w) polynomial-time represent Uprm(k, w). Let 0(k) represent the computation of the
step in which Uppam(k, w) reads its own code, k.
Since Uprm(k, w) can always reads its own code, k, clearly from Proposition 2 there exists
k € N such that
PAF d(k).

Then, there exists & € N such that
PAF Vw (0(k)A&(k,w) — &(k,w)).

Since formula (0(k) A & (k, w)) polynomial-time represents Uprm(k,w) from Proposition 4, we
identify it by pr(w). Then, there exists k € N and p;(w) such that

PAEF VYw ( pr(w) < &(k,w) ),

3.3 Godel Sentences of Polynomial-Time Proofs

Lemma 19. Let T be a consistent PT-extension of PA. Then, for any e € N, there exists a set of
formulas, G = {p. r(a) | a € N}, such that

PAFVX (per(x) < —Prrlper(x)](e, [G],%) ).
For all x, p. p(x) is called a “Gidel sentence” with respect to PTM.

Proof. Given e € N and theory T', PTM Uptm(t, (k, 2)) in Lemma 18 is specialized to this lemma
as follows:

L. (Input:) (k,z) € N?

2. (Output:) accept/reject

3. Construct formula pj(x) that polynomial-time represents the computation of Uppm(k, x) via
the polynomial-time representability theorem (Theorem 11). Let G, = {px(a) | a € N}.

4. Construct PTM Uprm(e, (p, #Gr, )) to produce a proof of formula pg(x). Then, check whether
it outputs a valid proof tree of the input by using Uptm(vr,-). That is, verify whether the
following holds or not:

PTM.(2) Fr pr(x),
1.e.,, check
Uprm(e, (p, #Gk, %)) =y A Uprm(vr, (#p(X),y)) accepts,

5. Accept if and only if the above-mentioned relation “does not” hold.

It is clear from the definition of formula Prr[](-, -, -) in Section 2.10 that =Prr[pr(x)](e, [Gr], X)
represents the above-mentioned relation that Upry(?, (k, 2)) accepts.

Therefore, from Lemma 18, for any ¢ € N (i.e., for any e € N), there exists £ € N and formula
pr such that

PAFVx (pi(x) — —Prrlp(x)(e, [G:],%) ).

We rename pj, as p. 7, which is a special symbol for a “Godel sentence” with respect to PTM, in
this paper. (We also rename G, as G.)
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3.4 The First Incompleteness Theorem of Polynomial-Time Proofs

Theorem 20. Let T be a consistent PT-extension of PA. Let p. p(a) be a Gidel sentence with
respect to PTM, where a € N.
For alle €N and all x € N,

PTM.(z) 7 per(x).

Proof. Assuming

JeeN Jx €N PTM.(x)Fr per(x), (8)

then
JeeN Jz €N PAF Prplp.r(x)](e, [G],x), (9)

from Lemma 12.
On the other hand, Eq. (8) implies
JeeN Iz eN TF pe.r(x).
According to the property of the Godel sentence with respect to PTM (Lemma 19), for any e € N

PAFVx (p.r(x) — —Prplp.r(x)](e, [G],x) ).

Therefore,
deeN JzxeN TF —Prrlp.r(x)|(e, [F],x). (10)

Since T is a consistent PT-extension of PA, Eq. (9) contradicts Eq. (10).
Thus,

PTM.(z) 7 per(x).

3.5 The Second Incompleteness Theorem of Polynomial-Time Proofs

Theorem 21. Let T be a consistent PT-extension of PA. For any e €N and any set of formulas
U = {¢(a) | a € N}, there exists e* € N such that for any x € N

PTM, () Y —~Pro[e(x)](e”, [#],%). (11)

Proof. Let G = {p.r(a) | a € N} be a set of Gédel sentences with respect to PTM. Let GT =

t
{PrT[pe r(a)l(e, [G],a) | a € N}, Gtt = {_'pe,T(a) | a € N}, and Gttt = {pe,T(a) A _'pe,T(a)
a € N}.
For any e € N, there exist eT € N, e7T € N and ettt € N such that

PAF Vx ( Profp.r(x)](e, [G], %)

Prr[Prrlp. r(x))(e, [1, %))(e*, [6+],%)  (by Lemma 16)
Prr[—pe 7(x)](etT, [GT1],x) (by Lemma 19 and Corollary 14)
Prr[per(x)](e, [G], %) A Prr[=p. r(x)](e*F, [6TH],%)

Prrlpe (%) A =per(x))(etTH [GTTT],x) ). (by Corollary 15)  (12)

For any formula family ¥ = {¢(a) | a € N},

PAF Vx ( per(x) A—per(x) — ¥(x)). (13)

7

bl
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Hence by Corollary 14, for any etT+ € N, there exists e* € N such that
PAF Vx ( Prolper(x) Aper (X)), [0, %) — Prolele,[W],%) ). (14)
Therefore, for any e € N, there exists e* € N such that
PAF Vx ( Prrfper(x)l(e, [G],x) — Prr[y(x)](e”, [V],x) ).
That is, for any e € N, there exists e* € N such that
PAF Vx (=Prr[y(x)](e”, [¥],x) — —Prrlp.r(x)](e, [6],%)).
Since p. 7(x) is a “Godel sentence” with respect to PTM, from Lemma 19,
PAFEVx (per(x) = —Prrlper(x)l(e, [G],%) ).

Hence, for any e € N, there exists e* € N such that

PAF Vx ( =Prp[p(x)](e", [¥],x) — per(x)). (15)
We now assume that there exist ¢ € N and a formula set ¥ such that
Ve €N Jz e N PTM,(z) Fr —Pre[¢(x)](e", [¥],x). (16)

Then, PTM Uptm(e’, ) is constructed using PTM Uprpm(e, -) as follows:

— (Input: ) (p,#G',a) € N, where ¢’ = {p. r(a) | « € N}.

— (Output: ) Godel number of a proof tree of p.s r(a) or 0.

— First, read its own code, ¢’ € N, via the recursion theorem (Proposition 17).

— Syntactically check whether the input has the form of (p,#G’, a) and #G’ = #{p. r(a) | a €
N}, If it is not correct, output 0. Otherwise, go to the next step.

— Find a proof, 7, of formula

vx (—Prr(d(x)](e”, [¥],x) — per(x)),

where there exists e* € N such that a proof of the formula exists, according to Eq. (15). Here,
the size of 7 is constant in |a].

— Simulate Uptp(e, (p, #P[e*], @), and check whether its output is the Godel number of a valid
proof tree of =Prr[¢(a)](e”, [¥],a) by using Uptm(vr, -), where @[e*'] = {=Prr[¢(a)](e™, [¥],a) |
a € N}.

— If it is not a valid proof tree, then output 0.

— If it is a valid proof tree (say #), using proofs,  and =, construct the following proof tree of

perr(a):

< per7(a), Modus Ponens > [0, < —Prp[y(a)l(e”, [¥],a) — pe r(a), Modus Ponens >
[7,Vx (=Pre[p(x))(e”, [W],x) — por(x)) — (-Prr[d(a)(e”, [¥],a) — por(a))]]
Output the Godel number of the proof tree.

The running time of Uptm(e’, -) is that of Uptum(e, -) plus polynomial-time in |a].
Since we assume that Eq. (16) holds, Uptm(e’, (p, #G', a)) outputs the Gédel number of a valid
proof tree of p.r r(a). Thus,

Jz €N PTM(2) bp per ().

This contradicts Theorem 20. Therefore, Eq. (16) does not hold. That is, for any e € N and
any ¥, there exists e* € N such that for any z € N

PTM.(2) Fr —Prrly(x))(e”, [¥], x).
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4 Polynomial-Time Decisions

In order to prove the (resource bounded) unprovability of P#NP, this section introduces our
formalization of a decision made by a polynomial-time Turing machine (polynomial-time decision:

PTD).

4.1 Polynomial-Time Decisions

This section introduces the formalization of a decision made by a polynomial-time Turing machine
(polynomial-time decision: PTD).

Let @ = {p(a) | a € N} be a set of an infinite number of formulas in PA. If Uprm(e, (d, #P, a))
accepts and 91 = ¢(a) (i.e., ¢(a) is true in the standard model of natural numbers), we then denote

PTMf(a) > p(a).

(This can be interpreted as “Uprwm(e, <) correctly accepts p(a).) Here d denotes a natural number
(e.g., 1), which indicates Upam(e, -) that the output target is a decision on the formula’s truth. In
other words,
PIME () > o(a)
< Uprmle, (d, #P,a))accepts A I = o(a).

If Uprmle, (d, #P,a)) rejects and M = —p(a) (ie., ¢(a) is false in the standard model of
natural numbers), we then denote PTMf(a) > —(a). (This can be interpreted as “Uprp(e, )
correctly rejects p(a).) In other words,

PTM2(a)» —p(a)
< Uptmle, (d, #P,a))rejects A M= —p(a).

Here note that PTMf(a) >-p(a) is different from PTMf(a) >-p(a), where 2 = {-p(a) | a € N}.
3

In addition, we use the notation PTMf(a) Bo(a) if and only if —( PTMf(a) >(a) ).
® In the notation of polynomial-time proofs,
PTM.(a) F ¢(a),

we omit ¢ = {p(a) | « € N} in a place of PTM.(a) F ¢(a) (e.g., the upper right position of PTM.),
since @ is uniquely determined by the object of the proof, ¢(a). However, in polynomial-time decisions,
we have two different types of decisions as follows, as described above:

PTM? (a) > o(a),
PTMZ(a) > ¢(a),

where 2 = {—p(a) | « € N}. In the former notation, ¢(a) is correctly accepted, while, in the latter
notation, —p(a) is correctly rejected. Therefore, in the notation of polynomial-time decisions,

PTM? (a) > o(a),

we cannot omit @ in the upper right position of PTM..
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We now introduce a relaxed notion of PTM? (a) > ¢(a). We denote
PTMZ (a) >y ¢(a)

if and only if
Uptm(e, (d, #P,a))accepts A U(v, (d, #P,a))accepts.

Lemma 22. Let ¢ = {p(a) | a € N} be a set of an infinite number of Ay-formulas in PA, and
@ represent a primitive recursive relation Rg, where there exists a Turing machine U(vy, ) such
that, for every a € I,

a € Rg < Uvy,(d,#P,a))accepts.

Then,
PTMf(a) by, p(a) & PTMf(a) >p(a),

and
PTM?(a) by, Tp(a) & PTM?(a) > —p(a).

Proof. Since Rg is a relation that formula ¢ represents, for every a € N
U(vy, (d, #P,a))accepts = a€ Rg = PAF p(a),
U(ve, (d, #P,a))rejects = a ¢ R = PAF —p(a).
Since M is a model of PA| from the soundness of PA, for every a € N
U(vy, (d, #®,a))accepts = I |= ¢(a),

U(ve, (d, #9, a))rejects = N |= —p(a).

4.2 Formalization of Polynomial-Time Decisions

A formula to represent the relation on polynomial-time decisions,
PTMf(a) > ¢(a), is obtained, in a manner similar to that shown in Section 2.10.
Let @ = {p(a) | a € N} be a set of an infinite number of A;-formulas in PA. Let formula

PTM-Acc(e, [®],a)

polynomial-time represent
Uptm(e, (d, #P,a))accepts

over natural numbers, (e, #®, a).
Let formula

Acc(e, [@],a)

represent

Ule, (d, #®, a))accepts

over natural numbers, (e, #®,a). Here, if a = (ay,...,a;), we then denote

Acc(e, [@],a1,...,a;)
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to represent

Ue, (d, #P,(ay,...,ar)))accepts.
The method of constructing these formulas is the same as that described in Section 2.10.
We then define the following formulas: for all ¢ € N,
CAylp(a)l(e,[P],a) = PTM-Acc(e, [P],a) A Acc(v,[P],a),
CRy[p(a)l(e, [@],a) -PTM-Acc(e, [®],a) A —Acc(v, [P],a),
CD[p(a)](e, [@],a) CAy[p(a)](e, [@],a) V CRy[p(a)l(e, [2],a),

(Here, CA, CR, and CD stand for ‘correctly accept’, ‘correctly reject’, and ‘correctly decide’,
respectively.)
We also define the following formulas: for all ¢ € N,

[p(a)l(e, [@],a) = PTM-Acc(e, [P],a) A ¢(a),
[e(a)]l(e, [@],a) = -PTM-Acc(e, [P],a) A —p(a),
CD[p(a)l(e, [?],a) = CAlp(a)l(e, [P],a) V CR[p(a)](e, [P],a).

Lemma 23. Let 2 = {w(a) | a € N} be a set of an infinite number of Ay-formulas in PA.
Then, there exists a primitive recursive function f such that

CA
CR

e

-

bl

Jy < f(#2,Sizeq(a)) Uprm(vpa, (#w(a),y))accepts <  PAF w(a), and
Az < f(#2,Sizeq(a)) Uprm(vpa, (#-w(a), z))accepts <  PAF —w(a).

Proof. Since w(a) is a Aj-formula, there exists a TM U(eg, -) such that
VaelN (PAF w(a) = TMZ(a)Fps w(a) V PAF —w(a) = TM? (a) Fpa —w(a)),

where 2 = {~w(a) | « € N}, and Sizen(a) = Sizeg:(a) for all a € N.
Therefore, there exists another TM U(eq, -) such that

Va € N Uley, (#£2,a)) = x| A ( Uleo, (p,#£2,a)) = #7 V U(eq, (p, #£2',a)) = #=.

(That is, 7 is a proof tree of w(a) or —w(a), generated by U(eg,-).)
Hence, there exists a TM U(es, -) such that

U(es, (#£2,n)) = max{ [7(a)| |
a €N A n=Sizeg(a) A (U(en,(p,#02,a)) =#7 V Uleo, (p,#2',a)) = #7) }.
(That is, U(es, (#£2,n)) computes the maximum length of proofs that U(eg, -) outputs where the
input size is n.)

Thus, there exists the above-mentioned primitive recursive function f that is computed by TM

U(ez, )
-

Definition 24. Let 2 ={w(a) | a € N} and & = {p(a) | a € N} be sels of an infinite number of
Aq-formulas in PA.
Let U(vA, ) be a TM as follows:
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— (Input: ) (d,#P,a)

— (Output: ) accept or reject

— Let ¢ = {p1(a) | a € N} and P2 = {p2(a) | a € N}, If p(a) = p1(a) A pa(a), then
let @ = {p1(a) A pa(a) | a € N?}, where Sizeg(a) = Sizeg, (a) + Sizeg,(a). Then, simulate
U(vA, (d, #®P1,a)) and U(vA, (d, #®s,a)). (Here, whether p(a) is the form of ¢1(a) A pa(a)
1s syntactically checked by some rule, and is uniquely decided. For example, search a formula
from left to right and syntactically check the form based on the leftimost A, and if it s not the
form then move to the right direction to find another A, etc.)
Accept if and only of both of them accept.

— If theorem in PA,

PAF Vx( ¥(x) — o(x)),

is installed in U(v,-), then simulate U(va,(d, #W¥,a)), where ¥ = {¢(a) | a € N} and
Sizeg(a) = Sizeg(a) + ¢ (c: constant).

Accept if and only if U(vg, (d, #V,a)) accepts.

A finite number of the theorems explicitly shown in this paper are installed in U(v3, ).

— Let ¥ = {¢(a) | a« € N} be a set of an infinite number of Aj-formulas in PA. If & =
{CAq[¥(a)l(e, [W],a) | a € N}, then simulate Uprm(e, (d, #¥,a)) and U(vA, (d, #W,a)). Here
Sizeg(a) = 2 - Sizeg (a).

Accept if and only of both of them accept.

— Unless the above-mentioned cases occur, check (by exhaustive search for y < f(#12,Sizeg(a)))

whether

Jy < f(#2,Sizeg(a)) Uprm(vpa, (Fo(a),y))accepts, (17)

where Upram(vpa, -) is defined in Section 2.7, and [ is a primitive recursive function defined
m Lemma 23.
Accept if and only if Fq. (17) holds.

Let U(vE, ) be a TM as follows:

— (Input: ) (d,#P,a)

— (Output: ) accept or reject

— Let @1 = {p1(a) | a € N} and P2 = {p2(a) | a € N}, If p(a) = p1(a) V pa(a), then
let @ = {p1(a) V pa(a) | a € N?}, where Sizeg(a) = Sizeg, (a) + Sizeg,(a). Then, simulate
U(vE (d,#®1,a)) and U(vE (d, #®2,a)). (Here, whether o(a) is the form of p1(a)V pa(a) is
syntactically checked by some rule, and is uniquely decided.)
Reject if and only if both of them reject.

— If theorem in PA,

PAF Vx( —¢(x) — —p(x) ),

is installed in U(vE, "), then simulate U(vE, (d, #¥, a)), where ¥ = {¥(a) | a € N} and
Sizeg(a) = Sizeg(a) + ¢ (c: constant).

Reject if and only if U(vE, (d, #W,a)) rejects.

A finite number of the theorems explicitly shown in this paper are installed in U(vg, ).

— Let ¥ = {¢(a) | a« € N} be a set of an infinite number of Aq-formulas in PA. If & =
{=CRg[¥(a)l(e,[¥],a) | a € N}, then simulate Uppm(e, (d, #¥,a)) and U(vE, (d, #¥,q)).
Here Sizeg(a) = 2 - Sizeg(a).

Reject if and only if both of them reject’.
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— Unless the above-mentioned cases occur, check (by exhaustive search for y < f(#12,Sizeg(a)))
whether

Jy < f(#42,Sizeg(a)) Uprm(vpa, (F-¢(a),y))accepts, (18)

where Uprym(vpa, ©) is defined in Section 2.7, and [ is a primitive recursive function defined

m Lemma 23.
Reject if and only if Eq. (18) holds.

If U(va,) and U(vE, ) are TMs defined in Definition 24, we simply denote by
CAglp(a)l(e, [®],a) = CAalp(a)l(e, [P],a),
CRalp(a)l(e, [@],a) CRyz[e(a)](e, [2],a),
CDg[p(a)l(e, [2],a) CAyale(a)l(e, [9],a) V CRyz[p(a)l(e, [P],a),
Definition 25. We say U(v,-) “soundly accepts” if, for any ® = {p(a) | a €N}, for all a € N,

U(v, (d, #®P,a))accepts = I o(a). (19)
We say U(v,-) “soundly rejects” if, for any & = {p(a) | a € N}, for any a € N,
U(v, (d, #P,a))rejects = N = —p(a). (20)

The following lemma is obtained from Definitions 24 and 25, and Lemma 23.

Lemma 26. Let U(vg,-) soundly accept, and U(vE, ) soundly reject.

For all a € N,
U(vg, (d, #®, a))accepts < N|=p(a). (21)
U(vg, (d, #P,a))rejects & NE —p(a). (22)
PAF Vx (Acc(vh, [®],(x,%x)) — Acc(vh, [®1],x) A Acc(va, [@2],%), (23)

where ® = {p1(a) A pa(a) | (a,a) € N?}.
PAF Vx (—Acc(vE [@7,(x,%x)) — —Acc(vE, [@.],x) A —Acc(vE, [®,],x%), (24)
where @' = {p1(a) V pa(a) | (a,a) € N?}.

PAF Vx ( CAp[v(x)](e, [P],x) < Acc(vé, [CAle, 2]],%) ),

(
where ¥ = {y(a) | « € N} is a set of an infinite number of Ay-formulas in PA, and CAle, 2] =
{CAqly(a)l(e,[V], a) | a € N}

PAF  Vx ( CRg[¥(x)]|(e,[¥],x) — -Acc(vE [CR[e, 2]],%) ), (26)
where CR e, 2] = {-CRga[¢(a)](e, [¥],a) | « € N}.
Remark: If
Jr eN NE —p(x),
then

PAW Vx (Acc(vh, [P],x) — ¢(x)),

since if PA F Vx ( Prpa([e(x)]) — ¢(x) ), then 3z € N PA F =Prpa([¢(x)]), which implies
PAF Con(PA) and contradicts the second Godel Incompleteness Theorem.
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Lemma 27. Let & = {p(a) | a € N} be a set of an infinite number of Ay-formulas in PA.
For alle € N, and for all a € N,

PTM?(a) bya pla) & PTM?(a) > p(a),
For alle € N, and for all a € N,
PTM?(a) byr op(a) & PTM?(a) > —p(a).
Proof. For all e € N, and for all a € N,
PTMf(a) Bya pla) &  Uppmle, (d, #P,a))accepts A U(vy, (d, #®, a))accepts.

As shown in Eq. (21),
U(vg, (d, #®,a))accepts < N |= o(a).

Hence,
PTMf(a) By a p(a) < Uprtmle, (d,#P,a))accepts A M ¢(a)
& PTMf(a) > p(a).
Similarly, from Eq. (22), we obtain that for all e € N, and for all « € N,
PTM?(a) By —p(a) < PTM?(a)>-p(a).
_|

Lemma 28. Let 2 = {w(a) | a € N} and & = {p(a) | a € N} be sets of an infinite number of
Aq-formulas in PA.
Then for alle € N,

PAF Vx (CAgle(x)](e, [P],x) — CAsle(x)](e, [P],%x) ),
PAF Vx ( CRgple(x)](e, [P],x) — CRal[e(x)](e, [P],x) ).
Proof. For all e € IV,

PAF V¥x ( CAple(x)](e, [P],x)
—  PTM-Acc(e, [@],x) A Acc(vh, [P],x)
—  PTM-Acc(e, [@],x) A Acc(vé, [¢], %)
~ CAslp(a)(e,[#],) ).

For all e € NN,
PAF Vvx ( CRo[p(x)](e, [®],%)
— —=PTM-Acc(e, [#],x) A —Acc(vE, [@],x)
—  =PTM-Acc(e, [@],x) A —Acc(vE, [@],%)
—  CRglp(a)l(e, [2],a) ).

41



5 Incompleteness Theorems of Polynomial-Time Decisions

This section shows the polynomial-time decision version of the (second) Godel incompleteness
theorem. First, we introduce the Godel sentences of polynomial-time decisions, and the first in-
completeness theorems of polynomial-time decisions. We then present the second incompleteness
theorem of polynomial-time decisions, based on the the first incompleteness theorems and the
derivability conditions of polynomial-time decisions.

5.1 Derivability Conditions of Polynomial-Time Decisions

Lemma 29. (D.1-CA) Let ® = {p(a) | a € N} be a set of an infinite number of Ay-formulas
m PA.
For any e € N, for any v €N, and for any a € N

PTM?(a) b, p(a) = PAF CA,[p(a)l(e, [D],a).
Proof. For all e € N, and for all a € N,
PTMf(a) >y p(a)
< Uprmle, (d,#®,a))accepts A U(v, (d, #P, a))accepts

= PAF PTM-Acc(e, [P],a) A Acc(v, [®],a) (from Zj-Completeness Theorem of PA)
& PALE CA,[e(a)l(e, [P],a).

_|

Lemma 30. (D.1-CR) Letd = {p(a) | a € N} be a set of an infinite number of Ay-formulas
m PA.
For any e € N, for any v €N, and for any a € N

PTM?(a)>, mp(a) = PAF CR,[p(a)](e,[F],a).
Proof. For all e € N, and for all a € N,

PTM? (a) >, —¢(a)

Uptm(e, (d, #P,a))rejects A U(v, (d, #P, a))rejects

PAF —PTM-Acc(e, [P],a) A —Ace(v,[P],a) (from X-Completeness Theorem of PA)
PAF CRy[p(a)](e, [®],a).

¢t U

_|

Lemma 31. (D.2-CA) Let 2={w(a)|a €N}, & ={p(a)|a N}, ¥ ={¢(a)]|a€N}, and
I'={p(a) A(a)| (a,a) € N?} be sets of an infinite number of Aj-formulas in PA.
For all e € N and for all eo € N, there exists e3 € N such that

PAF Vx( CAgle(x)](er, [P],x) ACAg[Y(x)](es, [P],x)
— CAgple(x) A Y(x)](es, [I',x) ).

Proof. PTM Uprm(es, ) is constructed by using two PTMs, Uprum(er, (d, #&,-)) and Uprm(es, (d, #7, -))
as follows:
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L. (Input: ) (d,#I, (z,z)) € N%.
2. (Output: ) accept or reject
3. Run the following computation

UPTM(ela (da #@a $))a
Uprm(es, (d, #7, x)).

4. If both of them accept, then accept. Otherwise reject.
From the construction of Uprn(es, -), clearly
PAF Vx ( PTM-Acc(er, [P],x) A PTM-Acc(es, [F],x) <« PTM-Acc(es, [I'],x) ).
As shown in Eq. (23),
PAF  Vx ( Acc(vh, [@],x) AAcc(va, [W],x) — Ace(va,[I,x) ). (27)
Then, for all e; € N and for all e5 € I, there exists ez € N such that

PAF Vx ( CAgle(x)](er, [2],x) ACAg[Y(x)](es, [F],%)
— ( PTM-Acc(ey, [@],%x) A Acc(vh, [P],x%))
A ( PTM-Acc(es, [#],x) A Ace(va, [¥],x) )
— ( PTM-Acc(eq, [@],x) A PTM-Acc(es, [¥],x) )
A (Ace(va, [@],x) A Ace(vh, [¥],x) )
— PTM-Acc(es, [T],x) A Ace(va,[I,x)
— CAglp(x) A Y(x)](es, [I'],x) ).

_|
Lemma 32. (D.2-CR) ILet 2={w(a)|ae N}, & ={p(a)|aeN}, ¥ ={¢(a)]|aecN}, and

I'={p(a) A(a)| (a,a) € N?} be sets of an infinite number of Aj-formulas in PA.
For all e € N and for all eo € N, there exists e3 € N such that

PAF Vx( CRgle(x)](e1, [?],x) ACRg[¥(x)](e2, [¥],x)
— CRale(x) vV ¢(x)](es, [0],%x) ).

Proof. PTM Uprm(es, ) is constructed by using two PTMs, Uprum(er, (d, #&,-)) and Uprm(es, (d, #7, -))
as follows:

—_

. (Input: ) (d,#6,(z,z)) € N*.
. (Output: ) accept or reject
3. Run the following computation

[\

Uprml(er, (d, #9, x)),
UPTM(eZa (da #Wa $))

4. If both of them reject, then reject. Otherwise accept.
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From the construction of Uprn(es, -), clearly
PAF Vx ( -PTM-Acc(ey, [@],x) A =PTM-Acc(eqs, [¥],x) < -PTM-Acc(es, [O],x) ).
As shown in Eq. (24),
PAF  Vx ( —Acc(vE [@0],x) A-Ace(vE [#],x) — —Ace(vE [0],%) ). (28)
Then, for all e; € N and for all e5 € I, there exists ez € N such that
PAF Vx ( CRpe(x)](e1, [P],x) ACRg[y(x)](es, [¥],x)
— (~PTM-Acc(ey, [@],%x) A —Acc(vE [4],x%))
A ( “PTM-Acc(ey, [#],x) A =Acc(vE [¥],x))
— ( "PTM-Acc(ey, [€],x) A “PTM-Acc(es, [¥],x) )
A (=Ace(vE [0],x) A —Ace(vE, [V],x))
— —PTM-Acc(es, [T],x) A —Ace(vE [T, x%)
— CRgle(x) A d(x)](es, [, %) ).
_|
Corollary 33. Let 2 = {w(a) |a € N}, ¢ = {p(a) | a € N}, and ¥ = {¢(a) | « € N} be sets of

an infinite number of Aq-formulas in PA.
We assume that

PAF Vx (p(x) — ¢(x))

is installed in U(va, ).
Then, for all ey € N there exists es € N such that

PAF  Vx ( CAgle(x)](e, [@],x) — CAg[y(x)](es, [¥],%x) ).
Proof. PTM Uprm(es, ) is constructed by using PTM Uprm(er, (d, #9, -)) as follows:
1. (Input: ) (d,#%,x)
2. (Output: ) accept or reject
3. Run the following computation
Uprm(er, (d, #P, z)).
4. Accept if and only Uptm(er, (d, #&, x)) accepts.
From the construction of Uprn(es, -), clearly
PAF Vx ( PTM-Acc(ey, [?],x) — PTM-Acc(es, [¥],x) ).
Since PA F Vx (p(x) — ¥(x)) is installed in U(v2, ),
PAF Vx ( Ace(va, [@],x) — Acc(va, [¥],x) ).
Then, for all e; € N there exists e5 € N such that

PAF Vx ( CAgple(x)](e1, [P],x)
— PTM-Acc(ey, [@],x) A Acc(va, [P],x)
— PTM-Acc(es, [¥],x) A Acc(vh, [#],x)
— CAg[p(x)|(ez, [V],x) ).
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_|

Corollary 34. Let 2 = {w(a) |a € N}, ¢ = {p(a) | a € N}, and ¥ = {¢(a) | « € N} be sets of
an infinite number of Aq-formulas in PA.

We assume that
PAE Vx (—p(x) — (x))

is installed in U(vE, ).
Then, for all ey € N there exists es € N such that

PAF  Vx ( CRgle(x)](e1, [@],x) — CRalv(x)](ez, [¥],%x) ).
Proof. PTM Uprm(es, ) is constructed by using PTM Uprm(er, (d, #9, -)) as follows:

1. (Input: ) (d,#%,x)
2. (Output: ) accept or reject
3. Run the following computation

Uprm(er, (d, #9, 7).
4. Reject if and only Uprum(er, (d, #P, ©)) rejects.

From the construction of Uprn(es, -), clearly
PAF Vx ( -PTM-Acc(ey, [P],x) < —-PTM-Acc(es, [¥F],x) ).
Since PA F Vx (—p(x) — —¢(x)) is installed in U(vE, ),
PAF Vx ( —Acc(vE [#],x) — -Acc(vE [¥],x)).
Then, for all e; € N there exists e; € I such that

PAF Vx ( CRo[p(x)](e1, [9],x%)

—PTM-Acc(ey, [#],x) A —Ace(vE [@],%)
—“PTM-Acc(es, [¥],x) A ﬁAcc(vg, [¥],x)
CRalb(0)(es, [7],%) ).

!

|

!

_|

Lemma 35. (D.3-CA) Let 2 ={w(a)|a €N} and ¢ = {p(a) | a € N} be sets of an infinite
number of Aj-formulas in PA. Let CAle, 2] = {CAqn[p(a)l(e, [@],a) | a € N}.
For all e; € N, there exists es € N such that

PAF  Vx ( CAgle(x)](e1, [@],x) — CAp[CAn[e(x)](e1, [®],x)](e2, [CA[e1, £2]],%) ).
Proof. PTM Uprm(es, ) is constructed by using PTM Uprm(er, (d, #9, -)) as follows:

L. (Input: ) (d,#CAley, £2],x) € N3
2. (Output: ) accept or reject
3. Run the following computation

Uprm(er, (d, #9, 7).
4. Accept if and only Uptm(er, (d, #&, x)) accepts.
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From the construction of Upn(es, -),
PAF Vx ( PTM-Acc(ey, [?],x) — PTM-Acc(es, [¥],x) ).
As shown in Eq. (25),
PAF Vx ( CAglp(x)](er, [@],x) — Acc(vi, [CA[er, 2]],%) ).
Then,

PAF Vx ( CAgle(x)](er, [@],x)

PTM-Acc(ey, [P],x) A Acc(vé, [¢], %)

PTM-Acc(ey, [@],x) A CAple(x)](el, [@],x)
PTM-Acc(es, [CA[e1, 2]],%) A Ace(vh, [CA[er, £2]], %)
CAg[CAg[p(x)](er, [P],x)](ez, [CAler, 2]], x) ).

A

_|

Lemma 36. (D.3-CR) Let 2 ={w(a)]|a €N} and & = {p(a) | a € N} be sets of an infinite
number of Aj-formulas in PA. Let CR[e, 2] = {-CRp[p(a)](e, [®],a) | a € N}.
For all e; € N, there exists es € N such that

PAF Vx ( CRglp(x)](e1, [?],x) — CRp["CRple(x)](e1, [P],x)](e2, [CRe1, £2]],%) ).
Proof. PTM Uprp(en, ) is constructed by using PTM Upry(er, (d, #9, -)) as follows:

L. (Input: ) (d,#CRley, 2], x) € N3
2. (Output: ) accept or reject
3. Run the following computation

Uprm(er, (d, #9, 7).
4. Reject if and only Uprm(er, (d, #P, ©)) rejects.

From the construction of Upn(es, -),

PAF Vx ( -PTM-Acc(ey, [P],x) < —-PTM-Acc(eq, [¥F],x) ).
As shown in Eq. (26),

PAF  Vx ( CRolp(x)](er, [#],x) — —Acc(vE [CRler, 2]],%) ).
Then,

PAF Vx ( CRgpe(x)](e1, [P],x%)

—PTM-Acc(ey, [#],x) A —Ace(vE [@],%)
—“PTM-Acc(e, [P],x) A CRule(x)](e1, [P],x)
—PTM-Acc(es, [CRe1, 2]],x) A —Acc(vE [CRer, 2]],%)
CRa[~CRalp(x)](e1, [P], x)](e2, [CR[e1, £]], x) ).

Tl
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5.2 Godel Sentences of Polynomial-Time Decisions
Lemma 37. For any e € N and for any v € N, there exists a set of formulas, G4 = {pév(a) | a €
N}, such that
PAEVx (p2,(x) — —~CA[pZ,(x))(e, [677,x) ).
For all z € I, pév (x) is called a “Gidel sentence” with respect to CA.

Proof. Let e € N and v € N be given.

Based on the recursion theorem (Proposition 17), TM U(k,-) is constructed as follows:
. (Input:) (d, #N3, (e,v,2)) € N5,
. (Output:) accept or reject

. First, read its own code, k € IN.
. Construct a formula,

= W N =

pey(x) = Acc(k, [I¥],x,e,v),
(i.e. pév(x) represents the relation that Upry(k, (d, #£13, (e, v, z))) accepts). Let G4 = {pév(a) |
a € N}.
5. Execute PTM Uprum(e, (d, #G4, z)) to decide the truth of formula pév (x).
. Execute TM U(v, (d, #G*, x)) to decide the truth of formula pév (x).
7. Reject if and only if both of Upram(e, (d, #G4, z)) and U(v, (d, #G4, z)) accepts.

Here, note that when only x occurs free in formula pév (x), #pév(x) is a finite number. For
a €N, pév(a) is equivalent to o, ,(a) = (pév(x) Ax = a), and |#p, ,(a)| = O(|a]).
Then, in a manner similar to Lemma 18, we obtain

Vee NVve N PAF Vx (p?v(x) — —CA, [pjiv (x)](e, [647,%) ).

(e}

_|
Lemma 38. For any e € N and for any v € N, there exists a set of formulas, GF = {pgv(a) | a €
N}, such that
PAEFVx (pl,(x) = CRy[p,(x))(e, [67],x) ).

For all z € I, pfv (x) is called a “Gidel sentence” with respect to CR.

Proof. Let e € N and v € N be given.

Based on the recursion theorem (Proposition 17), TM U(k,-) is constructed as follows:
. (Input:) (d, #N3, (e,v,2)) € N5,
. (Output:) accept or reject

. First, read its own code, k € IN.
. Construct a formula,

N N

pey(x) = Ace(k, [I¥],x,e,v),
(i.e. p?v (x) represents the relation that Uprm(k, (d, #183, (e, v, 2))) accepts). Let G = {pfjv (a) |
a € N}.
5. Execute PTM Uprum(e, (d,#GT, z)) to decide on the truth of formula pfv (x).
. Execute TM U(v, (d, #G*, z)) to decide on the truth of formula pfv (x).
7. Accept if and only if both of Upry(e, (d, #G%, 2)) and U(v, (d, #G%, x)) reject.

Then, in a manner similar to Lemma 18, we obtain

Vee NVve N PAF Vx (pfv(x) — CR, [pfjv(x)](e, (611, %) ).

(e}
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5.3 The First Incompleteness Theorems of Polynomial-Time Decisions

Theorem 39. Lel p2 (a) be a Godel sentence with respect to CA, where a € N. Let G4 = {p2 (a) |
a € N}. Let U(v, ) soundly accept (see Definition 25).
For alle €N, and for all x € I,
PTME (2) po ().
Proof. Assume that there exist e € N, v € N and & € N such that
PTM? " (2) b, p,(x). (29)

From Lemma 29

PAF CA,[p, (%)](e, [6],x).

Since PA has model N,
NE CAlpz, (x))(e, [64],%). (30)

On the other hand, from assumption of Eq. (29), U(v, (d, #G*, z)) accepts. Since U(v, -) soundly
accepts,

Ni= pl, (x).
Applying Lemma 37 to the above equation,
N ~CA[p2, (x))(e, [647,%).
This contradicts Eq. (30). Thus, for all e € N, and for all z € N,
PTMS” (2) £, 2, (%),
4

Theorem 40. Let pf (a) be a Godel sentence with respect to CR, where a € N. Let G = {pF (a) |
a € N}. Let U(v, ) soundly reject (see Definition 25).
For alle €N, and for all x € I,
PTME (2) £l (x).
Proof. Assume that there exist e € N, v € N and & € N such that
PTM? " (2) b, —pf, (x). (31)
From Lemma 30,
PAF CR,[pf, (x))(e, [67], x).

Since PA has model N,
NI CRulpr, (x)](e, [677, ). (32)

On the other hand, from assumption of Eq. (31) U(v, (d, #G%, )) rejects. Since U(v, -) soundly
rejects,

NE —pf,(x).
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Applying Lemma 38 to the above equation,
N ~CRy[pf, (x))(e, [¢7],%).
This contradicts Eq. (32). Thus, for all e € N, and for all z € N,
PTME (2) fo =ty ().
4

The following Corollaries are immediately obtained from Theorems 39 and 40, since U(v3, )
soundly accepts and U(v%,-) soundly rejects, as shown in Lemma 26.

Corollary 41. Let 2 = {w(a) | a € N}, be a set of an infinite number of Ay-formulas in PA.
Let U(va,-) be a TM as defined in Definition 24. Let p2 ,(a) = p? ,(a) be a Godel sentence with
) vy

respect to CA, where a € N. Let G4 = {pﬁn(a) | a € N}.
For alle €N, and for all x € I,

PTMY% () £oa po(x).

Corollary 42. Let 2 = {w(a) | a € N}, be a set of an infinite number of Aq-formulas in PA.
Let U(vE, ) be a TM as defined in Definition 24. Let pf ,(a) = pf . (a) be a Giodel sentence with
) evd

respect to CR, where a € N. Let GB = {pfjn(a) | a € N}.
For alle €N, and for all x € I,

R
PTMZ® (2) fur =0 o(x).

5.4 The Second Incompleteness Theorem of Polynomial-Time Decisions

Lemma 43. For a € N, let p?ﬂ(a) = pévg(a) be a Gédel sentence with respect to CA, and
pfjn(a) = pfjvg(a) be a Gédel sentence with respect to CR. (For the definition of vh and vE, see
Definition 24.)
Then, there exists a primitive recursive function h such that for any Ai-formula sets ¥ =
{¢Y(a) | a e N} and 2 = {w(a) | a € N}, and for any e € N,
PAE Vx (=CAg[d(x)](h(e),[¥].x) — pla(x)), (33)

and

PAE ¥x (=CRo[Y(x)](h(e), [¥].x) — -—pig(x)). (34)
In other words, for any e € N, there exists e* such that

PAF Vx (=CAg[Y(x))(e",[W],x) — pla(x)), (35)

PAF Vx (—CRe[(x)l(e", [0],x) — —plo(x)), (36)
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Proof. Let
Ga ={rla(a) lac IV}

be a set of Godel sentences with respect to CA, and

G = {pla(a) | a e}

be a set of Godel sentences with respect to CR.
Let

g4+ = {CAplpla(a)l(e, [G] a) | a €I},
Gt = {-plg(a) [a e I},

gAttt = {P?,n(a) A _‘P?,n(a) | a € N},
G = {~CRa[pFp(a)l(e, [GG],a) | a € I},
Gt = {—plig(a) |a e I},

ghttt = {ngn (a) v _‘ngn (a) | a € N}

For any e € N, there exist eT € N, e7T € N and ettt € N such that

PAF ¥x ( CAgpto(x)](e, [G5],%)
CA[CA QLA a(x))(e, [61,0](e*, [647], %) (by Lemma 35)
[-pf yn(x)](e'l"", [G4+%],x) (by Lemma 37 and Corollary 33 )
CAglpito(x))(e, [G5], %) A CAgl=plo(x))(e, [G44F] %)
[

CAalpto(x) A ~plo(](eF, [6474] x), (by Lemma 31)  (37)

Ll

and

PAE Vx ( CRglplo(x)l(e, [GH], %)

CRa[=CRalpg(0)(e, [61, x))(e*, [67+],%) (b Lemma 36)

CRg [—|p€ o (X))t [¢FF+] x) (by Lemma 38 and Corollary 34 )
CRolpio(x)(e, [G5],%) A CRao[=pio(x))(ett, [¢7HH] x)
CRalpfa(x) v ~pa(ol(e*, [GT+4],x) ). (by Lemma 32) (3)

Ll

For any formula set ¥ = {¢(a) | a € N},

PAF Vx (pla(x) A —pia(x) — (x)), (39)
PAE Vx (=(pig(x) V =plg(x)) — —~¥(x) ). (40)

Hence by Corollaries 33 and 34, for any ett+ € N, there exists e* € I such that

PAF Vx ( CAglpla(x) A =plg(0))(e™*F, [¢47HH] x)

~ CAREIIE [, %) ), (41)
PAF Vx ( CRa[po(x) A ~po(x)](etF, [6"++] x)
— CRa[e()](e". [#],%) ). (42)
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Therefore, for any e € N, there exists e* € N such that

PAE Vx (CAglplg(x)l(e, [G5].%) — CAglv(x)](e”, [¥],x) ), (43)
PAE Vx ( CRelpfo(x))(e, [G5].%) — CRo[v(x))(e", [¥],x) ). (44)
That is,
PAF Vx (=CAgp(x)](e",[¥],x) — —CAg[pfp(x)](e, [G5].%) ), (45)
PAF Vx (—CReld(x)](e", [¥],x) — —CRalpla(x))(e,[G5],%) ). (46)

In addition, from the property of Godel sentences (Lemmas 37 and 38),

PAFVx (pllo(x) < =CAglplo(x))(e, [G5],%) ),
PAFVx (2pfig(x) = =CRalpln(x)l(e, [G5],%) ).

Hence,

PAF Vx (=CAp[g(x))(e”, [V],x) — plg(x)), (47)
PAF ¥x (=CRo[Y(x))(e",[V],x) — —pln(x)). (48)

Since e* is computed from e in a manner similar to those used in the lemmas and corollaries
in Section 5.1, there exists a primitive recursive function A such that for any formula sets ¥ and
2, and for any e € N,

PAF Vx (=CAg[e(x)](h(e),[W],x) — plg(x)),
PAF Vx (=CRo[¢(x))(h(e), [#],x) — =pig(x)).
_|

Lemma 44. Let T be a consistent PT-extenston of PA. Let assume that there existe € N, e* € N,
z €N and a Aj-formula set W = {¢(a) | a € N} such that

PTM.(z) Fr —=CD[¢(x)](e*, [¥], x). (49)

Then, there exists a primitive recursive function s such that € = s(e) € N and

Nev) = P @), SCA e [7],%), (50)
Ne-vx) = PIMS a)ee | SRy, [7].%), (51)

where @4[e*] = {~CAg[v(a)](e*, [¥],a) | a € N}, and OF[e*] = {CRy[¥(a)](e*, [¥],a) | a € N}.
Proof. PTM Uprm(é,-) is constructed using PTM Uprpm(e, -) as follows:

— (Input: ) (d,#04[e*],z) € ¥ or (d, #OF[e*],z) € N3.

— (Output: ) accept or reject

— Simulate Uprm(e, (p, #®[e*],2)), and check whether its output is the Gédel number of a valid
proof tree of =CD[¥(x)](e*, [¥],x) by using Uppm(vr, -).

— Let input be (d, #0%[e*], ). Then, accept if and only if it is a valid proof tree.
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— Let input be (d, #0%[e*], ). Then, reject if and only if it is a valid proof tree.

The running time of Uptnm(é,-) is that of Uppm(e, ) plus polynomial-time in |z|. From the
construction of Uprpm(€, ), there exists a primitive recursive function s such that & = s(e).
Since T is a consistent PT-extension of PA, if Eq. (49) holds,

N =CDlyx)](e", [¥],x).
Then,

NE ¥(x)

NE d(x) A ~CD[p(x)](e", [¥],x)

NE -PTM-Acc(e”, [¥],x) A ¥(x)

NE —-PTM-Acc(e”, [¥],x) A ME ¥(x)

NE —-PTM-Acc(e”, [7],x) A PAF ¢(x)

NE —PTM-Acc(e*, [#],x) A Uprm(vg, (d, #%, x)) (soundly) accepts
NE —PTM-Acc(e*, [#],x) A M Acc(vg, [P],x)

NE —PTM-Acc(e”, [#],x) A Ace(vy, [F],x)

NE ~CAylGN(e, [#],%)

— e e e e e

LU U (R (G

and

NE ~(x)

NE ~6(x) A =CDEGN(e", [],%)
NE PTM-Acc(e*, [P],x) A —¢(x))
NE PTM-Acc(e", [¥],x) A ME —¢¥(x)

N PTM-Acc(e", [¥],x) A PAF —9(x)

NE PTM-Acc(e*, [#],x) A Uppm(vi, (d, #,2)) (soundly) rejects
NE PTM-Acc(e*, [#],x) A ME —Ace(vE, [7],x)

NE PTM-Acc(e*, [#],x) A —Ace(vE [W],x)

NE ~CRe[BG)(C, [#],%).

Therefore, if Eq. (49) holds,

SR O I R R

Ni=v(x) = NE -CAg[x)l(e”, [¥],%),
NE=-v(x) = Nk -CRelYx))(e”, [¥],%).

Since “CAg[¢(x)](e*, [¥],x) and -CRg[¥(x)](e*, [¥],x) are Aj-formulas,

NEY(x) = PAF —CAgly(x)](e”, [V],x),
N —(x) = PAF —CRg[p(x)](e, [¥],x).

Then, from the definition of U(vg[ o -) and U(vg[e*], -) (see Definition 24), U(vg[e*], (d, #O4e*], z))
accepts if M = ¢(x), and U(v@ (d #OE[e*] ) rejects if M |= —1h(x).
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On the other hand, from the construction of Upry (€, -), if Eq. (49) holds, Uprwm (€, (d, #04[e*], z))
accepts, and Uppn (&, (d, #60%[e*], x)) rejects. Thus,

Nevx) = PIME Fl@)o,a  —~CAg[d(x)](e", [¥],x),

v@A[e*]
R e* *
N -w(x) = PIMZ ey, | —CRu[i())(e, F],x),

_|

Theorem 45. Let T be a consistent PT-extension of PA. For any set of Ay-formulas ¥ = {y(a) |
a €},
VeeN Fe" €N Ve e N PIM.(z)r —CD[¥(x)](e", [¥],x).

Proof. We assume that
there exist ¢ € N and a formula set ¥ such that

Ve* €N Jz € N PTM.(z) Fr —-CD[y(x)](e", [¥],x). (52)

Then, from Lemma 44, we can construct Uprpm(€,-) using Uptm(e, -) such that € = s(e) and
Uptm(€, ) satisfy Eqgs. (50) and (51).

Then, there exists a primitive recursive function ¢ such that e’ = #(€) € N and PTM Uprpm(e’, )
is constructed using PTM Uptm(€, ) as follows:

— (Input:) (d, #gSA[h(e’)]’ a) € N3 or (d, #ggR[h(e,)],a) € N? where QSA[h(e,)] = {pj@A[h(e,
a € N} and ggR[h(e,)] = {pZ@R[h(e,)](a) | @ € N}. (For the definitions of ©4[-] and @[
Lemma 44.)

(Output: ) accept or reject

— First, read its own code, ¢’ € N via the recursion theorem (Proposition 17).

— If input is (d, #QSA L a), then simulate Upram (€, (d, #604[h(e’)],a)), and accept if and only
if Uprm(E, (d, #04[h(e')], a)) accepts.

If input is (d, #G5x h(en] a), then simulate Upra (&, (d, #0%[h(¢')], a)), and reject if and only
if Uprm(E, (d, #0%[h(¢')], a)) rejects.

see

)](a) |
]

bl

——

—

The running time of Upp(e’, ) is that of Upp(e, -) plus polynomial-time in |a].
By substituting ©[h(e’)] for £2, in Eqgs. (33) and (34), we obtain that for any formula set
¥ = {¢(a) | « € N} and for any ¢’ € N,

PAF Vx (2CAgap(e()(h(e), [W],%)  —  pl gapien (%)), (53)
PAF Vx ( 2CRorpuem[V(x)I(A(e), [¥],%)  — =0l orpey(x) ). (54)

For all e € N and all a € N,

N= v(x) = f(F#P,Sizeg(a)) < f(#@A[e], Sizegape)(a)),
N= ~w(x) = [f(#7,Sizeg(a)) < f(#@R[e], Sizegre)(a))

(for the definition of function f, see Definition 24).
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Therefore,

NE vx) =

PAE Vx (—CAg[Y(x)](h(e)), W], %) = —CAgape b (x)I(h(e), [¥],x) ), (55)
NE w(x) =

PAE Vx (—CRy[p(x)](h(e)), [W],x) < —=CRerpen[v(x)I(h(e’), [¥],x) ). (56)

Hence, if Eq. (52) holds, then by applying Eqgs. (50), (51), (53), (54), (55), and (56),
NE v(x) = U(USA[h(e')]a (d, #QSA[h(e')]a a)) accepts,
m |: —|1/)(X) = U(ng[h(el)]’ (d, #ggR[h(e,)], a)) I'ejects.
On the other hand, if Eq. (52) holds, from the construction of Upn(e’, -) and Uprm(€, -),

Uprm(e’, (d, #QSA[h(e,)], a)) accepts,
Uprm(e’, (d, #GSR[h(e,)], a)) rejects.

Hence, if Eq. (52) holds, for a formula set ¥,

A
Ne d(x) = 3N TwelN PIMI (@) ba o8 gpo().

Yan(e)
R
NE ~i(x) = 3N Fwel PTMIAN @) b =ph o (x).

Yeln(en)]

This contradicts Corollaries 41 and 42. Therefore, Eq. (52) does not hold for e* = h(e') =
h(t(s(e))). That is, there exists a primitive recursive function g such that for any e € N, for any
¥, and for any 2z € N

PTML(2) i ~CDIp()](g(e), 7], %),
where g(e) = h(t(s(e))).
_|

Corollary 46. LetT be a consistent PT-extension of PA. There exists a primitive recursive func-
tion g such that for any set of Ay-formulas ¥ = {y(a) | a € N},

NE=ov(x) = VeeN VeeN PTM.(x)lr —-CA(X)](g(e), [¥],x),
NE=-w(x) = VeeN VeeN PTIM.(z)Wr —-CR[¥(x)](g(e), [¥],x).

6 Formalization of PZNP and a Super-Polynomial-Time Lower Bound

We now introduce the notations and definitions necessary to consider the P#NP problem in this
paper. We omit the fundamental concepts and definitions regarding P and NP (see [23] for them).
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6.1 P#ZNPD

Definition 47. Let Rssat C N be a relation such that x € Rssat if and only if there exists a
satisfiable 3CNF formula ¢ and ® = . Let SAT(x) be a formula in PAand SAT(x) represent
relation RgsaT in PA. (see Section 2.4 for representability.) That is, for every a € N

a € Rzgsat = PAF SAT(a),
a & Rssgar = PAF ﬁSAT(a).

Let SAT be a set of formulas in PA, {SAT(a) | a € N}, and co-SAT be a set of formulas in PA,
{-SAT(a) | a € N}. Let Sizesar(a) and Sizeco-sat(a) be |a|. Let DS be SAT U co-SAT.

Definition 48. Let theory T be a PT-extension of PA. Fore € N, let Uprm(e, (d, #8AT,-)), on
input ¥ € N, output one bit decision, whether ¥ € RssaT or & Ragat; in other words, SAT(x) is
true or false.

We then define a formula that characterizes the fact that a PTM, Uprm(e, (¢, 1)), given z € N,
can solve the problem of deciding the truth/falsity of formula SAT(x).

Definition 49. Let theory T be a PT-extension of PA.
DecSAT(e,x)

denotes a Ay-formula in PA, which represents the following primitive recursive relation on (e, x) €
N? such that
Uptm(e, (d, #SAT ,x)) accepts < x € Ragar.

More precisely, let
DecSAT(e,x) = CD[SAT(x)](e, [SAT],x)

(For the definition of this notation, see Section 4.2). This primitive recursive relation on (e, x)
means whether the decision (on x € Ragar) of PTM Uptm(e, (d, #S8AT ,-)) is correct or not.

We now introduce the Cook-Levin Theorem [23], which characterizes the P vs NP problem by
the satisfiability problem, 3SAT (an NP-complete problem).

Proposition 50. (Cook-Levin Theorem)
deeN dJneN Ve>n ( Uprml(e, (d, #SAT ,x)) accepts <& x € Ragar )
of and only if P = NP.
Lemma 51. Let theory T be a consistent PT-extension of PA.
VeeN Vne N Je>n TF —DecSAT(e, x),
of and only if PANP.

Proof. From the representability theorem (Proposition 2) regarding formula
DecSAT(e,x), the statement of this lemma is equivalent to

deeN Ine N Ve>n TF DecSAT(e, x),

if and only if P=NP.
Thus, we obtain the statement of this lemma from the definitions of formula DecSAT(e,x), and
Proposition 50.
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Lemma 52. Let theory T be a PT-extension of PA and w-consistent.
VeeN Vne N TF Ix>n -DecSAT(e,x),
of and only if PZNP.
Proof.
(If:)
When
Jx €N TF —DecSAT(e,x),

the following holds
TF 3x —DecSAT(e,x).

(Only ift)

The following claim is obtained from w-consistency.

Clatm. Let theory T be a PT-extension of PA and w-consistent.

JdeeN Ine N Ve>n TF DecSAT(e, x).
= JeeN Ine N Tl Ix>n -DecSAT(e,x).

From Definition 53, if P=NP,
deeN Ine N Ve>n TF DecSAT(e, x).
We then have the following equation from the above-mentioned claim,
JdeeN IneN Tl Ix>n —DecSAT(e, x).

Hence, if
VeeN Vne N TF dx>n -DecSAT(e, x),

then P#£NP.

Note: This lemma implies

Vee N VneN TF Ix>n —-DecSAT(e,x)
& VeeN VneN Je>n ThE —DecSAT(e,x).

Definition 53. Let PANP be a formula (sentence) in PA such that
P£ANP = Ve Vn Ix>n -DecSAT(e,x).

Lemma 54.

N P£NP,
of and only if PANP.
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Proof.

P#NP
& VeeN Vne N Je>n PAF —DecSAT(e,x)  (from Lemma 51)
& VeeN Vne N Je>n ME -DecSAT(e,x)  (since =DecSAT(e, x) is Aj-formula)
& NE P£NP.

4
Lemma 55. Let theory T be a PT-extension of PA and w-consistent. If
T+ PENP,
then P£ANP.
Proof. If
TF Ve Vn 3x>mn —DecSAT(e, x),

then

VeeN Vne N TF dx>n -DecSAT(e,x).
We then obtain P#NP by Lemma 52.

4

6.2 Formalization of a Super-Polynomial-Time Lower Bound

This section shows a formalization of a super-polynomial-time lower bound in PA in a manner
similar to P£ZNP.

Definition 56. Let L be a language (a set of binary strings) in PSPACE. Let Ry, C N be a relation
such that ® € Rr if and only if [x] € L. Let (%) be a formula in PAand pr(x) represent relation
Rr in PA. (see Section 2.4 for representability.) That is, for every a € N

a€ R = PAlF ¢r(a),
ag¢ R = PAF -pr(a).

Let @p be a set of formulas in PA, {¢r(a) | a € N}, and Sizes, (a) be |al.
Definition 57.
VeeN VneN Je>n —( Uppmle, (d, #Pr,x)) accepts & x € R )
of and only of L has a super-polynomial-time computational lower bound.
Lemma 58. Let theory T be a consistent PT-extension of PA.
VeeN VneN Jx>n TF —CD[er(x)](e, [PL], %),

of and only if L has a super-polynomial-time computational lower bound.
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Proof. This is obtained from the representability theorem (Proposition 2) regarding formula
CDlpr(x)](e, [®1],x), and the definition of this formula notation, CD (see Section 4.2).

4
The following lemmas can be proven in a manner similar to those used in Lemmas 52 and 55.
Lemma 59. Let theory T be a PT-extension of PA and w-consistent.
VeeN VneN TF Ix>n —CDlern(x)](e, [Pr], %),
of and only if L has a super-polynomial-time computational lower bound.
Lemma 60. Let theory T be a PT-extension of PA and w-consistent. If
TF Ve Vn 3x >n —CD[pr(x)](e, [PL], %),

then L has a super-polynomial-time computational lower bound.

7 Unprovability of PZNP and Super-Polynomial-Time Lower Bounds

This section shows that there exists no formal proof of PANP in 7' if T is a consistent PT-extension
of PA and PTM-w-consistent for A This result is based on the second incompleteness theorem
of polynomial-time decisions, Theorem 45.

7.1 PTM-w-Consistency

Definition 61. Formula ¢(x) in PA is called XF (i = 1,2,...) if there exists a formula ¥(x) in
PA such that
PAF Vx (p(x) < %(x)),

P(x) = Fwy < 2™ yw, < 2IX% L Quw, < 21X Po(X, W1, ..., W;),

where Q; is ¥ or 3, Yo(x, Wi, ..., W;) is a formula that represents a polynomial-time relation over
(z,w1,...,w;), ¢; (0<j<1i)isa constant (in |x|).
Similarly, formula p(x) in PA is called II¥ (i = 1,2,...) if there exists a formula ¥(x) in PA
such that
PAF Vx (p(x) < %(x)),

P(x) = Vw < 2lXI" Jyy, < 2l Qiw; < 2lx[* Po(X, W1, ..., W;).

Formula p(x) in PA is called AT (i=1,2,...) if p(x) is OF and IIF.
Formula ¢(x) in PA is called QBF if there exists a formula ¢(x) in PA such that

PAF Vx (p(x) < %(x)),

P(x) = Vwy < 2™ Jw, < 2K Quwy < 21X Po(X, W1,..., W),

for a constant c.

where k = |z|°
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Definition 62. (PTM-w-consistency) Let theory S be a PT-extension of theory T. S is PTM-w-
inconsistent for Ay-formula p(e*,x) over T, if the following two conditions hold simultaneously.

VeeN3Ie* eNIHeNYn>lVeeN PTM.(n) FrIx (m<x<n+ n|% ¢(e,x), (57)
JeeNVe eNVLeNIn>¢ PTM.(n) Fs Ix>n ¢(e”,x). (58)

Here, Sizegp(n) = |n|*t!, and &[] = {Ix (a <x <n+ n|®) p(e*,x) |a € N}.

Theory S is PTM-w-consistent for ¢(e*,x) over T, if theory S is not PTM-w-inconsistent for
ple*, x) over T.

Theory S is PTM-w-consistent for XF (II¥ | AF resp.) over T, if S is PTM-w-consistent for

any P (IIF, AP, resp.) formula p(e*,x) over T.

Theory T is PTM-w-consistent for p(e*,x) (SF, IF, AP resp.), if T is PTM-w-consistent
for p(e*,x) (XF, IIF, AF, resp.) over T.

2 (A

The following definition is equivalent to the above: Theory S is PTM-w-consistent for ¢(e*, x)
over T, if the following condition holds.

VeeN Je*eN HeN Vn>{¢ VeeN PTM.(n) r Ix (n <x<n+ n|% ¢e",x)
= VeeN €N FHeN Vo>l PTM.(n) /s Ix>n ¢(e”,x). (59)

In the remarks below, we consider only the PTM-w-consistency of theory T, not the PTM-w-
consistency of theory S over T', since the PTM-w-consistency of S over T follows similarly in each
remark.

Remark 1  (Restriction of the related formulas of PTM-w-consistency) PTM-w-consistency
is defined only for ¥ ITF or AF-formulas. This restriction is introduced from the fact that if
¢(e*,x) has a bounded quantifier Qw < a with |a] = 2/°I° for a constant ¢, then no PTM can
even read #a numeralwise. Since the notion of PTM-w-consistency 1s introduced to characterize a
property of the provability of a PTM in theory T, such a restriction seems reasonable.

Actually, the proof of P #2 EXP may imply that PA or a PT-extension of PA is PTM-w-
inconsistent for formula ¢(e*,x) corresponding to the formulation of P # EXP, which has a
bounded quantifier with 3w < @ with |a| = 2/*I° for constant c. (In other words, the asymp-
totic polynomial-time unprovability of P # EXP does not imply the formal unprovability of P #
EXP.)

Remark 2 (Inequivalence of PTM-w-consistency and w-consistency) PTM-w-consistency and
w-consistency do not imply each other.

First, we show that PTM-w-consistency does not imply w-consistency. If we assume that PTM-
w-consistency of T for ¢(e*, x) implies w-consistency of T for p(e*, x), PTM-w-consistency of T for
p(e*, x) implies consistency of T', since if T' is inconsistent, 7" is w-inconsistent for ¢(e*, x). That is,
the inconsistency of T implies PTM-w-inconsistency of T for ¢(e*, x). However, the inconsistency
of T implies PTM-w-consistency of T' for any formula, since if 7' is inconsistent, 7' can prove any
sentence and Eq.(57) does not hold, which implies that 7' cannot be PTM-w-inconsistent. This is
contradiction. Therefore, PTM-w-consistency does not imply w-consistency.

Next, we show that w-consistency does not imply PTM-w-consistency. Here, we assume that

M= DZND.
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It follows that theory 7' = PA 4+ P#NP is w-consistent since PA is w-consistent, and clearly
T+ P#NP.

We now assume that 7" is PTM-w-consistent for AL, Then,
T P#NP,

by Theorem 67. This is a contradiction. Therefore, 7" is PTM-w-inconsistent for ALY while T is
w-consistent, if M |= P#£NP. That is, w-consistency does not imply PTM-w-consistency, assuming

that 9t |= PZNP.

Remark 3 (Relationship between PTM-w-consistency and w-consistency) Although PTM-w-
consistency and w-consistency do not imply each other, as described above, the computational
resource unbounded version of PTM-w-consistency for A;-formulas is equivalent to w-consistency
for Aj-formulas.

Now we define a computational resource unbounded version of PTM-w-consistency, TM-w-
consistency, as follows: Theory T is TM-w-inconsistent for ¢(e*, x), if the following two conditions
hold simultaneously.

VeeNIe*eN HeNVn>LVfeR TM.(n) I/r Ix (n <x<n+ f(n]) ¢(e,x),(60)
JdeeN VereN WeN In>¢ TM.(n) Fr Ix>n ¢(e”,x), (61)

where R is a set of primitive recursive functions. Here T'is a consistent primitive recursive extension
of PA.

See Section 2.7 for the definition of TM.(n) Fp ..., and see Definition 63 for a generalized
version of PTM-w-consistency.

Eq. (60) is equivalent to

de*eN HeNVn>L VFeR T FH Ix(mn<x<n+ f(|n])) ¢(e, x), (62)

since
JdeeN VereN VWeNIn>3feR TMc(n) Fr 3Ix (n<x<n+ f(n]) ¢le*,x)
& Ve'reNWVeNIn>l3feR TF Ixmn<x<n+ f(|n]) ¢le, x). (63)

(= is trivial, and < can be shown by constructing a TM that searches all proof trees, m, of
Ix (n < x < n+ f(ln|)) ¢(e*,x) for all (e*,f,n, f) € N3 x R in the order of the value of
e + L+ n+ |#f| + |#n| from 0 to greater. )

Eq. (61) is equivalent to

Ver eN VeN In>¢ T F 3x>npex). (64)
Since p(e*,x) is a Aj-formula and 7 is a consistent extension of PA, Eq. (62) implies
de" €N HeNVe>t T F —ple”,x). (65)

Hence, if T'is TM-w-inconsistent for Aj-formula ¢(e*,x), T is w-inconsistent for y(e*, x), since
there exists (e*,n) € N? such that

Ve>n T F —p(e',x) A
T F Ix>n pe x)
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from Egs. (65) and (64).
On the other hand, if 7" is w-inconsistent for A;-formula v (x), T is TM-w-inconsistent for
ple*,x) (= ¢(x) for all e* € N), since
VeeN T F =) A TF Ixyx)
= FENVR>0VfeR T Ixm<x<n+ f(|n]) ¢le*,x)
A YereN VneN (In>n) T F Ix>n pe',x)

Thus, TM-w-consistency for Ai-formulas is equivalent to w-consistency for A;-formulas.

Remark 4 (Provability of PTM-w-consistency) Is PA (or another reasonable theory T') PTM-w-
consistent for the related formula? Unfortunately, we have not proven the PTM-w-consistency of PA
for AP . Moreover, as shown in Theorem 73, no PTM-w-consistent theory 7', which is a consistent
PT-extension of PA, can prove the PTM-w-consistency of PA | although PTM-w-consistency of PA
for AL seems to be as natural as the w-consistency of PA.

Remark 5 (Characterization of PTM-w-consistency through axioms and deduction) Assume
that PA is PTM-w-consistent, and that 7" is a theory constructed by adding an axiom X to PA
and is PTM-w-inconsistent. Then,
JdeeNVer e NVleNIn>L PTM.(n) Fpa X — Ix>n ¢(e”,x), (66)
VeeNIe* eNHeNVR>{VeeN PTM.(n) Kpa Ix (n <x<n+ |n|% ¢le*,x).(67)

We then assume that the deduction of Eq.(66) is asymptotically polynomial-time, i.e.,
Je' eN Ver eN VeNIn>{l -~z €N =Qrzp €N Tz >n
PTMe’(xla"'axkax) I_PA Y(Xla"'axk) - go(e*,x), (68)

where X = Q1x1 - Qpxp Y(x1, - -,xz), @Q; (i = 1,...,k) are quantifiers and Y (21, -, 1) is a

Ay formula. Here note that a polynomial (in the size of input) number of application of logical

axioms, Modus Ponens and Generalization rules is an asymptotically polynomial-time deduction.
We now assume that X can be asymptotically proven by a PTM over PA. Then,

Je" €N Qg €N+ Qpap €N PTMen(y, -+, 2p) Fpa Y(x1, -, Xp). (69)
From Eqgs. (68) and (69), we obtain
JdeeN Ve eN WeNIn>¢ Jo>n PTM,(z) Fpa (e, x),
Hence,
JeeN Ve eN WeNIn>03eeN PTM.(n) Fpa Ix (n<x<n+ |nl% ¢le”, x),

where 3x (n < x < n+ n| ¢(e*,x) = ¢(e*,n), when ¢ = 0 (i.e., Je € N). This contradicts
Eq.(67). Therefore, if a theory T, which is PA +X | is PTM-w-inconsistent, X cannot be asymptot-
ically proven by any PTM, assuming that PA is PTM-w-consistent and the deduction of Eq.(66)
can be done asymptotically by a PTM.

Here it is worth noting that any (true) axiom X can be asymptotically proven by a resource
unbounded TM over PA. The point in this remark is that X cannot be asymptotically proven by
any polynomial-time bounded TM (i.e., PTM) over PA.
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Remark 6 (Generalization of PTM-w-consistency: C-w-consistency)

We now generalize the concept of PTM-w-consistency to C-w-consistency, where C is a (uniform)
computational class.

Here, we introduce some concepts regarding C. Let Ug be a universal Turing machine specified
to C in a manner similar to Uppp;. Here we omit the precise definition of Ue, by which C is specified.
Fach Turing machine in C is specified by e € N as U (e, -). We now introduce the following notation:

Ce(a) Fr o(a)
< Ucle,(p, #9P,a)) = #1 A Uptm(vr, (F#p(a), #7)) accepts.
If the truth of Axiomy(n) (see Section 2.3) can be correctly decided by an algorithm of class
C in |n|, on input n, we say that T is C-axiomizable. If T" is an extension of Ty and C-axiomizable,
then we say that 7' is a C-extension of Tj.

Definition 63. (C-w-consistency)
Let theory S be a C-extension of theory T. S is C-w-inconsistent for Ay-formula p(e*,x) over
T, if the following two conditions hold simultaneously.

Vee NI eNHeNVn>LlVfeFe Con) rIx(m<x<n+ f(n])) ¢(e",x), (70)
JeeNVe eNVLeNIn>l Con) FsIx>n e, x), (71)

where Fe is a set of primitive recursive functions, f, such that Ue(e, ) can do an existential search
with f(|x]) steps (e.yg., decide y(x <y < x+ f(|2]) 9(y) =0 by search of y for x,e +1,... 2+

f(=)))-

Theory S is C-w-consistent for p(e*,x) over T, if theory S is not Cxw-inconsistent for (e*,x)
over T

Theory S is C-w-consistent for ¥ (II¥ | AP resp.) over T, if S is C-w-consistent for any XF
(If, AP, resp.) formula o(e*,x) over T.

Theory T is C-w-consistent for p(e*,x) (XF, IIF, AL, resp.), if T is PTM-w-consistent for
ole*,x) (P, IF, AF, resp.) over T.

v 7

The following definition is equivalent to the above: Theory S is C-w-consistent for p(e*,x) over
T, 1f the following condition holds.

VeeN Je*eN HeN Vo>t Vfele Cin) r Ix(m<x<n+ f(|n]) ¢le*,x)
= VeeN Fe*eN HeN Vn>{t Con) g Ix>n p(e”,x). (72)

7.2 Unprovability of PZNP under PTM-w-Consistency

Lemma 64. Let theory T be a consistent PT-extension of PA. Then,
VeeN Fe" €N InelN Va>n PTM.(z) t/r —DecSAT(e", x).

Proof. Since
DecSAT(e,x) = CD[SAT(x)](e, [SAT],x)

(see Section 6) we obtain this theorem immediately from Theorem 45.
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Lemma 65. Let theory T be a consistent PT-extension of PA.
Let X[e*, )= {Ix (a<x < a+la|®) —DecSAT(e* x) | a € N}, and Sizeyge (a) = |al*tt.

VeeN Je" €N VneN Vee N PTM.(n) r Ix (n <x <n+ |n|®) —DecSAT(e", x).
Proof. Let € be a subset of N such that e € £ if and only if Uptm(e, <) is a PTM as follows:
— Let p(x) = SAT(x). Let & = {p(a) | a € N}, and &' = {—p(a) | a € N}. Let ¥[c] = {¢(c, a,s) |
a €N A s <271} where
¥(a, Bit(s,0)) A(a+ 1,Bit(s, 1)) A -+ Ab(a+ |a|~1, Bit(s, |a|°~1)),

(P(x) Ay =0) V (=¢(x) A=(y = 0)),
|c-|—1.

(e, a,s)
U(x,y) =

Sizeg(a) = Sizeg/(a) = |a|, and Sizeg[(a) = |a

— Syntactically check whether the input has the form of (d, #¥[c], (a,s)), then follow the speci-
fication below. Otherwise, there 1s no particular specification on the input.

— Foralli=0,1,...,]|a|®—1, simulate either one of Uprm(e, (d, #P,a+1)) and Uprm(e, (d, #P',
a+i)) by some rule (e.g., Uprm(e, (d, #®P,a + i)) is simulated if and only if @ + 7 is even.)

— Uprm(e, (d, #P, a+1)) accepts (and Uprml(e, (d, #P, a+7)) rejects) if and only if Uprpm(e, (d, #P,
a+ 1)) rejects (and Uppm(e, (d, #P,a + i)) accepts).

— Accept (d, #¥[c], (a,s)) if and only if

Bit(s,i) =0 <  Uppml(e, (d, #P,a+1i)) accepts,

foralli=0,1,... |al*— 1.

Note that £ can be primitive recursive by adopting a syntactically checkable canonical coding
of the above-mentioned specification on Uptyr. In other words, only e, for which PTM Uprp(e, -)
is specified in the canonical coding, is in €. (Even if Uprpm(e’, ) has the same functionality as
Uptm(e, -) with e € €, unless ¢’ adopts the canonical coding, ¢’ & £.

Claim. For any ¢ € N and for any e € £,

PAF Vn Vs < 2mlI°-1
( CAlY(c,m,8)](e, [W[]],m,s5) — Vx(n<x<n+[nf) CDlp(x)(e,[®],x)).(73)

Proof. From the construction of Upn(e, ) with e € &, for any constant ¢ € N,

PAF V¥n Vs < 20’1
( PTM-Acc[¢(c,n, 8)](e, [¥[c]],n,s)
— Vi< |n|® (Bit(s,1) =0 <« PTM-Acc[p(n+1)](e, [®],n+1))). (74)

In addition, from the construction of Upp(e, -) with e € £,
PAF Vx ( PTM-Acclp(x)](e, [@],x)) < —-PTM-Acc[e(x)](e, [#],x) ) ). (75)
On the other hand,
PAF Vn Vs < 21
(¢le,n,8) — Vi<|n|® (Bit(s,i) =0 — ¢n+1i))). (76)

63



By Egs. (74), (75) and (76), we obtain

PAF Vn Vs< 201
(CAL(e,m )](e, [P[e]] m, 5
— ( PTM-Acc[¢(c,n,s)(e, [¥]e]],n,s) A ¢(c,n,s))
— Vi< |n|® ((Bit(s,i) =0 < PTM-Acc[p(n+1i)](e, [®],n+1))
A (Bit(s,i)=0 <= pn+1i)))
— Vi< |n|® (p(n+1) < PTM-Accle(n +1)](e, [@],n+1))
~ Vxm<x<n+ ) CDlp)e [@1,%)))

Therefore, for any ¢ € N and for any e € &,

PAF V¥n Vs < 21
(( Fx (m<x <n+ %) =CDpx)](e, [@],x) — —CA[Y(c,n,s](e, [T[c]],n,s) ). (77)
We now assume that there exists e € N such that
Ve* eNIneNJee N PTM.(n) Fr Ix (n < x < n+ [n|®) —DecSAT(e", x). (78)
In other words, we assume there exists e € N such that
Ve* eNdneN3JeeN PTM.(n) Fr Ix (n <x <n+ [nl®) —-CDlp(x)](e", [P],x) (79)
Then we can construct Uprp (€, -) with e’ € € by using Upm(e, -) as follows:
- (Inpultlé) 1(p, #I'[e*, ], (n,s)), where I'[e*, c] = {=CA[¥(c,a,t)](e, [¥[c]],a,t) | (a,t) € N A
t <2147y

— (Output: ) Godel number of a proof tree of =“CA[y (¢, n, s)](e, [¥[c]],n,s) or 0.
— Run the following computation

Uprtm(e, (p, #X[e", c],n)) = z, Uprm(vr, (#n,72)),

where n = Ix (n<x<n+ n|® -CD[p(x)](e*, [P],x).
— Compute the proof (say my) of

Vy ¥ < 271 (3x (y <x < y+ ) “CD[p()(e", [8],x) — —CALi(e,y. )", [, y. b)),

since there exists a proof of this formula by Eq. (77) if ¢* € €. (The computation time is finite.)

— Check whether Uprm(vr, (#n, 7)) accepts or rejects. If it rejects, output 0 and halt. If it ac-
cepts, then combine 71 (z = #m1) and 72 and make a new proof tree, 73, of “CA[¢(c,n, s)](e, [¥[c]],n, s),
as follows:

73 = < =CA[¥(c,y,t)](e", [¥[c]],y,t), Modus Ponens >
[ 71, < Formula A, Modus Ponens > [ 73, Axiom X ] ],

where Formula A 1s

3x (n < x <n+ %) ~CDlp()(e, [6],x) — —~CA[Y(e,n,s)](e. [P[]n,s)
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and Axiom X is a logical axiom,
Vy vt < 20771 3x (y < x < y+nl%) ~CDlp(x))(e”, [@],%x) — —CA[t(c,n,s)](e”, [¢[]],n,s))
— (x@<x<n+l) ~CDEIE [@]x) — ~CA(en e W] ns) ).
— Output w3 for the proof tree of formula =CA[¢(¢,n, s)](e*, [¥[c]],n,s).
Therefore, if we assume Eq. (79), there exists ¢’ € € such that
IneNIeelNVs <27t ver € & PTM.i(n,s) Fr ~CA[Y(c,n,s)](e*), [#[c]],n,s).
Then, since e’ € € implies g(e’) € €, there exists ¢/ € £ such that
IneNIeeNVs <21 PTM.i(n,s) Fr —=CA[b(c,n,s)](g(e), [[c]],n,s).
Here, for any n € N, there exists s < 2/”I°=1 such that
NE wlem,s).
Hence, there exist ¢/ € N, n € N, ¢ € N, s € N such that
NE Y(ems) A
PTMe (n,s) br —CA[g(c,n,s)](g(e), [T[c]],n, ).

This contradicts Corollary 46, so, Eq. (78) does not hold.
Since the contradiction occurs when e* = g(e’) with e’ € £, we now define ¢g* as follows:

wr N e ifeeg,
g7(e) = {ige% ifegs.

Since deciding whether e € £ or not is primitive recursive and the transformation of e to ¢’ is also
primitive recursive, function ¢* i1s primitive recursive. Then,

VeeN VneN VeeN PTM.(n) /7 Ix (n <x <n+ [n|®) —DecSAT(¢*(e), x).

Lemma 66. Let theory T be a consistent PT-extension of PA and PTM-w-consistent for AY.
Then

VeeN Je* €N HeN Vn>{f PTM.(n) I/ Ix>mn —-DecSAT(e", x).
Proof. From Lemma 65
VeeN Je*eN Vn>0 VeeN PTM.(n) r 3x (n <x < n+n|®) —DecSAT(e", x).

Since SAT(x) € X¥ and =SAT(x) € IIf, then =DecSAT(e*,x) € X¥ and —DecSAT(e*, x) €
Y. That is, =DecSAT(e*,x) € AL.

Therefore, if T is PTM-w-consistent for AY | T'is PTM-w-consistent for ~DecSAT(e*, x) € AL.

We then obtain, from the definition of PTM-w-consistency,

Vee N Je* €N HeN Vn>{ PTM,(n) /7 3x>n —DecSAT(e", x).
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Theorem 67. Let theory T' be a consistent PT-extension of PA and PTM-w-consistent for AL,

TH P #NP.
Namely, there exists no proof of P # NP i T.

Proof. Assume that
TF P # NP,

1e.
TE Ve ¥Vn Ix>n —DecSAT(e", x). (80)

We can then construct PTM Uprp(e, -) as follows:

~ (Input: ) (p,#X[e*],n) € N3, where Y[e*] = {3x > a —DecSAT(e*,x) | a € N}.

— (Output: ) Godel number of a proof tree of 3x > n —DecSAT(e*, x).

— Find a proof, 7, of formula Vy Vz 3Ix >z —DecSAT(y,x), where 7 exists according to the
assumption, Eq. (80). Here, the size of & is constant in |n|.

— Construct the following proof tree of 3x > n —DecSAT(e*, x):

< 3Ix >n -DecSAT(e",x), Modus Ponens > [ m, Axiom X ],

where Axiom X 1s a logical axiom,

Vy Vz (3x >z —DecSAT(y,x)) — (3Ix>n —DecSAT(e",x))

— Output the Godel number of the proof tree.

Clearly, PTM Uprum(e, -) outputs a correct value for all (e*, n) € N*. Therefore, we obtain

deeN Ve €N VneN PTM.(n) by 3Ix >n —DecSAT(e", x).
This contradicts Lemma 66. Thus,

T P #NP.
4

Remark: Theorem 67 and its generalization imply the results by Baker, Gill and Solovay [1] and
by Hartmanis and Hopcroft [13,14].

First, let assume the following proposition, which is a generalization of Theorem 67 and will be
formally given in Part 2 of this paper.

Proposition 68. Let C be a (uniform) computational class (see Remark ¢ of Definition 62), and
theory T be a consistent C-extension of PA and C-w-consistent for QBF.
Then, T' cannot prove any super-C-computational-lower bound.
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We now assume that a relativizable proof of P # NP exists for any oracle A and that it is
formalized in PA (or more generally, a w-consistent theory T').
Then, for any oracle A

PA+ P4 £ NPA.

From Proposition 68, PA should be PTM“-w-inconsistent for any oracle A. Hence, PA should be
TM-w-inconsistent, which is equivalent to w-inconsistent (see Remark 3 of Definition 62). That is,
PA is not w-consistent. This is a contradiction. Thus, there exists no relativizable proof of P # NP
in PA, which corresponds to the result by Baker, Gill and Solovay [1].

Similarly, we can also obtain a result corresponding to that by Hartmanis and Hopcroft [13, 14]
as follows:

First we assume that 7' is a w-consistent theory. Then, we can construct TM M such that

deeNVe* eNVLeNIn>LAf €eR PTMeL(M)(n) Fr 3x (n <x<n+ f(jn])) ¢(e",x)
& VereNWeN dIn>¢ 3feR T F Ix(m<x<n+ f(|n]) ¢le*, x), (81)

and

JeeN Ve* €N VLeN In>¢ PTMI™M(n) Fp 3x>n o(e*,x)
& VereNVeN In>¢ T F Ix>np(e” x). (82)

(For a method of constructing M, see the description just after Eq. (63) in Remark 3 of Definition
62.)
We now assume that

Tr PEM) £ NpLOM),

From Proposition 68, T' should be PTME)_-inconsistent. However, from the construction of
T™M M, PTMEM)_w-inconsistent is equivalent to w-inconsistent, since Eqs. (81) and (82) hold.
That i1s, T should be w-inconsistent. This is a contradiction. Thus, for any w-consistent theory T,
there exists a TM M such that

T pLM) + NpLOM),

which corresponds to the result by Hartmanis and Hopecroft [13, 14].

7.3 Unprovability of Super-Polynomial-Time Lower Bounds in PSPACE under
PTM-w-Consistency

We can obtain the following theorem in a manner similar to that used in Section 7.2.

Theorem 69. Let language L be in PSPACE. Let theory T be a consistent PT-extension of PA
and PTM-w-consistent for QBF.

TH Ve Vn Ix >n —CD[pr(x)](e, [PL], x),

Namely, there exists no proof of any super-polynomial-time computational lower bound of L in

T.
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8 Unprovability of PTM-w-Consistency

This section shows that the independence of P vs NP from T by proving PTM-w-consistency
of T for a AP -formula (i.e., through Theorem 67) cannot be proven in theory S, where S is a
consistent PT-extension of 7" and is PTM-w-consistent for A¥. This result is based on the second
incompleteness theorem of polynomial-time proofs, Theorem 21.

Let T be a consistent PT-extension of PA, and assume that P£ANP is true. Then, if 7" is proven
to be PTM-w-consistent for “DecSAT(e*,x), Theorem 67 will imply that 7" is independent from
P#NP. To prove the PTM-w-consistency of 7' for =DecSAT(e*, x), it is sufficient to prove that

VeeN Je* €N HeN Vn>{¢ PTM.(n) /r 3x>n —DecSAT(e", x), (83)
since it has been already proven that
VeeN Je*eN HeN Vn>{l VeeN PTM.(n) r 3x (m <x<n+|n|®) —DecSAT(e", x)

by Lemma 65.

This section shows that theory S cannot prove Eq.(83) formally, if S is a consistent PT-
extension of 7' and PTM-w-consistent for AY over T'. That is, the PTM-w-consistency of T' for
—DecSAT(e", x) cannot be proven in S. In other words, the independence of P vs NP from T by
proving the PTM-w-consistency of T' cannot be proven in S. Here, the formal sentence of Eq.(83)
in PA is

Ve d1V¥n >1 —Prp[dx > n —DecSAT(h(e),x)](e, [P(e)],n), (84)

where h is a primitive recursive function?, and @(e) = {Ix > a —=DecSAT(h(e),x) | a € N}.
This result is based on the incompleteness theorem of polynomial-time proofs, Theorem 21. To
obtain this result, however, a slight modification is required for Theorem 21 as follows:

Lemma 70. Let theory T be a consistent PT-extension of PA, and ¥(e') = {y(e',a) | a € N}.
VeeN 3’ €N Ve eN PTM.(z)lr —Prr[v(e,x)](e, [¥(e)],x).

Proof. First, Eq. (12) is obtained in the same manner as that of Theorem 21.
We then obtain

PAF VxVy (per(x)A-per(x) — ¥(y,x)), (85)

in place of Eq. (13).
We then obtain the following claim (in a manner similar to Corollary 14):

Claim. Let & = {p(a) | a« € N} and ¥(e) = {¢(e,a) | a € N}, where e € N. Suppose that T is a
consistent PT-extension of PA. We assume

TE VxVy (p(x)— ¢(y,x)).
Then, for all e; € N there exists e; € N such that

Vee N PAF  Vx ( Prrle(x)](e1, [€],x) — Prr¢(e,x)](eq, [¥(e)],x) ). (86)
* In Eq.(83), there exists a primitive recursive function h such that e* = h(e) for all e € N: i.e.,

VeeN VEEN 3n>¢ PTM.(n) Kr 3x >n —DecSAT(h(e),x).
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Proof. From the first derivability condition (D.1) of a traditional proof theory [2] and the assump-
tion of this lemma, we obtain

PAE Prr([Vx Vy (p(x) = ¥(y,x)]).
Then, PTM Uprm(es,-) is constructed by using PTM Uprm(er, (p, #9, -)) as follows:

1. (Input :) (p, #¥(e),x)
. (Output: ) Gédel number of a proof tree of (e, x) or 0.
3. Run the following computation

Uprm(er, (p, #9,2)) = z, Uprm(vr, (F#9(x),2)).

4. Compute the proof (say m3) of Vw Vy (p(w) — ¢(y,w)), since there exists a proof for the
predicate from the assumption.

5. Check whether Uppn(vr, (#9(x), 2)) accepts or rejects. If it rejects, output 0 and halt. If it
accepts, then combine 7 (z = #m1) and 72 and make a new proof tree, w3, for ¢ (e, x), as
follows:

[\

73 = < ¢¥(e,x),Modus Ponens > [r1, < ¢(x) — (e, x), Modus Ponens > [r2, Axiom X]],

s)o(w) — Yy, w)) — (p(x) — ¥(e,x))".

where Axiom X is a logical axiom, “ Vw Vy (
6. Output w3 for the proof tree of formula ¢ (e, x

The other part of the proof can be completed in an analogous manner to that in Lemma 13
except for the constructions of functions h and ¢ to meet the above-mentioned construction of
Uprtm(€s, -)) in this proof.

Therefore, by setting e «— ey in Eq. (88), for all e; € I there exists e; € N such that
PAF  Vx ( Prrle(x)](e1, [@],x) — Prr[v(esz, x)](e2, [¥(e2)],x) ). (87)

Then, applying Eq. (85) to Eq. (87), we obtain that for any e™™* € I, there exists ¢’ € IV such
that

PAE Vx (Prrfper(x) A=per(x)](e7FF, [GFFH] x) — Prr[i(e!,x)](e/, [U(<)].x) ), (88)

in place of Eq. (14).
Hence, we obtain: for any e € I, there exists ¢’ € N such that

PAF Vx ( —Prp[y(e,x)](€e, [T()],x) — per(x)), (89)

in place of Eq. (15).
The remaining part of the proof of this lemma is the same as that of Theorem 21

_|

Lemma T1. Let theory T be a consistent PT-extension of PA. Let ®(e') = {Ix > a —DecSAT(h(€),x) |

a € N} and h be a primilive recursive funclion.

VecN F'€N dmeN VW>m VeeN
PTM.(¢) t/r 3n 1<n <1+ |l°) =Pry[3x >n —DecSAT(h(e'),x)](e’, [@(e')],n). (90)
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Proof. First, we show the following claim:

Claim. Let ¥(d,c) = {Vn (a < n < a+ |a]°) ¥(d,n)|a e N} and ¥(d) = {¢¥(d,a) | a« € N},
where ¢(d,a) is any formula, ¢ € N and d € N. Then,

Vee NJeeNVdeN
PAF Vm Ve ( Prr[Vn(m <n <m+ m|%) ¢(d,n)(e, [¥(d,c)],m)
— Vn(m<n<m+ |m|® Prp[¢(d,n)l(e [¥(d)],n)) (91)

Proof. First, we construct TM U(E, ) using PTM Uprm(e, -) as follows:

T W N =

- (Input 2) (p, #¥(d),n)

. (Output: ) Godel number of a proof tree of (d,n) or nothing (does not halt).

. Let Mp(e) = min{m e N|m <n <m+ |m|°} and My(c) = max{m e N |m <n < m+ |m|°}
. Set ¢ «— 0 and m — My(e).

. Run the following computation

Uptm(e, (p, #¥(d, ¢),m) = z, Uptm(vr, (#p,2)),

where p=Vx (m <x <m+ m|%) ¢(d,x)

. Check whether Uprm(vr, (#p,72)) accepts or rejects. If it accepts, go to 7. If it rejects, set

m — m + 1 and check whether m > M. If m < My, then go to 5. Otherwise, set ¢ — ¢+ 1,
compute My(c) and My(1), m — My(c), and go to 5.

.. Make a new proof tree, 73, for ¢(d,n), from proof tree m (z = #m1) for p, as follows:

7y = < 9(d,n), Modus Ponens > [ry, Axiom Y],

where Axiom Y is a logical axiom, “Vx (m < x <m+ m|°) ¢(d,x) — (d,n))”.
Output 7, for the proof tree of formula ¢ (d,n).

Here, if ¢ is a constant in |n|, then TM U(€,-) should be PTM in |n|.
Therefore, from the construction of U(€,-), we obtain

Vee NJeeNVdeN
PAF Vm Ve ( Prr[Vn(m <n <m+ m|% ¢¥(d,n)](e, [¥(d,c)],m)
— Vn(m<n<m+ mf) Prp[y(d,n)(e,[¥(d)],n))

We now assume that

Je€eN V' eN VmeN ¢ >m Jce N
PTM.(¢) by In (1< n <1+ 1|°) =Prp[3x > n —DecSAT(h(e'),x)](e/, [@(e')],n).

Then, from Eq.(91),

JecN V' €N VmeN ¢ >m JceN
PTM.(¢) Fr —Prr[Vn(l <n <1+ [1[%3x > n —DecSAT(h(e'),x)](€/, [@(¢',c)],]1).

This contradicts Lemma 70.
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We obtain the following lemma immediately from Lemma 71 and the PTM-w-consistency of S.

Lemma 72. Let theory T be a consistent PT-extension of PA, S be a consistent PT-extension of
T, and S be PTM-w-consistent for AL over T. Let ®(e) = {Ix > a —DecSAT(h(e),x) | a € N}
and h be a primitive recursive function.

VeeN 3¢’ e N Ime N VL >m PTM.({) t/s In >1 =Prp[dx > n —DecSAT(h(e'),x)](e’, [¢(e’)],n).

Theorem 73. Let theory T be a consistent PT-extension of PA, and S be a consistent PT-
extension of T and PTM-w-consistent for AY over T.

St/ Ve 3l ¥n>1 —Prp[dx>n —DecSAT(h(e),x)](e, [P(e)],n).

Namely, the PTM-w-consistency of T for —DecSAT(e*,x), which is sufficient to prove T I/
P # NP, cannot be proven in S (see Eqs. (83) and (84)).

Proof. Let assume that
St Ve dl Yn>1 —Prp[3x >n —DecSAT(h(e),x)](e, [¢(e)],n).

Then
VeeN SE d1 V¥n>1 —Prp[3x >n —DecSAT(h(e),x)](e, [P(e)],n).

This implies
Vee N SE V1l 3n>1 —Prp[3x > n —DecSAT(h(e),x)](e, [P(e)], n).
This means that there exists e* € N such that
VeeN VleN PTM.({) Fs dn>1 —Prp[3x>n —DecSAT(h(e),x)](e, [®(e)],n).

This contradicts Lemma 72.
Thus,
St/ Ve J1 ¥n>1 =Prr[dx >n —DecSAT(h(e),x)](e, [®(e)],n).

9 Unprovability of the Security of Computational Cryptography

This section will show that the security of any computational cryptographic scheme is unprovable in
the standard notion of the modern cryptography, where an adversary is modeled to be a polynomial-
time Turing machine.

First we will introduce a very fundamental cryptographic problem, the intractability of totally
inverting a one-way function by a deterministic PTM (polynomial-time Turing machine). Modern
computational cryptography is based on the assumption of the existence of one-way functions [11].5

® Although a one-way function is usually defined against probabilistic PTMs, one-wayness against deter-
ministic PTMs is more fundamental than that against probabilistic PT'Ms. For example, if a function is
one-way against probabilistic PTMs, then the function will be also one-way against deterministic PTMs.
That is, proving the one-wayness of a function against probabilistic PT'Ms always implies proving that
against deterministic PTMs. However, the reverse is not always true.
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In other words, to prove any level of security of such a computational cryptosystem implies proving
the one-wayness (the intractability of total inversion by any deterministic PTM) of an underlying
function. Therefore, if it is impossible to prove the one-wayness of any function, it will be also
impossible to prove any level of security of any computational cryptographic scheme.

This section will show that the intractability of totally inverting a function by a deterministic
PTM is impossible to prove formally in the standard modern cryptographic setting.

Definition 74. Lelt n € N, and f, : Z/nZ — Z/n°Z be a funclion with parameler n and
F ={fn | n €N} be a set of functions, where ¢ is a constant.

F is called one-way if there is no (deterministic) PTM Uprm(e,-) such that for all # =
(nyy,2) € N x Z/nZ x Z/nZ Uprm(e, ) oulputs w € Z/nZ if there exists w such that
y = fo(w), and outputs nothing otherwise. Here Size(x) = Size(n,y, z) = |n|.

Definition 75. Let F = {f, | n € N} be a set of functions (see Definition 74). Let Inv be an
inversion oracle (a deterministic algorithm or a table) such that Inv(n,y) outputs one of {w |y =
fa(w)} if there exists w such that y = fr(w), and outputs nothing otherwise.

F is called decisionally one-way if, for any inversion oracle Inv, there is no (deterministic)
PTM Uptm(e, ) such that, for all v = (n,y,z) € N x Z/n°Z x Z/nZ, Uprm(e,x) accepts if
and only if Inv(n,y) > z. (Note that w is uniquely determined for each Inv and (n,y).)

Lemma 76. F is one-way if and only of F 1s decisionally one-way.

Proof. Tt is trivial that if a PTM can invert f,, it can also solve the corresponding decisional
problem.

On the other hand, we will show that if a PTM can solve the decisional problem of f,, then
there exists a PTM that can invert f,,. In other words, f,, can be completely inverted by using the
solution of the decisional problem as a black-box |n| times. Here, we use binary search. Given a
problem (n,y) to invert f,, queries to Uprm(e, -) are (n,y, [n/2]), (n,y, | (3/4)n]) (if the answer to
the previous query is accept), .. .. Repeating this binary search |n| times yields an integer v € Z/nZ.
Then, check whether y = f,(v) holds or not. If it holds, set w = v. Otherwise, set w to a null
string (or decide that there exists no value of w € Zn such that y = f,(w)).

Therefore, F is one-way if and only if no PTM can solve the corresponding decisional problem.

_|

As shown in Lemma 76, the one-wayness of function family F can be characterized by the
intractability of the decisional problem, which can be also characterized by a formula in theory T'
as shown below.

Definition 77. Let Rg,_-”” C N* be a relation with respect to inversion oracle Inv such that
(e,n,y,2) € R 4f and only if (n,y,2) € N x Z/nZ x Z/nZ, and Uppm(e, (n,y,2)) ac-
cepts if and only if Inv(n,y) > z.

Lemma 78. If F is one-way, PAZNP.

Proof. F is one-way, if and only if, for any inversion oracle Inv, there is no (deterministic) PTM
Uprtm(e, -) such that, for all (n,y,z) € N x Z/n°Z x Z/nZ, Uptm(e, (n,y, z)) accepts if and
only if (e,n,y,2) € R,

Language {(e,n,y, z) € R'} is clearly NP. Therefore, if P = NP, there is no one-way function
family.
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We then obtain the following lemma immediately from Lemma 78 and Theorem 67.

Lemma 79. For any theory T which is a consistent PT-extension of PA and PTM-w-consistent
for AY | there exists no proof of the one-wayness of any function family in T

To study the (im)possibility of proving the one-wayness of a function family, F = {f, | n € N},
we need to make a model of provers (and adversaries). We now present a reasonable model of
provers.

Definition 80. (Model of a prover in computational cryptography)

A prover is a PTM, which, given the (finite size of) description of a cryptographic problem,
outputs a proof of the problem in a theory T that is a constant PT-extension of PA and PTM-w-
consistent for AF.

This model should be justified by the fact that an adversary is modeled to be a PTM in the
definition of the one-wayness of a function family in the above definition, which is the standard
setting in modern cryptography. In other words, the models of a prover and adversary should be
equivalent, since both prover and adversary are theoretical models of our human being who analyzes
the security of a one-way function family to prove the security or to break it. The key part of this
model is that theory T available for a prover to prove the security should be PTM-w-consistent,
since a prover is assumed to be a PTM. This 1s because PTM-w-inconsistent theory may include
an unreasonably strong axiom (e.g., P#NP itself) that no PTM can prove asymptotically in PA.

We now obtain the following theorem from Lemma 79.

Theorem 81. Under the prover model of Definition 80, there exists no proof of the one-wayness
of any function family.

Note that PTM is just a one possible model of the feasible computation for our human being.
Even if in the future we have to change the feasible computation model of our human being, the
impossibility result of Theorem 81 remains unchanged, because the computational models of prover
and adversary should be equivalent in any feasible computation model. We will show similar results
in various computational classes in Part 2 of this paper.

In addition, combining the result [15] with Theorem 67 yields the following consequence:

Theorem 82. Under the prover model of Definttion 80, there exists no proof of the existence of a

(black-boz) reduction from a one-way permutation to a secret key agreement.

10 Proof Complexity

In order to characterize the computational complexity to recognize the feasibility (triviality) of a
theory to prove a statement, this section introduces a proof complexity.

Definition 83. We say that the proof complexity of ¢ is O(C) if there exists a proof of ¢ in «
theory T that is a consistent PT-extension of PA and C'-w-consistent for any class C' that includes
C. We say that the proof complexity of ¢ is £2(C) if there exists no proof of ¢ in any theory T that
1s a consistent PT-extension of PA and C-w-consistent.
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We now assume that PA is C-w-consistent for any computational class C, which includes a
computational class with constant-time complexity, O(1).
Then, we obtain the following result:

— Let PZEXP be a sentence that formalizes the statement of PZEXP in PA in a manner similar
to that in Section 6.
The proof complexity of PZEXP is O(1) (i.e., a constant-time), since PZEXP can be proven
in PA.

— Let Con(PA) be a sentence that formalizes the consistency of PA in PA. In other words,

Con(PA) = Vx =PTM-Acpt(vpa, [L],x).

(For the notation and related result, see Lemmas 7 and 9.)
The proof complexity of Con(PA) is O(P) (i.e., a polynomialtime), since Con(PA) cannot be
proven in PA by the second Godel incompleteness theorem, but it has a polynomial-time proof
over PA (Lemma 9), and there exists a PTM-w-consistent theory T (e.g., T = PA + Con(PA))
that proves Con(PA).

— The proof complexity of P # NP is 22(P) (i.e., super-polynomialtime), since P # NP cannot
be proven in a PTM-w-consistent theory (Theorem 67).

— The proof complexity of ¢ (= Ve Il Vn >1 —Prp[3x > n ¢(x)](e, [?],n)) is 2(P) (ie.,
super-polynomialtime), from Theorem 73. Therefore, the proof complexity of the independence
of P vs NP from T by proving the PTM-w-consistency is also 22(P).

11 Informal Observations

If we assume Hypotheses 1 and 2 in Section 1.3, our main theorem implies that P vs NP is
independent from PA. As the next step, it is natural to try to prove Hypothesis 2 (PTM-w-
consistency of PA). Since PA cannot prove Hypothesis 2, a theory T to prove Hypothesis 2 should
include an axiom, X, outside PA. What axiom is appropriate for this purpose?

Usually it is not so easy for mathematicians/logicians to select/determine an appropriate axiom
that would be widely recognized as feasible. An extreme strategy is to adopt Hypothesis 2 itself as
the new axiom, but such an axiom would not be accepted as feasible. Then, what is the criterion
of a feasible axiom? Unfortunately we now have no candidate. Here we note that consistency
and w-consistency are too weak as such a criterion since PA + Hypothesis 2 is w-consistent (i.e.,
consistent) if Hypothesis 2 is true. Currently, the feasibility of an axiom is decided only by whether
it is widely accepted by many mathematicians/logicians to be feasible.

Our result may suggest a criterion for the feasibility of an axiom/theory.

Although axiom X is outside PA (i.e., PA cannot prove X), there exists an asymptotic proof
of X over PA, if X is true. In other words, a Turing machine can produce an asymptotic proof
of X over PA. We then consider the computational complexity of a Turing machine that can
produce an asymptotic proof of X over PA. According to Theorem 73, theory 7' = PA 4+ X to
prove Hypothesis 2 should be PTM-w-inconsistent, and Remark 5 of Definition 62 shows that X
cannot be asymptotically proven by any polynomial-time bounded TM (i.e., PTM) over PA, under
some assumption.

If the computational capability of human beings (along with our available/feasible computing
facilities) is modeled as a polynomial-time Turing machine, which is widely accepted as a feasible
computation model, our result implies that no human being can prove axiom X asymptotically over
PA. This may imply that axiom X cannot be perceived as a feasible (or trivially true) statement
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by human beings, since it is beyond our capability to prove (or recognize the truth of) it even
asymptotically over PA. If so, a theory 7' in which Hypothesis 2 can be proven should include an
axiom that cannot be perceived as feasible by human beings. That is, Hypothesis 2 cannot be proven
in any feasible theory T, which is widely recognized to be feasible by mathematicians/logicians (i.e.,
human beings). In other words, even if Hypotheses 1 and 2 are true and P vs NP is independent
from PA, such an independency cannot be proven (through proving Hypothesis 2) in any feasible
theory T for us. Similarly, even if Hypothesis 1 is true, PZNP may not be proven in any feasible
theory for human beings.

Con(PA), which is a formal sentence representing the consistency of PA in PA | is also unprovable
in PA. That is, a theory T to prove Con(PA) should include an axiom, ¥, outside PA. In contrast
with the above-mentioned case of proving Hypothesis 2, Con(PA) can be asymptotically proven
by a polynomial-time (more precisely, linear-time) Turing machine over PA (Lemma 9), and can
be proven in a PTM-w-consistent theory, PA 4+ Con(PA), if PA is PTM-w-consistent. Although
Con(PA) would not be accepted as a feasible axiom, the fact that Con(PA) can be proven in a
PTM-w-consistent theory may imply the existence of a feasible axiom, Y, for us such that T'= PA
+ Y can prove Con(PA) and T is PTM-w-consistent. Actually, Gentzen [10] proved Con(PA) in a
feasible theory for us, which is in ZF (formal theory of set theory) and whose additional axiom, Y,
to PA is regarding transfinite induction (corresponding to the axiom of foundation in ZF).

The relationship between Godel’s incompleteness theorem and our result is similar to that be-
tween recursion theory and computational complexity theory. Recursion theory studies (un)computability
on Turing machines, which are widely accepted as the most general computation model (the
Church-Turing thesis), while computational complexity theory studies (un)computability on a
much more restricted computation model, a feasible computation model for us (human beings),

i.e., polynomial-time Turing machines (PTMs). The major difference in the computation model of
recursion theory and the computational complexity theory is that the former is resource unbounded,
while the latter is resource bounded (polynomial-time bounded).

Godel’s incompleteness theorem is a result on unprovabilty in the most general formal theories,
consistent theories (or slightly restricted theories, w-consistent theories), that include PA, while
our main theorem is a result on unprovabilty in much more restricted formal theories, feastble
formal theories for us (human beings), i.e., PTM-w-consistent theories, that include PA. The major
difference in the formal theory of Godel’s incompleteness theorem and our main theorem is that the
former considers only the feasibility of the theory for a resource unbounded machine (i.e., consistency
or w-consistency), while the latter considers the feasibility of the theory for a resource bounded
(polynomial-time bounded) machine (i.e., PTM-w-consistency). In fact, as shown in Remark 3 of
Definition 62, the resource unbounded version of PTM-w-consistency is w-consistency.

Here, 1t 1s worth noting that it should be controversial to decide the feasibility of a theory by
PTM-w-consistency, where all axioms and deductions in a theory should be asymptotically proven
by a PTM, but that it might be similar to the situation in computational complexity theory where
it should have been controversial to characterize a feasible computation by class P, since class P
clearly includes many infeasible computations for us such as n'°°% computational complexity in
input size n.

Therefore, it may be reasonable to consider that class P is introduced to characterize an in-
feasible computation, rather than to characterize a feasible computation. That is, we consider that
a computation outside P is infeastble, or an infeasible computation is characterized as a super-
polynomial-time computation class (super-P), since almost all computations in super-P are actu-
ally infeasible except a very small fraction of super-P such as a computation with O(n!°8loglogn)
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complexity (In contrast, almost all computations in P are infeasible such that a computation with
n® complexity is infeasible for ¢ > 20, and only a small fraction of P is feasible).

Similarly, it may be reasonable to consider that PTM-w-inconsistency, rather than PTM-w-
consistency, i1s introduced to characterize infeastble theories. In fact, as we mentioned above, it is
considered to be difficult for us (or PTMs) to perceive the feasibility (triviality) of an axiom of
a PTM-w-tnconsistent theory, since an axiom of a PTM-w-inconsistent theory cannot be proven
even asymptotically by any PTM over PA, under some assumption (Remark 5 of Definition 62).
Our main theorems imply that P£ZNP (or any super-polynomial-time lower bound in PSPACE) is
provable only in such an infeasible theory.

Note that our results do not deny the possibility of proving P=NP in a feasible theory for us,
if P=NP is true.

Godel’s second incompleteness theorem has a positive significance in that it helps us to separate
two distinct theories, T and S, because T Con(S) implies that 7' # S (and T D S) since
S I/ Con(S) by Godel’s second incompleteness theorem. Using this idea, the results of this paper
may provide some hint of the computational capability of human beings.

Let M be a machine whose computational capability is unknown. If C' is a computational
class, our result helps us to characterize the computational power of M relative to C, because
M Fp SuperLowerBound(C) where theory T is feasible for M implies that the computational
power of M should be beyond C. Here SuperLowerBound(C') denotes a formula to represent the
super-C' computational lower bound in PA. If we assume M to be a computational model of human
beings, then our obtained computational lower bound result of M 7 SuperLowerBound(C) in a
feasible theory T' for us implies the upper bound of our computational power. For example, we have
already obtained a proof of a super-AC? lower bound [9, 24]. This fact means that the computational
power of human beings may exceed ACC.

This result may also give us some hint as to why all known results of computational lower bounds
inside PSPACE are limited to very weak or restricted computational classes. If the computational
capability of human beings is considered to far exceed the target computational class for lower
bound proof (e.g., the target class is AC?), then it is likely that we may produce a proof of the
lower bound statement in a feasible theory for us. However, if our computational capability is
comparable to (or is not much beyond) the target computational class for lower bound proof, then
it may be very unlikely that we can provide its proof in a feasible theory for us. In other words,
the best result of computational lower bounds may suggest the computational capability of human
beings.

12 Concluding Remarks

This paper introduced a new direction for studying computational complexity lower bounds; re-
source bounded unprovability (Sections 2 and 3) and resource bounded undecidability (Sections 4
and 5). This approach can be generalized to various systems by generalizing verification machines,
Uptm(vr, ) in proof systems (Section 2) and U(v, ) in decision systems (Section 4).

As mentioned in Section 11, the relationship between Godel’s incompleteness theorem and our
result is similar to that between recursion theory and computational complexity theory. Recur-
sion theory studies (un)computability on the most general computation model, Turing machines
(TMs), while computational complexity theory studies (un)computability on a much more re-
stricted computation model, a feasible computation model for us,1.e., polynomial-time Turing ma-
chines (PTMs), where PTMs are a resource (polynomial-time) bounded version of TMs. Godel’s
incompleteness theorem is a result on unprovabilty in the most general formal theories, consistent
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theories (or slightly restricted theories, w-consistent theories), that includes PA, while our main
theorem is a result on unprovabilty in much more restricted formal theories, feastble theories for us,
1.e., PTM-w-consistent theories, that includes PA, where PTM-w-consistent theories are a resource
(polynomial-time) bounded version of w-consistent theories.

In Part 2, we will extend these results to other computational classes and show that: for all
i > 1, asuper-II{" lower bound and a super-X¥ lower bound cannot be proven in a X -w-consistent
theory and a IT -w-consistent theory, respectively. For all i > 1, a super—ACi_1 lower bound and a
super-NC? lower bound cannot be proven in an AC'~!-w-consistent theory and an NC!-w-consistent
theory, respectively. In addition, Part 2 will present similar results on probabilistic and quantum
computational classes, since a probabilistic TM and quantum TM can be simulated by a classical
deterministic TM; they can be formulated in PA in a manner similar to that in Part 1. Thus, for
example, we will show that a super-BPP lower bound cannot be proven in a BPP-w-consistent
theory and that a super-BQP lower bound cannot be proven in a BQP-w-consistent theory.
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