VMPC Stream Cipher

Bartosz Zoltak, bzoltak@vmpcfunction.com; bzoltak@wp.pl

Abstract. The VMPC Strean Cipher is a simple
encryption algorithm, designed as a proposed pradicd
applicaion d the VMPC one-way function. The
genera structure of the Cipher is based onan internal
256-element permutation. The VMPC Cipher, together
with its Key Scheduling Algorithm, were designed in
particular to eliminate some of the known wegknesses
charaderistic of the dleged RC4 keystream generator.

1. Introduction

VMPC isan abbreviation d Variably Modified Permutation Compasiti on.

The VMPC function is a combination d triple permutation compasition and integer
addition. It differs from a simple triple permutation composition with ore integer addition
operation performed onsome of the dements of the permutation. The cnsequence of this
addition ogeration is corruption d cycle structure of the transformed permutation - the
fundamental sourceof the function's resistanceto inverting.

The VMPC function has a simple formal definition and the value of the function can be
computed with 3 ore-clock-cycle instructions of an Intel 80486and rewer or compatible
processor per byte.

Inverting the simplest variant of the function by thefastest known inverting algorithm is
estimated to require an average @mputational effort of about 22°° operations.

The VMPC Stream Cipher is based onthe VMPC function. Becaise the requirement for a
stream cipher isthat its output is undstinguishable from a randam-data-stream, the Cipher
employs two ather medhanisms, apart from the computation o the VMPC function. They
are updates of an internal 8-bit variable (s) and a swap operation onsome dements of the
internal permutation (P).

The Key Scheduling Algorithm (KSA) of the VMPC Strean Cipher transforms a
cryptographic key of length from 128to 512 hts (and an Initialization Vedor (1V)) into a
256-element internal permutation (P).

2. The VMPC function
For a detailled description d the VMPC function, deease refer to “VMPC One-Way

Function” by Bartosz Zoltak (possble to dovnload from http://www.VMPCfunction.com
or from http://eprint.iaa.org).

2.1.Definition of the VM PC function

Notation:

n,P, Q : Pand Q: n-element permutations. For simpli city of further implementations
P and Q are one-to-one mappingsA — A, where A ={0,1,...,n-1}

k : Levd of thefunction; k<n

+ :addtionmoduo n

Definition;

A k-level VMPC function, referred to as VMPCy, is such transformation o
Pinto Q, where

QIx]=P[Pl Pcal...[P.[P[x]]]...]111],
x [0{0,1,...,n1},
P is an n-element permutation such that P[x] = fi (P[x]), wheref; is any function
suchthat P[x] # P[x] # B[x] foril{1...k}, jO{1...k} /{i}.
For smplicity of further implementationsf; isassumed to be f; (X) =x +1i

For simplicity of future references notation Q=VMPC(P) is assumed to be
equivaent to Q=VMPC,(P)

Example:

Q=VMPC4(P) is such transformation d P into Q, where:
QL x] =P[P.[P[]]],

Pai[x]=P[x]+1.

(QIX]=P[P[P[x]] +1], where “+" denctes addition moduo n)

2.2. Difficulty of inverting the VM PC function

n-element permutation P has to be recovered given information from n-element
permutation, Q, where Q=VMPC(P) (e.g. n=256, k=1: Q[x]=P[P[P[x]]+1]).

By definition each element of Q isformed by k+2 (e.g. 3), usualy different, elements of P.
One element of Q (e.g. Q[33]=25) can be formed by many possible configurations of P
elements (e.g. P[33]=10, P[10]=20, P[21]=25 or P[33]=1, P[1]=4, P[5]=25, etc.).

It cannot be said which of the configurations is more probable. One of the configurations
has to be picked (usualy k+1 (e.g. 2) elements of P have to be guessed) and the choice
must be verified using al those other Q elements, which use at |east one of the P elements
from the picked configuration.

Each element of P is usually used to form k+2 (e.g. 3) different elements of Q. As aresult,
usualy (k+2)* (k+1) (e.g. 6) new elements of Q need to be inverted (all k+2 elements of P
used to form each of those Q elements need to be revealed) to verify the P elements from
the picked configuration.

This would not be difficult for a simple (e.g. triple) permutation composition, where the
cycle structure of P isretained by Q (some cycles are only shortened).

In Variably Modified Permutation Composition however the cycle structure of P is
corrupted by the addition operation(s) and cannot be easily recovered from Q.

Due to that it is usually impossible to find two different elements of Q, which use at least
k+1 (eg. 2) exactly the same elements of P. (This can be done easily for a simple
permutation composition)

In fact only such element of Q can usualy be found, name it Q[r], which uses only one of
the k+2 (e.g. 3) elements of P, used to form another Q element. This forces the k remaining
(e.g. 1) elements of P, used to form Q[r], to be guessed to make the verification of the
initial pick possible.

However at each new guessed element of P, there usually occur k+1 (e.g. 2) new elements
of Q which use this element of P and which need to be inverted to verify the guess.

The agorithm falls into a loop, where at every step usualy k (e.g. 1) new elements of P
need to be guessed to verify the previously guessed elements. It quickly occurs that the k+2
(e.g. 3) dements of P picked at the beginning of the process indirectly depend on all n (e.g.
256) elements of Q.

The described scenario is the case usually and it is sometimes possible to benefit from
coincidences (where for example it is possible to find two elements of Q, which use more
than one (e.g. 2) exactly the same P elements (e.g. Q[2]=3: P[2]=4, P[4]=8, P[9]=3 and
Q[5]=8: P[5]=9, P[9]=3, P[4]=8)).

The adual algorithm of inverting VMPC was optimized to benefit from the possble
coincidences. The arerage number of P elements which neeal to be guessed - for n=256 -
has been reduced to orly abou 34 for 1-level VMPC function, to abou 57 for 2-level
VMPC, to abou 77 for 3-level VMPC and to abou 92 for 4-level VMPC function.

Seaching through helf of the posgble states of these P elements takes on average dou
22%0 steps for 1-level VMPC function, about 2*%° for 2-level VMPC, about 2°°° for 3-level
VMPC and about 2°%° steps for 4-level VMPC function.

A detailed algorithm of inverting the VMPC function is described in “WMPC One-Way
Function” by Bartosz Zoltak.

3. Design objectivesfor the VM PC Stream Cipher and its KSA

The Cipher shoud na generate biased dgraph probabilities (charaderistic of RC4, as
described by Fluhrer and McGrew in [5]) or biased trigraph probabiliti es or biased single-
output probabiliti es.

The Cipher shoud require noinitial outputs to be discarded dredly after runnng the KSA.

Probabilit y that the Cipher’s output will enter a short cycle shoud be negligibly low.

Output generated by the Cipher shoud be freefrom statisticd biases.

Effort required to reaver the internal state from the Cipher' s output shoud be higher than
abrute-forceseach o all possble 512-bit keys.

The KSA shoud resist related-key attadks and attadks against the scheme of using the
Initializetion Vedor (IV), like &tadks described by Fluhrer, Mantin and Shamir in [4]
including the WEP attack.

The KSA shoud provide randam-like diffusion d changes of one byte of the key of size
upto 512 hits onto the generated permutation and orto output generated by the Cipher.

4. Description of the VM PC Stream Cipher

The Cipher generates a stream of 8-bit values from a 256-element permutation. The initial
state of the permutation is determined by the VMPC Key Scheduling Algorithm described
in section 5.

Notation:

P : 256-byte table storing the permutation
s: 8-bit variableinitialized by the VMPC Key Scheduling Algorithm
n: 8-bit variable

Table 1.1.VMPC Sream Cipher
1. SetntoO

2. Add modulo 256 n-th element of Pto s

3. Set sto sth element of P

4. Output s-th element of permutation VM PC(P)
5. Swap n-th element of P with s-th element of P
6. Increment modulo 256 n

7. Goto step 2 if moreoutput isneeded

Table 1.2.VMPC Sream Cipher — pseudocode
To generate Len bytes of output execute:
1. n=20
2. Repeat steps 3-6 Len tines:
3. s =P (s + P[n]) and 255]
4. Qutput = P[(P[P[s]]+1) and 255]

5. Tenp = P[n]
Pln] = P[s]
P[s] = Tenp

6. n=(n + 1) and 255

5. Description of the VM PC Key Scheduling Algorithm

The VMPC Key Scheduling Algorithm transforms a cryptographic key and (optionally) an
Initialization Vector into a 256-element permutation P.

Notation: asin section 4, with:

: fixed length of the cryptographic key in bytes, ¢ [1{16...64}

~ O

: c-element table storing the cryptographic key

z : fixed length of the Initialization Vector in bytes, z (1 { 16...64}
V : z-element table storing the Initialization Vector

m : 16-bit variable

Table 2.1. VMPC Key Scheduling Algorithm

1. SetstoO
2. Set i-th element of P toi for i 0 {0,1,...,255}

3.SetmtoO

4. Add modulo 256 (m modulo 256)-th element of Pto s

5. Add modulo 256 (m modulo c)-th element of K to s

6. Set sto s-th element of P

7. Swap (m modulo 256)-th element of P with s-th element of P
8. Increment m

9. Gotostep 4if mislower than 768

10. If Initialization Vector isnot used: terminate the algorithm

11. Set mtoO

12. Add modulo 256 (m modulo 256)-th element of Pto s

13. Add modulo 256 (m modulo z)-th element of V to s

14. Set sto sth element of P

15. Swap (m modulo 256)-th element of P with s-th element of P
16. Increment m

17. Goto step 12 if mislower than 768

Table 2.2. VMPC Key Scheduling Algorithm — pseudo code
1. s =0
2. for i fromO to 255: P[i]=i

3. for mfromO to 767. execute steps 4-6:
4. n = mand 255
5. s = P[(s + P[n] + KKmnod c]) and 255]
6. Tenp = P[n]
P[n] Pl s]
Pl s] Tenp

7. If Initialization Vector is used: execute step 8:

8. for mfromO to 767. execute steps 9-11:
9. n m and 255
10. s Pl (s + P[n] + Vfmnod z]) and 255]
11. Tenp = P[n]
P[n] Pl s]
Pl s] Tenp

6. Analysis of the VM PC Stream Cipher

6.1.Rewvering the Cipher’sinternal state

Over 2°% operations are estimated to be required to recover the Cipher' sinternal state from

its output. A method similar in its foundations to the Forward Tracking Algorithm,
proposed by S. Mister and S.E. Tavares in [7], was applied to break the VMPC Stream
Cipher. On average over 2°® computational operations are estimated to be required to
recover the Cipher' sinternal statérom its output.

6.2. Digraph and trigraph probabilities

Frequencies of occurrence of each of the possible 2'° pairs of consecutive output values
(Output[x], Output[x+1]) were measured in a stream of 2*** output bytes. None of the
measured frequencies showed a statistically significant deviation from its expected value
of 1/ 65536.

Frequencies of occurrence of each of the possible 2** triplets of two consecutive output
values and the n variable (Output[x], Output[x+1], n) were measured in a stream of 2*-%
output bytes. None of the measured frequencies showed a statistically significant deviation
from its expected valueof 1/16777216.

Frequencies of occurrence of eadh o the possble 2* trigraphs of conseautive output
vaues (Output[x], Output[x+1], Output[x+2]) were measured in a stream of 2**° output
bytes. None of the measured frequencies howed a statisticaly significant deviation from
itsexpeded valueof 1/16777216.

6.3. Single output probabilities

Frequencies of occurrence of eah of the posshle 2® ouput values (Output[x]) were
measured in a stream of 2**° output bytes. None of the measured frequencies howed a
statisticdly significant deviation from its expeded value of 1/ 256.

Frequencies of occurrence of ea of the possble 2*° configurations of an output value and
the n variable (Output[x], n) were measured in a strean of 2°** output bytes. None of the
measured frequencies showed a statisticdly significant deviation from its expeded value
of 1/6553%.

6.4. First outputs probabilities

Frequencies of occurrence of ead of the passble 2° values on eah of the first 256 byte-
pasitions of the keystream generated dredly after runnng the KSA were measured in a
sample of 2°3 bytes of the Cipher’s output for 2°** different keys. None of the measured
frequencies frowed a statisticaly significant deviation from its expeded value of 1/ 256.

[In [1] Mantin and Shamir show that the second ouput of RC4 takes on value O with
probability 1/128rather than 1/256]

6.5. Short cycles

6.5.1. Probability of entering a cycleno longer than X

Following Knuth's [8], probability of entering a g/cle no longer than X for an n-element
randam permutationis X/n.

To compare gycle lengths in the output of the VMPC Stream Cipher to cycle lengths in a
randam permutation, the Cipher was saded dowvn to use N element permutations for
N 0 <4,10> and perform all addition operations moduo N.

The total number of N!*N? possble internal states of the Cipher is determined by all
possble mnfigurations of permutation P and variables sand n.

The observed cycle lengths, listed in the Appendix, do nd show an appredable difference
from amodel of cyclesin arandom (N!* N?)-element permutation.

Probability of entering a o/cle no longer than X by the VMPC Stream Cipher is
conjedured from this to be gproximately X / (256*256%). An example etimate is that
probability that the Cipher’s output will enter a o/cle nolonger than 2°®isabout 1/ 2%,

6.5.2.Finney states

In [6] Finney defined a theoreticd class of internal states of RC4 which produce ashort
cycle of length 65280 ly swapping P[n]=1 in ead step (the KSA of RC4 prevents the
cipher’s internal state from entering this clasg. The dass is diagnosed by n+l=s and
P[n+1]=1.

Such phenomena is possble because step s=s+P[n] of the state-transformation function o
RC4 retains the linea structure of P[n] in variable s (P[n], after the increment of n, is
aways equal 1).

The VMPC Stream Cipher uses an additional table-lookup (s=P[s+P[n]], which, assuming
that P was properly initialized, corrupts a possble linea structure of P[n] (or s) and
prevents stuations analogous to Finney states from occurring.

6.6. Equal neighboring autputs probabilities

Frequencies of occurrence of situations where there occurs a given number (0,1,2,3,4,%nd
over 5) of direa (generated conseautively) and indirea (separated by one more output)
equal neighbaing outputs in the cmnseautive 256-byte sub-streams of the Cipher' s output
and the average total number of dired and indired equa neighbas - showed no
statisticaly significant deviation from their expeded values in a sample of 2*>* bytes of the
Cipher'soutput.

6.7. Statistical tests on the Cipher’ s output

Keystreans generated by the VMPC Cipher were tested by two popuar batteries of
statisticd tests —the DIEHARD battery [9] and the NIST statisticd tests suite [10]. No hias
was found ly any of the 15 tests included in the DIEHARD battery and by any of the 16
tests from the NIST suite.

7. Analysisof the VM PC Key Scheduling Algorithm

The VMPC KSA has been tested for diffusion d changes of the ayptographic key onto the
generated permutation and orto the Cipher’'s output. A change of one byte of the
cryptographic key of size 128, 256and 512 lits shows to cause arandam-looking change
in the generated permutation and in the VMPC Cipher's output — acarding to tests
described insedions 7.1, 7.2and 7.3.

The KSA has been designed to provide the diffusion withou the use of the Initialization
Vedor and tests were run withou the 1V. The Initiaization Vedor would obvously mix
the generated permutation further, which would improve the diffusion effed.

7.1.Numbers of equal permutation elements probabilities

Frequencies of occurrence of situations where in two permutations, generated from keys
differing with one byte, there occurs a given number (0,1,2,4,5) of equal elements on the
corresponding positions and the average number of equal e ements on the corresponding
positions - showed no statistically significant deviation from their expected values in
samples of 2°*2 pairs of 128, 256 and 512-bit keys.

7.2.Numbers of equal Cipher’soutputs probabilities

Frequencies of occurrence of situations where in two 256-byte streams generated by the
VMPC Stream Cipher directly after running the VMPC KSA for keys differing with one
byte, there occurs a given number (0,1,2,4,5) of equal elements on the corresponding
positions and the average number of equal elements on the corresponding positions -
showed no statistically significant deviation from their expected values in samples of 2332
pairs of 128, 256 and 512-bit keys.

7.3.Equal corre sponding permutation elements probabili ties

Frequencies of occurrence of situations where the elements separately on each of the
corresponding positions of the permutations, generated from keys differing with one byte,
are equal - showed no statistically significant deviation from their expected values in
samples of 2°*2 pairs of 128, 256 and 512-hit keys.

8. Conclusions

A proposition of a stream cipher which employs the VMPC one-way function has been
described together with some analyses of the cipher’s cryptographic strength, of the
statistical properties of the cipher’s output and of the statistical properties of the cipher's
Key Scheduling Algorithm.

The anayses performed so far show that the cipher is secure in a sense of difficulty of
recovering its internal state from its output, in a sense of difficulty of distinguishing the
cipher’s output from a random data-stream and from the standpoint of statistical properties
of the cipher’'s KSA.

More detailed descriptions of the tests outlined in sections 6.6, 7.1, 7.2, 7.3, test vectors
and the current developments in the analysis of the VMPC Stream Cipher are to be found
at http://www.V M PCfunction.com.

Appendix. Cyclelengths observed in the output of the VM PC Stream Cipher

The observed cycle lengths in the output of the scaled down variants of the Cipher for
N O <4,10> are listed in Table A.1l. N denotes the number of elements in the P
permutation. All addition operations performed by the scaled down variants of the Cipher
are additions modulo N.

Table A.1. VMPC Stream Cipher cycle lengths

Cycle lengths

200, 88, 40, 36, 12, 8

1860, 640, 295, 110, 45, 25, 20, 5

15510, 5580, 2508, 936, 516, 510, 252, 90, 12, 6

215089, 23821, 3990, 2485, 1015, 392, 70, 56, 28, 14

o/ ~N|o|o|s|=

2401728, 79504, 53512, 42120, 2136, 1032, 288, 96, 24,
16 (2 different cycles of length 16 possible), 8

9 120355471, 2908 098, 2 728 890, 1359 855, 949 725, 609 174, 299 592,
125091, 27 306, 13068, 6219, 5067, 2853, 2538, 180, 90,
18 (3 different cycles of length 18 possible), 9

10| 113 748 840, 99 425590, 75 813290, 37 178 940, 20 169 740, 9 955 030,

3239 140, 2 349 150, 572 500, 363 830, 45520, 8 730, 7520, 700, 390, 370,
40 (17 different cycles of length 40 possible), 20, 10 (2 different cycles of length 10
possible)

10. References
[1] Itsik Mantin, Adi Shamir, “A Practical Attack on Broadcast RC4”
[2] Alexander L. Grosul, Dan S. Wallach, “A Related -Key Cryptanalysisof RC4”

[3] Lars R. Knudsen, Willi Meer, Bart Prened, Vincent Rijmen, Sven Verdoolaege,
“Anaysis Methods for (Alleged) RC4”

[4] Scott Fluhrer, Itsk Mantin, Adi Shamir, “Weaknesses in the Key Scheduling
Algorithm of RC4”

[5] Scott R. Fluhrer, David A. McGrew, “Statistical Analysis of the Alleged RC4
Keystream Generator”

[6] H. Finney, “An RC4 Cycle That Can't Happen”
[7] S.Mister, SE. Tavares, “Cryptanalysis of RC4-like Ciphers’

[8] Donadd E. Knuth “The Art of Computer Programming”, vol. 1. Fundamental
Algorithms, Third Edition, Addison Wesley Longman, 1997.

[9] DIEHARD battery of statistical tests with documentation, http://stat.fsu.edu/~geo/diehard.html

[10] NIST statistical tests suite with documentation, http://csrc.nist.gov/rng

