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Abstract

In a practical system, a message is often encrypted more than once by different encryptions, here called
multiple encryption, to enhance its security. Additionally, new features may be achieved by multiple
encrypting a message for a scheme, such as the key-insulated cryptosystems [13] and anonymous channels
[8]. Intuitively, a multiple encryption should remain “secure”, whenever there is one component cipher
unbreakable in it. In NESSIE’s latest Portfolio of recommended cryptographic primitives (Feb. 2003), it
is suggested to use multiple encryption with component ciphers based on different assumptions to acquire
long term security. However, in this paper we show this needs careful discussion. Especially, this may not
be true according to (adaptive) chosen ciphertext attack (CCA), even with all component ciphers CCA
secure. We define an extended version of CCA called chosen ciphertext attack for multiple encryption (ME-
CCA) to emulate real world partial breaking of assumptions, and give constructions of multiple encryption
satisfying ME-CCA security. Since CCA security seems so stringent, we further relax it by introducing
weak ME-CCA (ME-wCCA), and prove IND-ME-wCCA secure multiple encryption can be acquired from
IND-gCCA secure component ciphers. We also study the relation of various security notions for multiple
encryption. We then apply these results to key-insulated cryptosystem. It is only previously known in
[13] that a generic construction exists provably secure against CPA attack, however, we prove that this
generic construction is in fact secure against ME-wCCA by choosing all components IND-CCA secure. We
also give an efficient generic construction of key-insulated cryptosystem, which is so far the first generic
construction provably secure against CCA (in the random oracle model).
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1 Introduction

A practical cryptosystem often encrypts a message several times under encryption schemes with independent
secret keys or even distinct ciphers based on different assumptions to enhance the plaintext confidentiality.
We call such cryptosystems multiple encryption, specifically double encryption and triple encryption for two
times and three times multiple encryptions. In this paper, we investigate the security notion of multiple
encryption against partial breaking of underlying assumptions.

Why Multiple Encryption. It is widely believed that multiple encryption provides better security
because even if underlying assumptions of some component ciphers are broken or some of the secret keys are
compromised, the confidentiality can still be maintained by the remaining encryptions. Historically, sudden
emergence of efficient attacks against the elliptic curve cryptosystem on supersingular curves [27, 16] and on
prime-field anomalous curves [33, 38, 32] have already reminded us the necessity to do this. Especially, for
example, it is suggested by NESSIE ([30], pp. 5, line 7-11) on asymmetric encryption scheme to “use double
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encryption using ACE-KEM and RSA-KEM with different DEMs gives a good range of security, based on
various different assumptions”, “if very long term security is important”. Furthermore, “Triple encryption
that also uses a public-key scheme not based on number-theoretical assumptions might increase the security
against future breakthrough”. However, it seems that this needs more careful considerations.

On the other hand, multiple encryption can bring additional favorable features to a scheme. Combina-
tion of ordinary threshold encryptions may yield new threshold encryption with various access structures.
Implementations achieving sender anonymity such as Mix-net [8], onion routing [8, 23], and the key-insulated
cryptosystems [13] are all practical examples of multiple encryptions.

Contradiction to the Intuition. In this paper, we show that even if it consists of only independently
selected IND-CCA secure components, a multiple encryption is not necessarily secure at all in the sense of
CCA with partial component ciphers broken. This contradicts our intuition at the first sight, but many
natural constructions of multiple encryption from combinations of IND-CCA secure components can be
shown easily to lose the CCA security. Meanwhile, this result may imply CCA-security is too strong because
practical schemes with “pretty good” security could be overkilled. Then we propose a generic construction
of multiple encryption scheme achieving CCA security exactly. In emphasizing “natural” constructions’
practical usability, we relax the CCA security. We then investigate the relations among security notions
for multiple encryption. Finally as a byproduct, we give the first generic construction of CCA secure key-
insulated cryptosystem.

1.1 Related work

In this section we review some previous work on multiple encryption and related primitives. Rather than
simple combination of ordinary public key encryption schemes, we regard multiple encryption as a separate
primitive, as this gives much convenience.

Multiple Encryption and Related Primitives. Multiple encryption has been used in many practical
schemes, for instance Triple DES. Recently, NESSIE [30] has also announced its recommendation to use
(public key) multiple encryption under diverse assumptions to ensure long term security. Another example
is the key-insulated cryptosystem, proposed by Dodis, Katz, Xu and Yung [13]. In such systems, with
multiple encryption of messages under a number of keys from cover free family [25] and separate physically
secure device, it is guaranteed that secret key of period i cannot be compromised even if user secret keys
are exposed to the adversary up to a number of t other periods.

Another important category of applications using multiple encryption are those practical implementa-
tions of anonymous channels in open network, such as Mix-net [23] and onion routing [8]. In these settings,
several agents are appointed to transmit data from the sender to the receiver without revealing identity of
the sender. Typical design of such protocols is to encrypt data under multiple public keys of these agents,
which decrypt the data one layer after another until eventually reach the destination. It is essential to per-
form these decryption correctly, e.g., [1] has shown some practical attacks against some Mix-net protocols
[24, 21], which if translated in our language, have used insecure multiple encryption.

A similar notion to multiple encryption is the threshold cryptosystem [9, 10, 37], which maintains secrecy
of the unique decryption key even if some shares of the secret key are compromised. However, all known
constructions are based on particular number theoretic assumption and can be employed to only a restrictive
range of applications.

Security Notions. Standard security definition of a public key encryption scheme is founded gradually
in literature, e.g. [20, 29, 14, 31, 4, 15] and the strongest security notion turns to be indistinguishabil-
ity against (adaptive) chosen-ciphertext attack (IND-CCA). Semantic security, first defined by Goldwasser
and Micali [20], later refined by Goldreich [18, 19] and Watanabe, Shikata and Imai [39], captures the
computational approximation of Shannon’s information-theoretic security [34], regulating that it should be
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infeasible for any PPT (Probabilistic Polynomial Time) adversary to obtain any partial information about
the plaintext of a given ciphertext. A similar definition, indistinguishability, defines that given a cipher-
text an adversary cannot distinguish which plaintext is encrypted from two plaintexts. Indistinguishability
is proven to be equivalent to semantic security in several attack models, namely chosen plaintext attack
(CPA), (non-adaptive) chosen-ciphertext attack (CCA1) [29] and adaptive chosen-ciphertext attack (CCA2)
[20, 18, 39, 19]. Another intricate notion, non-malleability, first defined by Dolev, Dwork and Naor [14, 15]
and later refined by Bellare and Sahai [4, 5], formulates that the adversary should not be able to create a
ciphertext of a different message that is meaningfully related to the original ciphertext. Non-malleability
implies indistinguishability in all above three attack models. Independently in [4] and [15], indistinguisha-
bility and non-malleability are proven to be equivalent under (adaptive) chosen-ciphertext attack (hereafter
CCA).

CCA security is crucial in analyzing security of protocols in the universal composability framework
[6, 22, 7]. Mainly it allows the adversary can access the decryption oracle even after receiving a challenge
ciphertext. However, Shoup first argues CCA security is too stringent for practical schemes and suggests
“benign malleability” as a relaxation for CCA in the proposal for ISO public key encryption standard [36].
An, Dodis and Rabin [3] give similar discussion under the name “generalized-CCA” (gCCA). In these two
relaxed definitions, a relation function checks and rejects “obvious” decryption queries decrypted to the
target message. Canetti, Krawczyk and Nielsen [7] also propose another relaxation, namely “Replayable
CCA”, which is weaker than gCCA in most of cases.

Previous Work on Multiple Encryptions and Relations. Multiple encryption was addressed by
Shannon as early as [34] under the name “product cipher”, and in [11, 28, 2] in context of symmetric
key cryptosystems. Massay and Maurer [26] have also studied the problem under the name “cascade ci-
pher”. However, all above work lacks considerations for CCA security and is not adequate for applying their
underlying notions to public key setting straightforwardly, even only to the sequential case (see below).

In upcoming work of [12], Dodis and Katz, independently of our work, propose another generic con-
struction of CCA secure multiple encryption. The security of their scheme can be proven in the standard
model and they generate their scheme to various applications, such as key-insulated cryptosystem, threshold
encryption and etc..1

1.2 Our contributions

Our contributions lie in following aspects:

Model and Security Definition of Multiple Encryption. We give the first formal model regarding
public key multiple encryption. To the best of our knowledge, no previous work has strict formalization
including CCA security, and actually our model can be extended to both public key and symmetric key
based cryptosystems. Our model consorts the modular design: combining “secure” component ciphers to
have a “secure” multiple encryption. As a theoretical extension of traditional security definitions, we give the
corresponding security definition formulated by indistinguishability and non-malleability, especially against
chosen ciphertext attack for multiple encryption (ME-CCA). We introduce a Key Exposure Oracle to emulate
security of multiple encryption in the real world even when underlying assumptions are partially broken.
Without loss of generality, breaking underlying assumptions of component ciphers can be esuriently modelled
as the secret key is leaked to the adversary. Note that there should be at least one secret key hidden from the
adversary, while underlying cryptosystems can be selected independently (the keys can be independent). We
note this security definition considers more than the key exposure problem. Choosing multiple encryption on
different assumptions is the most generalized form of multiple encryption with more favorable confidentiality

1So far they only present their scheme in Rump Session in Crypto’03, Aug. 2003, while an earlier version of our work was
publicly announced in [40], Jan. 2003.
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protection, guaranteeing maximum damage in case of partial breaking. Some analyses here can be applied
to symmetric key schemes also.

Vulnerability of Natural Multiple Encryption. We demonstrate generic attacks against some
natural construction of multiple encryption schemes with each component IND-CCA secure, by an adversary
that breaks the indistinguishability of the scheme with only accesses to the Decryption Oracle and the Key
Exposure Oracle. In fact, such adversary even breaks the onewayness of the scheme. This also explains that
multiple encryption should be treated as a separate primitive from single-layered encryption.

Secure Construction of Multiple Encryption. We exhibit a generic construction of secure multiple
encryption from component ciphers satisfying only “weak” security, e.g., CPA. Though this can be achieved
using general zero-knowledge proof techniques, considering efficiency and practicality, we adopt a scheme
that is provably secure in the random oracle model.

Re-defining Security of Multiple Encryption. IND-CCA security has been treated as standard def-
inition for encryption schemes, as this is convenient to have modular design on cryptographical protocols in
the universal composability framework [6]. However, our analysis shows CCA security may be too stringent
as even combining all IND-CCA secure component ciphers, it might result in a CCA insecure multiple en-
cryption. As a reasonable relaxation, we give a new security definition named weak chosen ciphertext attack
for multiple encryption (ME-wCCA) that is sufficient in most of interesting cases.

Security Notions of Multiple Encryption. We also study the relations between different security
definitions for multiple encryption. We formulate the security definitions, namely indistinguishability and
non-malleability, under different attack models. We show indistinguishability and non-malleability are still
equivalent under ME-CCA and ME-wCCA, which corresponds to previous results (A multiple encryption
degenerates to an ordinary public key cryptosystem, if there is only one component cipher in it.). We believe
a good analysis of these relations will help protocol designer more than simply give a specific construction
based on concrete mathematical assumptions.

Application to Key Insulated Encryption. As an application, we reconsider the chosen ciphertext
security for generic construction of key-insulated encryption proposed by Dodis, Katz, Xu and Yung [13]. It
is only previously known in [13] that a generic construction exists provably secure against CPA attack. In this
paper, we show that their scheme is in fact provably secure in the relaxed wCCA model, if each component
cipher is selected IND-CCA secure. This result reasonably supports the correctness and practical usability
of the scheme in [13]. We further give a generic construction meeting exact CCA security (in the random
oracle model). We point out this is the first generic construction of CCA secure key-insulated cryptosystem
so far.

2 The model

In this section, we give the model of a multiple encryption, basic construction methods and relative security
definitions. Multiple encryption is a generalized form of public key encryption. Definitions for negligi-
ble function, public key encryption scheme, All-or-Nothing Transform and Cover-free family are given in
Appendix A.

2.1 Multiple encryption scheme

Informally a multiple encryption is to encrypt a message by multiple cryptosystems. A multiple encryp-
tion scheme ME is generated by component ciphers. Naturally we have two basic combinations of these
cryptosystems: parallel and sequential connection among different components.
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2.1.1 Definition

Multiple encryption is a cryptosystem composed by distinct component ciphers. Suppose {Ei}1≤i≤n is a set
of compatible component ciphers, where for Ei,

Enc-Geni a probabilistic key-generation algorithm, with the input (1k) and the internal coin
flipping produces a public-secret key pair (pki, ski);

Enci an encryption algorithm, with an input message mi ∈ Mi and the public key pki,
with the internal coin flipping, outputs a ciphertext ci ∈ Ci;

Deci a decryption algorithm, which is a deterministic algorithm, with the input ciphertext
ci and the secret key ski, outputs a message mi or “⊥”.

A multiple encryption is a 3-tuple algorithm (MEnc-Gen,MEnc,MDec), where each algorithm may be com-
bined from a number of public key cryptosystems with a unifilar connecting order. MEnc-Gen invokes
every Enc-Geni, and writes their outputs to a key list with public keys PK = (pk1, ..., pkn) and secret keys
SK = (sk1, ..., skn). MEnc with an input message M from message spaceM and PK, performs encryption
MEnc on M by invoking a list of component encryption algorithms, also including AONT T if necessary,
eventually outputs a ciphertext C ∈ C. The decryption algorithm MDec takes (C, SK) as input and outputs
M , or “⊥” if C is invalid. We also denote in brief the encryption algorithm as MEnc(M ; COIN) (or MEnc(M)),
and the decryption algorithm as MDec(C) in clear context, where COIN stands for the randomness used the
multiple encryption. Essentially, we have two basic constructions: parallel and sequential.

Parallel Construction. A parallel multiple encryption is an operation that messages are encrypted
in parallel by cryptosystems E1, . . . , En. If a message m is chosen from the message spaceM and is directly
processed by E1, . . . , En, the merit of multiple encryption will lose immediately - if the adversary breaks one
component cipher, it succeeds. The right way is to pre-process the plaintext before encrypting it. Such
pre-procession can be an All-Or-Nothing Transform (AONT) (Certainly a (n − 1, n) secret sharing also
suffices.), which maps the desired message into several sub-messages so that only after all the sub-messages
are decrypted and the plaintext can be recovered. Figure 1 depicts the construction in Appendix B.

To decrypt the ciphertext C = (c1, . . . , cn), one uses every ski in the underlying Ei to decrypt every ci

and gets mi (1 ≤ i ≤ n). The plaintext m can then be reconstructed from m1, . . . , mn. For an adversary
attacking AONT, it can never obtain any information of the plaintext unless it gets all mi’s. The generic
construction of the key-insulated cryptosystem [13] is an example of multiple parallel encryption.

Sequential Construction. Sequential multiple encryption is more straightforward, with the structure
identical to cascade cipher mentioned in [26]. It should be clarified that there exists significant difference
between multiple sequential encryption and the product cipher [34]: for multiple encryption, each component
cipher scheme can be chosen independently. Initially the plaintext is encrypted by the innermost component
cipher. Each output (ciphertext) of an component cipher will be passed on as the input of the next component
cipher. Finally the output of the last component cipher is taken as the output of this multiple encryption.
Figure 2 in Appendix B depicts it. Since the operation is done sequentially, by observing C = cn, the
decryption algorithm takes cn and ski, i = 1, . . . , n as input and eventually outputs m. The construction of
onion routing [8] is an example of multiple sequential encryption.

Hybrid Construction. If a multiple encryption contains both parallel encryption block and sequential
encryption block, we call it a hybrid multiple encryption. We give another description that may help
understand the structure. Consider a cipher cryptosystem with a tree structure. Fixing the root node
as the first layer cipher, adding a parallel multiple encryption to a node just increases the sub-nodes of a
node into e, where e is the number of component ciphers in this parallel block. Adding a sequential cipher
cryptosystem to a node will increase the tree depth with a factor of f from that node, where f is the number
of component ciphers in this sequential multiple encryption block. Then the output of the whole multiple
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encryption is the output of all nodes that don’t have sub-nodes. We call the set of a node of a certain level
and its sub-nodes a branch. If there is more than one end node in the branch, we say the branch ends
with parallel block. Otherwise, ends with sequential block. Then a multiple encryption ends with a parallel
branch if there is one parallel encryption block in any branch, and ends with sequential branch if there is
only one branch, with its all component ciphers forming a sequential encryption block.

2.1.2 Parallel construction vs. sequential construction

Parallel multiple encryption may serve as a secure data storage where a document is split into n pieces with
(t, n) threshold secret sharing other than AONT and stored in several not necessarily secure servers. As long
as no more than t secret keys are not compromised, the secret is still secure. Compared to parallel multiple
encryption, sequential multiple encryption has gain in the data size.

2.2 Chosen ciphertext security for multiple encryption

Partially breaking of underlying assumptions (key exposure) is usually not considered in the security of
a normal public key encryption scheme, such as IND-CCA, whereas a multiple encryption should remain
secure even when most of the underlying assumptions are broken. Since this gap cannot merge sometimes,
modifications should be performed to the standard CCA security definition in order to catch this act. We
here introduce an additional oracle into standard CCA game to emulate this scenario: a Key Exposure
Oracle that upon the adaptive request of the adversary, leaks secret keys of the component ciphers to the
adversary. Note that more has been considered in our model than mere key exposure and the situations are
more complicated.

Oracle Access Rules. There are three oracles in our model: An Encryption Oracle EO, which upon
calling with input (M0, M1), returns Cb, the encryption of Mb, where b ∈ {0, 1} decided by internal coin
flipping. A Decryption Oracle DE , upon decryption query C, outputs M = MDec(C), if C 6= Cb; otherwise,
“⊥”. A Key Exposure Oracle, upon calling with i as one index of entire n component ciphers, 1 ≤ i ≤ n,
returns the corresponding secret key ski. The adversary can access three oracles in any order at any time
of its choice, but it can only query EO once and KE at most n− 1 times.

Definition 1 (IND-ME-CCA) Assume any PPT adversary play the following game with a multiple encryp-
tion ME. Key generation algorithm MEnc-Gen is run. The public key PK = {pki | i = 1, . . . , n} is then
given to an Encryption Oracle EO and the adversary. The secret key SK = {ski|i = 1, . . . , n} is given to a
Decryption Oracle DO and a Key Exposure Oracle KE. The adversary chooses to access the three oracles
in any order and at any time. According to the timing of access to EO, the adversary’s strategy is divided
into two algorithms (Afind,Aguess), where Afind tries to find (M0, M1) to submit to EO which returns Cb, and
Aguess tries to output a guess on b. If the difference of the success probability of the adversary A compared
to random guess in the IND-ME-CCA game is negligible:

Pr

[

b = b̃
(PK, SK)← MEnc-Gen(1k), (M0, M1, α)← AKE,DO

find (PK),

b
R
← {0, 1}, Cb ← MEnc(Mb), b̃← A

KE,DO
guess (Cb, α)

]

≤
1

2
+ neg(k)

then we call this ME IND-ME-CCA secure.

Non-malleability of multiple encryption against CCA (NM-ME-CCA) is similar to IND-ME-CCA except
that the adversary succeeds by outputting a new ciphertext with is “meaningfully” related to the challenge
ciphertext. That is, suppose R is a prescribed relation, then the adversary wins, if the adversary could
output a different ciphertext C ′ from the challenge ciphertext Cb, with two plaintexts decrypted from C ′

and Cb satisfying R (R outputs TRUE).
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Definition 2 (NM-ME-CCA) Denote M, C as sets of plaintexts and ciphertexts being empty initially, respec-
tively. According to the above access rules for the three oracles, if any probabilistic polynomial time adversary
in the following game has success probability negligibly close to 1/2, we call the multiple encryption scheme
NM-ME-CCA secure.

Pr

[

b = 1
(PK, SK)← MEnc-Gen(1k), (M0, M1, α)← AKE,DO

1 (PK), Cb ← MEnc(M1),

(R, C)← AKE,DO
2 (Cb, α), M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb, M)

]

≤
1

2
+ neg(k)

These definitions are also applicable to chosen plaintext attack CPA by letting DO always output an
empty string on any decryption query, which results in the definition of chosen plaintext attack for multiple
encryption ME-CPA. Analogously, we can define IND-ME-CPA, NM-ME-CPA. By fixing the number of com-
ponent ciphers n = 1 in the dedition of IND-ME-CCA (or NM-ME-CCA), we obtain definition of the standard
IND-CCA (or NM-CCA).

3 Insecurity of natural constructions

Given each component IND-CCA secure, let’s consider the following problem: Is the above “natural” con-
struction IND-ME-CCA secure? Rather disappointing, the answer is negative. There does exit insecure
constructions.

Basic Idea. At the first glance, one may think all multiple encryption schemes from such construction
should be secure, since each component is chosen independently from each other and satisfies strong security
notion IND-CCA, then all outputs will be indistinguishable from random sequence. However, this reasoning
is fallacious. The flaw is in that this does not consider the case that the adversary can make use of DO.
In this case DO can be very helpful because every ciphertext different from the original can be decrypted
and returned according to the definition of CCA attack. Then all the adversary needs to do is to modify
the challenge ciphertext to a “new” one but decrypt to the same message, and submit it to the Decryption
Oracle DO. In the CCA setting, the adversary cannot do this easily because the secret key is kept privately.
However, in ME-CCA setting, partial key can be exposed by the Key Exposure Oracle KE , moreover,
since every component is semantically secure, as it must be probabilistic, where there exist at least two
valid ciphertexts C0, C1 ∈ C with MDec(C0) = MDec(C1) = M , where M ∈ M is any valid plaintext.
Furthermore, we have the following theorem.

Theorem 1 There exists insecure multiple encryption in the sense of IND-ME-CCA, even if it is combined
from independently chosen IND-CCA secure component ciphers and secure AONT.

Proof. Given a multiple encryption schemeME constructed in the following way: independently select IND-
CCA secure component ciphersME = {Enci}, i = 1, ..., n, combine them according to the three constructions
and generate public key PK = (pk1, ..., pkn) and secret key SK = (sk1, ..., skn) (see section 2.1.1). We have
two claims:

Claim 1 If a multiple encryption has a branch that ends with a parallel block, we are then able to construct
an adversary A that breaks it with only one key exposure query and one decryption query.

Suppose A = (Afind,Aguess) that chooses i, 1 ≤ i ≤ n, and submits Ei to KE . Denote (mi, ci) as the

input and output of i-th component cipher. Let EO’s challenge be Cb = MEnc(Mb) (b
R
← {0, 1}). We can

construct the following adversary:
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Adversary AKE,DO
find Adversary ADO

guess(M0, M1, α, Cb)

(M0, M1, ski)← A
KE,DO
find (PK, i) mi ← Deci,ski

(ci) where Cb = (c1, ..., ci, ..., cn)
α← ski For c′i = ci do c′i = Enci(mi)
return (M0, M1, α) C ′

b = (c1, ..., c
′
i, ..., cn)

Mb = MDec(C ′
b) where C ′

b 6= Cb

return Mb

Claim 2 If a multiple encryption has a branch that ends with a sequential block, we may then be able to
construct an adversary A that breaks it with only one key exposure query on the last component and one
decryption query.

Observing that Decn(cn) = cn−1 and C = cn, we can build the adversary as follows:

Adversary AKE,DO
find Adversary ADO

guess(M0, M1, α, Cb)

(M0, M1, skn)← AKE,DO
find (PK, n) cn−1 ← Deci,skn

(cn) where Cb = (c1, ..., cn)
α← skn For c′n = cn do c′i = Encn(cn−1)
return (M0, M1, α) C ′

b = c′n
Mb = MDec(C ′

b) where C ′
b 6= Cb

return Mb

where EO’s challenge is Cb = MEnc(Mb) (b
R
← {0, 1}).

We can see in both case, Mb can be decrypted by querying DO with C ′
b, which enables the adversary to

obtain b easily. Especially for some hybrid constructions, these two attacks can happen at the same time.

Discussion. The proof to this theorem shows only the case of indistinguishability under ME-CCA attack.
We briefly explain the case of onewayness against chosen ciphertext attack for multiple encryption, denoted
as OW-ME-CCA. Onewayness can be informally described as: given ciphertext C, output the plaintext M . It
is a strictly weaker notion than indistinguishability. However, the proof of Theorem 1 tells us that not only
IND-ME-CCA, but also onewayness may not be maintained in ME-CCA model, even if all the components are
CCA secure. On the other hand, we can see such natural schemes are malleable because the adversary can
easily produce a “new” ciphertext with a proper key exposure query and simulates the Encryption Oracle.
NM-ME-CCA security better explains why the adversary can launch that attack: it actually has produced
a ciphertext with relation that it contains the same plaintext to the challenge ciphertext. NM-ME-CCA
security is not trivially obtainable in such situations, either.

4 A generic construction for secure multiple encryption

We have shown that the simple modular design without further treatment of multiple encryption is not
sufficient to yield ME-CCA security. Then it is natural to consider the following questions: First, how to
construct a ME-CCA secure multiple encryption. Second, whether a generic construction satisfying ME-
CCA security can be achieved by component ciphers with weaker security, e.g., onewayness against chosen
plaintext attack (OW-CPA) security. We answer both questions by giving a generic construction achieving
ME-CCA security with component ciphers with weaker security.

For the “natural” constructions, ME-CCA security is hard to achieve with simple connections of compo-
nent ciphers because partial exposure of the secret keys will always cause malleability of ciphertexts. This
prompts us the necessity to check the randomness used in encryption to ensure the validity of all parts of a
ciphertext before outputting the plaintext. Suppose all randomness used in the encryption can be verified
during decryption, then the Decryption Oracle in fact does not help the adversary: If the adversary can
pass the randomness verification, with overwhelming probability, it has already known all the randomness
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used. This can be achieved by embedding all randomness into the plaintext. Consistence of all randomness
can be verified in the decryption phase, i.e., to pass the test, the adversary must be forced to have known
the corresponding plaintext when it submits a ciphertext query. Then a multiple encryption will be secure
if an adversary cannot break all underlying component ciphers. Then what remains to be solved is how to
combine a set of OW-CPA encryption schemes to have IND-ME-CCA secure multiple encryption.

Recall Ei is the i-th component cipher of the multiple encryption, Enci(mi, pki; COINi) and Deci(ci, ski)
are the encryption algorithm and decryption algorithm for Ei (in short Enci(mi; COINi) and Deci(ci), respec-
tively), where pki is the public key and ski is the secret key of Ei (see section 2.1.1).

4.1 Secure parallel construction of multiple encryption

We can build constructions based on any public key encryption components with OW-CPA security. Most
of the practical public key encryption schemes satisfy this. Denote Hi : {0, 1}∗ → {0, 1}ki (ki is the length
of necessary random coin for Ei) and Gi : {0, 1}∗ → {0, 1}li (li is the length of ci2) as random functions.

Key-Generation MGen-Enc(1k): (pki, ski)←Gen-Enci, for 1 ≤ i ≤ n; PK = (pk1, ..., pkn), SK = (sk1, ..., skn).

Encryption MEnc(M, PK): (m1, ..., mn)
AONT
←− T (M). ri ∈R {0, 1}∗, for 1 ≤ i ≤ n. For i-th component

cipher: ci1 ← Enci(ri; Hi(M, r1, ..., rn)), ci2 ← Gi(ri) ⊕ mi, ci = (ci1, ci2), 1 ≤ i ≤ n. Outputs
C = (c1, ..., cn) as ciphertext.

Decryption MDec(C, SK): ri ← Deci(c̄i1), m̄i = G(r̄i) ⊕ c̄i2, 1 ≤ i ≤ n. Outputs M̄ ← I(m̄1, ..., m̄n) as
plaintext if c̄i1 = Enci(r̄i; Hi(M̄, r̄1, ..., r̄n)), otherwise “⊥”.

4.2 Secure sequential construction of multiple encryption

Sequential construction can be based on the same idea. In the following constructions, Hi : {0, 1}∗ → {0, 1}ki

(ki is the length of necessary randomness for Ei) and Gi : {0, 1}∗ → {0, 1}li (li is the length of ci2) are random
functions.

Key-Generation MGen-Enc(1k): (pki, ski)←Gen-Enci, for 1 ≤ i ≤ n; PK = (pk1, ..., pkn), SK = (sk1, ..., skn).

Encryption MEnc(M, PK): Let c0 = M , ri ∈R {0, 1}∗, for 1 ≤ i ≤ n. For i-th component:
ci1 ← Enci(ri; Hi(ci−1, r1, ..., rn)), ci2 = G1(ri)⊕ c0, ci = (ci1, ci2), for 1 ≤ i ≤ n. Output C = cn.

Decryption MDec(C, SK): Let c̄n = C, for 1 ≤ i ≤ n, c̄n−1 ← Deci(c̄n). Outputs M̄ = c̄0 as output, if
c̄i1 = Enc(r̄i; Hi(M̄, r̄1, ..., r̄n)) for 1 ≤ i ≤ n. Otherwise “⊥”.

4.3 Security proof

The following theorem holds for our construction:

Theorem 2 Multiple encryption consists of only parallel or sequential block from above construction is
secure IND-ME-CCA secure in the random oracle model.

The rest of this section will be dedicated to the proof of this theorem. We shall divide the proof into
two parts: first part namely Lemma 1 proves the case of parallel construction and the second part namely
Lemma 2 proves the case of sequential construction.

Assume each component cipher is chosen independently. We claim the following lemmas:
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Lemma 1 If there exists an adversary B that breaks a parallel multiple encryptionME with the construction
given the section 4.1, then there is a probabilistic polynomial time adversary A breaks onewayness of any
component cipher Ei with non-negligible advantage.

Lemma 2 If there exists an adversary that B breaks a sequential multiple encryption ME with the con-
struction given the section 4.2, then there is an adversary A breaks onewayness of any component cipher Ei
with non-negligible advantage.

C.2.1: Proof of Lemma 1

Construction of Adversary. Suppose B breaksME with probability SuccB(k) = 1/2+ε with adaptive
queries on the Key Exposure oracle that leaves at most n − 1 keys to B. Construct A as follows: A picks
arbitrary encryption scheme Ei and a secure (L, l, n)-AONT see section 7.3 and constructs ME as section
4.1. The adaptive key exposure is simulated as A chooses arbitrary Ej for j 6= i and hand the secret keys
to B. This time since B knows all the secret keys, then there is no barrier for B to make decryption on cj ’s.
A can simulate all this by itself.

When B asks encryption queries on a message M , A first transforms M with (m1, ..., mn) ← T (M)
with AONT, specially A will take mi as input for Ei. A simulates random oracle Hi and Gi as two tables
THi

, TGi
by itself: if when B has a query σcount on Hi, if it has not been entered as an entry in THi

it
flips coins to get a random number increases the counter count (initially set 0) by 1, put the query and
answer (σi,count, hi,count) in the table and proceeds. It does the same for Gi where it instead puts the query
σi,count, mi,count and the answer is gi,count in TGi

. Then A simulates other random oracle Hj and Gj and
gets output of Ej as cj = (cj1, cj2).

When B makes decryption query on C = (c1, ..., cn), A decrypts cj such that j 6= i to get X−i =
(m1, ..., mi−1, mi+1, ..., mn). Especially it runs the following program to get mi and inverses X = (m0, ..., mn)
to get M ← I(M) and hand M to B. Here, the program K(THi

, TGi
, ci, pki) for Ei, where on random oracle

queries THi
, TGi

, input ciphertext ci = (ci1, ci2) and public key pki outputs the plaintext mi if there is an
entry in THi

satisfying ci1 ← (Enci(ri; Hi(M, ri)), and an entry in TGi
satisfying ci2 ← Gi(ri)⊕mi.

First A runs B in the find model. When B makes encryption or decryption queries, A answers as
described above. Finally, B halts automatically, outputs (M0, M1, s). Otherwise, if B cannot finish within
couter = qHi

+ qHi
queries on Hi and Gi stop B.

Let b←R {0, 1}, an challenge ciphertext ci−b is generated by an Encryption Oracle EOi outside A. Using
the same b, Ei also generates X−i = (m1, ..., mi−1, mi+1, ..., mn). Now A runs B in the guess mode taking
(mi−0, mi−1, s, X−i) as input. If B asks encryption or decryption queries, follow above specifications. At
last, B outputs a guess bit b̃ on Mb. A also outputs b as its guess.

Claim 3 If there exists an IND-ME-CPA adversary B that breaks parallel ME with advantage ε, there is
A that breaks the indistinguishability of i-th component cipher with probability ε1 or indistinguishability of
(L, l, n)-AONT with advantage with advantage ε2, such that ε ≤ ε1 + 2ε2.

Proof. Denote Pr[·] as the probability of events and define some events as:

SucB: B gains advantage in the IND-ME-CPA game.
E1: B breaks the indistinguishability of AONT, that is, B guesses b with (X−i, M0, M1);
E2: B outputs mi−b from (mi−0, mi−1) and Cb.

Since E1 and E2 are independent, and Pr[SucB|¬E1 ∧ ¬E2] must be 0 from the assumption, let the
advantage of B inverting ci−b to get mi−b be ε1 and breaks AONT as ε2, we have:

ε = Pr[SucB|E1 ∧ E2] · Pr[E1 ∧ E2] + Pr[SucB|¬E1 ∧ E2] · Pr[¬E1 ∧ E2]
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Pr[SucB|E1 ∧ ¬E2] · Pr[E1 ∧ ¬E2] + Pr[SucB|¬E1 ∧ ¬E2] · Pr[¬E1 ∧ ¬E2]

≤ Pr[E1 ∧ E2] + Pr[E1 ∧ ¬E2] + Pr[¬E1 ∧ E2]

≤ ε1 + 2ε2

Completed.
Following section 4.1 and section 4.2, denote ki is the length of necessary coin for Ei and li be the length

of ci2.

Claim 4 Suppose Ei is γ-uniform (detailed discussion in [17]). If there is an IND-ME-CCA adversary B that
breaks i-th component cipher ci1 ← (Enci(ri; Hi(M, ri)), ci2 ← Gi(ri)⊕mi, ci = (ci1, ci2) with (qHi

, qGi
, qdi

)
of Hi, Gi and decryption queries of advantage ε1, then A breaks onewayness of Ei with advantage at least
ε(1− 2−ki)qHi (1− γ − 2−li)qd.

Proof. Denote the event AskHi is true if there is an entry in THi
satisfying Enci(ri; Hi(M, r1, ..., rn), and

AskGi is there is an entry in TGi
satisfying Gi(M, r1, ..., rn)⊕mi. SucA1 is true if A simulates at most qd

decryption queries correctly. SucA2 is true if on input unknown plaintext mi, A outputs a correct ciphertext
ci. fail1 is true if A fails to simulate a specific B’s decryption query.

From above specification, we know that A can simulate decryption queries for B, for ci2 part is in fact
one-time pad, the probability of A fails to simulate one decryption query of B, since AskHi and AskGi is
independent,

Pr[fail1] = Pr[fail1|AskHi ∧AskGi] · Pr[AskHi ∧AskGi]

+Pr[fail1|¬AskHi ∧AskGi] · Pr[¬AskHi ∧AskGi]

+Pr[fail1|AskHi ∧ ¬AskGi] · Pr[AskHi ∧ ¬AskGi]

+Pr[fail1|¬AskHi ∧ ¬AskGi] · Pr[¬AskHi ∧ ¬AskGi]

Since Pr[fail1|AskHi∧AskGi] must be 0, Pr[fail1|¬AskHi∧¬AskGi] must be 1, we have Pr[fail1] ≤
Pr[fail1|¬AskA0] · Pr[¬AskA0] ≤ γ + 2−li . So Pr[SucA1] = (1 − Pr[fail1])qd ≥ (1 − γ − 2−li)qd . On the
other hand, SucA2 fails when B make exactly query on ri, denote the length of ri to be ki = |ri|,

Pr[SucA2] = (1− 2−ki)qHi

Finally, from above specification of A we know SucB, SucA1 and SucA2 are independent events. So the
advantage AdvA of A breaking onewayness of Ei using B as oracle is

AdvAB = Pr[SucB ∧ SucA1 ∧ SucA2] = Pr[SucB] · Pr[SucA1] · Pr[SucA2]

= ε1(1− 2−ki)qHi (1− γ − 2−li)qd

Proof completes.
Combining above two claims, we have A breaks onewayness of Ei with advantage at least:

AdvA ≥ min
1≤i≤n

{(ε− 2ε2)(1− 2−ki)qHi (1− γ − 2−li)qd}

Apparently both A and B can finish in polynomial time. By requirement of secure AONT, ε2 is negligible.
A can then break onewayness of Ei with non-negligible advantage. Lemma 1 is thus proven.

Following section 4.1 and section 4.2, denote ki is the length of necessary coin for Ei and li be the length
of ci2. Based on similar analysis of proof of Lemma 1, we can formulate the following:

Claim 5 A can use B attacking ME-CCA with advantage ε to break the onewayness of a certain component
cipher Ei with advantage at least min1≤i≤n{ε(1− qHi

· 2−ki)(1− γ − 2−li)qd}.

The proof is quite similar to that of Claim 4, and is omitted here. Combine Lemma 1 and Lemma 2,
theorem 2 is then proven.
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Discussion. One complementary remark should be addressed on the uniformity of underlying primitives
[17]. What we have considered so far is mainly non-deterministic component ciphers. For deterministic
primitive public key encryption, e.g., RSA, above construction is not sufficient, however, it can be modified
to fit this transform. Furthermore, if all the component ciphers are deterministic, the task is easier: just
connect them together and set proper padding schemes as pre-procession of the message, like OAEP+
[35], and form the whole multiple encryption with parallel construction with compatible input domain,
or sequential connecting one after another. AONT can be even replaced by OAEP+. This construction
should also be secure because if the encryption primitive is deterministic, an adversary cannot re-encrypt
the corresponding parts of a ciphertext into valid new part to produce another ciphertext even if it seizes
corresponding secret keys. We shall give formal analysis regarding the deterministic encryption primitive in
the forthcoming work.

5 New definition regarding multiple encryption

It seems contradictive to our intuition that though component ciphers are independent, even onewayness
may lose with just simple connection of independently chosen ciphers. However, if we follow the CCA
security, it is doomed to appear completely insecure. From another aspect, it suggests that CCA security
may be somehow excessively strong. In the real world, it is rare that DO helps even in such obvious attacks.
For example a new cipher S′ is constructed from a CCA-secure cipher S, where a harmless bit is appended
to the ciphertext of S, and is discarded during decryption, then S′ is no longer secure in the sense of CCA.
It seems such attack to S′ should be easily judged and have “no significant difference” in most of cases. In
fact, when DO encounters such queries, it should easily determine whether this is really a “new” ciphertext,
by just looking at the ciphertext.

5.1 Relaxing definition of CCA security

CCA security might be too strong and is not always necessary, as pointed out in [36, 3, 7], among which,
Shoup’s “benign malleability” [36] and An, Dodis and Rabin’s “gCCA” [3] are basically equivalent: a relation
function RF helps the Decryption Oracle against obvious attacks. In gCCA definition, the relation function
performs as follows: if RF(c, c′) = TRUE ⇒ Dec(c) = Dec(c′). The opposite direction does not hold,
otherwise, the relation function can be used as an oracle breaking the indistinguishability. There must be
∃ (c, c′), such that RF(c, c′) = FALSE, with Dec(c) = Dec(c′) (refer [3] for more details). Canetti, Krawczyk
and Nielsen [7] recently propose another relaxation, called “replayable chosen ciphertext attack” (RCCA),
with most of cases strictly weaker than gCCA.

To rule out the definitional limitation of CCA security in multiple encryption setting, we also introduce
a relaxed definition called “weak chosen ciphertext attack for multiple encryption” (ME-wCCA). In the
definition of wCCA, there is a relation function RF∗ is computed by invoking RF i (1 ≤ i ≤ n) during the
decryption process inside DO, with initial value of eachRF i set to FALSE, whereRF i is the relation function
defined according to gCCA security for i-th component cipher Ei. RF i(ci, c

′
i) = TRUE⇒ Dec(ci) = Dec(c′i).

WheneverRF i = TRUE for some i, RF∗ halts and returns TRUE to DO immediately. Once receiving TRUE,
DO outputs “⊥” to the adversary. Informally, if RF∗ finds a part (may be the intermediate decryption
result) of the query ciphertext looks “the same” as the corresponding part of the challenge ciphertext, it
tells the Decryption Oracle to reject this decryption query. Since the rules for oracle access is the same, the
definition of IND-ME-CCA only needs to be modified a little to adapt to IND-ME-wCCA.

We stress that ME-wCCA security is a reasonable relaxation for CCA security. This notion is basically
an extension of gCCA security. By restricting a multiple encryption to only one component cipher, IND-ME-
wCCA becomes IND-gCCA.

Definition 3 (IND-ME-wCCA) In the beginning, the key generation algorithm MEnc-Gen is run, and with
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the input {1k}, generating every underlying encryption scheme’s public-secret key pair (pki, ski), n pairs in
total. PK = (pk1, . . . , pkn) is the public key and SK = (sk1, . . . , skn) is the secret key. Then MEnc-Gen
gives the public key PK to EO and the adversary, the secret key SK to an Key Exposure Oracle KE and
Decryption Oracle DO with a Relation Function RF∗ inside, which is computable in polynomial time. The
adversary accesses at most n− 1 time to KE. The adversary access the EO with two messages {M0, M1} as

input. EO chooses b
R
← {0, 1} and encrypts Mb into Cb and returns Cb to the adversary. The adversary is

allowed to access DO for arbitrary polynomial times, and DO responses with the corresponding plaintext as
long as RF∗(C, Cb) does not output TRUE. The adversary may query the oracles adaptively, in any order it
likes. The adversary succeeds by guessing the value b, and a scheme is secure if any probabilistic polynomial
time adversary has success negligibly close to 1/2.

Pr

[

b = b̃
(PK, SK)← MEnc-Gen(1k), (M0, M1, α)← AKE,DO¬RF∗

find (PK),

b
R
← {0, 1}, Cb ← Enc(Mb), b̃← A

KE,DO¬RF∗

guess (Cb, α)

]

≤
1

2
+ neg(k)

The following lemma shows that IND-ME-wCCA secure multiple encryption can be easily acquired from
IND-gCCA secure component ciphers.

Lemma 3 A multiple encryption scheme ME is IND-ME-wCCA secure w.r.t. RF∗ by any of three basic
constructions, if each component cipher Ei is IND-gCCA secure w.r.t relation function RF i, 1 ≤ i ≤ n. RF∗

is defined as RF∗(C, C ′) = TRUE, such that RF i(ci, c
′
i) = TRUE for some i, 1 ≤ i ≤ n, where ci, c′i are two

ciphertexts of Ei, and C, C ′ are the corresponding ciphertexts for ME.

Proof. For simplicity, we assume AONT is secure according to the definition in Appendix A (It is easy to
modify the proof to the case in which security of AONT is also strictly considered). Within our definition
of relation function, RF∗ and RF i are computable in polynomial time. If a ME scheme constructed from
IND-gCCA components by above three construction methods is not IND-ME-wCCA secure, then we can use
the IND-ME-wCCA adversary as an oracle to break the underlying IND-gCCA secure encryption schemes.
For multiple encryption scheme, we denote “RF i” as equivalence relation w.r.t. any internal IND-gCCA
secure component cipher Ei. Now assume that ME is not IND-ME-wCCA secure w.r.t. RF∗, we show that
the same holds for Ei is not secure w.r.t. RF i, either. To do this, we take any adversary D for ME which
contains Ei as internal component cipher and construct adversary Di for Ei.

When Di views the public key pki of Ei, it generates some key pairs (pkj , skj) ← Enc-Genj(1
k) (j 6= i)

by itself, so that the inputs and outs are compatible. Without loss of generality, we denote the resulting
cryptosystem as ME with Ei as one component cipher. The public key of ME is (pk1, ..., pki, ..., pkn), and
the secret key is (sk1, ..., ski, ..., skn). Only ski is unknown to D. To simulate the decryption query Qi made
by Di, D completes Qi for Ei into Q for ME by those secret keys in hand, checks that the respective Q is
a valid query (otherwise it will outputs ⊥) if relation function outputs FALSE, then make query Q to its
Decryption Oracle to decrypt Q. Next D outputs a pair (M0, M1) and also generate the corresponding pair
(mi0 , mi1) for Ei. Then when EOi generates a random challenge cib = Enci(mib) for b ∈R {0, 1}, Di hands
cib to D, who by itself complete a ciphertext Cb corresponding to the public key (pk1, ..., pkn). By definition
of the RF i we know that Ei is forbidden to decrypt any RF i(ci, c

′
i) = TRUE, i.e., RF∗(C1, C2) = TRUE,

but this is the only limit that Di is forbidden to ask its Decryption Oracle. D can still feed the Decryption
Oracle every single legal query. Finally, Di outputs the same guess as D outputs, which enables Di to
succeed exactly with the same advantage as D.

Since IND-CCA implies IND-gCCA, we further have the following theorem:

Theorem 3 If all component ciphers are IND-CCA secure and chosen independently according to above
three constructions, then the resulting multiple encryption is IND-ME-wCCA secure.
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In fact, each attack per theorem 1 can construct a new ciphertext with the same plaintext. Since
non-malleability is an arduous goal for multiple encryption, we define relaxed gNM-ME-CCA similar to IND-
ME-wCCA. Informally, the definition says that the adversary does not win as long as it outputs with a new
ciphertext with the same relation regulated by the relation function to the challenge ciphertext, where the
relation function is defined analogously to that of IND-ME-wCCA.

Definition 4 (gNM-ME-CCA) A multiple encryption scheme is generalized-non-malleable against ME-CCA
attack if for any PPT adversary, which is assisted by Decryption Oracle DO, and a Key Exposure Oracle KE,
it cannot produce a new ciphertext with relation other than what the Relation Function RF∗ specifies with
non-negligible probability, where RF∗ is defined identical to ME-wCCA. Denote M, C as sets of plaintexts
and ciphertexts being empty initially, respectively.

Pr



b = 1
(PK, SK)← MEnc-Gen(1k), (M0, M1, α)← AKE,DO

1 (PK),

Cb ← MEnc(M1), (R, C)← AKE,DO
2 (Cb, α, M0, M1),

M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb, M) ∧ (R 6= RF∗)



 ≤
1

2
+ neg(k)

gNM-ME-CCA is a relaxed notion to NM-ME-CCA security (cf. IND-ME-wCCA to IND-ME-CCA). We
shall continue to discuss the relation between these security notions in next section.

6 Relations among security definitions for multiple encryption

In this section, we discuss the relation among security definitions of multiple encryptions. The good news
is that in multiple encryption scenario indistinguishability and non-malleability are still equivalent in most
of the interesting cases, namely under ME-CCA attacks (IND-ME-wCCA is equivalent to gNM-ME-CCA).

Theorem 4 IND-ME-CCA⇔ NM-ME-CCA

Proof Idea. The idea is that one can construct an IND-ME-CCA adversary A who upon a challenge
ciphertext C chosen randomly from two possible messages by using a NM-ME-CCA adversary B as an oracle
to output another ciphertext C ′ and a relation of plaintexts of C ′ and C. Since A is executed in a CCA mode,
then the new ciphertext can be submitted to the Decryption Oracle, who will return to A the corresponding
plaintext M ′, with which and the relation A can recover the plaintext, and get correct guess on b. Denote
x̄ as bit-wise complement of x. On the other hand, if an IND-ME-CCA adversary can distinguish two chosen
messages (M0, M1) with M1 = M̄1, then we can always have the NM-ME-CCA adversary outputs a new

ciphertext C ′
b given Cb = MEnc(Mb) where b

R
← {0, 1}, then it can output with Mb̄ = M̄b = MDec(C ′

b)
satisfying relation complement R.

Proof. Without loss of generality, we assume the two challenge messages M0 6= M1.

Lemma 4 NM-ME-CCA⇒ IND-ME-CCA.

A NM-ME-CCA adversary A = (A1,A2) utilizes another IND-ME-CCA adversary B = (Bfind,Bguess) to
break the non-malleability of the scheme, by letting Bfind chooses a pair of messages M0, M1 where M0 = M̄1

and passes on to Bguess that correctly guesses b:

Adversary AKE,DO
1 Adversary ADO

2 (Mb, s
′) where s′ = (M0, M1, PK, s)

(M0, M1, s)← B
KE,DO
find (PK) Cb ← B

DO
guess(Mb, s)

b
R
← {0, 1} (C ′

b, R)← MEnc(M̄b)
s′ ← (M0, M1, PK, s) return C ′

b, R
return Mb, s

′
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It is obvious such adversary A succeeds in attacking IND-ME-CCA schemes at least the probability of an
adversary B attacking NM-ME-CCA schemes.

Lemma 5 IND-ME-CCA⇒ NM-ME-CCA.

Consider a NM-ME-CCA adversary A and an IND-ME-CCA adversary B:

Adversary AKE,DO
find Adversary ADO

guess(M, s′) where s′ = (M0, M1, PK, s)

(M0, M1, s)← B
KE,DO
1 (PK) C ′

b ← B
DO
2 (M0, M1, s)

M
R
← {0, 1} (M ′

b, R)← MDec(C ′
b)

s′ ← (M0, M1, PK, s) if R(M ′
b, M0) = TRUE then d← 0

return M, s′ else d← 1
return d

Then A succeeds with exactly the probability of B, which states any scheme meeting NM-ME-CCA
security must also meet IND-ME-CCA security. Combining above two lemmas, we complete the proof.

Theorem 5 IND-ME-wCCA⇔ gNM-ME-CCA

Proof Idea. Since we have already proven IND-ME-CCA ⇔ NM-ME-CCA, with the fact that the rela-
tion function in defining these two notions are the same, it is sufficient to show that a scheme meeting
IND-ME-wCCA also meets gNM-ME-CCA while a scheme meet gNM-ME-CCA also meets IND-ME-wCCA
security.

Proof. Denote two Relation Function in IND-ME-wCCA definition and gNM-ME-CCA definition as RF∗
gIND

and RF∗
gNM respectively. SIND and SNM are the sets of schemes satisfy IND-ME-CCA and NM-ME-CCA

respectively. Then if any scheme si ∈ SIND then si ∈ SNM. Denote SgIND and SgNM as the sets of schemes
satisfying IND-ME-wCCA and gNM-ME-CCA security respectively. Then it suffices sj ∈ SgNM \SNM, if
∀sj ∈ SgIND\SIND, and at the same time, s′j ∈ SgIND\SIND, if ∀s′j ∈ SgNM\SNM. We claim in these conditions,
the adversary’s power doesn’t increase, that is, ∀ sj and s′j , we have an adversary that succeeds in attacking
sj will always succeeds in attacking s′j and vice versa. Then denote adversary’s query ciphertexts cj and
c′j in gIND and gNM attacks respectively. Let ci be the challenge ciphertext. RF∗

gIND(ci, cj) = FALSE ⇒
RF∗

gNM(ci, c
′
j) = FALSE and vice versa. All left is then the same as proving equivalence of this pair of

notions in ME-CCA model, we can easily have: if ∃ sj ∈ SgIND\SIND, there is always sj ∈ SgIND\SIND and if
∃ s′j ∈ SgNM\SNM there is always s′j ∈ SgIND\SIND.

Let’s make the proof more easier to understand. Suppose an adversary B attacking scheme sj in the
sense of IND-ME-wCCA succeed with non-negligible advantage, then we can create an adversary A using B
as oracle to attack the sj with non-negligible advantage. Defining the generalized relation R is the same as
the relation function RF∗ in the ME-wCCA model. Now, let A run B in the first stage. If B asks for any
decryption query, A passes it on to its Decryption Oracle. If there is any key exposure query questioned
by B, A also passes it to its Key Exposure Oracle. Specially, A can simulate the Encryption Oracle when
B asks for encryption queries. After some steps B ends with side information and a pair of message. A
outputs the same pair. Then outsides A a random bit b is chosen from {0, 1} and Mb is encrypted by the
Encryption Oracle. At the second stage, A runs B to get a new ciphertext C ′

b with relation other than the
relation specified in RF∗ which is sj ’s relation function. B may continue to ask encryption, decryption or
key exposure queries according to the basic rule of a gNM-ME-CCA game. At last B outputs C ′

b, A submit
it to its Decryption Oracle, at the same advantage as B, the Decryption Oracle will return it the plaintext.
Thus it can get to know Mb.

From analogous discussion, we can also construct a gNM-ME-CCA adversary with exactly the same
advantage as an IND-ME-wCCA adversary. This completes the proof.

Theorem 6 IND-ME-wCCA⇒ IND-ME-CPA, however, IND-ME-CPA ; IND-ME-wCCA.
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Proof Idea. It is trivial of the former part, for a ME-wCCA adversary is strictly stronger. On proof of
the latter part, we just need to construct a counterexample. Suppose we have a multiple encryption scheme
from a IND-ME-CCA secure multiple encryption schemes. If we append a special string to the public key.
If special string is queried, the Decryption Oracle returns the the secret key. However, this scheme still
remains ME-CPA secure.

Proof. It is trivial to have: IND-ME-wCCA⇒ IND-ME-CPA. What left is to prove the following lemma:

Lemma 6 IND-ME-CPA ; IND-ME-wCCA.

Suppose ME ′ = (MEnc-Gen′, MEnc′, MDec′) is a IND-ME-CCA encryption scheme, we can modify it and
build an new multiple encryptionME as follows:

MGen-Enc MEnc(M) MDec(C)
(pk′

i, sk
′
i)←MGen-Enc′, for 1 ≤ i ≤ n; c′ ← MEnc′(M) v||c̄′ ← C

PK ′ ← (pk′
1, ..., pk′

n), SK ′ ← (sk′
1, ..., sk

′
n) C = 0||c′ if v = 0

u← {0, 1}k Return C Return MDec′SK′(c̄′)
PK = u||PK ′, SK = SK ′ else if c̄′ = u
Return (PK, SK) Return SK

We can see ME is not ME-wCCA secure. For a challenge ciphertext C, the adversary can query the
Decryption Oracle at 1||u to get SK then it can decrypt the challenge ciphertext by itself. Note that
the relation function will fail to check this malicious query for RF∗(c′, u) = FALSE with overwhelming
probability.

Claim 6 Above encryption scheme ME is secure in the sense of IND-ME-CPA.

Let Cb be the challenge ciphertext generated outside the adversary by an Encryption Oracle from one of a
pair of messages (M0, M1), the adversary outputs its guess on b. Then denote the probability of following
events as:

1 := [v = 0, (PK, SK)← MGen− Gen, b← {0, 1}, MEnc(Mb)←MEnc(Mb) : b = b̄];
2 := [v = 1, (PK, SK)← MGen− Gen, b← {0, 1}, MEnc(Mb)←MEnc(Mb), c

′
b 6= u : b = b̄];

3 := [v = 1, (PK, SK)← MGen− Gen, b← {0, 1}, MEnc(Mb)←MEnc(Mb), c
′
b = u : b = b̄]

Denote SucB as the even that B outputs a successful guess on b with larger probability than 1/2. Let
the advantage of an adversary B attacking ME ′ be p0, denote k = |c′| as the length of c′, the following
holds:

AdvB = Pr[SucB|1] · Pr[1] + Pr[SucB|2] · Pr[2] + Pr[SucB|3] · Pr[3]

≤ Pr[SucB|1] + Pr[SucB|2] + Pr[SucB|3]

≤ p0 + p0 + 2−k

It is easy to see AdvB is negligible. Proof completes.

7 Applications to key-insulated cryptosystem

7.1 Key-insulated cryptosystem

The key-insulated cryptosystem is proposed by [13] to protect cryptosystems against partial key exposure. In
such system, computation is done in an insecure user device. Additionally, there is a physically secure server
that stores a master key. With the help of this server, user keys are updated periodically so that compromise
of user keys in some periods does not affect the system in other periods. In [13], a generic construction is
proposed based on arbitrary semantically secure public key encryption against chosen plaintext attack and
cover-free family.
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Generic Construction of [13]. First the key generation algorithm is run and u public key/secret key

pairs of underlying semantically secure cryptosystems are generated, where S1, ..., SN ⊂ [u]
def
={1, ..., u} is

{t, 1/2}-cover-free family of n element sets. Any t subsets of secret keys do not contain other subsets. The
underlying encryption scheme is semantic secure. The lifetime of the whole system is divided into N periods.
Then the public key is PK = (pk1, ..., pku), and secret key of period i is ski = {skr : r ∈ Si}, where Si =
{r1, ..., rn}. Specially the master key stored in a physically secure device will be SK∗ = {sk1, ..., sku}. We
define the encryption of M ∈ {0, 1}L at time period i as C = EPK(i, M) = (i,Encpkr1

(m1), ...,Encpkrn
(mn))

where, (m1, ..., mn) ← T (M) is generated from the real message M by a AONT T . Decryption is done as:
decrypt all the sub-messages (m1, ..., mn) by skr1

, ..., skrn and synthesize the messages: M = I(m1, ..., mn).
Such system has key-insulated security with assumption of physically secure device holding SK∗ and

an adversary can at most obtain secret keys of t distinct periods. The security of the system is defined
as: If no PPT adversary can break the indistinguishability of the any period i that is not compromised if
it cannot obtain user secret keys for no more than t other periods even with the help of an Key Exposure
Oracle and a Decryption Oracle. In the proof to this generic construction, it is shown that the whole system
has indistinguishability of messages in any period that is not compromised with at most t other periods
compromised under chosen plaintext attack.2

7.2 Chosen ciphertext security of generic construction in [13]

One may naturally think the generic construction in [13] is secure against chosen ciphertext attacks if the
underlying cryptosystems are IND-CCA secure. However, it can be demonstrated that actually this generic
construction is insecure against chosen ciphertext attack, although it is indeed an desirable property of a
key-insulated cryptosystem. Recall that the authors of [13] do not claim their generic construction CCA
secure.

At the first look, because of the property of cover-free family even if the secret keys are compromised in t
periods, at most t−1 secret keys of a period other than these t are known to the adversary. Since the message
is split into shares by AONT, we know it is still computationally infeasible to break the indistinguishability
even after viewing part of the sub-messages generated by AONT. However, an adversary in fact can bypass
the hard task and just needs to try to modify the challenge ciphertext using known secret keys in order to
get help from the Decryption Oracle. In fact, it can obtain any secret key skj by sending adaptive query to
the Key Exposure Oracle KE for skj in some period i with j ∈ Si. Then it can decrypt cj = Encj(mj), and
re-encrypt it. It can always succeed to produce c′j = Encj(mj) with c′j 6= cj , since according to the system
settings, since all component ciphers are semantically secure. Now the adversary can replace cj with c′j and
submit this “new” ciphertext C ′ to the Decryption Oracle, which will return the corresponding message M .
This attack works for any period i.

Though the original generic construction does not satisfy chosen ciphertext attack security, actually
if every component cipher is chosen IND-CCA secure, this generic construction is actually IND-ME-wCCA
secure (Theorem 3). It should be assessed that this scheme still provides very practical security.

7.3 A generic construction of the key-insulated cryptosystem with CCA security

In fact, the feasibility of constructing a CCA secure key-insulated cryptosystem (parallel multiple encryption)
has already been shown in section 4. We are only fascinated at whether given IND-CCA secure ciphers and
secure AONT as building blocks, a parallel construction can be transformed to a CCA secure key-insulated
cryptosystem with minimum modification.

Observing the “natural” parallel construction (section 2.1.1) with IND-CCA secure components is already
IND-ME-wCCA secure according to Theorem 3, we can further have more efficient construction by a simple

2Also in [13], a concrete scheme is given based on DDH assumption, which is CCA secure.
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modification to the scheme. As the gap between IND-ME-CCA and IND-ME-wCCA is just that for the
former sometimes the adversary can lay a trap when asking the tailored decryption queries, this gap can be
immediately merged once such attack is ruled out. For a secure multiple encryption must be probabilistic,
there must be auxiliary randomness used in the encryption. If the Decryption Oracle can extract all the
randomness and verify it before outputting the plaintext, then the Decryption Oracle should be able to
immune itself from such partial re-encryption attacks. If a ciphertext passes such randomness check, then
with overwhelming probability, the Decryption Oracle can make sure that the sender of this ciphertext
knows the corresponding plaintext.

We add such transforms to the basic parallel construction: recall the notation coini is the auxil-
iary randomness input for encryption component Ei. Let coini = h(r||Indexi), where r is a random
number, Indexi is the description of i-th component and h is a random function. The Encryption is
C = MEnc(M ||r; (coin1, ..., coinn)), especially for IND-CCA component Ei, Enci(mi; coini) where mi is gen-
erated from AONT with input M ||r. Decryption process becomes: for a ciphertext C ′, M ′||r′ = MDec(C ′),
output M ′ only if c′i = Enci(mi; h(r′||Indexi)) is well formed, for every 1 ≤ i ≤ n. Whenever it is detected
that a ciphertext has used invalid randomness, the Decryption Oracle rejects this query immediately.

It is easy to see this scheme satisfies the security definition of [13] under CCA attack. The proof is easy and
will be omitted here. We point out this is actually the first generic construction of key-insulated cryptosystem
enjoying CCA security (Another generic construction for CCA secure key insulated cryptosystem will be given
by Dodis and Katz in their upcoming work, whose security can be proven in the standard model.). In fact,
this transform states the transform of turning IND-ME-CPA into IND-ME-CCA.
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Appendix A: Some definitions

A.1: Public key encryption scheme

A public key encryption scheme E is a 3-tuple algorithm: E = (Enc-Gen, Enc, Dec). Enc-Gen(1k) is a
probabilistic algorithm, where k is the security parameter, with internal random coin flipping outputs a
pair of keys (pk, sk). pk is the encryption key which is made public, and sk is the decryption which is kept
secret. Enc may be a probabilistic algorithm that takes as input a key pk and a message m from associated
message spaceM, and internally flips some coins and outputs a ciphertext c, denoted by c← Encpk(m), in
short c ← Enc(m). Dec is a deterministic algorithm takes as input the ciphertext c and the secret key sk,
and outputs some message m ∈ M, or “⊥” in case c is “invalid”. We denote it by m ← Decsk(c), in short
m← Dec(c).

A function f : D → R is called negligible if for every constant l ≥ 0 there exists an integer k such
that f(k) ≤ k−l

c for all k ≥ kc, denoted by neg(k). Indistinguishability (semantic security) under chosen-
ciphertext attack (IND-CCA), is defined as: if no PPT adversary A can distinguish encryptions of any two
messages (M0, M1) of equal length chosen by it with negligible advantage than random guess. We require
that A runs in two stages Afind and Aguess, in which Afind gets side information α from the queries and output
a pair of challenge messages, and Aguess outputs a guess b̃ on b according to the ciphertext Cb encrypted
by the Encryption Oracle with randomly chosen b ∈ {0, 1}. According to the ability of the adversary,
Afind and Aguess can be assisted by an Decryption Oracle DO that for a decryption query other than the
target ciphertext, returns the plaintext. Note that according to the adversary’s ability, sometimes DO is
unavailable,(this can be equivalently denoted by DO outputting an empty string ε). In our analysis, it is
sufficient to consider the case where DO is available. We denote this as:

Pr

[

b = b̃
(pk, sk)← Enc-Gen(1k), (M0, M1, α)← ADO

find(pk),

b
R
← {0, 1}, Cb ← Enc(Mb), b̃← A

KE,DO
guess (Cb, α)

]

≤
1

2
+ neg(k)

If no such PPT adversary exists against E , then we call E IND-CCA secure.

A.2: All-or-Nothing Transform

An AONT is a randomized transform T called an (L, l, n)-AONT if (1): on input M ∈ {0, 1}L, T outputs

X
def
=(m1, ..., mn), where mj ∈ {0, 1}l; (2) here exists an efficient inverse function I such that I(X) = M ; (3)

I satisfies indistinguishability. Let X−j = (m1, ..., mj−1, mj+1, ..., mn) and T−j(M)=X−j , where X←T (M).

Let left-or-right oracle LRb(j, M0, M1)
def
=T−j(Mb), for any PPT adversary A attacking AONT, define its

advantage as AdvA,T
def
=Pr[b← {0, 1}; b′ ← ALRb(·,·,·) : b′ = b]− 1/2. Then Adv is negligible.
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A.3: Cover-free family

A family of subsets S1, ..., SN over some universe U is said to be t-cover-free if no t subsets Si1 , ..., Sit

contain a (different) subset Si0 , that is, for all {i0, ..., it} with i0 /∈ {i0, ..., it}, we have Si0 * ∪t
t=1Sij . A

family is said to be (t, β)-cover-free, where 0 < β < 1, if for all {i0, ..., it} with i0 /∈ {i1, ..., it}, we have
|Si0\∪

t
j=1Sij | ≥ β|Si0 |.

Appendix B: Figures

M

↙ ↓ ↘ } AONT

m1 . . . . . . . . . mn

⇓
m1 . . . . . . . . . mn

↓ ↓ ↓

E1 ← pk1 En ← pkn

↓ ↓ ↓
c1 . . . . . . . . . cn

Figure 1: Parallel construction of multiple encryption

pk1 pkn

↓ ↓

M → E1 → c1 → . . . → cn−1 → En → cn

Figure 2: Sequential construction of multiple encryption
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