VMPC One-Way Function

Bartosz Zoltak, bzoltak@vmpcfunction.com; bzoltak@wp.pl

Abstract. The VMPC function is a combination d
two hasic operations — permutation compaosition and
integer addition. The function resulting from this
combination shows to have very high resistance to
inverting.  Computational effort of abou 2°°
operations is estimated to be required to invert the
VMPC function. The value of the function can be
computed with 3 elementary computer processor
instructions per byte. An open question is whether
the function's smplicity raises a redistic chance that
the lower bound onthe mplexity of inverting it
might be proved.

1. Introduction
VMPC isan abbreviation d Variably Modified Permutation Compasiti on.

The VMPC function is a combination d triple permutation compasition and integer
addition. It differs from a simple triple permutation composition with ore integer addition
operation performed onsome of the dements of the permutation. The cnsequence of this
addition ogeration is corruption d cycle structure of the transformed permutation - the
fundamental sourceof the function's resistanceto inverting.

The VMPC function has a simple formal definition and the value of the function can be
computed with 3 ore-clock-cycle instructions of an Intel 80486and rewer or compatible
processor per byte.

Inverting the function by thefastest known inverting algorithm is estimated to require an
average omputational effort of abou 22°° operations. This effort can be significantly
extended at only linea cost.

Adding one more one-cycle instruction to the implementation d the function increases its
resistance to inverting to an average level of about 2*?° operations. Adding ancther one-
cycle instruction raises it to abou 2°°° operations and adding yet ancther one-cycle
instruction produces a function requiring an average omputational effort of about 2°%°
operationsto beinverted.

The simplicity of the VMPC function could raise aquestion whether it might be possbleto
prove the lower bound onthe cmplexity of inverting it. This currently is an open problem
and aposshle subjed of future reseach.

The more detail ed explanation d why the VMPC functionit hard to invert isto be foundin
sedion 6.



2. Definition of the VM PC function

Notation:

n,P, Q : Pand Q: n-element permutations. For simpli city of further implementations
P and Q are one-to-one mappingsA — A, where A ={0,1,...,n-1}

k : Levd of thefunction; k<n

+ :addtionmoduo n

Definition;

A k-level VMPC function, referred to as VMPCy, is such transformation o
Pinto Q, where

QI x]=P[Pc[Pcal...[PL[P[x]]]...T]],

x 0{0,1,...,n1},
P is an n-element permutation such that P[x] = fi (P[x]), wheref; is any function
suchthat P[x] # P[x] # P[x] forid{1...k}, jO{Ll..k} /{i}.

For simpli city of further implementationsf; isassumed to be f; (X) = x +i

For simpli city of future references notation Q=VMPC(P) is assumed to be
equivaent to Q=VMPC,(P)

Example:

Q=VMPC,(P) is such transformation d P into Q, where:

QL x ] = P[P[PIX]]],
Pi[x]=P[x]+1.
(Q[X]=P[P[P[x]] +1], where “+" denotes addition moduo n)

Table 1. Definitions of 1,2,3 and 4-level VMPC function

Function Definition

VMPC; QIX]=P[P[P[x]] +1]

VMPC, QIX]=P[P[P[P[x]]+1]+2]

VMPC; QIX]=P[P[P[P[P[x]] +1]+2]+3]

VMPC, QIX]=P[PIP[P[P[P[x]] +1] +2] +3]+4]




3. The 3-instruction implementation of the VM PC function

Implementation of a 1-level VMPC function, where Q[x] = P[P[P[x]]+1], for 256-element
permutations P and Q in assembly language is described.

Assume that :

- Pa is a 257-byte array indexed by numbers from O to 256, the P permutation is
stored in the array at indexes from 0 to 255 (P4[0...255]=P) and that Pa[256]=Pa[0].

- the EAX 32-hbit register stores value zero. ("AL" denotes 8 least significant bits of EAX)
- the EDX 32-hit register stores an address, where the Pa array is stored in memory

- the ECX 32-bit register specifies which element of the Q permutation to compute

Execute:

Table 2. Implementation of 1-level VMPC function

Instruction Description

MOV AL, [EDX] + ECX Store ECX-th element of Pin AL
MOV AL, [EDX] + EAX Store AL-th element of Pin AL
MOV AL, [EDX] + EAX +1 Store (AL+1)-th element of Pin AL

The 3 MOV instructions in Table 2 store the ECX-th element of permutation Q, where
Q=VMPC,(P), inthe AL (and EAX) register.

4. Example values of the VM PC function

Values of the 1,2,3 and 4-level VMPC function of an example 10-element permutation P
areshown in Table 3.

Table 3. Example values of the VMPC function for 10-element per mutations

Index o| 1] 234|566 7]s8]09
P 2 o] 4|36 | 9] 7| 8] 5 ]1
Q=VMPC,P) | 9 | 3 | 8 | 6 | 5 | 4| 1| 7| 21]o0
Q=VMPC,P) | o | 9 | 2 | 5 | 8| 7| 3] 1] 86| 4
Q=VMPCsP) | 3 | 4 | 9 | 5 | o 2] 7] 6] 1] 8
Q=vMPC,P) | 8 | 5 | 3 | 1|6 | 7| 0] 2| 9] 4




5. Complexities of computing / inverting the VM PC function

Efforts required to compute and to invert the 1,2,3 and 4-level VMPC function for 256-
element permutations by the fastest known inverting algorithm are shown in Table 4:

Table 4. Complexities of computing / inverting the VMPC function for 256-element per mutations

Function VM PC]_ VM PCZ VM PC3 VM PC4
Number of MOV instructions required to compute 3 4 5 6
one byte of the value of the function

Estimated average number of computational 260 5420 2550 660

operations required to invert the function

6. Difficulty of inverting the VM PC function

n-element permutation P has to be recovered given information from n-element
permutation, Q, where Q=VMPC,(P) (e.g. n=256, k=1: Q[x]=P[P[P[x]]+1]).

By definition each element of Q isformed by k+2 (e.g. 3), usualy different, elements of P.
One element of Q (e.g. Q[33]=25) can be formed by many possible configurations of P
elements (e.g. P[33]=10, P[10]=20, P[21]=25 or P[33]=1, P[1]=4, P[5]=25, etc.).

It cannot be said which of the configurations is more probable. One of the configurations
has to be picked (usualy k+1 (e.g. 2) elements of P have to be guessed) and the choice
must be verified using al those other Q elements, which use at least one of the P elements
from the picked configuration.

Each element of P is usually used to form k+2 (e.g. 3) different elements of Q. As aresult,
usualy (k+2)* (k+1) (e.g. 6) new elements of Q need to be inverted (all k+2 elements of P
used to form each of those Q elements need to be reveaed) to verify the P elements from
the picked configuration.

This would not be difficult for a simple (e.g. triple) permutation composition, where the
cycle structure of Pisretained by Q (some cycles are only shortened).

In Variably Modified Permutation Composition however the cycle structure of P is
corrupted by the addition operation(s) and cannot be easily recovered from Q.

Due to that it is usually impossible to find two different elements of Q, which use at least
k+1 (eg. 2) exactly the same elements of P. (This can be done easily for a simple
permutation composition)



In fad only such element of Q can usualy be found, rame it Q[r], which uses only one of
the k+2 (e.g. 3) elements of P, used to form another Q element. This forces the k remaining
(e.g. 1) elements of P, used to form Q[r], to be guessd to make the verificaion d the
initial pick possble.

However at eat new guessed element of P, there usually occur k+1 (e.g. 2) new elements
of Q which use this element of P and which need to beinverted to verify the guess

The dgorithm falls into a loop, where & every step usualy k (e.g. 1) new elements of P
need to be guessed to verify the previously guessed elements. It quickly occurs that the k+2
(e.g. 3) elements of P picked at the beginning of the processindiredly depend onall n (e.g.
256) elements of Q.

The described scenario is the cae usualy and it is smetimes posshble to benefit from
coincidences (where for example it is possble to find two elements of Q, which use more
than ore (e.g. 2) exadly the same P elements (e.g. Q[2]=3: P[2]=4, P[4]=8, P[9]=3 and
Q[5]=8: P[3]=9, P[9]=3, P[4]=8)).

The adual algorithm of inverting VMPC was optimized to benefit from the possble
coincidences. The arerage number of P elements which neeal to be guessed - for n=256 -

has been reduced to orly abou 34 for 1-level VMPC function, to abou 57 for 2-level
VMPC, to abou 77 for 3-level VMPC and to abou 92 for 4-level VMPC function.

Seaching through helf of the posgble states of these P elements takes on average dou
22%0 steps for 1-level VMPC function, about 2*%° for 2-level VMPC, about 2°°° for 3-level
VMPC and about 2°%° steps for 4-level VMPC function.

7. Algorithm of inverting the VM PC function

The fastest method d inverting the VM PC function found aerives n-element permutation P
which produces a given Q=VMPCy(P) permutation, acording to the following algorithm:

Notation:

P: : n-element table, the searched permutation will be stored in

Argument, Vaue; Base, Parameter of an element of P; :
For an element P;[x]=y : x istermed the agument andy the value.
The base is either the agument or the value; the parameter isthe correspondng —
the value or the agument.
Example: for an element P;[3]=5: If value 5 is the base, argument 3 isthe
prameter.



1.1) Reveal one element of P; by assuming P; [x]=y; where x and y are any values within
rangex 0{0,1,...,n-1},y 0{0,1,...,n-1}

1.2) Choose at random whether x is the base and y the parameter or y the base and x the
parameter of the element P;[x]=y. Denote P [x]=y as the current element of P..

2) Reved al possible e ements of P; by running the deducing process (see section 7.1)

3) If n elements of P; have been revealed with no contradiction in step 2:
Terminate the algorithm and output P;

4) If fewer than n elements of P; have been revealed with no contradiction in step 2:

4.1) Revea anew element of P; by running the selecting process (see section 7.2).
Denote the revealed element as the current element of P..

4.2) Save the parameter of the current element of P
4.3) Gotostep 2
5) If acontradiction occurred in step 2:

5.1) Remove all elements of P, revealed in step 2 when the current element of P
had been revealed

5.2) Increment modulo n the parameter of the current element of P

5.3) If the parameter of the current element of P; has returned to the value
saved in step 4.2:

5.3.1) Remove the current element of P;

5.3.2) Denote the element, which had been the current element of P; directly before
the element removed in step 5.3.1 became the current one,
asthe current element of P

5.3.3) Gotostep 5.1

6) Go to step 2



7.1. Thededucing process

The deducing process reveals all possible elements of P;, given Q and given the already
revealed elements of P, according to the following a gorithm:

Notation: asin section 7, with:

C,A : temporary variables
Word x of Statement y:
Statement y: A set of all elements of P; used to calculate Q[y]
Word x: x-th consecutive element of P; used to calculate Q[y]:
Example for VMPC, : Q[ x ] = P[P[P[P[x]]+1]+2] :
Assume P 2]=3, P{3]=5, P[6]=2, P[4]=7, which produces Q[2]=7.
The elements P[2]=3, P{[3]=5, P{6]=2, P{4]=7 form statement 2.
The element P[2]=3 isword 1 of statement 2; P{3]=51is
word 2 of statement 2, etc.

1.1) Set Cto 0
1.2) Set A to 0

2) If the element P;[A] isrevealed:

2.1) If the element P;[A] and k other revealed elements of P; fit ageneral pattern of k+1
words of any statement : Deduce the remaining word of that statement
(seeexample 7.1.1)

2.2) If the deduced word is not arevealed element of P;:
2.2.1) Reveal the deduced word as an element of P
222)SetCtol

2.3) If the deduced word contradicts any of the already revealed elements of P;:
Output a contradiction and terminate the deducing a gorithm (see example 7.1.2)

3.1) Increment A
3.2) If A islower than n: Go to step 2
3.3)If Cisequa 1: Gotostep 1.1



Example 7.1.1)

For VMPC,; : Q[ x ] = P[P[P[P[x]] +1]+2]:

Asaime that Q[0]=9 and that the foll owing elements of P; are reveded:
P.[0]=1, P[1]=83, P[8]=9

Word 3 d statement O can be deduced as P [4]=6 (P;'[3+1]=8-2)

Example 7.1.2)

For VMPC; : Q[ x ] = P[P[P[P[x]] +1]+2]:

Asaume that Q[7]=2 andthat the foll owing elements of P; are reveded:
P.[1]=8, P:[9]=3, P[5]=2 and P;[6]=1

Word 1 d statement 7, deduced as P;'[7]=1, contradicts the drealy reveded element

P[6]=1.

7.2. The selecting process

The seleding process €leds such new element of P; to be reveded which maximizes the
number of elements of P; passble to deducein further steps of the inverting agorithm.

The seleding processoutputs aseleded base and arandamly chaosen parameter of a new
element of P,.

Notation: asin section 7.1, with:

G,R,X,Y : temporary variables
TaTv :temporary tables
Weight : table of numbers:

Weight[1; 2; 3; 4] =(2; 5; 9; 14); Example: Weight[3]=9



1.)SetTaandTvito O
1.2Set Gto 0
1.3 SetRto 1

2) Court the number of reveded elements of P; which fit the general pattern of words of a
statement in which an urreveded element of P; with argument G would be word R.
Increment Ta[G] by Weight of this number (see example 7.2.7)

3) Court the number of reveded elements of P; which fit the general pattern of words of a
statement in which an urreveded € ement of P, with value G would be word R.
Increment Tv[G] by Weight of this number

4.1) Increment R
4.2) If Rislower than k+3: Go to step 2

4.3) Increment G
4.9 If Gislower than n Goto step 1.3

5.1) Pick any index of Taor Tv for which the number stored in any of the tables Taor Tv
Ismaximal (see example 7.2.2)

5.2) If theindex picked in step 5.1isan index of Ta
5.2.]) Storethisindex in variable X

5.2.2 Generate arandam number Y withinrange Y[ {0,1,...,n-1},
such that an element of P; with value Y isnat reveded

5.2.3 Output P’[X]=Y, where X isthebase and Y isthe parameter
5.3) If theindex picked in step 5.1lisan index of Tv:
5.3.) Storethisindex in variable Y

5.3.2 Generate arandam number X within range X0 {0,1,...,n-1},
such that an element of P; with argument X isnot reveded

5.3.3Outputs P/’ [X]=Y, where Y isthe base and X isthe parameter



Example 7.2.1)

For VMPC,: Q[ x ] = P[P[P[P[x]]+1]+2]:
Assume that G=8; R=2; Q[6]=1 and that the following elements of P; are reveaed:
P.[6]=8, P[5]=1

There are two reveaed elements of P; which fit the general pattern of words of a
statement in which P;[8] would beword 2 : P;[6]=8, P;[5]=1:

wordl word?2 word3 word4
P.[6]=8, P:[8]=?, P[7]=?, FP[5]=1

Ta[8] = Ta[8] + Weight[2] = Ta[8] + 5

Example 7.2.2)

AssumeTa=(0,5,2,7,5, 7 andTv=(2,7,0,0,5, 2)
The maximal number stored in any of thetablesis 7: Ta[3]=Ta5]=Tv[1]=7
Pick any of: index 3 of Ta, index 5 of Taor index 1 of Tv

8. Example complexities of inverting the VM PC function

Complexity of inverting the VMPC function has been approximated as an average number
of times the deducing process in step 2 of the inverting algorithm described in section 7 has
to be run until permutation P; satisfies Q=VMPC(P,).

Average numbers of elements of P; which need to be assumed are given in brackets in
Table5.

Complexities of inverting the VMPC function of the following levels have been
approximated:

VMPC, : Q[ x] = P[P P[x]]+1]

VMPGC; . Q[ x| = P[P[P[P[x]]+1]+2]

VMPGCs: Q[ x| = P[P[P[P[P[x]]+1]+2]+3]
VMPC, : Q[ x] = P[P[P[P[P[P[x]]+1]+2]+3]+4]



Table 5. Example complexities of inverting the VMPC function

i Functionl - ympc, | vMPC, | VMPC; | VMPC,
2123 | 2°@By | 22233 | 2*° (3,9
8 2° @27 | 2° @4 | 2°° @40 | 2°° 49
10 23,0 | 2°7 (40 | 2" @47 | 2°° (52
16 211,5 (3,8) 216,6 (5’4) 220,4 (6,6) 223,3 (7’5)
32 222 6,0 | 291 | 2 1195 | 2** (13,9
64 2% (10,2 | 2* (16,2 | 2'* (21,0 | 2% (24,9
128 2" (18,9 | 2'° (30,0 | 2** (40,0 | 2°* (47,0
256 2% (34,0 | 2*° (57,0 | 2*° (77,0 | 2°° (92,0

Example: For 1-level VMPC function applied on 256element permutations abou 34
elements of P; neal to be asumed to recmver al elements of P.. Seaching through half of
the possble states of the 34 assumed elements takesabout 2°°° steps.

9. Conclusions

An ideaof asimple one-way function hes been presented. The VMPC function's resistance
to inverting is grictly related to the addition operation(s) performed at some step(s) of the
composition. Their role can be dealy illustrated by comparing the processof inverting a
simple permutation composition with inverting the Variably Modified Permutation
Composition.

It is an open problem whether the simplicity of the VMPC function helps make a
hypaotheticd attempt to prove the lower bound onthe complexity of inverting the function
worth undertaking.

A proposed pradicd applicaion o the VMPC one-way function in a strean cipher is
described in “VMPC Strean Cipher” by Bartosz Zoltak (possble to dowvnload from
http://www.V M PCfunction.com or from http://eprint.iaa.org).

Current developments in the analysis of the VMPC function are to be found at
http://www.V M PCfunction.com.



