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Abstract

In 1983, Patterson and Wiedemann constructed Boolean functions on n = 15 input vari-
ables having nonlinearity strictly greater than 2n−1−2

n−1
2 . Construction of Boolean functions

on odd number of variables with such high nonlinearity was not known earlier and also till
date no other construction method of such functions are known. We note that the Patterson-
Wiedemann construction can be understood in terms of interleaved sequences as introduced by
Gong in 1995 and subsequently these functions can be described as repetitions of a particular
binary string. As example we elaborate the cases for n = 15, 21. Under this framework, we
map the problem of finding Patterson-Wiedemann functions into a problem of solving a system
of linear inequalities over the set of integers and provide proper reasoning about the choice of
the orbits. This, in turn, reduces the search space. Similar analysis also reduces the complexity
of calculating autocorrelation and generalized nonlinearity for such functions. In an attempt
to understand the above construction from the group theoretic view point, we characterize the
group of all GF (2)-linear transformations of GF (2ab) which acts on PG(2, 2a).

Keyword : Boolean Function, Algebraic Approach, Nonlinearity, Autocorrelation, Generalized
Nonlinearity.

1 Introduction

Patterson and Wiedemann [7, 8] constructed Boolean functions on 15 variables with nonlinearity >
215−1−2(15−1)/2. In this paper we revisit this construction technique. First we describe the technique
as in [7]. The supports of the functions, that Patterson and Wiedemann have considered, are unions
of the cosets of the multiplicative group GF (25)∗ in GF (215)∗. The cosets of the multiplicative group
GF (25)∗ in GF (215)∗ form a Desarguesian projective plane which is denoted by PG(2, 25). The
order of the multiplicative groups GF (25)∗ and GF (23)∗ are coprime to each other. The product
GF (25)∗.GF (23)∗ in GF (215)∗ is a direct product. Patterson and Wiedemann have considered the

∗This is an extended version of the paper presented at R. C. Bose Centenary Symposium on Discrete Mathematics
and Applications, Indian Statistical Institute, December 2002.

1



search space consisting of functions whose supports are invariant under the action of the semidirect
product of GF (23)∗.GF (25)∗ by the group of Frobenius automorphisms along with some weight

restrictions and obtained the functions with nonlinearity as high as 215−1−2
15−1

2 +20 by exhaustively
searching this space.

In Section 2, we show that this construction can be understood by using interleaved sequence as
introduced by Gong [3]. The functions whose supports are invariant under the above group action
can be described as functions whose interleaved sequences are repetitions of a particular binary
sequence as rows. This gives an alternative description of the construction technique explained by
Patterson and Wiedemann. Exploiting this, we map the problem into a problem of solving a system
of linear inequalities over the set of integers and reduce the search space considered by Patterson
and Wiedemann. Our analysis also provides proper justification about the choice of the orbits which
was not clearly explained under the framework of [7] (in particular see [7, Page 356]).

Moreover, our results can be used to reduce the complexity of calculating autocorrelation (Sec-
tion 2.4) and generalized nonlinearity (Section 2.3) of such functions. We show that we need to
calculate the autocorrelation values at only 10 distinct points instead of 32767 for the 15 variable
case. Further our analysis helps in disproving a conjecture related to autocorrelation presented
in [12]. This conjecture has earlier been disproved for 15-variable balanced Boolean function [6].
We disprove it for 21-variable balanced Boolean function too. It is also shown that while calculating
the generalized nonlinearity [11] of such 15-variable functions, it is enough to evaluate the distances
from bijective monomials corresponding to only 10 instead of all the 1800 cyclotomic coset leaders.

In Section 3 we give a complete description of the group of all GF (2)-linear transformations
that act on the support of such functions.

1.1 Patterson-Wiedemann Construction

Let Fn be the set of functions from GF (2n) to GF (2). Consider a function f ∈ Fn. Support of
f is defined as Supp(f) = {x ∈ GF (2n)|f(x) = 1}. It is clear that a function in Fn is completely
known once its support is specified. Weight of a function f is defined by |Supp(f)| and it is said to
be balanced if |Supp(f)| = 2n−1.

Suppose a and b are two positive integers greater than 1 such that n = ab. Denote GF (2ab) by
M , GF (2a) by L, GF (2b) by J and GF (2) by K. Consider the tower of subfields K ↪→ L ↪→ M .

The index of the multiplicative group L∗ in M∗ is m = 2ab−1
2a−1

. The multiplicative group M∗ can
be written as M∗ = ∪m

i=1L
∗xi where {x1, x2, . . . , xm} is the complete set of coset representatives

of L∗ in M∗. We have already noted that one can characterize any function from M → K by
specifying its support. Dillon [1] and later Patterson and Wiedemann [7] have considered functions
in Fn whose supports are of the form ∪l

i=1L
∗xi for some positive integer l. Let us denote the

set of all such functions by Ia,b. A linear function in Fab is of the form lα(x) = Trab
1 (αx) where

α ∈ M and Trn
1 (x) = x + x2 + x22

+ . . . + x2n−1
for all x ∈ GF (2n). Clearly the support of lα is

Supp(lα) = {x ∈ M |Trab
1 (αx) = 1}, whereas the support of the affine function hα(x) = lα(x) + 1

is Supp(hα) = {x ∈ M |Trab
1 (αx) = 0}. Note that Supp(hα), henceforth denoted by Hα, is a

hyperplane in M when considered as a vector space over K.
The Hadamard transform of f ∈ Fn is defined by

f̂(λ) =
∑

x∈GF (2n)

(−1)f(x)+Tr(λx). Also, nl(f) = 2n−1 − 1

2
max

λ∈GF (2n)
|f̂(λ)|
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defines the nonlinearity of f ∈ Fn.
Since GF (2n) contains finitely many elements it is possible to write them in some order. Let

{α0, α1, . . . , α2n−1} be the elements of GF (2n). For f, g ∈ Fn, the Hamming distance between
the 2n-dimensional vectors (f(α0), f(α1), . . . , f(α2n−1)) and (g(α0), g(α1), . . . , g(α2n−1)) is defined
as the distance between the functions f and g denoted d(f, g). It is clear that if f, g ∈ Fn then
d(f, g) = |Supp(f)⊕ Supp(g)| where ⊕ is the symmetric difference between the sets Supp(f) and
Supp(g). Patterson and Wiedemann [7] proved that if Supp(f) = ∪l

i=1L
∗xi then

d(f,0) = l(2a − 1), d(f,1) = 2ab − l(2a − 1),
d(f, hα) = 2ab−1 − 2a · t(α) + l and d(f, lα) = 2ab−1 + 2a · t(α)− l,

where 0 and 1 are constant functions with all 0 values and all 1 values respectively, t(α) is the
number of cosets of the form L∗xi totally contained in the hyperplane Hα, equivalently t(α) is the
number of xi for which Trab

a (xiα) = 0. Nonlinearity of f is given by

nl(f) = minα∈M{l(2a − 1), 2ab − l(2a − 1), 2ab−1 − 2a.t(α) + l, 2ab−1 + 2a.t(α)− l}.

For an f ∈ Ia,b with nl(f) > 2ab−1 − 2(ab−1)/2 each term within the parenthesis in the right hand
side of the above equation is greater than 2ab−1 − 2(ab−1)/2. It implies that l and t(α) must satisfy:

2ab−1 − 2(ab−1)/2

2a − 1
< l <

2ab−1 + 2(ab−1)/2

2a − 1
(1)

1

2a

{
2ab−1 − 2(ab−1)/2

2a − 1
− 2(ab−1)/2

}
< t(α) <

1

2a

{
2ab−1 + 2(ab−1)/2

2a − 1
+ 2(ab−1)/2

}
. (2)

When b = 3 then the cosets of L∗ in M∗ form the Desarguesian projective plane PG(2, 2a).
Suppose n = 15, a = 5, b = 3. Consider the two subgroups L∗ and J∗ in M∗. Intersection

of these two subgroups is only the group containing the identity element and the group M∗ is an
abelian group. Thus in this case the product L∗.J∗ is direct. One can identify the group M∗ to the
group Φ(M∗) of left multiplications by the elements of M∗ in GLK(M). Clearly this correspondence
is an isomorphism. Let φ2 ∈ GLK(M) be the Frobenius automorphism of M defined by φ2(x) = x2

for all x ∈ M . The group 〈φ2〉 generated by φ2 is a cyclic group of order ab and is contained in
GLK(M). The group 〈φ2〉 acts on the projective plane PG(2, 2a). Action of the group Φ(L∗) on
PG(2, 2a) is trivial. For n = 15, Patterson and Wiedemann considered the action of the group
G = [Φ(L∗).Φ(J∗)]〈φ2〉/Φ(L∗), where [Φ(L∗).Φ(J∗)]〈φ2〉 is the semidirect product of Φ(L∗).Φ(J∗)
by 〈φ2〉. This is in view of constructing supports of functions in I5,3 which are invariant under the
action of G and also satisfy the conditions (1) and (2). The group G acts on the projective plane
in ten orbits of size 105 and one orbit of size 7. In the case of n = 15 one must choose 5 orbits
out of the 10 orbits of size 105 so that the condition (1) is satisfied. Therefore, the total number

of possible choices is
(

10
5

)
= 252. Exhausting all the possibilities they have obtained two solutions

up to complementation which satisfy (2). The functions corresponding to these two solutions have
nonlinearity 16276. Now on, we will refer the construction by Patterson and Wiedemann [7, 8] by
PW construction.

2 PW construction and Interleaved Sequence

In this section we interpret the Patterson Wiedemann construction in terms of interleaved sequence.
By analysing their construction in this way we have understood algebraically the choice of orbits.
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It was commented in [7, Page 356] that the choice of such orbits was not clearly understood and
we provide a mathematical reasoning here which is related to the solution of a set of inequalities.
We also characterize the Walsh spectra of such functions. Finally we show that the symmetry of
the PW functions simplifies the calculation of autocorrelation and generalized nonlinearity.

A binary sequence of length m is denoted by a = {a0, a1, a2, . . . , am−1} where ai ∈ {0, 1} for
all i = 0, 1, 2, . . . , (m − 1). In case m = 2n − 1 for some positive integer n we can choose a
primitive element ζ ∈ GF (2n) and construct a function such that f(0) = 0 and f(ζ i) = ai where
i = 0, 1, 2, . . . , 2n − 2. This function f is called the function corresponding to the sequence a with
respect to the primitive element ζ. If we change the primitive element then we obtain a different
function. Again if f is a function from GF (2n) to GF (2) with f(0) = 0 and ζ ∈ GF (2n) is a
primitive element then the sequence {f(1), f(ζ), f(ζ2), . . . , f(ζ2n−2)} is referred to as the sequence
associated to f with respect to ζ. When there is no chance of confusion the primitive element ζ
is not mentioned. It is to be noted that restriction to the functions which take the value zero at
zero does not restrict our search for high nonlinear functions since for any function g with g(0) = 1
there exists the complement of the function g′ defined by g′(x) = 1 + g(x) with g′(0) = 0, which
has the same nonlinearity as g.

Definition 1 Suppose m is a composite number such that m = d.k where d and k are both positive
integers greater than 1, a is a binary sequence {a0, a1, a2, . . . , am−1} where ai ∈ {0, 1} for all i, then
the (d, k)-interleaved sequence ad,k corresponding to the binary sequence a is defined as

ad,k =



a0 a1 a2 . . . a(d−1)

ad a1+d a2+d . . . a(d−1)+d

a2d a1+2d a2+2d . . . a(d−1)+2d

. . . . .

. . . . .
a(k−1)d a1+(k−1)d a2+(k−1)d . . . a(d−1)+(k−1)d


Let 2n − 1 = d.k, ad,k be an interleaved sequence and ζ ∈ GF (2n) be a primitive element. Then

a function f : GF (2n) → GF (2) with f(0) = 0 and f(ζ i+λd) = ai+λd where i = 0, 1, 2, . . . , (d − 1)
and λ = 0, 1, 2, . . . , (k − 1) is defined as the function corresponding to the interleaved sequence
ad,k with respect to the primitive element ζ. Conversely, for any function f : GF (2n) → GF (2)
and a primitive element ζ ∈ GF (2n) an interleaved sequence ad,k can be constructed such that
ai+λd = f(ζ i+λd) for all i = 0, 1, 2, . . . , (d− 1) and λ = 0, 1, 2, . . . , (k− 1). This interleaved sequence
is called the interleaved sequence corresponding to f with respect to ζ. Again as in the case of
binary sequences we drop the reference to ζ when there is no chance of confusion. The rows and
columns of ad,k are numbered from 0 to (k − 1) and 0 to (d− 1) respectively.

Recall that the support of a function f ∈ Fn is a subset of GF (2n). The general linear group
GLGF (2)(GF (2n)) acts on the support of f . There exists a natural embedding of any subgroup K
of GF (2n)∗ into GLGF (2)(GF (2n)), which maps the elements of K to the left multiplications by the
same elements. The action of this image of K on the support of f will be referred to as the action
of K. Instead of writing ‘the action of K on the support of a function f ’ we write ‘action of K on f ’,
similarly when we write ‘a function f is invariant under the action of K’ we imply that the support
of the function f is invariant under the action of K.

Lemma 1 If the support of a function f ∈ Fn is invariant under the action of a cyclic subgroup
K of order k of GF (2n)∗ then the (2n−1

k
, k)-interleaved sequence of f with respect to any primitive
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element of GF (2n) has a fixed binary sequence of length 2n−1
k

as rows. Conversely, if the (2n−1
k

, k)-
interleaved sequence of f with respect to a primitive element ζ ∈ GF (2n) has a fixed binary sequence
of length 2n−1

k
as rows, then the support of f is invariant under the action of K.

Proof : Let ζ be any primitive element of GF (2n). Let ad,k where d = 2n−1
k

be the interleaved
sequence of f with respect to ζ. Clearly ζd is a generator of a cyclic subgroup of order k in GF (2n)∗.
It is well known that if k is a divisor of the order of a cyclic group then there exists a unique subgroup
of order k in that group. Thus K = 〈ζd〉, that is K is generated by ζd. If the support of f is invariant
under the action of K then f(ζ i) = f(ζ i+λd) for λ = 0, 1, . . . , (k − 1) and i = 0, 1, . . . , (d− 1). As a
consequence the i-th column of ad,k is constant for each i.

Conversely, if ad,k has a fixed binary sequence of length d as rows then ai = ai+λd where
λ = 0, 1, . . . , (k − 1), for each i = 0, 1, . . . , (2n − 2), where the subscript of ‘a’ is always reduced
modulo 2n − 1. If f is the function corresponding to ad,k with respect to a primitive element ζ
then f(ζ i) = f(ζ i+λd) for λ = 0, 1, 2, . . . , (k − 1) and i = 0, 1, 2, . . . , (2n − 2) which implies that the
support of f is invariant under the action of the group generated by ζd. But we have already noted
that for any primitive element ζ the subgroup of GF (2n)∗ generated by ζd is equal to K. Therefore
the support of f is invariant under the action of K.

Example 1 Let n = 15, L∗ = GF (25)∗ and J∗ = GF (23)∗. The support of f is invariant under the
action of L∗ and J∗ implies that the support of f is invariant under the action of the product L∗.J∗

which is also a cyclic subgroup of M∗ = GF (215)∗ of order (25 − 1)(23 − 1) = (31)(7). Therefore
by lemma 1 the support of the function f is invariant under the action of L∗.J∗ if and only if
(151, (31)(7))-interleaved sequence of f has a fixed binary sequence of length 151 as rows. It is to
be noted that this property is independent of the choice of the primitive element.

Suppose f ∈ Fn, apart from being invariant under the action of a cyclic subgroup K of order k, is
also invariant under the action of the group of Frobenius automorphisms 〈φ2〉.

Definition 2 Define an equivalence relation ρd on {0, 1, 2, . . . , (d − 1)} by i1 ρd i2 if and only if
i1 ≡ 2ji2 mod d for some non-negative integer j where i1, i2 ∈ {0, 1, 2, . . . , (d− 1)}.

The set {0, 1, 2, . . . , (d − 1)} is the set of column numbers of the (d, k)-interleaved sequence of a
Boolean function. Thus ρd partitions this set into equivalence classes.

Lemma 2 A function f invariant under the action of K is also invariant under the action of 〈φ2〉
if and only if the (d, k)-interleaved sequence of the function has a fixed binary sequence of length d
as rows and the columns in the same equivalence class with respect to ρd are either ‘all zero’ columns
or ‘all one’ columns.

Proof : Any function f invariant under the action of K and 〈φ2〉 is invariant under the action of K
and hence by lemma 1 the (d, k)-interleaved sequence of this function has a fixed binary sequence
of length d as rows. Consider the i-th column where 0 ≤ i ≤ (d − 1). Under the Frobenius
automorphism φj

2, the element ζ i is mapped to ζ2j ·i. If the support of f is invariant under the
Frobenius automorphisms then f(ζ i) = f(ζ2j ·i). Using division algorithm, we find qi,j and ri,j such

that 2j · i = qi,jd + ri,j, where 0 ≤ ri,j < d. The element f(ζ2j ·i) will occur in the qi,j-th row and
ri,j-th column in the (d, k)-interleaved sequence of f , the first row (column) being referred to as the
0-th row (column). Since the columns of this interleaved sequence corresponding to f are either
‘all zero’ or ‘all one’ columns, the ri,j-th column of the interleaved sequence has the same value as
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f(ζ i), in particular f(ζri,j) = f(ζ i). Thus all the columns which are in the same equivalence class
of ρd has the same value.

Conversely if the function f has the (d, k)-interleaved sequence with the above mentioned prop-
erty then for any j ≥ 0 and i ∈ {0, 1, 2, . . . , (d − 1)}, f(ζ i2j

) appears in the qi,j-th row and ri,j-th
column. But ri,j ≡ 2ji mod d, therefore ri,j and i are in the same equivalence class of ρd. Hence

f(ζ i) = f(ζ i2j
). Thus the function is invariant under the action of 〈φ2〉. Again since the interleaved

sequence under consideration has a fixed binary sequence of length d as rows the corresponding
function f is invariant under the action of the group K.

Remark 1 It is to be noted that the equivalence classes discussed above are the orbits of the group
generated by 〈φ2〉 and K when it acts on GF (2n)∗/K.

A function of the form f(x) = Trn
1 (αxc) where α ∈ GF (2n) and gcd(c, 2n − 1) = 1 is called a

bijective monomial [10, 11]. When c = 1, f is the linear function lα. Thus linear functions can
be thought of as special cases of bijective monomials. Suppose t|n and d = 2n−1

2t−1
. The structure

of (d, 2t − 1)-interleaved sequence corresponding to a bijective monomial has been stated without
proof in [10, 11]. We give a complete proof below.

Lemma 3 Let f(x) = Trn
1 (xc), where gcd(c, 2n−1) = 1. Then for all t|n the (d, 2t−1)-interleaved

sequence of f with respect to a primitive element ζ ∈ GF (2n) is such that

1. the columns are either 0-columns or cyclic shifts of the binary sequence corresponding to Trt
1(x)

when evaluated at 1, ζcd, ζc2d, . . . , ζc(2t−2)d which contains 2t−1 ones,

2. the number of zero columns is d− 2n−t.

Proof : Let ζ be a primitive (2n − 1)-th root of unity. Then the entry in the i-th column and λ-th
row of the (d, 2t − 1)- interleaved sequence of f is

ui,λ = f(ζ i+λd)

= Trn
1 (ζc(i+λd))

= Trt
1(Trn

t (ζc(i+λd)))

= Trt
1(ζ

ci+cλd + ζci2t+cλd2t

+ ζci22t+cλd22t

+ . . . + ζci2( n
t −1)t+cλd2( n

t −1)t

)

= Trt
1((ζ

ci + ζci2t

+ ζci22t

+ . . . + ζci2( n
t −1)t

)ζcλd).

The sequence {ui,λ|λ = 0, 1, . . . , 2t − 2} corresponds to the linear function of the form Trt
1(γix),

where γi = ζci + ζci2t
+ ζci22t

+ . . . + ζci2( n
t −1)t

, when evaluated at the points 1, ζcd, ζc2d, . . . , ζc(2t−2)d.
If γi = 0 for some i then the i-th column consists of only zeros. Otherwise it is cyclic shift of the
binary sequence generated by Trt

1(x) when evaluated at the points 1, ζcd, ζc2d, . . . , ζc(2t−2)d.
Since each non-zero column is a sequence corresponding to a linear function with respect to the

element ζcd, the number of ‘one’s in each them is 2t−1. Again the number of ‘one’s in the binary
sequences corresponding to f(x) and Trn

1 (x) are equal, therefore the total number of ‘one’s in the
binary sequence corresponding to f(x) is 2n−1. Let the number of non-zero columns be r. Then
r(2t−1) = 2n−1, i.e., r = 2n−t. So, the number of zero columns is d− r = d− 2n−t.

Example 2 In case n = 15, let us consider the function Tr15
1 (x). By the above result, the (1057, 31)-

interleaved sequence corresponding to this function contains 1057− 215−5 = 1057− 1024 = 33 zero
columns. The others columns are cyclic shifts of the sequence corresponding to the function Tr5

1(x).
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The way to construct the interleaved sequence corresponding to the function Trn
1 (ζ i+1x) from the

interleaved sequence corresponding to the function Trn
1 (ζ ix) can be summarised in the following

way.
The i-th column of the (d, 2t − 1)-interleaved sequence corresponding to Trn

1 (ζ ix) is the (i− 1)-
th column of the (d, 2t − 1)-interleaved sequence corresponding to the function Trn

1 (ζ i+1x) for i =
1, 2, . . . , (d−1). The zero-th column of the former sequence is to be given a cyclic shift in the upward
direction and placed as the (d− 1)-th column of the later sequence.

The support of the affine function hα(x) = Trn
1 (αx) + 1 is Supp(hα) = {x ∈ GF (2n)|Trn

1 (αx) =
0}. Recall that Supp(hα) (denoted by Hα) is a hyperplane in GF (2n) when considered as a vector
space over GF (2). Next we give an interpretation of t(α), that occur in condition (2) of Section 1, in

the language of interleaved sequence. If n = ab then we can write hα as a (2ab−1
2a−1

, 2a− 1)-interleaved
sequence. Since hα(x) = Trn

1 (αx)+1, by lemma 3 the number of ‘all one’ columns in the interleaved
sequence of hα is d− 2n−a. Let f ∈ Ia,b i.e., the support of f is union of cosets of the type L∗xi. By

lemma 1 the (2ab−1
2a−1

, 2a − 1)-interleaved sequence of f has a fixed binary sequence of length 2ab−1
2a−1

as
rows. In section 1 we defined t(α) as the number of cosets in the support of f that are contained in

Hα. This is equivalent to the number of ‘all one’ columns of the (2ab−1
2a−1

, 2a− 1)-interleaved sequence

of f that correspond to the ‘all one’ columns of the (2ab−1
2a−1

, 2a − 1)-interleaved sequence of hα.

In case our aim is to search for a function f ∈ Ia,b having nonlinearity greater than 2n−1 − 2
n−1

2

for any α ∈ GF (2n), we need, 2n−1 − 2
n−1

2 < d(f, hα) < 2n−1 + 2
n−1

2 . In particular for α = 0, we

obtain 2n−1 − 2
n−1

2 < l(2a − 1) < 2n−1 + 2
n−1

2 where l is the number of ‘all one’ columns in the

(2ab−1
2a−1

, 2a − 1)-interleaved sequence of f and consequently

2n−1 − 2
n−1

2

2a − 1
< l <

2n−1 + 2
n−1

2

2a − 1
. (3)

This is same as the condition (1) of Section 1. Consider (2ab−1
2a−1

, 2a − 1)-interleaved sequences of f

and hα. In hα, out of the 2ab−1
2a−1

columns, number of ‘all one’ columns is 2ab−1
2a−1

− 2ab−a and among
them t(α) number of ‘all one’ columns match with the ‘all one’ columns of f . This is same as saying
that t(α) number of ‘all zero’ columns of lα match with the ‘all one’ columns of f . From this we
have

d(f, lα) = t(α)(2a − 1) + (l − t(α))(2a−1 − 1) + (2n−1 − l + t(α))2a−1

= 2ab−1 + t(α)2a − l.

Similarly we have d(f, hα) = 2ab−1 − t(α)2a + l. Again it is clear that if f is to have nonlinearity

greater than 2n−1 − 2
n−1

2 then both d(f, lα) and d(f, hα) should be greater than 2n−1 − 2
n−1

2 for all
α ∈ GF (2n)∗. Combining this with the bounds obtained above we obtain the following inequality

1

2a

{
2ab−1 − 2(ab−1)/2

2a − 1
− 2(ab−1)/2

}
< t(α) <

1

2a

{
2ab−1 + 2(ab−1)/2

2a − 1
+ 2(ab−1)/2

}
(4)

which is same as the condition (2) of section 1.

Remark 2 It is to be noted that any (2ab−1
2a−1

, 2a−1)-interleaved sequence with a fixed binary sequence

of length 2ab−1
2a−1

as rows correspond to a function in Ia,b and conversely. If we construct such an
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interleaved sequence with l non-zero columns satisfying (3) and (4) then by the above discussion the

function corresponding to this sequence will have nonlinearity greater than 2n−1 − 2
n−1

2 . However it
is usually impossible to search all the possibilities. Because of this reason Patterson and Wiedemann
have put extra restriction in the form of invariance with respect to J∗ and 〈φ2〉 and exhaustively
searched the more restricted search space for n = 15. However the analogous search space even for
n = 21 becomes too large to search exhaustively. Below we describe their technique in a generalized
framework by using interleaved sequence.

Suppose K be a proper subgroup of GF (2n)∗ of order k and index d containing GF (2t)∗ where t|n.
Consider any f ∈ Fn which is invariant under the action of K and 〈φ2〉. Also let us suppose that all
the interleaved sequences considered are with respect to a particular primitive element ζ ∈ GF (2n).
The index of GF (2t)∗ in GF (2n)∗ is d1 = 2n−1

2t−1
. Since kd = 2n − 1 = d1(2

t − 1) and (2t − 1)|k, d|d1.
Please note that t is a different symbol form t(α).

Since f is invariant with respect to K and 〈φ2〉, by lemma 2 the (d, k)-interleaved sequence of
f has a fixed binary sequence of length d as rows and the columns in the same equivalence class
of ρd are either ‘all zero’ columns or ‘all one’ columns. Suppose l columns of the (d, k)-interleaved
sequence of f are ‘all one’ columns. If we consider the (d1, 2

t − 1)-interleaved sequence of f then
each column of the (d, k)-interleaved sequence splits up into d1

d
number of columns. Thus the total

number of ‘all one’ columns in the (d1, 2
t − 1)-interleaved sequence is l d1

d
. It should be noted that

since f is invariant under the action of K and 〈φ2〉, it is invariant under any subgroup of the group
generated by K and 〈φ2〉 in particular the group generated by GF (2t)∗ and 〈φ2〉. Therefore by
lemma 2 the (d1, 2

t − 1)-interleaved sequence of f is repetition of a fixed binary sequence of length
d1 as rows. From the conditions (3) and (4) it is known that the function f has nonlinearity greater

than 2n−1 − 2
(n−1)

2 if and only if

2n−1 − 2
n−1

2

2t − 1
< l d1

d
<

2n−1 + 2
n−1

2

2t − 1
(5)

1

2t

{
2n−1 − 2(n−1)/2

2t − 1
− 2(n−1)/2

}
< t(α) <

1

2t

{
2n−1 + 2(n−1)/2

2t − 1
+ 2(n−1)/2

}
. (6)

In case we are searching for a function with nonlinearity greater than 2n−1−2
(n−1)

2 in the search space
consisting of functions in Fn which are invariant under the action of K and 〈φ2〉, if the condition (5)
and (6) are not satisfied for any l then we conclude that there is no such function with such high
nonlinearity in the given search space. Condition (5) is easy to check. Below we present a method
to convert the condition (6) to a system of linear inequalities.

Definition 3 Recall that ρd is an equivalence relation defined on the column numbers of (d, k)-
interleaved sequence of f . Suppose that there are r equivalence classes. Define r distinct binary
variables l0, l1, . . . , lr−1 such that lj = 1 if the j-th equivalence class consists of ‘all one’ columns
else lj = 0. Let sj be the size of the j-th equivalence class where j = 0, . . . , r − 1.

In the (d, k)-interleaved sequence of the function f if the j-th equivalence class has columns with
entries lj ∈ {0, 1} then corresponding to these columns there are sj

d1

d
columns in the (d1, 2

t − 1)-
interleaved sequence of f with entries lj. Let Sj be the set of column numbers of these columns.
Consider the (d1, 2

t − 1)-interleaved sequence of Trn
1 (ζ ix). Let Ti be the set of column numbers of
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‘all zero’ columns of this interleaved sequence. Let ci,j = |Ti ∩ Sj|. From this we obtain

t(ζ i) =
r−1∑
j=0

ci,jlj.

The number ci,j is the number of ‘all zero’ columns of the (d1, 2
t−1)-interleaved sequence of Trn

1 (ζ ix)
having the same column numbers as the columns corresponding to the j-th equivalence class in the
(d1, 2

t − 1)-interleaved sequence of f . Thus the condition (6) can be written as

1

2t

{
2n−1 − 2(n−1)/2

2t − 1
− 2(n−1)/2

}
<

∑r−1
j=0 ci,jlj <

1

2t

{
2n−1 + 2(n−1)/2

2t − 1
+ 2(n−1)/2

}
. (7)

for i = 0, 1, . . . 2n − 2. The number of inequalities in the above system is 2n − 1. Below we prove
that it is enough to solve r inequalities among them, where r is the number of equivalence classes
with respect to ρd.

Definition 4 We define an equivalence relation ρ̂d on {0, 1, 2, . . . , 2n−2} by i, j ∈ {0, 1, 2, . . . , 2n−
2} are equivalent if and only if i ≡ j2k mod d for some k ≥ 0. It is easy to see that the number of
equivalence classes with respect to ρ̂d is same as that of ρd.

Theorem 1 Let f ∈ Fn is invariant under the action of K and 〈φ2〉. If i and j are in the same
equivalence class of ρ̂d, i.e., j ≡ i2k mod d for some k ≥ 0, then (1) f̂(ζ i) = f̂(ζj), (2) t(ζ i) = t(ζj).

Proof : If i and j are in the same equivalence class as defined above then j ≡ i2k mod d for some
0 ≤ k ≤ n − 1. Walsh transform of a function f is defined as f̂(α) =

∑
x∈GF (2n)(−1)Tr(αx)+f(x),

where α ∈ GF (2n). As i, j are in the same equivalence class of ρ̂d, j = i2k + qd for some integer q.

f̂(ζj) =
∑

x∈GF (2n)

(−1)Tr(ζjx)+f(x)

=
∑

x∈GF (2n)

(−1)Tr(ζjζ−qdx)+f(ζ−qdx) since x 7→ ζ−qdx is one-one onto

=
∑

x∈GF (2n)

(−1)Tr(ζi2k
x)+f(ζ−qdx)

=
∑

x∈GF (2n)

(−1)Tr(ζi2k
x)+f(x) since f is invariant under K

= f̂(ζ i2k

) =
∑

x∈GF (2n)

(−1)Tr(ζi2k
x)+f(x)

=
∑

x2k∈GF (2n)

(−1)Tr(ζi2k
x2k

)+f(x2k
) by replacing x by x2k

, Frobenius automorphism

=
∑

x∈GF (2n)

(−1)Tr(ζi2k
x2k

)+f(x2k
) since x → x2k

is a field automorphism

=
∑

x∈GF (2n)

(−1)Tr(ζix)+f(x) since f(x2k

) = f(x) and Tr(α2k

) = Tr(α) for all α ∈ GF (2n)

= f̂(ζ i).

9



The (d1, 2
t−1)-interleaved sequence of Tr(ζ ix) has t(ζ i) zero columns corresponding to ‘all one’

columns of the (d1, 2
t − 1)-interleaved sequence of f(x). The total number of zero columns of the

(d1, 2
t − 1)-interleaved sequence of Tr(ζ ix) is d1 − 2n−t and the total number of ‘all one’ columns

and ‘all zero’ columns of the (d1, 2
t − 1)-interleaved sequence of f(x) are l′ and d− l′ respectively.

The number of zero columns of Tr(ζ ix) that correspond to ‘all one’ columns of f(x) is t(ζ i). The
number of ‘all one’ columns of f(x) that correspond to nonzero columns of Tr(ζ ix) is l′− t(ζ i) and
the number of zero columns that correspond to the nonzero columns of Tr(ζ ix) is 2n−t− (l′− t(ζ i)).
Thus the Walsh transform

f̂(ζ i) = (2t − 1)t(ζ i) + (1)(l′ − t(ζ i)) + (−1)(2n−t − (l′ − t(ζ i))).

Thus for any i, j if f̂(ζ i) = f̂(ζj) then t(ζ i) = t(ζj).

Remark 3 Note that it is enough to solve the inequalities involving t(ζ i) =
∑r−1

j=0 ci,jlj, where i
varies over a representative system of the equivalence classes of ρd. Once these inequalities are
satisfied rest of the inequalities are automatically satisfied due to Theorem 1. Therefore we have to
solve only r inequalities instead of 2n−1 inequalities. Further, it is clear that the Walsh spectra will
contain at most r different values at the nonzero points. Calculating f̂(ζ i) at a point ζ i is enough
for the complete equivalence class. This gives that the Walsh spectra may contain at most 1 + r
values (the additional one is the Walsh transform value at the zero point).

2.1 The case of n = 15

For n = 15 the functions invariant under the action of K = GF (23)∗.GF (25)∗, the direct product
of GF (23)∗ and GF (25)∗, and 〈φ2〉 are considered. t is taken to be 5. The order of K in this case
is (31)(7). First we determine the number of equivalence classes with respect to ρ151.

Lemma 4 In a (151, (31)(7))-interleaved sequence there are 11 equivalence classes with respect to
ρ151. Among them 10 are of size 15 and 1 is of size 1.

Proof : Suppose i is a representative of an equivalence class. If i = 0 then i · 2k = 0 for all k.
Therefore the equivalence class containing i = 0 has only one element. Next suppose i 6= 0. Then
any other member of the the same equivalence class can be written as i · 2k modulo 151 where
0 ≤ k ≤ 14. Thus we can have at most 15 elements in each such equivalence class. We can verify
that modulo 151 each number i · 2k is distinct when 0 ≤ i ≤ 150 and 0 ≤ k ≤ 14. Therefore each
equivalence class for which the representative i 6= 0 contains exactly 15 elements. Thus there are
exactly 10 such equivalence classes.

Remark 4 From the above lemma, the number of equivalence classes with respect to ρ̂151 is 11.
Note that ρ̂151 is an equivalence relation over {0, 1, . . . , 215 − 2}. It partitions the input points
{ζ0, ζ1, . . . , ζ215−2} into 1 small class containing 217 elements and 10 large classes each containing
3255 elements. The other input point is the zero point. This counts to total 215 input points which
are basically elements of GF (215).

By lemma 2 the (151, (31)(7))-interleaved sequence of of a function whose support is invariant
under the action of K and 〈φ2〉 must have a fixed binary sequence of length 151 as rows and columns
belonging to the same equivalence class of ρ151 must have the same value. If a function f in this
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search space has to have nonlinearity greater than 2n−1−2
n−1

2 then the number of non-zero columns
l in the (151, (31)(7))-interleaved sequence of f satisfies (5), where d = 151 and d1 = (151)(7), from
which we obtain 74 < l ≤ 76. Thus in order to construct such a function we have to choose
5 among the 10 equivalence classes and we may or may not choose the equivalence class of size
one. The columns belonging to these equivalence classes should be set to one while the remaining
columns should be set of zero. The resulting (151, (31)(7))-interleaved sequence will satisfy the
condition (5). Next by taking t = 5 we compare the ((151)(7), 31)-interleaved sequence with the
((151)(7), 31)-interleaved sequence of the trace function of the form Trn

1 (ζ ix) where i varies over
some representative system of the equivalence classes of ρ151. We obtain the system of inequalities
by the algorithm described below.

Algorithm PrepareInequalties

Step 1 Take a primitive polynomial of degree 15 over GF (2). As described in [7], we use the polyno-
mial x15 + x + 1.

Step 2 (i) Evaluate the sequence {Tr15
1 (ζ i)}215−2

i=0 where ζ is a root of the polynomial x15 + x + 1.

(ii) Write this sequence as a (1057, 31)-interleaved sequence denoted by A. Note that the
columns of A are numbered from 0 to 1056.

(iii) The interleaved sequence A has 33 ‘all zero’ columns. Store the column numbers in an
array Z of length 33. The contents of Z[j] are 1, 2, 4, 8, 16, 32, 55, 64, 110, 128, 139,
220, 256, 278, 299, 339, 349, 440, 453, 512, 529, 556, 598, 678, 698, 703, 755, 793, 880,
906, 925, 991, 1024 for j = 0 to 32.

Step 3 (i) Partition the set {0, 1, 2, . . . , 150} into equivalence classes corresponding to ρ151. There
are 11 such equivalence classes.

(ii) Number them from 0 to 10 and store in an array E of length 11 such that E[j] is the
smallest integer in the j-th equivalence class where j = 0, 1, . . . , 10. The contents of E[j]
in this case are 0, 1, 3, 5, 7, 11, 15, 17, 23, 35, 37 for j = 0 to 10.

Step 4 Construct an array L of length 151 such that E[L[j]] is the representative of the equivalence
class of ρ151 containing j.

Step 5 Set i = 0.

Step 6 (i) Define an array C of length 11. Put C[j] = 0 for all j = 0, 1, . . . , 10.

(ii) Define an array K of length 33. Put K[j] = 0 for all j = 0, 1, . . . , 32.

Step 7 For j = 0, . . . , 32 do

(i) K[j] = (Z[j]− E[i]) mod (1057)

(ii) m = K[j] mod 151

(iii) C[L[m]] = C[L[m]] + 1

Step 8 (i) Out put C. C is the 11-tuple (ci,0, ci,1, . . . , ci,10)

(ii) i = i + 1. Go to Step 6 till i ≤ 10.
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In this case, to have nonlinearity > 215−1 − 2
15−1

2 , one needs 13 ≤ t(ζ i) ≤ 20. Running the
Algorithm PrepareInequalties we get the following system of linear inequalities.

13 ≤ 3l0 + 15l1 + 0l2 + 0l3 + 0l4 + 0l5 + 0l6 + 0l7 + 0l8 + 0l9 + 15l10 ≤ 20

13 ≤ 1l0 + 1l1 + 2l2 + 4l3 + 2l4 + 2l5 + 4l6 + 4l7 + 6l8 + 4l9 + 3l10 ≤ 20

13 ≤ 0l0 + 2l1 + 4l2 + 1l3 + 5l4 + 3l5 + 0l6 + 4l7 + 4l8 + 5l9 + 5l10 ≤ 20

13 ≤ 0l0 + 4l1 + 1l2 + 2l3 + 6l4 + 4l5 + 5l6 + 1l7 + 5l8 + 2l9 + 3l10 ≤ 20

13 ≤ 0l0 + 2l1 + 5l2 + 6l3 + 4l4 + 2l5 + 3l6 + 3l7 + 3l8 + 0l9 + 5l10 ≤ 20

13 ≤ 0l0 + 2l1 + 3l2 + 4l3 + 2l4 + 4l5 + 5l6 + 1l7 + 1l8 + 6l9 + 5l10 ≤ 20

13 ≤ 0l0 + 4l1 + 0l2 + 5l3 + 3l4 + 5l5 + 2l6 + 6l7 + 2l8 + 3l9 + 3l10 ≤ 20

13 ≤ 0l0 + 4l1 + 4l2 + 1l3 + 3l4 + 1l5 + 6l6 + 6l7 + 2l8 + 3l9 + 3l10 ≤ 20

13 ≤ 0l0 + 6l1 + 4l2 + 5l3 + 3l4 + 1l5 + 2l6 + 2l7 + 4l8 + 5l9 + 1l10 ≤ 20

13 ≤ 0l0 + 4l1 + 5l2 + 2l3 + 0l4 + 6l5 + 3l6 + 3l7 + 5l8 + 2l9 + 3l10 ≤ 20

13 ≤ 1l0 + 3l1 + 5l2 + 3l3 + 5l4 + 5l5 + 3l6 + 3l7 + 1l8 + 3l9 + 1l10 ≤ 20

The solutions of the system of linear inequalities along with the restrictions provide the functions
with nonlinearity greater than 214 − 27. We choose l0 = 1. By observing the first inequality we
note that if l1 = 0 then l10 = 1. Once these two variables are fixed, we have only to search(

8
4

)
= 70 possible cases of the remaining 8 variables, where exactly 4 variables have to be present.

We obtained two solutions

l0 = 1, l1 = 0, l2 = 0, l3 = 1, l4 = 0, l5 = 1, l6 = 1, l7 = 0, l8 = 1, l9 = 0, l10 = 1 and
l0 = 1, l1 = 0, l2 = 1, l3 = 1, l4 = 0, l5 = 0, l6 = 0, l7 = 0, l8 = 1, l9 = 1, l10 = 1,

which provide nonlinearity 16268. We obtain another two solutions by putting l1 = 1 and l10 = 0.
These solutions are

l0 = 1, l1 = 1, l2 = 1, l3 = 0, l4 = 1, l5 = 0, l6 = 0, l7 = 1, l8 = 0, l9 = 1, l10 = 0, and
l0 = 1, l1 = 1, l2 = 0, l3 = 0, l4 = 1, l5 = 1, l6 = 1, l7 = 1, l8 = 0, l9 = 0, l10 = 0,

which provide the nonlinearity 16276. These two solutions were demonstrated in [7, 8]. Note that if
we take the first two solutions (nonlinearity 16268), keep l0 = 1 and complement l1, . . . , l10, then we
get the next two solutions (nonlinearity 16276). This basically implies that if one chooses l1 = 0 and
l10 = 1, then taking l0 = 1 (respectively l0 = 0) will provide nonlinearity 16268 (respectively 16276).
Note that l0 is related to the shorter equivalence class whose representative is the 0 element in the
proof of Lemma 4. The nonlinearities of the functions corresponding to each of these solutions are
greater than 214 − 27. This analysis provides a justification to the choice of the orbits which could
not be clearly explained in [7, Page 356].

Remark 5 Let us now present some observations regarding the above system of inequalities and its
solutions. Consider the first solution namely,

l0 = 1, l1 = 0, l2 = 0, l3 = 1, l4 = 0, l5 = 1, l6 = 1, l7 = 0, l8 = 1, l9 = 0, l10 = 1.

l0 is chosen to be 1 in the beginning. Then l1 is set to 0 which forces l10 = 1 by the first inequality.
If we write the values of the remaining variables without changing the order as an 8-tuple we obtain

(0, 1, 0, 1, 1, 0, 1, 0)

which is a palindrome1. Same holds for the other solutions too. If this palindromic symmetry is
considered then the search for a solution reduces from

(
8
4

)
= 70 to

(
4
2

)
= 6 only. We also note that

the matrix obtained by removing the first row and the first column from the coefficient matrix of the
above system of inequalities is a symmetric one.

1This observation has been pointed out by Prof. R. Balasubramanian of Institute of Mathematical Sciences,
Chennai.
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Item (1) of Theorem 1 identifies that for distinct i, j belonging to the same equivalence classes
described in Lemma 4, f̂(ζ i) = f̂(ζj). Since from Lemma 4, we have 11 distinct equivalence classes,
there can be at most 11 distinct values at the nonzero points of Walsh spectra. Further, considering
the Walsh transform value at the zero point, the number of distinct values could be at most 12.
Experimental results show that these 12 Walsh spectra values are indeed not distinct and in fact,
there are only four distinct values (as given in the weight distribution table of [7]).

As described in Remark 4, the input points for the 15-variable function can be identified as
0, ζ0, . . . , ζ32766. Similarly, the Walsh spectra can be calculated at these points which are defined as
f̂(0), f̂(ζ0), . . . , f̂(ζ32766). As we have described earlier, the equivalence relation ρ̂151 works on the
integer set {0, . . . , 215 − 2} and thus partitions the input points ζ0, . . . , ζ32766 in 11 classes. One of
these classes contains 217 elements (we refer this by S, i.e., small in the following table) and the
10 other classes contain 3255 elements each (we refer them by L, i.e., large in the following table).
Also there is one more class just having the input point 0 (we refer this by Z). Now we relate the
weight distribution given in [7] with this partition.

Weight Number of Vectors Walsh Spectra Value How it comes
w (number of input points) 215 − 2w (the classes)

16492 13021 -216 4 L, 1 Z
16428 217 -88 1 S
16364 3255 40 1 L
16300 16275 168 5 L

Table 1. Walsh spectra distribution for 15-variable PW function.

2.2 The case of n = 21

In case n = 21 we consider the functions whose ((337)(7), (127)(7))-interleaved sequences are repe-
titions of a binary sequence of length (337)(7) as rows. The columns are numbered from 0 to 2358.
Among these column numbers we define an equivalence relation as above, i.e., i is equivalent to j if
and only if there exists some k between 0 to 20 such that i ≡ j2k modulo 2359. It can be verified by
direct computation that there are 115 equivalence classes corresponding to this equivalence relation.
Among these equivalence classes 112 are of size 21, 2 are of size 3 and 1 of size 1. Because of the
weight restriction of (3) we have to choose 56 equivalence classes among the 112 equivalence classes,
any 1 among the two equivalence classes of size 3 and we may or may not choose the remaining
1 equivalence class. It is possible to construct 115 inequalities by considering the t(α)’s involving
115 variables similar to what described in Subsection 2.1. The search space corresponding to this
case is very large and exhaustive search is infeasible. It will be of interest to develop some heuristic
methods to find solutions to this system of linear inequalities.

Next we consider the functions whose (337, (127)(49))-interleaved sequences are repetitions of a
binary sequence of length 337. It can be checked computationally that the number of equivalence
classes with respect to the equivalence relation ρ337 is 17. However, it is not possible to choose the
equivalence classes in such a way that the weight constraint arising from (5) is satisfied. Hence, there
cannot be any function with nonlinearity > 220 − 210 in this search space. However the functions
found in this space are interesting in terms of autocorrelation properties and we will discuss that
in more details in Subsection 2.4.
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2.3 Generalized Nonlinearity

Generalized nonlinearity of a function f ∈ Fn is introduced by Gong and Golomb [4] and related
results have been presented in [10, 11, 2]. Extended Hadamard Transformation is defined as [10]

f̂(λ, c) =
∑

x∈GF (2n)

(−1)f(x)+Tr(λxc)

where gcd(c, 2n − 1) = 1, c is a cyclotomic coset leader modulo 2n − 1 and λ ∈ GF (2n). Using this,
generalized nonlinearity can be defined by

nlg(f) = 2n−1 − 1

2
max

λ∈GF (2n),gcd(c,2n−1)=1
|

∑
x∈GF (2n)

(−1)f(x)+Tr(λxc)|.

In order to compute the generalized nonlinearity for any function f ∈ Fn we have to compute
the extended Hadamard transformations f̂(λ, c) when λ varies over the whole of GF (2n) and c
varies over the set of all cyclotomic coset leaders modulo 2n − 1 and coprime to 2n − 1. We prove
below that this computation can be reduced to a large extent by considering the invariance of the
support of the function f as discussed above. For any d|2n − 1 define an equivalence relation over
{0, 1, 2, . . . , (2n − 2)} by i is equivalent to j if and only if j ≡ i2k modulo d for some 0 ≤ k ≤ n− 1
(i.e., the equivalence relation ρ̂d). Recall that if we construct a functions whose (d, k)-interleaved
sequence has a fixed binary sequence of length d as rows and if two columns numbers i and j are
equivalent then they are either both ‘all zero’ columns or both all one columns then the support
of the resulting function is invariant under the subgroup of order k in GF (2n)∗ and the group of
Frobenius automorphisms.

Theorem 2 If the (d, s)-interleaved sequence of a function f ∈ Fn has a fixed binary sequence of
size d as its rows and is invariant under the Frobenius automorphisms then the number of distinct
elements in the extended Hadamard transformation spectra is less than or equal to r(r− 1) where r
is the number of equivalence classes with respect to ρ̂d.

Proof : Suppose α ∈ GF (2n) and 0 ≤ k ≤ (n− 1) and c be coprime to 2n − 1. Now,

f̂(α2k
, c) =

∑
x∈GF (2n)(−1)Tr(α2k

xc)+f(x) =
∑

x∈GF (2n)(−1)Tr(α2k
xc2k

)+f(x2k
)

=
∑

x∈GF (2n)(−1)Tr(αxc)+f(x) = f̂(α, c).

Thus if i and j are equivalent then f̂(ζ i, c) = f̂(ζ i2k
, c) = f̂(ζj, c). Next suppose c1 and c2 are

coprime to 2n − 1 and c1 is equivalent to c2 that is there exists some k such that c1 ≡ c22
k mod d.

Since both c1 and c2 are coprime to 2n − 1 there exists d1 and d2 such that c1d1 ≡ 1 mod (2n − 1)
and c2d2 ≡ 1 mod (2n − 1). The relation c1 ≡ c22

k mod d implies d2 ≡ d12
k mod d. Then f̂(α, c2)

=
∑

x∈GF (2n)(−1)Tr(αxc2 )+f(x) =
∑

x∈GF (2n)(−1)Tr(αx)+f(xd2 ) =
∑

x∈GF (2n)(−1)Tr(αx)+f(xd12k+ld).

Note that for any x = ζ i where ζ is a primitive 2n − 1-th root of unity, we have f(xd12k+ld) =
f(ζ id12k+ild) = f(ζ ildζ id12k

) = f(ζ id12k
) = f(xd12k

) since the (d, k)-interleaved sequence of the func-
tion has a fixed binary sequence of length d as rows. Therefore, f̂(α, c2) =∑

x∈GF (2n)(−1)Tr(αx)+f(xd12k
) =

∑
x∈GF (2n)(−1)Tr(αx)+f(xd1 ) =

∑
x∈GF (2n)(−1)Tr(αxc1 )+f(x) = f̂(α, c1).

Thus if i is equivalent to j then f̂(ζ i, c) = f̂(ζj, c) and if c1 is equivalent to c2 then f̂(ζ i, c1) =
f̂(ζ i, c2). There is no c coprime to 2n − 1 in the equivalence class corresponding to 0. Hence the
result.

14



2.3.1 The case n = 15

Consider the the number of distinct cyclotomic coset leaders modulo 215−1 and coprime to 215−1.
There are 1800 such distinct integers. Using the idea of Lemma 4, it is clear that these integers
(nonzero) will be partitioned into 10 groups. It is interesting to note that we have computationally
checked that each equivalence class contains exactly 180 elements, though we are yet to find any
specific mathematical justification. Let these cyclotomic coset leaders representing each group be
denoted by {c1, c2, . . . , c10}. Let the representative system for the equivalence classes be denoted
by {k0, k1, . . . , k10}. Thus the extended Hadamard transformation values that we have to compute
are f̂(ζki , cj) where 0 ≤ i ≤ 10 and 1 ≤ j ≤ 10. There are 1800 cyclotomic coset leaders modulo
215 − 1 and coprime to 215 − 1. Thus the extended Hadamard transformation spectra contains
(32767)(1800) = 58980600 values. From Theorem 2 and the above discussion it is clear that among
these at most (11)(10) = 110 values may be distinct for the functions under consideration. This
reduces the computational cost of generalized nonlinearity for such functions to a large extent. Note
that the generalized nonlinearity of the 15-variable PW functions is 15860 (see also [2]).

2.4 Autocorrelation

Apart from high nonlinearity, low autocorrelation is a desirable property of a Boolean function. The
autocorrelation spectra of the PW functions were first investigated in [6] and it has been observed
that the PW functions possess very low autocorrelation. The following autocorrelation spectra table
has been presented in [6].

Number of input points 3255 6727 9765 3255 3255 6510
Autocorrelation values 160 64 0 -32 -64 -96

How it comes 1 L 2 L, 1 S 3 L 1 L 1 L 2 L
Table 2. Autocorrelation spectra distribution for 15-variable PW function.

The above table also highlights that the number of distinct values in autocorrelation spectra is very
less, i.e., only 6. In this section we present some important characteristics of the autocorrelation
spectra of PW construction and show that the maximum number of distinct values can be at most
the number of equivalence classes with respect to ρd. The last row of Table 2 is similar to Table
1 in Section 2.1. We will describe this clearly later in this subsection. First we state the basic
definitions.

Definition 5 Let f1, f2 ∈ Fn. We define wd(f1, f2) as

wd(f1, f2) =
∑

x∈GF (2n)

(−1)f1(x)+f2(x).

For any f ∈ Fn and α ∈ GF (2n) the function f(α) ∈ Fn is defined as f(α)(x) = f(x + α).
Let f ∈ GF (2n). The autocorrelation, ∆f (α) of f with respect to α ∈ GF (2n) is defined as

∆f (α) = wd(f, f(α)) =
∑

x∈GF (2n)

(−1)f(x)+f(x+α).

The absolute indicator ∆f is defined as

∆f = max
α∈GF (2n)∗

|∆f (α)| .
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Note that when α = 0, ∆f (α) = 2n. That is why the value at input point zero is not considered in
autocorrelation spectra. Now we present the main theorem related to autocorrelation.

Theorem 3 Let f ∈ Fn be invariant under the action of a cyclic subgroup K of order k of GF (2n)∗

and 〈φ2〉. Let ζ ∈ GF (2n) be a primitive element. For any two integers i and j, if i ρd j then

∆f (ζ
i) = ∆f (ζ

j).

Proof : Since i ρd j there exists integers m and s such that i = 2sj + md. Then

∆f (ζ
i) =

∑
x∈GF (2n)

(−1)f(x)+f(x+ζi)

=
∑

x∈GF (2n)

(−1)f(ζmdx)+f(ζmdx+ζ2sj+md) since x 7→ ζmdx is an one-one, onto map

=
∑

x∈GF (2n)

(−1)f(ζmdx)+f(ζmd(x+ζ2sj))

=
∑

x∈GF (2n)

(−1)f(x)+f(x+ζ2sj) since f is invariant under the action of K

=
∑

x∈GF (2n)

(−1)f(x2s
)+f(x2s

+ζ2sj) since x 7→ x2s

is a one-one, onto map

=
∑

x∈GF (2n)

(−1)f(x2s
)+f((x+ζi)2

s
) since x 7→ x2s

is a field automorphism

=
∑

x∈GF (2n)

(−1)f(x)+f(x+ζj) since f is invariant under the action of 〈φ2〉

= ∆f (ζ
j).

Remark 6 From the Theorem 3 it is evident that if f is invariant under the action K and 〈φ2〉
then the distinct autocorrelation values ∆f (α) when α varies over GF (2n) is at most the number of
equivalence classes generated by the equivalence relation ρd.

The last row of Table 2 gives how the 10 large (L) classes (of 3255 elements each) and one small
(S) class (of 217 elements) are taking part in the autocorrelation spectra. Similar description has
also been made for Walsh spectra before Table 1 in Section 2.1.

In [12], it has been conjectured that for balanced functions on odd number of variables n,

∆f ≥ 2
n+1

2 . This conjecture has been disproved in [6] by suitably modifying the PW functions.
It has been shown in [6] that it is possible to construct balanced functions on 15 variables with

∆f = 216 < 256 = 2
15+1

2 . In fact later experimentation revealed that it is also possible to get such
functions with ∆f = 208.

However the conjecture has only been disproved for n = 15. We here disprove the conjecture
of [12] for n = 21 too.

In Subsection 2.2 we have considered the functions whose (337, (127)(49))-interleaved sequences
are repetitions of a binary sequence of length 337. We executed our experiments with the primitive
polynomial x21 + x2 + 1. It has been checked computationally that the number of equivalence
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classes with respect to the equivalence relation ρ337 is 17 and the representative elements of the
equivalence classes are 0, 1, 3, 5, 7, 9, 11, 17, 19, 21, 23, 25, 35, 41, 51, 57, 113. The first
equivalence class contains only 1 element and the other 16 classes contain 21 elements each. Note
that 1 + 21× 16 = 337.

Let us now consider the construction of a 21 variable function f ∈ F21 with f(0) = 0. The rest
of the 221 − 1 input points ζ0, . . . , ζ221−2 are divided into 17 classes. The class with representative
element 0 contains 127 × 49 elements and the rest of the classes contain 21 × 127 × 49 elements
each. We choose 8 equivalence classes corresponding to the representative elements 11, 17, 23,
25, 35, 41, 51, 113 and put the value 1 in the function output corresponding to the input points
of these classes. Rest of the points are assigned to the value zero. This function has weight
8×21×127×49 = 1045464 and we have checked that the nonlinearity of this function is 1045464 too.
Note that from nonlinearity point of view this result is not of much interest since 1045464 < 220−210.
However, the most important thing is to note that ∆f = 920 < 2048 = 2

21+1
2 .

Now using the primitive polynomial x21 + x2 + 1, it is possible to realize the function f as
f : {0, 1}21 → {0, 1} (see [2, Section 2, 5] for more details of this realization). Consider the function
f is on the input variables X1, . . . , X21. Now it can be checked that the weight of the function
g(X1, . . . , X21) = f(X1, . . . , X21)+X2 +X3 is 220− 40, thus 40 away from balancedness. Moreover,
since g is a linear transformation of f , nl(g) = nl(f) and ∆g = ∆f (see [6] for more details). The
input points of the function g can be indexed by 0 to 221 − 1, where the input is the 21 bit binary
representation of the integer value. Now we randomly select 40 input points where the function
g takes the value 0 and change them to 1 (similar idea that has been used in [6, Algorithm 1,
Section III]). Call this new function as h(X1, . . . , X21). Clearly the weight of the function h is
220 − 40 + 40 = 220, i.e., the function h is balanced. We run this experiment many times and found
interesting results in terms of autocorrelation. As one example consider 40 such input points of g as
the indices 32422, 67033, 82243, 112941, 135033, 175078, 204181, 211252, 245710, 265678, 302766,
338036, 347423, 378814, 415814, 426246, 448514, 495425, 505305, 531185, 564270, 589462, 618096,
655062, 680971, 699797, 713104, 749641, 770943, 804760, 832387, 849856, 870619, 898330, 920904,
951680, 993640, 1010745, 1026031, 1069446. Changing the functional values at these points from
0 to 1 we get h and experimentally checked that nl(h) = 1045482 and ∆h = 1024 < 2048 = 2

21+1
2 .

Since h is balanced, this disproves the conjecture of [12] for n = 21.

3 Group Action on PG(2, 2a)

In this section we discuss what is a version of the fundamental theorem of projective geometry. For
detailed discussion of this theorem, refer to [5, 9]. We give a short proof of this version which suits
our purpose. It is expected that the functions with large nonlinearity would be invariant under
certain subgroups of linear transformations and the PW construction supports this viewpoint. An
important question arising in this direction is what possible subgroups can replace their group,
which consists of linear transformations acting on a projective plane over a larger field. In this
regard, we characterize the largest group of linear transformations acting on a projective plane over
a larger field.

Recall that GF (2) = K ⊂ L ⊂ M is a tower of field extension and assume [M : L] = 3.
The set {xL : x ∈ M∗} can be considered as PG(2, 2a) where for any x ∈ M∗, xL is the one
dimensional L-subspace of M spanned by x. Let GLK(M) denotes the group of all invertible K-
linear transformations of M . Then GLK(M) induces an action on the set of all K-subspaces of M .
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Let H be the largest subgroup of GLK(M) which maps PG(2, 2a) to itself, i.e.,

H = {g ∈ GLK(M) : for any x ∈ M∗, g(xL) = yL for some y ∈ M∗}.

Let GLL(M) be the group of all invertible L-linear transformations of M and φ2 : M → M be
defined by φ2(x) = x2 for all x ∈ M . Then GLL(M) is a subgroup of GLK(M) and φ2 ∈ GLK(M).
Note that for any g ∈ H if U and V are L-subspaces of M then g(U ∩ V ) = g(U) ∩ g(V ) and
g(U + V ) = g(U) + g(V ) and if x1, x2, y1, y2 ∈ M∗ are such that g(x1L) = y1L and g(x2L) = y2L
then g(x1L + x2L) = y1L + y2L.

Lemma 5 Assume [M : L] ≥ 2. If g ∈ H, x1, x2 ∈ M∗ then for any c ∈ L, g(cx1)
g(x1)

= g(cx2)
g(x2)

.

Proof : We have two possible cases.
Case 1. Suppose x1, x2 are linearly independent over L. Let y1 = g(x1) and y2 = g(x2). Then
g(x1L) = y1L as 0 6= y1 ∈ g(x1L) and g(x1L) is an 1-dimensional L-subspace. Similarly g(x2L) =
y2L. Therefore, g(cx1) = λ1y1 and g(cx2) = λ2y2 for some λ1, λ2 ∈ L. Since g is additive g(cx1 +
cx2) = λ1y1+λ2y2. But g(cx1+cx2) ∈ g((x1+x2)L) and g((x1+x2)L) = (y1+y2)L, since (y1+y2) ∈
g((x1+x2)L) which is one dimensional. Thus there exists λ3 ∈ L such that g(cx1+cx2) = λ3(y1+y2).

Note that g(x1L + x2L) = y1L + y2L and both are GF (2)-vector spaces. Comparing their
dimensions over GF (2), we see that y1, y2 are linearly independent over L, and hence λ1 = λ2 = λ3.

Therefore g(cx1)
g(x1)

= g(cx2)
g(x2)

.
Case 2. Suppose x1, x2 are linearly dependent over L. There exists x3 ∈ M∗ such that x1 and
x3 are linearly independent. Then x2 and x3 are also linearly independent. Then from case 1 we
obtain

g(cx1)

g(x1)
=

g(cx3)

g(x3)
=

g(cx2)

g(x2)
.

Definition 6 Let x ∈ M∗ and g ∈ H. We define a map φ : L → L by φ(c) = g(cx)
g(x)

for any c ∈ L.

Remark 7 From lemma 5 it follows that φ as defined above does not depend on the choice of x.

Lemma 6 The map φ defined above is a field automorphism of L.

Proof : Additivity of φ is obvious. Let c1, c2 ∈ L. Then

φ(c1c2) =
g(c1c2x)

g(x)
=

g(c1c2x)

g(c2x)

g(c2x)

g(x)
= φ(c1)φ(c2).

Theorem 4 Let [M : L] = 3. As a subgroup of GLK(M) we have H = GLL(M)〈φ2〉, that is
H = {g1φ

i
2 : g1 ∈ GLL(M) and i ∈ Z}.

Proof : Clearly for any g1 ∈ GLL(M) and i ∈ Z, g1φ
i
2 ∈ H. To show the inclusion in the other

direction, let g ∈ H. Let c ∈ L and x ∈ M then φ(c)g(x) = g(cx). Extend φ to a field automorphism
φ̂ of M . Let g1 = gφ̂−1 then

g1(cx) = g(φ̂−1(cx)) = g(φ−1(c)φ̂−1(x)) = φ(φ−1(c))g(φ̂−1(x)) = cg1(x).
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Moreover, the additivity of g1 is obvious. Hence g1 ∈ GLL(M). Thus g = g1φ̂; and since φ̂ is a field
automorphism of M , φ̂ = φi

2 for some i ∈ Z. This proves that H = GLL(M)〈φ2〉.
In Section 2, support of the functions in Ia,b with maximum reported nonlinearity were obtained

by first defining an equivalence relation on the column numbers and then choosing some of the
equivalence classes to give the support of such functions. In fact the equivalence classes of Section 2
were orbits under the action of a group generated by a subgroup of Φ(M∗) and φ2 in GLK(M). From
Theorem 4 it follows the the set of all elements of GLK(M) that act on the support of functions
belonging to Ia,b is H.

4 Conclusion

In this paper, we have interpreted the PW construction in terms of interleaved sequence. We
have addressed the problem of choosing the orbits so that the constructed function attains high
nonlinearity. It has been shown that this problem can be mapped to a problem of solving a
system of linear inequalities. We have considered the case for n = 21 too and demonstrated the
computational difficulty in this case. If some heuristic method of solving the corresponding system
of inequalities (involving 115 binary variables) is developed then functions with nonlinearity higher
than 220 − 210 can be constructed once a solution satisfying the inequalities is achieved. Also we
have demonstrated that the computation of autocorrelation and generalized nonlinearity of such
functions can be reduced because of the structure of their interleaved sequences. This highlights the
utility of using the concept of interleaved sequences in this context. In the PW construction, the
supports of the functions constructed are subsets of PG(2, 2a). The functions are chosen in such a
way that their supports are invariant under the action of [Φ(L∗.J∗)]〈φ2〉. It is evident that if we want
to study some alternative methods of construction then we must know the largest possible subgroup
of GF (2)-linear transformations that acts on PG(2, 2a). This is precisely what we have mentioned
in Section 3. The investigation of the effect on nonlinearity by replacing the above subgroup by
other subgroups of H is a very interesting open question. For instance one can ask if the choice
of the orbits which form the supports of functions with high nonlinearity can be characterized in
terms of certain subgroup of H. In particular, can one find a subgroup of H such that the support
itself becomes an orbit under the action of that subgroup on PG(2, 2a).
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