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Abstract

We consider the impact of the possibility of decryption failures in proofs of security for
padding schemes, where these failures are both message and key dependent. We explain that
an average case failure analysis is not necessarily sufficient to achieve provable security with
existing CCA2-secure schemes. On a positive note, we introduce NAEP, an efficient padding
scheme similar to PSS-E designed especially for the NTRU one-way function. We show that
with this padding scheme we can prove security in the presence of decryption failures, under
certain explicitly stated assumptions. We also discuss the applicability of proofs of security to
instantiated cryptosystems in general, introducing a more practical notion of cost to describe
the power of an adversary.

1 Introduction

The issue of finding a correct padding scheme for NTRUEncrypt [8] has been an open one for some
time, and incorrect choices of padding scheme have led to various attacks [13, 15, 16]. These
schemes were flawed due to there being either a standard chosen ciphertext attack against them,
or an attack in which the adversary takes advantage of the fact that NTRU decryption sometimes
fails to decrypt validly formed ciphertexts.

Most recently a CCA2-secure padding scheme for NTRUEncrypt was given in [16], but the proof
neglects to take decryption failures into account, and is thus flawed when instatiated with current
NTRUEncrypt parameter sets. Such ideas are explored further in [12].

In this paper we give the first full proof of security of an NTRUEncrypt padding scheme, and
explicitly state all the assumptions that the security rests on. Some of these assumptions are a
little different from those commonly met in cryptography, just as is the existence of decryption
failures on validly formed ciphertexts. The motivation for making such assumptions is driven by
the following thoughts: it is theoretically interesting to consider the impact of the possibility of
decryption failures on encryption schemes, the assumptions are apparently true, and making such
assumptions yields practical improvements for NTRUEncrypt.

The padding scheme we propose uses hash functions in a similar way to PSS-E [6], though there
are several modifications which are specific to the NTRU one-way function. The major contribution
of this paper is showing that this construction is still secure in the presence of decryption failures,
and making clear the necessary assumptions.
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The proof technique we use allows us to prove security for any particular NTRUEncrypt parame-
ter set, assuming the hardness of inverting an associated one-way function. Here, we use “parameter
set” in a broad sense, to denote not simply the spaces that different secret values are chosen from
but the generation methods that define their distribution within those spaces. Note that different
choices of parameter sets or algorithms lead to different one-way functions1, and each parameter
set chosen should be carefully studied to ensure that the associated function is, in fact, as hard as
required.

An additional contribution of this paper is a discussion of the applicability of proofs of security
to real parameter sets. We introduce a cost function which allows us to capture the meaning of a
statement like “eighty-bit security”. Using this function, we are able to broaden the discussion of
key-specific security issues to encompass not simply decryption failures, but weak keys of any sort.

1.1 Notation

Let R = Z[X]/(XN−1) for some global (prime) parameter N ∈ Z. For any a, b ∈ R we will use a∗b
to denote the natural (convolution) multiplication of elements of R, and a+ b to denote the natural
(component wise) addition of elements of R. We will use R̂ ⊂ R to denote the set of elements of R
whose coefficients are restricted to be binary, use R̂d ⊂ R̂ to denote the set of elements of R̂ whose
elements have exactly d ones, and use R̂[d1,d2) ⊂ R̂ to denote the set of elements of R̂ whose elements

have a number of ones2 in the range [d1, d2). We use R̃ to denote the space R̂[(N−q)/2,(N+q)/2) which
is commonly used in NTRUEncrypt, for given global parameters N, q ∈ Z.

We will denote the modular subrings of R by Rm = R/mR for some m ∈ Z[X]. We will
consider only the cases when m has degree 0 or 1. When m ∈ Z there is a natural representation
of elements of Rm by elements of R whose coefficients are restricted to lie between 0 and m − 1.
For any a, b ∈ Rm we will use a ∗ b to denote the natural (convolution) multiplication of elements
of Rm, and a + b to denote the natural (component wise) addition of elements of Rm. If a ∈ R and
b ∈ Rm, or vice versa, then the product a ∗ b, and sum a + b, will be considered to be elements of
Rm rather than R, unless stated otherwise.

In the following we will often deal with bit strings of length N , which we denote B = {0, 1}N ,
and elements of R̂. Clearly there is a bijective mapping between the two sets; mapping coefficients to
bits. We shall use hats to denote elements of R̂, and upside down hats to denote the corresponding
elements of B, e.g. if â ∈ R̂, then ǎ ∈ B with the i’th bit set if and only if the i’th coefficient of â
is one (and vice versa). We let Bd ⊂ B denote the subset of B whose elements are the bit-strings
with exactly d ones.

We write s
R
← S to denote the process of picking an element s from a set S uniformly at random.

1.2 Abstract security notions

The standard specification of an encryption scheme includes a parameter generation algorithm G,
which takes as input a security parameter 1k (typically written in unary notation), and returns a
parameter set P. Such a general algorithm has not been specified for NTRUEncrypt to date; instead
several explicit parameters sets have been given.

In this report we will assume the existence of a parameter generation algorithm G for NTRU-

Encrypt, and we will explicitly state the properties we expect of it. We do this so that we may

1Though we do not rule out the possibility of proving some equivalences via reduction algorithms.
2Note that d1, d2 need not be integers.
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give a standard proof of security, which is classically stated in an asymptotic sense in the security
parameter k.

Definition 1 A function ν : N→ R is said to be negligible if for every constant c ≥ 0, there exists
an integer kc such that ν(k) < k−c for all k ≥ kc.

We note that although they are conceptually attractive, standard proofs of security do not, by
themselves, give assurances of security for any fixed parameter sets. This point is discussed further
in section 3.1, where we state some further assumptions that are necessary for practical security.

For a given parameter set P, the encryption scheme is specified by three algorithms

K : RK → PK ×SK
E : PK ×M×RE → C
D : SK × C →M,

called the key generation, encryption and decryption algorithms respectively. The spaces RK, PK,
SK, M, RE , C are called the key-gen randomness, public key, secret key, message, encryption
randomness, and ciphertext space respectively.

Classically if (pkκ, skκ)← K(κ) then the algorithms should satisfy

D(skκ, E(pkκ,M, r)) = M

for all κ ∈ RK, M ∈M and r ∈ RE .
In this paper we shall relax this requirement slightly, and only require that for all M ∈M,

Pr[D(skκ, E(pkκ,M, r)) 6= M ] ≤ νD(k)

for some negligible function νD (with k taken to be sufficiently large), and where this probability

is defined over κ
R
← RK and r

R
← RE . We give an explicit construction of such a cryptosystem,

from the NTRU family of pseudo-trapdoor one-way functions (we use pseudo-trapdoor to mean a
trapdoor that is not guaranteed to work; see section 2.5 for more details).

For notational convenience we will often drop the public and secret key input to E and D, and
also drop the κ subscript from sk and pk.

Definition 2 We say a time t algorithm A is a (t, ε)-chosen ciphertext algorithm, with advantage
ε in attacking a randomized encryption scheme (K, E ,D) if there are a pair of subalgorithms

A1 : PK →M×M×S
A2 : C × S → {0, 1}

such that if (M0,M1, s)← A1(pk) then

|Pr[A2(c
∗, s) = b∗]− 1/2| = (1/2)ε

where c∗ ← E(M∗, r∗) for some r∗ ∈ RE , and M∗ = Mb∗ for some b∗ ∈ {0, 1}. This probability is

defined over the choice of r∗
R
←RE , b∗ ∈ {0, 1} and κ ∈ RK.

The algorithms (A1,A2) have access to a decryption oracle D, which they can call on all but
the challenge ciphertext c∗, but they must make all hash function calls to H1, . . . Hn public.
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The set S is just a means by which algorithm A1 can pass state to algorithm A2. For notational
convenience this will typically be ignored.

This definition captures the notion of an adversary being able to distinguish between encryptions
of some messages M0 and M1 regardless of the randomness r used (which would mean that r is not
playing a useful role). Allowing the adversarial algorithms access to a decryption oracle is important
because a high level protocol may well give away some information about each encryption; an
adversary who cannot succeed, even when given a decryption oracle, cannot succeed if given partial
information. Insisting that A must make explicit calls to all hash functions H1, . . . ,Hn means that
we are working in the random oracle model as proposed in [1].

If there is no efficient algorithm A for a given encryption scheme, that scheme is said to have
the property of being indistinguishable against adaptive chosen-ciphertext attack, often abbreviated
to IND-CCA2. The property of being IND-CCA2 is widely accepted as being the “right” one for a
public-key cryptosystem to aim for.

2 NAEP

2.1 Parameter sets

In this section we consider what is meant by an NTRUEncrypt parameter set P. At the end of the
section we will discuss how these quantities grow with the security parameter k.

An NTRUEncrypt parameter set P consists of the following:

• a prime N ∈ Z, N = Θ(k).

• a modulus q ∈ Z, q = Θ(k).

• a polynomial p ∈ Z[X] of degree at most one, and with small coefficients, and invertible when
viewed as an element of Rq,

• three public functions:
genf : Rf → Sf

geng : Rg → Sg

genr : Rr → Sr.

• three integers df , dg, dr ∈ Z,

• a function center : Rq → R.

Here the sets Rf ,Rg,Rr are appropriate spaces of randomness, and the sets Sf ,Sg,Sr are
ranges for the functions. Note that the actual images of the functions may be a subset of these
ranges, and the elements in the image do not necessarily occur with exactly the same probability,
even when the preimage is chosen uniformly at random. It is assumed that Sf ,Sg,Sr ⊂ R, and for
all f ∈ Sf , g ∈ Sg, r ∈ Sr we have f(1) = df , g(1) = dg, r(1) = dr respectively.

For NAEP the functions genf and geng are assumed to output elements of R which are invertible
when viewed as elements of Rq. There are no known restrictions on the integer q. For all values of
q ∈ Z the chance of picking non-invertible elements can be shown to be very low [11]. The efficiency
of genf and geng is therefore not greatly impacted by this invertibility requirement. The output
of genf should also be invertible when viewed over Rp; this, too, should not impact efficiency [11].
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In terms of the security parameter k, the above quantities have the following characteristics: p is
always fixed to be the integer 2 or the polynomial 2+X, the integers N, q = Θ(k), the running times
of the algorithms genf, geng, genr are quasi-linear in k, and log |Rf | = log |Rg| = log |Rr| = Θ(k).

Further considerations on the choice of genf, geng, genr are given in appendix C. NAEP uses
two hash functions:

G : {0, 1}N−l × {0, 1}l →Rr

H : {0, 1}N → {0, 1}N

which will be modeled as random oracles in the proof of security. In terms of the security parameter,
we wish l = Θ(k), and also N − l = Θ(k).

Assumption 1 We assume that a parameter generation function G may be found to generate the
above quantities, with the specified asymptotics.

Although no general parameter generation function G has been described for NTRU, a par-
ticular parameter set has been decided on, which we refer to as P0, where 〈N, q, df , dg, dr〉 =

〈251, 239, 145, 72, 72〉. The algorithms geng and genr simply pick elements of R̂dg
, R̂dr

uniformly

at random. The algorithm genf picks an element f ′ ∈ R̂72 uniformly at random, and then lets
f = 2f ′ + 1. More details of this parameter set are given in EESS#1, version 2 [4].

We are now able to introduce the first (of several) assumptions that are important to the proof
proof of security, namely

Assumption 2 There exists a negligible function νr such that for sufficiently large k we have that
εr ≤ νr(k), where

εr = max
r ∈ Sr

{
Pr

ρ
R
←Rr

[genr(ρ) = r]

}
.

For the parameter set P0, we clearly have that εr =
(N
dr

)−1
≈ 2−212.9, though of course we would

have to say how dr varies as a function of k for us to know whether εr is asymptotically negligible3.

Assumption 3 There exists a negligible function νcen such that for sufficiently large k we have
that εcen ≤ νcen(k), where

εcen = Pr[center(f ∗ ŵ + p ∗ r ∗ g mod q) 6= f ∗ ŵ + p ∗ r ∗ g],

where f = genf(ρf ), g = geng(ρg), r = genr(ρr) and the probability is defined over ρf
R
←Rf , ρg

R
←

Rg, ρr
R
←Rr, ŵ

R
← R̃.

The role of center is to take the modular quantity (f ∗ ŵ + p ∗ r ∗ g mod q) and return the
non-modular quantity (f ∗ ŵ + p ∗ r ∗ g). Appendix A gives two (similar) techniques for doing this,
center1 and center2, both of which require ŵ ∈ R̃ and df , dg, dr to be known.

It is far harder to approximate the quantity εcen than εr because it depends on a particular
centering algorithm. The centering technique center1 will only fail to recover the non-modular
quantity if the spread of coefficients of f ∗ŵ+p∗r∗g is at least q. The centering technique center2
will fail to recover the non-modular quantity only if one or more coefficients differ from N/2 by

3And as mentioned above a general parameter generation function G has not been specified to date, though if
dr ≈ N/3, then εr would certainly be negligible.
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more than q/2. The probability of a failure for either algorithm can be estimated theoretically
under some simplifying assumptions which appear to match experimental results well [19]. If no
rigorous bound can be proved, then good evidence should be supplied, and the above assumption
should be clearly made, since this property strongly impacts the proof of security of NAEP.

For the parameter set P0 it is estimated that for center2 εcen ≈ 2−121.7, and for center1

εcen ≈ 2−156 [19].

2.2 Key generation

Key generation is specified by:

1. Pick ρ
R
←Rf and let f = genf(ρ). Let f−1

q denote the inverse of f in Rq, and let f−1
p denote

the inverse of f in Rp.

2. Pick ρ′
R
←Rg and let g = geng(ρ′). Note g should be invertible in Rq.

3. Let h = g ∗ f−1
q ∈ Rq.

The public key is h ∈ Rq and the above global parameters, while the private key is f ∈ Sf ⊂ R,
f−1

p ∈ Rp.
Note that the quantity f−1

p need not be part of the explicit output of key generation if genf is
designed such that f−1

p is always a constant. For example, if f = 1 + p ∗ f ′ as in the parameter set
P0, then f−1

p will always be 1.

2.3 The NTRU Hard Problem and One-Way Function

The one-way function underlying NTRU is:

F : R̃× Sr → Rq

F (ŵ, r) = ŵ + r ∗ p ∗ h,

where q,N ∈ Z, p ∈ Z[X], h ∈ Rq are given by the output of key generation. We note that G(1k) is
assumed to yield parameters, for which there is a algorithm to compute F in time polynomial in k
(indeed using fast multiplication techniques there is an algorithm quasi-linear in N , and hence k).

Definition 3 (The P-NTRU problem) For a parameter set P, we denote by Succow

ntru
(A,P) the

success probability of any adversary A for finding a preimage of F ,

Succow

ntru
(A,P) = Pr

[
(ŵ′, r′)← A(c, h)
s.t. F (ŵ′, r′) = c

∣∣∣∣∣
(pk = h, sk)← K, ŵ

R
← R̃

r← genr(ρ), ρ
R
←Rr, c = F (ŵ, r)

]
.

Assumption 4 (The G-NTRU assumption) For every probabalistic polynomial (in k) time algo-
rithm A there exists a negligible function νA such that for sufficiently large k, we have Succow

ntru
(A,P) ≤

νA(k).

In appendix B we show an equivalence between the P-NTRU problem and a particular kind of
module CVP instance. Although this equivalence is not essential for the proof of security it may
give the reader some insight in to the properties of the NTRU one-way function. Indeed the best
known attacks against NTRUEncrypt [5, 14] consider the module structure as a lattice, and use
lattice reduction techniques to recover ŵ and r.

Notice that by talking about preimages rather than an inverse of F , we do not necessarily
assume that ŵ, r are uniquely defined by c. This point is discussed further in section 2.5.
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2.4 Encryption

To encrypt a message M ∈ {0, 1}N−l using NAEP one uses an auxillary function

compress(x) = (x mod q) mod 2,

that is, the coefficients of the modular quantity x mod q are put in to the interval [0, q), and then
this quantity is reduced modulo 2. If q is even, then this is simply equivalent to x mod 2, though
we do not restrict our parameter choices to ones where q is even (e.g. see P0). The role of compress
is to just reduce the size of the input to the hash function H for gains in practical efficiency4. The
encryption algorithm is then specified by:

1. Pick µ
R
← {0, 1}l.

2. Let ρ = G(M,µ), r = genr(ρ), ŝ = compress(p ∗ r ∗ h), and w̌ = (M ||µ)⊕H(š).

3. If ŵ 6∈ R̃, go to step 1.

4. Let c = F (ŵ, r) ∈ Rq.

In practice, with the parameter set P0, the chance of ŵ 6∈ R̃ at step 3 is approximately 2−207;
see [19] for more details. This means that in practice this test is not implemented. The test has
no impact on the proof of security, even if the probability is considerably more than 2−80 say, but
if it does fail, then the decryption algorithm is guaranteed to fail to decrypt the ciphertext c. We
will denote this algorithm c← E(M,µ).

2.5 Decryption

To decrypt a message c ∈ Rq one does the following:

1. Let a = center(f ∗ c mod q). With very high probability center is such that we will have
a = f ∗ ŵ +p∗r ∗g, although there is a small probability εcen that this step will fail to recover
this correct a.

2. If f = 1 + p ∗ f ′ (as in the parameter set P0) then simply let ŵ = a mod p, otherwise let
ŵ = f−1

p ∗ a mod p.

3. Let s′ = c− ŵ.

4. Let ŝ = compress(s′).

5. Let M ||µ = w̌ ⊕H(š), r = genr(G(M,µ)).

6. If p ∗ r ∗ h = s′ mod q, and ŵ ∈ R̃, then return the message M , else return the string “invalid
ciphertext”.

Since there is a possibility of failing to invert the function F , we call the NTRU family of
functions, a pseudo-trapdoor one-way function family.

We note that with the NTRU one-way function we also cannot rule out the possibility that there
are two pairs (ŵ1, r1), (ŵ2, r2) ∈ R̃× Sr, such that

p ∗ r1 ∗ h + ŵ1 = p ∗ r2 ∗ h + ŵ2 = c mod q,

4The proof of security would exactly work in the same way if compress was the identity function.
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in which case F−1(c) is not well defined mathematically. However we can of course define it to
be the (ŵ, r) retrieved by performing the above NTRU “inverse” procedure. By the fact that this
process is successful whenever center is successful, we observe that “any other” solutions would
fail the centering process, which happens with small probability εcen.

We note that allowing for the case of key and message dependent decryption failures does not
fall in to the classical notion of a public key encryption scheme, as discussed briefly in [17]. In this
report we do not try to fully classify the theoretical properties of such schemes, but instead we
argue that the above NAEP scheme is indistinguishable from one that always succeeds to decrypt,
if one can ensure various explicitly stated probabilites are sufficiently small.

Such probabilities are not normally considered in standard CCA2 proofs of security, and so we
must be careful to do this correctly. The main subtlety here is that since the failures are message
dependent, we must calculate the chance of decryption failures, given that the messages may be
adversarially chosen.

In section 3 we show that by choosing the above padding scheme, the adversary’s power in
choosing M does not translate to a power in choosing ŵ or r, and thus we can prove security using
the following average case probability εcen, rather than have to consider a worst case probability.
This is a huge benefit, since the worst case probabilities involved in NTRU, would not yield a useful
proof of security, as explained in [12, 17]. Indeed this is exactly the reason that unaltered f -SAEP+

cannot be used for a padding scheme for NTRU, since in this scheme r can be adversarially chosen.

3 On the security of NAEP

The proof of security for NAEP is very similar to that given for PSS-E (although unfortunately our
G and H correspond to their H and G, respectively). It is standard practice in cryptography to
define adversarial advantage in proofs of security over all possible randomness, including that used
by the key generation algorithm. Although this is fine is an asymptotic sense, it does not prevent
the existence of weaker keys than average, which may affect security in practice. This point is
discussed further in section 3.1.

Theorem 1 Let A be a (t, ε) chosen ciphertext algorithm against NAEP in the random oracle
model, which makes at at most qG, qH , qD queries to the random oracles G and H, and decryption
oracle D respectively. Then there is an algorithm B for solving the P-NTRU problem with the
following parameters

time(B) = time(A) + O((qG + qH)tq + qD)

Succow

ntru
(B,P) = pc(ε− qG(2−l + εcen)− qDεr),

where the probabilites εr and εcen are defined as above, and tq is the time to perform a (binary5)
modulo q convolution product (which is assumed to dominate the other steps, e.g. genr, compress).
The value pc is either the constant 1, if q is even, or if q is odd, it is the probability that the inversion
challenge c∗ has no zero coefficients modulo q, i.e.

pc = Pr
ŵ

R
←R̃,ρ

R
←Rr

[c∗i 6= 0, 0 ≤ i < N | c∗ = F (ŵ, genr(ρ))].

5When one of the multiplicands is binary, a convolution product is simply equivalent to some number of rotations
and additions modulo q, and can be very efficiently implemented.
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Proof: Algorithm B is given c∗ = F (ŵ∗, r∗) for some ŵ∗
R
← R̃, r∗ = genr(ρ) where ρ

R
← Rr. B’s

goal is to find these ŵ∗, r∗, or any other solution from the space R̃×Sr, i.e. find a preimage of the
one-way function F .
B will do this by interacting correctly with A1, obtaining two messages M0 and M1, and then

asking A2 to distinguish c∗.

Conceptually B chooses values µ∗
R
← {0, 1}l, and M∗ = Mb∗ , b∗

R
← {0, 1}, independent of A’s

view, and asserts6 G(M∗||µ∗) = r∗ and H(š∗) = ŵ∗ ⊕ (M∗||µ∗). Let Win denote the event that
b← A2 is such that b = b∗.

Let AskG denote the event that A queries G at (M0||µ
∗), or (M1||µ

∗), and let AskH denote the
event that A queries H at š∗. Note that if ¬AskH then A has no information about µ∗, so

Pr [AskG | ¬AskH] ≤
qG

2l
.

Also, if AskGorH denotes the event AskG ∨ AskH, then notice that if ¬AskGorH then A has no
information about b∗, i.e.

Pr [Win | ¬AskGorH] =
1

2
.

We build B on the idea that the event AskG is unlikely, and if the event AskH happens, we
can invert the function F . Explicitly for each query ši to H, B computes ŵ = compress(c∗ − ŝ),
r = genr(G(H(š) ⊕ ŵ)) and checks if F (ŵ, r) = c∗. If so, B has successfully broken the P-NTRU

problem.
However this H simulation is only guaranteed to catch the event AskH if compress(c∗−ŝ∗) = ŵ∗

when ŝ∗ = compress(c∗ − ŵ∗), and if q is odd7 this is only true if all of the coefficients of c∗ are

non-zero modulo q. Since the challenge c∗ is chosen when ŵ∗
R
← R̃, and r = genr(ρ), ρ

R
←Rr, and

under the reasonable assumption that the coefficients of such c∗ are randomly distributed modulo
q, then this will happen with probability pc ≤ (1 − 1/q)N ≈ 0.35 with the parameter set P0. If
asymptotically q = Θ(N) then this probability is non-negligible, and therefore will not affect the
proof of security.

If one wants to increase Succow

ntru
(B,P) at the expense of a slightly less efficient reduction, then

since one knows the locations {l1, . . . , ld} of the zero coefficients of c∗, then for each H-query one
can try each of the 2d possible ŵ’s with the same coefficients as compress(c∗ − ŝ∗) in the N − d
non-zero places. Such an approach will always detect the event AskH (i.e. increase pc to 1), at the
expense of making the H-simulation take an expected 2N/q times longer. Again if q = Θ(N) then
this will not asymptotically affect the proof of security.

Finally we show that we can successfully simulate a decryption oracle D, without knowing the
private key, up to the point at which A2 makes a š∗ query or a decryption failure occurs.

In such a manner we will construct an algorithm B which can solve the P-NTRU problem,
without any trapdoor information, with the specified time and advantage characteristics given
above.

Simulating the oracles — The random oracles G and H are simulated just as in PSS-E,
i.e. their output is chosen completely at random if not previously called, and logs of the input
and output queries are kept to maintain this functionality. Explicitly H list is composed of just

6Without actually knowing š∗.
7If q is even it is always true.
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pairs of the form 〈z,H(z)〉, while Glist keeps tuples of the form 〈M,µ, ρ, c〉 for each query of the
form (M,µ) ∈ {0, 1}N−l × {0, 1}l , where ρ = G(M,µ), r = genr(ρ), ŝ = compress(p ∗ r ∗ h),
w̌ = (M ||µ) ⊕H(š) and c = ŵ + p ∗ r ∗ h mod q, which one should notice entails a call to the H
oracle (but there is no point checking for the AskH event on such calls). The quantity c is only
placed in to the Hlist entry if ŵ ∈ R̃.

The decryption oracle is simulated in the following fashion: when called on input c, we check if
〈M,−,−, c〉 ∈ Glist , for some M ∈ M. If so, we return M ; if not, we return “invalid ciphertext”.
If there is more than one such M the simulation may fail, but we will argue that the probability of
this is very low.

Analysis — Let Prreal [X] and Prsim [X] denote the probability of an event X occuring whenA has
access to a real or simulated decryption oracle respectively. We firstly explain8 that Prreal [AskH] ≥
ε− qG2−l, where ε is the advantage of the algorithm A, i.e. the quantity 2Prreal [Win]− 1.

We have that

Prreal [Win] = Prreal [Win | ¬AskGorH]× Prreal [¬AskGorH] + Prreal [Win | AskGorH]× Prreal [AskGorH]

=
1

2
× (1− Prreal [AskGorH]) + Prreal [Win | AskGorH]× Prreal [AskGorH]

≤
1

2
(1 + Prreal [AskGorH]),

so
ε ≤ Prreal [AskGorH] = Prreal [AskG ∧ ¬AskH] + Prreal [AskH] ≤ qG2−l + Prreal [AskH].

We now show that with high probability A ≡ (A1,A2) cannot distinguish the real decryption
oracle from the simulated one until it issues an š∗ query. Let GoodSim denote the following event(s):

1. The simulator never rejects a valid decryption query issued by A that the true decryption
function would have decrypted successfully, and

2. The simulator never successfully decrypts a valid encryption that the true decryption function
would have rejected (possible since decryption failures exist), and

3. The simulator never decrypts a valid decryption query to a different message than the true
decryption function (possible since we cannot prove message unambiguity).

If GoodSim occurs, then the simulated decryption oracle behaves exactly as the real one does, so
we have:

Prsim [AskH] ≥ Prsim [AskH|GoodSim] · Pr[GoodSim]

= Prreal [AskH] · Pr[GoodSim]

≥
(
ε− qG2−l

)
Pr[GoodSim].

In addition we will show that

Pr[GoodSim] ≥ 1− qGεcen − qDεr,

which will confirm that the algorithm B has the running time and advantage specified above.

8We note that this probability was incorrectly bounded by ε in the proof of f -SAEP
+.
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We firstly bound the probability of event 1. Let c 6= c∗ be a decryption query issued by the
attacker and rejected by the simulator. This c is only a valid ciphertext if c = F (ŵ, r) where
M ||µ = c ⊕ H(ŝ),r = genr(G(M,µ)) and ŝ = compress(p ∗ r ∗ h). Since c is rejected by the
simulator we know A did not issue a query for G(M,µ), so its value is independent of the adversary’s
view. Thus the probability that a decryption query is correctly rejected is at least 1− εr, and the
probability that up to qD queries are correctly rejected is at least 1− qDεr.

We may bound the probability of events 2 and 3 at the same time. Let GoodG be the event
that at the end of the simulation all the entries of Glist are such that the ŵ and r corresponding to
〈M,µ, ρ, c〉 are such that

center(f ∗ ŵ + p ∗ r ∗ g mod q) = f ∗ ŵ + p ∗ r ∗ g,

i.e. the true decryption oracle would correctly decrypt all of the ciphertexts c.
The occurance of event GoodG clearly implies that event 2 occurs. It also implies event 3 occurs

because the only way for the simulated decryption oracle to return a different message M , is if
the same c occurs as the last entry of one of the entries of Glist . However in this case, the true
decryption oracle clearly cannot successfully decrypt both of these, which implies ¬GoodG.

Since ŵ and r are the output of random oracles, as h varies over key generation, the chance
of any one entry of Glist corresponding to a centering failure is exactly εcen. Since the adversary
makes at most qG queries to the G oracle, we have that Pr[GoodG] ≥ (1 − qGεcen). Together with
the bound on event 1 this allows us to bound Pr[GoodSim] as above. �

Corollary 1 Under assumptions 1,2,3 and 4 there is no polynomial (in k) time algorithm that
breaks the chosen ciphertext security of NAEP, that makes a polynomial (in k) number of queries
to the random oracles G and H, and decryption oracle D.

3.1 The meaning of proofs of security

It would be nice if a proof of security gave one the assurance that for a given parameter set, e.g.
RSA-1024 or NTRU-251, all keys associated with that parameter set were secure. Unfortunately
this is not the case. The definition of a (trapdoor) one-way function is an asymptotic one, so a proof
of security merely means that legitimate parties can work arbitrarily faster than a chosen ciphertext
adversary, if one uses a suitably large security parameter k > K0 (assuming the underlying function
is indeed one-way).

In a more positive light, a proof of security in the random oracle model, often shows an efficient
reduction from a chosen ciphertext adversary who breaks the semantic security on a particular key
to an algorithm which inverts the one-way function with that key. Our proof shows a similar result,
but only when εcen is sufficiently low, even when restricted to a given key h. This is still a useful
statement to make, especially if one cannot tell which keys h are likely to result in more gaps. This
point is discussed further below.

In practice we are more interested in the (non)-existence of efficient algorithms. To quantify
this notion, we define the cost of a probabilistic algorithm A to be the quantity tm/ε, if A runs in
time t, using memory m, and succeeds with probability ε. We may say that an algorithm is efficient
if its cost is below some threshold.

This might suggest changing the practical definition of one-way function, to something like the
following:

11



Assumption 5 There is no efficient algorithm A which inverts the NTRU one-way function, when
h is drawn from NTRUEncrypt key generation.

and then trying to use the same proof technique to show that an efficient chosen ciphertext adversary
contradicts this assumption. Unfortunately this assumption is not strong enough to achieve a
contradiction, since it does not disallow the existence of weak keys.

Here an illustration might be helpful. Suppose we believe that factoring is the best way to break
the RSA-assumption, and we know of an algorithm with expected cost C to factor N = pq when
the primes p and q are randomly chosen by the RSA key generation procedure. However, what if
there was a small class of moduli which can be factored at considerably lower cost? Specifically,
assume that with probability P1 a modulus N created by the RSA generation procedure falls in
to a class of moduli which can be factored by an algorithm Afac with cost αC, α < 1, and that in
addition there is an algorithm Adist with cost less than CP1 which will identify such moduli9. An
adversarial strategy to factor would be to test many keys until a weak one was found (this would
be expected after O(P−1

1 ) trials and cost < C), and then run the cost-αC algorithm to factor this
key. Therefore, even though the expected cost to break a random key is C, one could not claim
that there was no adversary with cost less than C.

A similar attack can be launched against any scheme in which the keys are not provably equiva-
lent to each other, e.g. NTRUEncrypt. For this reason we need to strengthen the above assumption
to the following (for some suitably chosen bound C0).

Assumption 6 There is no cost-C0 algorithm A1 and cost-C0P predicate A2 such that A1 can
invert the NTRU one-way function, when h is drawn from NTRU key generation, subject to the
constraint A2(h) = 1, and randomly generated keys satisfy this constraint with probability P .

In the case of NTRUEncrypt, the proof of security also relies on the fact that there are no de-
cryption failures. Thus we also need the following assumption, for some suitable choice of allowable
gap failure probability P0.

Assumption 7 There is no cost-C0P predicate A2, where P = Prh[A2(h) = 1], and

Pr
ŵ,r,h

[center(f ∗ ŵ + p ∗ r ∗ g mod q) 6= f ∗ ŵ + p ∗ r ∗ g | A2(h) = 1] > P0,

where ŵ
R
← R̃, r = genr(ρ), ρ

R
←Rr, and pk = h, κ

R
←RK.

For example it might be appropriate to take P0 = 2−l where l = Θ(k) is defined as coming from
G(1k). In any practical instantiation of NTRUEncrypt, there ought to be some discussion as to why
these are reasonable assumptions to make.

The use of the random oracle assumption is also a slightly controversial topic in cryptography,
however we note that a proof in the random oracle model does have meaning in practice: it means
that a chosen ciphertext attacker cannot treat the oracles as a black box10, but must rely on some
properties of the hash functions. When the oracles are instantiated with SHA-1 say, it seems unlikely
that an attacker can find useful properties.

9We assume, although it is not necessary for the purposes of this illustration, that Adist is quite costly to run;
otherwise, one could simply run Adist at key generation time and reject the keys it identifies

10One can imagine computer code making explicit calls like a=hashFn(b).
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3.2 Further enhancements to NAEP

A sound engineering principle is to make the hash functions dependent on the public key. This is
extremely important for schemes which possess decryption failures because an adversary may be
willing to put in a huge amount of effort to find a set of weak r = G(M,µ) if this breaks a lot of
systems. Note that we state this as a heuristic principle, without defining an explicit attack model.

Another sound engineering principle is to make the hash functions dependent on the parameter
set, so an attacker is unlikely to be able to mount attacks utilising different variants of NTRUEncrypt.

One way to make these modifications is to let

r = genr(G(b,M, µ, trunc(h)),

where M and µ are the message and randomness as before, b is an identification number, unique for
each parameter set, and trunc() is a suitable compression of h to make key-collision very unlikely.
Specifically when N = 251 and q = 239, and G is instantiated with SHA-1, we might let b take 3
bytes, and let trunc(h) be the first 10 coefficients11 of h (each represented as 1 byte). This is the
approach taken in the instantiation of NAEP, known as SVES-3, specified in [4].

4 Conclusions

We have explained that considerable care must be taken with using standard, provably secure,
CCA2-secure encryption scheme, when instantiating them with underlying schemes which are vul-
nerable to (key and message dependent) decryption failures. This is true even if the probability of
the pseudo-trapdoor failing is negligible on random input (it is the most adversarially advantageous
induced distribution from the padding scheme that is important).

We built an NTRUEncrypt padding scheme called NAEP, for which we were able to prove the
security, under a number of assumptions. To our knowledge this is the first proof of security that
addresses the question of decryption failures, and highlights the complexities.

For any given NTRU parameter set P it is very important that these assumptions are analyzed
extensively. If the mathematical probabilities cannot be rigorously proved to have the required
bounds, then the necessary statements must be added as assumptions to the proof of security.

This report deals only with the proof of security, and does not attempt to justify that the
combination of any parameter sets and algorithms do satisfy these properties. However it is ex-
tremely important to have this foundation, and the necessary assumptions made explicit, so that
the security of NTRU parameter sets can be analyzed in a rigorous fashion.
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A Centering methods

We describe here two possible centering methods, that is, an algorithm center which when given the
modular quantity A = f ∗ŵ+p∗r∗g mod q will return the non-modular quantity a = f ∗ŵ+p∗r∗g.
We’ll assume the coefficients of A are given in the range [0, q).

center1:

1. Let I1 = (A(1) − pdrdg)/(d
−1
f ) mod q so ŵ(1) = I1 mod q.

2. Let I2 ∈ [(N − q)/2, (N + q)/2) be such that I2 = I1 mod q. Since ŵ ∈ R̃ we know ŵ(1) = I2

exactly (not just modulo q).

3. Let a be a non-modular polynomial, such that a = A mod q and the coefficients of a are in
the range [0, q).

4. Let J = (df I2 + pdrdg − I1)/q, so know J = (a(1)−A(1))/q.

5. Let J = J0 + J1q with J0 in the range [0, q).

6. Add J1q to all the coefficients of a.

7. Add q to the least J0 coefficients of a.

This centering method will always recover f ∗ŵ+p∗r∗g exactly, unless the spread of coefficients
of f ∗ ŵ + p ∗ r ∗ g is at least q. See [19] for more details.

If it is considered slightly costly to calculate the least J coefficients of A, then the following is
a faster option.

center2:

1. Let I1 = (A(1) − pdrdg)/(d
−1
f ) mod q so ŵ(1) = I1 mod q.

2. Let I2 ∈ [(N − q)/2, (N + q)/2) be such that I2 = I1 mod q. Since ŵ ∈ R̃ we know ŵ(1) = I2

exactly (not just modulo q).

3. Let a be a non-modular polynomial, such that a = A mod q and the coefficients of a are in
the range [0, q).

4. Let J = dfI2 + pdrdg, so we know J = a(1).

5. Shift all the coefficients of a by multiples of q in to the range [J/N − q/2, J/N + q/2).

This centering method will fail to recover the quantity f ∗ ŵ + p ∗ r ∗ g more often than the first
algorithm12, but the chance of failure may hopefully still be made small enough.

12Although it is possible to correct in a similar way to the first if the resulting a(1) 6= J .
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B The P-NTRU problem viewed as a module problem

Definition 4 Let L be a rank 2 R-module generated by the basis {(1, p ∗ h), (0, q)} where h is the
public output of NTRU key generation. A time t probabilistic algorithm A is said to solve the P-
NTRU problem with advantage ε, if given a point (0, y) ∈ R2

q, and the knowledge that there is a

module point of the form v = (e1, y − e2) where e1 = genr(ρ) for some ρ
R
← Rr and e2

R
← R̃, then

A has probability ε of finding such a v; determined by whether (e1, e2) ∈ Sr × R̃. This probability

is defined over the choice of y
R
← Rq subject to the constraint of (0, y) lying (e1,−e2) away from a

module point, and the randomness used in key generation.

Assumption 8 The P-NTRU assumption is that there is no efficient algorithm to solve the P-
NTRU problem.

We note that the hardness of this problem clearly requires the hardness of the NTRU key
recovery problem, i.e. recovering f and g from h ∈ Rq, which also has a natural CVP/SVP module
setting (depending on the form of genf and geng).

Lemma 1 Finding a preimage of the NTRU one-way function

F : R̃× Sr → Rq

F (ŵ, r) = ŵ + r ∗ p ∗ h,

when ŵ
R
← R̃, r = genr(ρ) for ρ

R
← Rr, and h is the output of NTRU key generation, is equivalent

to solving the P-NTRU problem.

Proof: Suppose we have access to an algorithm A which can find a preimage of F with probability

ε when ŵ
R
← R̃ and r = genr(ρ) for some ρ

R
← Rr. If we are given a point y ∈ Rq such that

v = (e1, y − e2) ∈ L where e1 = genr(ρ) for some ρ
R
←Rr, e2

R
← R̃, then y − e2 = e1 ∗ p ∗ h mod q,

i.e. y = F (e2, e1). Thus with probability ε we will have that A(y) = (e2, e1), which will reveal the
close module point v.

Conversely suppose that we have an algorithm A′ which, given y ∈ Rq can find (with probability

ε) close module points of the form (e1, y − e2) ∈ L where e1 = genr(ρ) for some ρ
R
← Rr, e2

R
← R̃.

If we are given y = F (ŵ, r), then notice

r ∗ (1, p ∗ h) + k(0, q) = (r, r ∗ p ∗ h mod q)

= (r,−ŵ) + (0, F (ŵ, r)),

so (r, r ∗ p ∗ h mod q)← A′(y) with probability ε, from which it is trivial to obtain r and ŵ. �

C Choices of genf, geng and genr

In choosing genf, geng and genr, our aims are to:

1. avoid exhaustive search attacks,

2. avoid lattice attacks,
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3. avoid algebraic attacks based on the structures of f , g, r,

4. maintain a negligible probability of average case decryption failure.

For example if the space Sr is too small, or there is a particularly common point in the image

when ρ
R
← Rr, then one might guess r, either by brute force or by using a meet-in-the-middle

method [18]. If a brute force attack on (f , g) is infeasible, but f and g are still small, they
may fall to a lattice attacker. If g is made of (0, 1|1, 0)N/2, then we know it is orthogonal to
(1, 1,−1,−1, 0, 0 . . .) and all its (double) rotations, and this knowledge can be used to reduce the
dimension of the associated lattice problem. Or if f , g, r, ŵ are in some sense too large, the spread
of f ∗ ŵ + p ∗ r ∗ g will frequently be larger than q, leading to decryption failures.

Here we assume that we can pick genf, geng and genr to satisfy the requirement that for all
M ∈M,

Pr[D(E(M,ρ)) = M ] ≥ 1− ε

for some negligible quantity ε, where this probability is defined over κ
R
← RK and r

R
← RE . Note

that this requirement does not rule out the possibility that individual keys may experience more
decryption failures than average, but it does guarantee that such keys will be extremely rare.

Arguably the most natural choices for the sets Sf ,Sg and Sr are R̂df
, R̂dg

and R̂dr
respectively,

for some public constants df , dg, dr ∈ Z. Accordingly the most natural choice for the algorithms
genf, geng and genr would then sample uniformly at random from these sets, under the condition
that they satisfy any invertibility requirements. We will refer to this parameter set with a (0)
superscripts, e.g.

genf(0) : R
(0)
f → S

(0)
f = R̂df

.

Another natural choice of parameters, denoted with a (1) superscript, is to have geng(1) and genr(1)

as above, but let

S
(1)
f =

{
1 + p ∗ F

∣∣∣ F ∈ R̂df

}
,

and let genf(1) sample uniformly at random from this space (again under invertibility requirements).
This circumvents the need for keeping f−1

p = 1 in step 1 of decryption, since we now have that:

A = f ∗ c

= f ∗ ŵ + p ∗ r ∗ g

= (1 + p ∗ F ) ∗ ŵ + p ∗ r ∗ g

= ŵ + p ∗ (F ∗ ŵ + r ∗ g) ∈ Rq

Assuming a = ŵ + p ∗ (F ∗ ŵ + r ∗ g) ∈ R, then just a modular reduction will reveal ŵ, after
which r can be obtained in the usual way.

The downside of using this idea is that this form of decryption will typically give decryption
polynomials with a bigger spread of coefficients, increasing the chance of decryption failures.

Yet another choice, is to let f and r have some kind of product structure, e.g. f = f1 ∗ f2 + f3.
This helps since the computation

f ∗ c = f1 ∗ (f2 ∗ c) + f3 ∗ c
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can be computed very efficiently if the number of ones in f1, f2 and f3 are small. See [10] for more
details.

We stress that the choice of algorithms genf, geng, genr does not alter the proof of security,
but that each choice of algorithms implies a slightly different underlying hard problem. There are
currently no known attacks against any of the choices presented in this section, with the first two
being the more well-studied.
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