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Abstract

We consider the fundamental problem of authenticated group key exchange among
n parties within a larger and insecure public network. A number of solutions to this
problem have been proposed; however, all provably-secure solutions thus far are not
scalable and, in particular, require O(n) rounds. Our main contribution is the first
scalable protocol for this problem along with a rigorous proof of security in the standard
model under the DDH assumption; our protocol uses a constant number of rounds
and requires only O(1) “full” modular exponentiations per user. Toward this goal
and of independent interest, we first present a scalable compiler that transforms any
group key-exchange protocol secure against a passive eavesdropper to an authenticated
protocol which is secure against an active adversary who controls all communication
in the network. This compiler adds only one round and O(1) communication (per
user) to the original scheme. We then prove secure — against a passive adversary
— a variant of the two-round group key-exchange protocol of Burmester and Desmedt.
Applying our compiler to this protocol results in a provably-secure three-round protocol
for authenticated group key exchange which also achieves forward secrecy.

1 Introduction

Protocols for authenticated key exchange (AKE) allow a group of parties within a larger
and completely insecure public network to establish a common secret key (a session key)
and furthermore to be guaranteed that they are indeed sharing this key with each other
(i.e., with their intended partners). Protocols for securely achieving AKE are fundamental
to much of modern cryptography and network security. For one, they are crucial for allow-
ing symmetric-key cryptography to be used for encryption/authentication of data among
parties who have no alternate “out-of-band” mechanism for agreeing upon a common key.
Furthermore, they are instrumental for constructing “secure channels” on top of which
higher-level protocols can be designed, analyzed, and implemented in a modular manner.
Thus, a detailed understanding of AKE — especially the design of provably-secure protocols
for achieving it — is critical.

The case of 2-party AKE has been extensively investigated within the cryptographic
community (e.g., [23, 11, 24, 9, 31, 6, 35, 19, 20, 21] and others) and is fairly well-understood;
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furthermore, a variety of efficient and provably-secure protocols for 2-party AKE are known.
Less attention has been given to the important case of group AKE where a session key is
to be established among n > 2 parties; we survey relevant previous work in the sections
that follow. Group AKE protocols are essential for applications such as secure video- or
tele-conferencing, and also for collaborative (peer-to-peer) applications which are likely to
involve a large number of users. The recent foundational papers of Bresson, et al. [16, 14, 15]
(building on [9, 10, 7]) were the first to present a formal model of security for group AKE
and the first to give rigorous proofs of security for particular protocols. These represent
an important initial step, yet much work remains to be done to improve the efficiency and
scalability of existing solutions.

1.1 Our Contributions

Rigorous security proofs are essential in this domain; as noted in Section 1.2, many proto-
cols without such proofs were subsequently shown to have subtle flaws allowing potential
attacks. It is also clearly desirable for group AKE protocols to be efficient even for a large
number of users. (In Section 1.3, we discuss in detail the complexity measures we use to
evaluate the efficiency of protocols in this setting.) Unfortunately, theoretical work in this
area has lagged behind the demand for such protocols in practice; we may summarize the
prior “state-of-the-art” for provably-secure group AKE protocols as follows (we exclude here
centralized protocols in which a designated group manager is assumed; such asymmetric,
non-contributory schemes place an unfairly high burden on one participant who is a single
point of failure and who must also be trusted to properly generate keys):

• The most efficient solutions are those of Bresson, et al. [16, 14, 15] which adapt
previous work of Steiner, et al. [37]. Unfortunately, these protocols do not scale well:
to establish a key among n participants, they require n rounds and additionally require
(for some players) O(n) “full” modular exponentiations and O(n) communication.

• Subsequent to the present work, a constant-round protocol for group AKE has been
proven secure in the random oracle model 1 [13]. This protocol does not achieve for-
ward secrecy (cf. [24]), and the exposure of a user’s long-term secret key exposes all
session keys previously-generated by this user. The protocol is also not symmetric,
and the initiator must perform O(n) encryptions and send O(n) communication.

Interestingly, the above solutions are the best-known provably-secure protocols even under
various relaxations of the problem. For example, we are aware of no previous constant-
round protocol with a full proof of security in the standard (i.e., non-random oracle) model
even for the weaker case of security against a passive eavesdropper (but see footnote 2).
Clearly, an O(n)-round protocol is not scalable and is unacceptable when the number of
parties grows large or when communication between parties is the performance bottleneck.

1The random oracle model [8] assumes a public random function to which all parties (including the
adversary) have access. This random function is instantiated using a cryptographic hash function (e.g.,
SHA-1), appropriately modified to have the desired domain and range. Although proofs of security in this
model provide heuristic evidence for the security of a given protocol, there exist schemes which are secure
in the random oracle model but insecure for any concrete instantiation of the random oracle [18].
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Our main result is the first constant-round and fully-scalable protocol for group AKE
which is provably-secure in the standard model (i.e., without assuming the existence of
“random oracles”). Security is proved via reduction to the decisional Diffie-Hellman (DDH)
assumption using the same security model as other recent work in this area [16, 14, 15, 13].
Our protocol also achieves forward secrecy in the sense that exposure of principals’ long-
term secret keys does not compromise the security of previous session keys. We of course
also require that exposure of multiple session keys does not compromise the security of
unexposed session keys; see the formal model in Section 2. Our 3-round protocol remains
practical even for large groups: it requires each user to send only O(1) communication and
to compute only 3 “full” modular exponentiations and O(n log n) multiplications, generate
2 signatures, and perform O(n) signature verifications.

The difficulty of analyzing protocols for group AKE has led to a number of ad hoc
approaches to this problem and has seemingly hindered the development of practical and
provably-secure solutions (this is evidenced by the many published protocols later found
to be flawed; cf. the attacks given in [34, 13]). To manage this complexity, we propose
and analyze a scalable compiler for this setting which enables a modular approach and
therefore greatly simplifies the design and analysis of group AKE protocols. Our compiler
transforms any group key-exchange protocol which is secure against a passive eavesdropper
to one which is secure against a stronger — and more realistic — active adversary who
controls all communication in the network. If the original protocol achieves forward secrecy,
the compiled protocol does too. A compiler with similar functionality has been proposed
previously for the 2-party case [6]; however, as discussed in Section 1.2, our compiler scales
better as the number of participants grows large (interestingly, our compiler is slightly more
efficient that that of [6] even in the 2-party case).

As an additional contribution, we investigate the security of the well-known Burmester-
Desmedt protocol [17] for unauthenticated group key exchange.2 Adapting their work, we
present a 2-round group key-exchange protocol and rigorously prove its security — against a
passive adversary — under the DDH assumption. Applying our above-mentioned compiler
to this protocol gives our main result.

1.2 Survey of Previous Work

Group key exchange. A number of works have considered extending the 2-party Diffie-
Hellman protocol [23] to the multi-party setting [26, 36, 17, 37, 4, 29, 30]. Most well-known
among these are perhaps the works of Ingemarsson, et al. [26], Burmester and Desmedt
[17], and Steiner, et al. [37]. These works all assume a passive (eavesdropping) adversary,
and only the last of these provides a rigorous proof of security (but see footnote 2).

Authenticated protocols are designed to be secure against the stronger class of adver-
saries who —in addition to eavesdropping — control all communication in the network (cf.
Section 2). A number of protocols for authenticated group key exchange have been sug-
gested [27, 12, 2, 3, 38]; unfortunately, none of these works present rigorous security proofs

2Since no proof of security appears in [17], the Burmester-Desmedt protocol has often been considered
“heuristic” and not provably-secure (see, e.g., [16, 13]). Subsequent to our work we became aware that a
proof of security for a variant of the Burmester-Desmedt protocol (in a weaker model than that considered
here) appears in the pre-proceedings of Eurocrypt ’94 [22]. See Section 4 for further discussion.
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and thus confidence in these protocols is limited. Indeed, attacks on some of these protocols
have been presented [34], emphasizing the need for rigorous proofs in a well-defined model.
Tzeng and Tzeng [39] prove security of a group AKE protocol using a non-standard ad-
versarial model and assuming a reliable broadcast channel (an assumption we do not make
here). Their protocol does not achieve forward secrecy, and an explicit attack on their
protocol has recently been identified [13].

Provably-secure protocols. Bresson, et al. [16, 14, 15] have recently given the first formal
model of security for group AKE and the first provably-secure protocols for this setting.
Their model builds on earlier work of Bellare and Rogaway in the 2-party setting [9, 10]
as extended by Bellare, et al. [7] to handle (among other things) forward secrecy. Their
provably-secure protocols are all based on the protocols of Steiner, et al. [37], and require
O(n) rounds to establish a key among a group of n users. The initial work [16] deals with
the static case, and shows a protocol which is secure (and achieves forward secrecy) under
the CDH assumption in the random oracle model (as noted there, however, the protocol can
also be proven secure in the standard model using the DDH assumption). Unfortunately,
the given proof of security applies only for groups of constant size.

Later work [14, 15] focuses on the dynamic case where users join or leave and the
session key must be updated whenever this occurs. Although we do not explicitly address
this issue, note that dynamic group membership can always be handled by running the
group AKE protocol from scratch among members of the new group. For the case when
individual members join and leave, the complexity of the protocol given here is only slightly
worse than the Join and Remove algorithms of [14, 15]. The protocol given here performs
even better relative to [14, 15] when merging two sizable groups, or when partitioning a
group into two groups of roughly equal size (see the interesting work of Amir, et al. [1]
for detailed performance comparisons). Yet, handling dynamic membership even more
efficiently remains an interesting topic for future research.

More recently (in work subsequent to ours), a constant-round group AKE protocol with a
security proof in the random oracle model has been shown [13]. The given protocol does not
provide forward secrecy; in fact (as noted by the authors) an explicit attack is possible when
long-term secret keys are exposed. Furthermore, the protocol is not symmetric but instead
requires a “group leader” to perform O(n) encryptions and send O(n) communication each
time a group key is established.

Compilers for key-exchange protocols. A modular approach such as that used here
has previously been used in the design and analysis of key-exchange protocols. Mayer and
Yung [33] give a compiler which converts any 2-party protocol into a centralized (non-
contributory) group protocol; their compiler invokes the original protocol O(n) times, how-
ever, and is therefore not scalable. In work with similar motivation as our own, Bellare, et
al. [6] show a compiler which converts unauthenticated protocols into authenticated proto-
cols in the 2-party setting. Their compiler was not intended for the group setting and does
not scale as well as ours; extending [6] to the group setting gives a compiler which triples the
number of rounds and furthermore requires n signature computations/verifications and an
O(n) increase in communication per player per round. In contrast, the compiler presented
here adds only a single round and introduces an overhead of 1 signature computation, n sig-
nature verifications, and O(1) communication per player per round. (In fact, the compiler
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introduced here is slightly more efficient than that of [6] even in the 2-party case.)

1.3 Complexity Measures for Group AKE Protocols

In this work, we measure the efficiency of group AKE protocols in a number of ways.
Although the various complexity measures are adapted from standard work in the context
of distributed algorithms [32], there are some differences which we discuss below. This is
followed by a comparison of the efficiency of our main protocol with previous work.

Round complexity. The round complexity (also known as the latency or time complexity)
of a protocol is simply the number of rounds until the protocol terminates. Note, however,
that this measure must be more carefully defined in the presence of an active adversary who
controls the scheduling of all messages in the network (indeed, the very notion of a “round”
is not well-defined in this model, and an adversary can make the time complexity arbitrarily
large by refusing to deliver any messages). Therefore, we measure the round complexity
assuming the “best-case” scenario: an adversary who delivers all messages intact to the
appropriate recipient(s) as soon as they are sent. This seems to be the only sensible way to
measure round complexity in our model.

Message complexity. The message complexity of a protocol is typically defined as the
total number of messages sent (regardless of their length) by all parties in the course of
protocol execution. We deviate from this definition in two ways. First, we define the message
complexity in terms of the maximum number of messages sent by any single user ; this seems
to be more useful in determining the scalability of a protocol.3 Second (and perhaps more
controversial), when measuring the message complexity we assume that sending the same
message to multiple parties incurs the same cost as sending that message to a single party;
equivalently, we assume a “broadcast channel” and measure the number of messages a player
sends to that channel. This provides a better model in some cases: for example, in wireless
networks all messages are broadcast by default and no “point-to-point” channels truly exist.
We stress, however, that this abstraction of a broadcast channel is used only for measuring
the complexity, and is not assumed to provide the full functionality of a broadcast channel;
in particular, an active adversary still has complete control over all communication in the
network, and can deliver different messages to different parties. Further discussion appears
at the beginning of Section 3.1.

Communication complexity. The communication complexity (sometimes called the bit
complexity) measures the total number of bits communicated throughout the protocol; in
contrast to the message complexity, the lengths of the messages are now taken into account.
As in the case of message complexity, we are interested here in the maximum communication
sent by any single player in the protocol (rather than the total communication), and we
make the same “broadcast” assumption as before.

Computational complexity. Finally, the computational complexity of a protocol is de-
fined as the maximum amount of computation done by any player in the protocol. Here,

3Thus, under our definition a protocol in which each of n players sends a single message has message
complexity 1 while a protocol in which a single player sends n messages has message complexity n (even
though the total number of messages in each case is the same). Note that the former protocol scales better
than the latter if the players are more resource-limited than the network infrastructure.
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Rounds Messages (per user) Communication (per user)
Point-to-point Broadcast Point-to-point Broadcast

[16] O(n) 2 2 O(n) O(n)

[13] 1 O(n) 1 O(n2) O(n)

Here 3 O(n) 3 O(n) O(1)

Table 1: Complexity of provably-secure protocols for group AKE in terms of the number of
parties n. Note that [16] proves security only for constant n, and [13] proves security in the
random oracle model and does not achieve forward secrecy. Our protocol achieves forward
secrecy and is proven secure in the standard model for n = poly(k).

we are interested in the number of cryptographic operations (e.g., “full” exponentiations or
public-key encryptions) performed since these operations are likely to dominate.

With the above in mind, we compare in Table 1 the complexity of our main protocol
to that of previous work [16, 13] (recall that our main protocol is obtained by applying the
compiler of Section 3 to the group KE protocol of Section 4). For completeness, we include
the message complexity and communication complexity for both the standard point-to-point
model as well as the “broadcast” model discussed above. As for computational costs, the
protocol of [16] requires some players to compute O(n) “full” modular exponentiations (in
addition to O(1) signatures and O(1) signature verifications); the protocol of [13] requires
the initiator of the protocol to perform O(n) public-key encryptions and one signature
computation; and our protocol requires each player to compute O(n log n) modular multi-
plications and to verify O(n) signatures (in addition to O(1) signature computations and 3
“full” modular exponentiations).

1.4 Outline

In Section 2, we review the security model of Bresson, et al. [16]. We present our compiler in
Section 3 and a two-round protocol secure against passive adversaries in Section 4. Applying
our compiler to this protocol gives our main result: an efficient, fully-scalable, and constant-
round group AKE protocol.

2 The Model and Preliminaries

Our security model is the standard one of Bresson, et al. [16] which builds on prior work
from the 2-party setting [9, 10, 7] and which has been widely used to analyze group key-
exchange protocols (e.g., [14, 15, 13]). We explicitly define notions of security for both
passive and active adversaries; this will be necessary for stating and proving meaningful
results about our compiler in Section 3.

Participants and initialization. We assume for simplicity a fixed, polynomial-size set
P = {U1, . . . , U`} of potential participants. Any subset of P may decide at any point to
establish a session key, and we do not assume that these subsets are always the same size
or always include the same participants. Before the protocol is run for the first time, an
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initialization phase occurs during which each participant U ∈ P runs an algorithm G(1k)
to generate public/private keys (PKU , SKU ). Each player U stores SKU , and the vector
〈PKi〉1≤i≤|P| is known by all participants (and is also known by the adversary).

Adversarial model. In the real world, a protocol determines how principals behave in
response to signals from their environment. In the model, these signals are sent by the
adversary. Each principal can execute the protocol multiple times with different partners;
this is modeled by allowing each principal an unlimited number of instances with which
to execute the protocol. We denote instance i of user U as Πi

U . A given instance may be
used only once. Each instance Πi

U has associated with it the variables statei
U , termi

U , acci
U ,

usedi
U , sidi

U , pidi
U , and ski

U ; the last of these is the session key whose computation is the
goal of the protocol, while the function of the remaining variables is as in [7].

The adversary is assumed to have complete control over all communication in the net-
work. An adversary’s interaction with the principals in the network (more specifically, with
the various instances) is modeled by the following oracles:

• Send(U, i,M) — This sends message M to instance Πi
U , and outputs the reply gener-

ated by this instance. We allow the adversary to prompt the unused instance Πi
U to

initiate the protocol with partners U2, . . . , Un by calling Send(U, i, 〈U2, . . . , Un〉).

• Execute(U1, . . . , Un) — This executes the protocol between unused instances of players
U1, . . . , Un ∈ P and outputs the transcript of the execution. The number of group
members and their identities are chosen by the adversary.

• Reveal(U, i) — This outputs session key ski
U .

• Corrupt(U) — This outputs the long-term secret key SKU of player U .

• Test(U, i) — This query is allowed only once, at any time during the adversary’s
execution. A random bit b is generated; if b = 1 the adversary is given ski

U , and if
b = 0 the adversary is given a random session key.

A passive adversary is given access to the Execute, Reveal, Corrupt, and Test oracles,
while an active adversary is additionally given access to the Send oracle. (Here, even though
the Execute oracle can be simulated via repeated calls to the Send oracle, the presence of
the Execute oracle allows for a tighter definition of forward secrecy as well as a more exact
concrete security analysis.)

Partnering. Partnering is defined via session IDs and partner IDs. The session ID for
instance Πi

U (denoted sidi
U ) is a protocol-specified function of all communication sent and

received by Πi
U ; for our purposes, we will simply set sidi

U equal to the concatenation of all
messages sent and received by Πi

U during the course of its execution. The partner ID for
instance Πi

U (denoted pidi
U) consists of the identities of the players in the group with whom

Πi
U intends to establish a session key, including U itself; note that these identities are always

clear from the initial call to the Send or Execute oracles. We say instances Πi
U and Πj

U ′ are

partnered iff (1) pidi
U = pid

j
U ′ and (2) sidi

U = sid
j
U ′ . Our definition of partnering is much

simpler than that of [16] since, in our protocols, all messages are sent to all other members
of the group taking part in the protocol.
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Correctness. Of course, we wish to rule out “useless” protocols from consideration. In
the standard way, we require that for all U,U ′, i, j such that sidi

U = sid
j
U ′ , pidi

U = pid
j
U ′ , and

acci
U = acc

j
U ′ = true it is the case that ski

U = sk
j
U ′ 6= null.

Freshness. Following [7, 16, 28], we define a notion of freshness appropriate for the goal
of forward secrecy. An instance Πi

U is fresh unless one of the following is true (in the

following, Πj
U ′ is any instance partnered with Πi

U ): (1) at some point, the adversary queried
Reveal(U, i) or Reveal(U ′, j); or (2) a query Corrupt(V ) (with V ∈ pidi

U ) was asked before a
query of the form Send(U, i, ∗) or4 Send(U ′, j, ∗).

Definitions of security. We say event Succ occurs if the adversary queries the Test oracle
on a fresh instance Πi

U for which acci
U = true and correctly guesses the bit b used by

the Test oracle in answering this query. The advantage of an adversary A in attacking

protocol P is defined as AdvA,P (k)
def
= |2 ·Pr[Succ]− 1|. We say protocol P is a secure group

key exchange (KE) protocol if it is secure against a passive adversary; that is, for any ppt

passive adversary A it is the case that AdvA,P (k) is negligible. We say protocol P is a secure
authenticated group key exchange (AKE) protocol if it is secure against an active adversary;
that is, for any ppt active adversary A it is the case that AdvA,P (k) is negligible.

To enable a concrete security analysis, we define AdvKE−fs
P (t, qex) to be the maximum

advantage of any passive adversary attacking P , running in time t and making qex calls to
the Execute oracle. Similarly, we define AdvAKE−fs

P (t, qex, qs) to be the maximum advantage
of any active adversary attacking P , running in time t and making qex calls to the Execute

oracle and qs calls to the Send oracle.

Protocols without forward secrecy. Throughout this paper we will be concerned pri-
marily with protocols achieving forward secrecy; the definitions above already incorporate
this requirement since the adversary has access to the Corrupt oracle in each case. However,
our compiler may also be applied to KE protocols which do not achieve forward secrecy (cf.
Theorem 1). For completeness, we define AdvKE

P (t, qex) and AdvAKE
P (t, qex, qs) in a manner

completely analogous to the above, with the exception that the adversary in each case no
longer has access to the Corrupt oracle.

Authentication. We do not define any notion of explicit authentication or, equivalently,
confirmation that the other members of the group have computed the common key. Indeed,
our protocols do not explicitly provide such confirmation. However, explicit authentication
in our protocols can be achieved at little additional cost. Previous work (e.g., [16, Sec. 7])
shows how to achieve explicit authentication for any secure group AKE protocol using one
additional round and minimal extra computation. (Although [16] use the random oracle
model, their techniques can be extended to the standard model by replacing the random
oracle with a pseudorandom function.) Applying their transformation to our final protocol
results in a constant-round group AKE protocol with explicit authentication.

4While not necessary in general, the second part of this requirement is used in the proof of Theorem 2.
This requirement is anyway quite natural — if an adversary corrupts a user V ∈ pidi

U , it likely obtains any
current session keys (in particular, the one shared with U) in addition to V ’s long-term secret key.
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2.1 Notes on the Definition

Although the above definition is standard for the analysis of group key-exchange protocols
— it is the definition used, e.g., in [16, 14, 15, 13] — there are a number of concerns that
it does not address. For one, it does not offer any protection against malicious insiders
or users who do not honestly follow the protocol. The definition is also not intended
to ensure any form of “agreement” (in the sense of [25]); in fact, since the model gives
the adversary complete control over all communication in the network (i.e., in addition to
delaying messages, the adversary may modify messages or refuse to deliver them at all!)
and allows the adversary to corrupt all parties, full-fledged agreement is clearly impossible.
Finally, the definition inherently does not protect against “denial of service” attacks, and
cannot prevent the adversary from causing an honest instance to “hang” indefinitely; this
is a consequence of the adversary’s ability to refuse to deliver messages.

Some of these concerns can be addressed — at least partially — within the model above.
For example, it seems that the following approach can be used following any group AKE
protocol to achieve confirmation that all (non-corrupted) participants have computed a
matching session key: after computing key sk, each player Ui computes xi = H(sk‖Ui),
signs xi, broadcasts xi and the corresponding signature, and computes the “actual” session
key sk′ = H(sk‖⊥) (here, H is modeled as a random oracle and “⊥” represents some
distinguished string); other players check the validity of the broadcast values in the obvious
way.5 Although this does not provide agreement (since an adversary can still refuse to deliver
messages to some of the participants), it does ensure the equality of any keys generated by
partnered instances.

Rigorously proving the above approach secure, as well as addressing the other con-
cerns mentioned above (by necessary modifications of the adversarial model), represents an
interesting direction for future research.

3 A Scalable Compiler for Group AKE Protocols

3.1 Description of the Compiler

We show here a compiler transforming any secure group KE protocol P to a secure group
AKE protocol P ′ (recall from Section 2 that a group KE protocol protects against a passive
adversary only, while a group AKE protocol additionally protects against an active adver-
sary). Without loss of generality, we assume the following about the original protocol P : (1)
Each message sent by an instance Πi

U during execution of P includes the sender’s identity
U as well as a sequence number which begins at 1 and is incremented each time Πi

U sends a
message (in other words, the jth message sent by an instance Πi

U has the form U |j|m); (2)
every message of the protocol is sent — via point-to-point links — to every member of the
group taking part in the execution of the protocol (that is, Πi

U sends each message to all
users in pidi

U ). For simplicity, we refer to this as “broadcasting a message” but stress that
we do not assume a broadcast channel and, in particular, an active adversary can deliver
different messages to different members of the group or refuse to deliver messages to some
of the participants. Note that any secure group KE protocol P̃ can be readily converted to

5This differs from the approach of [16, Sec. 7] in that we require a signature on the broadcast value xi.
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a secure group KE protocol P in which the above assumptions hold (security of P follows
trivially from the security of P̃ since here only a passive adversary is assumed); furthermore,
the complexities of P and P̃ are essentially the same in all respects.

Let Σ = (Gen,Sign,Vrfy) be a signature scheme which is strongly unforgeable under
adaptive chosen message attack (where “strong” means that an adversary is also unable
to forge a new signature for a previously-signed message), and let SuccΣ(t) denote the
maximum advantage of any adversary running in time t in forging a new message/signature
pair. For simplicity, we assume that the signature length is independent of the length of
the message signed; this is easy to achieve in practice by hashing the message (using a
collision-resistant hash function) before signing. Given protocol P as above, our compiler
constructs a new protocol P ′ as follows:

1. During the initialization phase, each party U ∈ P generates the verification/signing
keys (PK ′

U , SK ′
U ) by running Gen(1k). This is in addition to any keys (PKU , SKU )

needed as part of the initialization phase for P .

2. Let U1, . . . , Un be the identities (in lexicographic order) of users wishing to establish
a common key, and let U = U1| · · · |Un. Each user Ui begins by choosing a random
nonce ri ∈ {0, 1}

k and broadcasting Ui|0|ri (note we assign this message the sequence
number “0”). After receiving the initial broadcast message from all other parties,
each instance Πj

U (for U ∈ U) sets nonces
j
U = ((U1, r1), . . . , (Un, rn)) and stores this

as part of its state information.

3. The members of the group now execute P with the following changes:

• Whenever instance Πi
U is supposed to broadcast U |j|m as part of protocol P , the

instance computes σ ← SignSK′
U
(j|m|noncesi

U ) and then broadcasts U |j|m|σ.

• When instance Πi
U receives message V |j|m|σ, it checks that: (1) V ∈ pidi

U ,
(2) j is the next expected sequence number for messages from V , and, finally,
(3) VrfyPK′

V
(j|m|noncesi

U , σ) = 1. If any of these are untrue, Πi
U aborts the

protocol and sets acci
U = false and ski

U = null. Otherwise, Πi
U continues as it

would in P upon receiving message V |j|m.

4. Each non-aborted instance computes the session key as in P .

3.2 Compiling Protocols without Forward Secrecy

This compiler of the previous section may be applied to any group KE protocol P , regardless
of whether P achieves forward secrecy. Clearly, we cannot expect the compiled protocol to
achieve forward secrecy if the original protocol does not. In this case we simply show that
the compiled protocol is an authenticated key-exchange protocol; i.e., it is secure against an
active adversary.

Theorem 1 If P is a secure group KE protocol (without forward secrecy), then P ′ given
by the above compiler is a secure group AKE protocol (without forward secrecy). Namely:

AdvAKE
P ′ (t, qex, qs) ≤ AdvKE

P (t′, qex +
qs

2
) + |P| · SuccΣ(t′) +

q2
s + qexqs

2k
,

10



where t′ = t+(|P|qex +qs) · tP ′ and tP ′ is the time required for execution of P ′ by any party.

Proof Given an active adversary A′ attacking P ′, we will construct a passive adversary
A attacking P ; relating the success probabilities of A′ and A gives the stated result. Note
that neither A′ nor A is given access to the Corrupt oracle since neither P ′ nor P is intended
to provide forward secrecy (cf. Section 2); indeed, it is this feature which leads to a simpler
proof than in the case of Theorem 2 where forward secrecy will be taken into account.

Before describing A, we first define events Forge and Repeat and bound their respective
probabilities. Let Forge be the event that A′ outputs a new, valid message/signature pair
with respect to the public key PK ′

U of some user U ∈ P at any point during its execution,
and let Pr[Forge] denote PrA′,P ′ [Forge] for brevity. (Formally, Forge is the event that A′

makes a query of the form Send(V, i, U |j|m|σ) where VrfyPK′
U
(j|m|noncesi

V , σ) = 1 and σ

was not previously output by any instance of player U as a signature on j|m|nonces i
V . With

this in mind, however, we use the more informal description of Forge for the remainder of
this paragraph.) Using A′, we may construct an algorithm F that forges a signature with
respect to signature scheme Σ as follows: given a public key PK, algorithm F chooses a
random U ∈ P, sets PK ′

U = PK, and honestly generates all other public/private keys for
the system (this includes both the keys {PK ′�

U
, SK ′�

U
} �

U 6=U
used by the compiler as well as

all keys {PKU , SKU}U∈P , if any, needed for execution of the original protocol P ). The
forger F simulates all oracle queries of A′ in the natural way by executing protocol P ′

itself, obtaining the necessary signatures with respect to PK ′
U , as needed, from its signing

oracle. In this way, F provides a perfect simulation for A′. Now, if A′ ever outputs a new,
valid message/signature pair with respect to PK ′

U = PK, then F outputs this pair as its
forgery (note that F can efficiently determine whether a forgery has occurred). The success

probability of F is exactly Pr[Forge]
|P| ; this immediately implies that

Pr[Forge] ≤ |P| · SuccΣ(t′).

Let Repeat be the event that a nonce used by any user in response to a Send query
was used previously by that user (in response to either an Execute or a Send query). It is
immediate that

Pr[Repeat] ≤
qsqe + q2

s

2k
.

Having bounded the probabilities of events Forge and Repeat, we now describe the
construction of the passive adversary A attacking protocol P . At a high level, A simply
runs A′ as a subroutine and simulates the oracle queries of A′ using its own queries to the
Execute oracle. If Forge or Repeat occur, A aborts and outputs a random bit; otherwise,
it outputs whatever bit is eventually output by A′. We now describe the simulation in
more detail. Recall that as part of the initial setup, A is given public keys {PKU}U∈P

if any are defined as part of protocol P . We first have A run Gen(1k) to generate keys
{PK ′

U , SK ′
U}U∈P ; the set of public keys {PK ′

U , PKU}U∈P is then given to A′. Then A
runs A′, simulating the oracle queries of A′ as follows (to aid the simulation, A maintains
a list Nonces whose function will become clear from the description):

Execute queries. Assume A′ makes a query Execute(U1, . . . , Un), and let U
def
= U1| · · · |Un

(where these are assumed to be in lexicographic order). Adversary A sends the same query

11



to its Execute oracle and receives in return a transcript T of an execution of P . Next,
A chooses random r1, . . . , rn ∈ {0, 1}

k , sets nonces = ((U1, r1), . . . , (Un, rn)), and stores
(nonces, T ) in Nonces. To simulate a transcript T ′ of an execution of P ′, A sets the initial
messages of T ′ to {Ui|0|ri}1≤i≤n. Furthermore, for each message U |j|m in transcript T ,
algorithm A computes signature σ ← SignSK′

U
(j|m|nonces) and places U |j|m|σ in T ′. When

done, the complete transcript T ′ is given to A′.

Send queries. Denote the initial Send query to an instance (denoting a request for protocol
initiation) by Send0; note that for any particular instance Π`

U this query always has the
form Send0(U, `, 〈U1, . . . , Un〉). Denote the second Send query to an instance by Send1; for
an instance Π`

U as before, we may assume without loss of generality that this query has
the form Send1(U, `, 〈U1|0|r1, . . . , Un|0|rn〉) with ri ∈ {0, 1}

k for all i. Following a Send1

query to instance Π`
U , define nonces`

U as the lexicographic ordering (according to the U ’s)
of ((U, r`

U ), (U1, r1), . . . , (Un, rn)), where r`
U is the nonce generated by Π`

U .
In response to any Send query, A proceeds as follows:

• On query Send0(U, `, ∗), A chooses random r`
U ∈ {0, 1}

k and replies to A′ with U |0|r`
U .

• On a Send1 query to an instance Π`
U , the values of pid`

U and nonces`
U are defined (by

the previous Send0 query to this instance and the current query, respectively). A looks
in Nonces for an entry of the form (nonces`

U , T ); if no entry of this form exists, then
A queries Execute(pid`

U ), receives in return a transcript T , and stores (nonces`
U , T ) in

Nonces. In either case, A now has a transcript T associated with the value nonces`
U .

Next, A finds the (unique) message of the form U |1|m in T , computes the signature
σ ← SignSK′

U
(1|m|nonces`

U ), and returns U |1|m|σ to A′.

• In response to any other Send query to an instance Π`
U , A first verifies correctness

of the current incoming message(s) as in the specification of the compiler and ter-
minates the instance if verification fails. Assuming verification succeeds, A finds an
entry (nonces`

U , T ) in Nonces (such an entry must exist if we assume, without loss of
generality, that A′ had previously issued a Send1 query to Π`

U ), locates the appropriate
message U |j|m in transcript T , computes the signature σ ← SignSK′

U
(j|m|nonces`

U ),

and replies to A′ with U |j|m|σ.

Reveal/Test queries. When A′ queries Reveal(U, `) or Test(U, `) for an instance for

which acc`
U = true, it must be the case that T ′ def

= sid`
U is defined (recall that sid`

U is simply
the transcript of the execution for instance Π`

U ). Let T denote the underlying transcript
of protocol P that is contained within transcript T ′, obtained by simply “stripping” the
signatures from T ′. Now, A finds any query it made to its own Execute oracle which resulted
in transcript T (assuming events Repeat and Forge do not occur, at least one such query
will exist), makes the appropriate Reveal or Test query to one of the instances involved in
this query (it does not matter which, since they are all partnered and all hold the same
session key), and returns the result to A′.

We claim that the above is a perfect simulation for A′ as long as Forge and Repeat do
not occur. First, note that the Execute queries of A′, as well as all Reveal/Test queries made
by A′ to instances that A′ initiated via an Execute query, are simulated perfectly. As for
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the Send queries of A′, we may note the following: Send0 queries are simulated perfectly.
Send1 queries are simulated perfectly assuming event Repeat does not occur. All other Send

queries, as well as all Reveal/Test queries made to instances initiated via Send queries, are
simulated perfectly assuming that neither Repeat nor Forge occur.

Letting Bad
def
= Forge ∨ Repeat, a straightforward calculation shows:

AdvA,P
def
= 2 ·

∣∣PrA,P [Succ]− 1
2

∣∣

= 2 ·
∣∣PrA′,P ′ [Succ ∧ Bad] + 1

2 PrA′,P ′ [Bad]− 1
2

∣∣
= 2 ·

∣∣PrA′,P ′ [Succ]− PrA′,P ′ [Succ ∧ Bad] + 1
2 PrA′,P ′[Bad]− 1

2

∣∣
≥

∣∣2 · PrA′,P ′ [Succ]− 1
∣∣−

∣∣PrA′,P ′ [Bad]− 2 · PrA′,P ′ [Succ ∧ Bad]
∣∣

≥ AdvA′,P ′ − PrA′,P ′ [Bad].

Since AdvA,P ≤ AdvKE
P (t′, qex + qs/2) by assumption (note that A makes at most qex + qs/2

queries to its Execute oracle), we obtain:

AdvAKE
P ′ ≤ AdvKE

P (t′, qex +
qs

2
) + Pr[Forge] + Pr[Repeat],

yielding the statement of the theorem.

3.3 Compiling Protocols which Achieve Forward Secrecy

As noted earlier, our compiler may also be applied to key-exchange protocols which do
achieve forward secrecy; in this case, the compiled protocol does too. Although we consider
this the more interesting result, we have chosen to present the proof of Theorem 1 first
because the former proof is simpler yet contains the essential ideas used here.

Before giving the formal proof, we begin with a high-level overview of how the proof
differs in this case. As in the proof of Theorem 1, we will transform an active adversary
A′ attacking protocol P ′ into a passive adversary A attacking protocol P . In the proof
of Theorem 1, adversary A queried its Execute oracle (to obtain a transcript T ) for each
Execute query of A′ and also for each query Send1(U, `, ∗) of A′ which resulted in a new
value of nonces`

U ; this transcript is then “patched” (by generating appropriate signatures)
to give a transcript T ′ which is then used to answer queries of A′. An essential reason this
yields a good simulation is that A′ is “limited” to sending messages already contained in
T ′; this is because A′ cannot forge signatures with respect to any of the users, and because
nonces do not repeat (with high probability).

Here, however, we cannot quite follow the same approach; in fact, doing so leads to a
potential problem in the simulation. Namely, since A′ can now ask a Corrupt query to obtain
secret keys, it is possible for A′ to send messages that are not contained in the “patched”
transcript T ′. (That is, A′ might query Send1(U, `, ∗) and then, at some later point in time
— but before instance Π`

U terminates — corrupt a player V ∈ pid`
U . This will allow A′

to sign messages on behalf of V and therefore to send arbitrary messages of its choice to
Π`

U .) In this case, A must be able to simulate the actions of Π`
U without recourse to a fixed

transcript T obtained from its Execute oracle.
To avoid this potential problem with the simulation, we adopt the following modified

approach (described informally here): for all but at most one Send query of A ′, algorithm A
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will simulate the Send queries itself by running the protocol on its own (rather than via calls
to its own Execute oracle). A key point is that A can efficiently perform this simulation by
making the necessary Corrupt queries to obtain any private information needed to execute
the underlying protocol. For the (at most one) Send query that A does not simulate on its
own, it will use its Execute oracle to obtain a transcript of P and simulate an execution of P ′

as in the proof of Theorem 1. In essence, A is guessing that A′ will eventually issue a Test

query for this instance, which degrades the concrete security by a factor of roughly qs. The
formal proof is slightly more complex (in particular, A must maintain consistency among
the various oracle calls of A′, and we have not discussed how to deal with the Execute calls
of A′), and follows now.

Theorem 2 If P is a secure group KE protocol achieving forward secrecy, then P ′ given
by the above compiler is a secure group AKE protocol achieving forward secrecy. Namely:

AdvAKE−fs
P ′ (t, qex, qs) ≤

qs

2
· AdvKE−fs

P (t′, 1) + AdvKE−fs
P (t′, qex)

+ |P| · SuccΣ(t′) +
q2
s + qexqs

2k
,

where t′ is as in Theorem 1.

Proof Define event Repeat exactly as in the proof of Theorem 1. Event Forge is de-
fined slightly differently; namely, Forge is now the event that A′ outputs a new, valid
message/signature pair with respect to the public key PK ′

U of some user U ∈ P before
querying Corrupt(U). The bounds on the probabilities of these events, however, are exactly
as in the proof of Theorem 1.

We condition the success of A′ on whether it asks its Test query to an instance which
was initialized via an Execute query or via a Send query. More formally, let Ex be the event
that A′ makes its query Test(U, i) to an instance Πi

U such that A′ never made a query of
the form Send(U, i, ∗) (and therefore did make a query Execute(U, i, ∗)). We also define

Se
def
= Ex. We now bound the probabilities of PrA′,P ′ [Succ ∧ Ex] and PrA′,P ′ [Succ ∧ Se] by

constructing appropriate adversaries A1 and A2.
The initial behavior of adversaries A1/A2 is the same, and we therefore describe it now

once and for all. Recall that as part of the initial setup, adversary A1/A2 is given public
keys {PKU}U∈P if any are defined as part of protocol P . First, A1/A2 obtains all secret
keys {SKU}U∈P using multiple Corrupt queries. Next, A1/A2 runs Gen(1k) to generate keys
(PK ′

U , SK ′
U ) for each U ∈ P. Finally, the set of public keys {PK ′

U , PKU}U∈P is given to
A′. We stress that A1/A2 now has the secret information of all parties in the network; yet,
since P is supposed to provide forward secrecy, this should not affect the security of the
protocol against a passive attack (as will be mounted by A1/A2). We now have A1/A2 run
A′, simulating the oracle queries of A′ as described below.

We first describe the simulation provided by A1 (this description is informal, since it is
similar, though not identical, to the adversary A constructed in the proof of Theorem 1).
A1 simulates all Execute queries of A′ via Execute queries of its own; namely, by forwarding
the query of A′ to its Execute oracle to obtain transcript T , “patching” the transcript by
generating the appropriate signatures as in the proof of Theorem 1, and giving the modified
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transcript T ′ to A′. All Send queries of A′, however, are answered by having A1 execute
protocol P ′ itself (without making any calls to its Execute oracle); note that A1 can do
this since it has the secret information of all parties. Reveal queries to instances initiated
by A′ via Execute queries are answered by having A1 make the appropriate Reveal query,
as in the proof of Theorem 1; for Reveal queries to instances initiated via Send queries, A1

simply computes and returns the correct session key itself. Corrupt queries are answered in
the obvious way. Finally, when A′ makes its query Test(U, i), A1 checks whether A′ has
ever made a query of the form Send(U, i, ∗) (i.e., whether event Se has occurred). If so,
A1 aborts and outputs a random bit. Otherwise (if event Ex has occurred), A1 issues the
appropriate Test query to its own oracle, returns the result to A′, and outputs whatever A′

outputs.
Note that the simulation provided by A1 is perfect (even if Repeat or Forge occur) unless

A1 aborts due to the occurrence of event Se. Thus:

PrA1,P [Succ] = PrA′,P ′[Succ ∧ Ex] + 1
2 · PrA′,P ′[Se]. (1)

Furthermore, |2 · PrA1,P [Succ]− 1| ≤ AdvKE−fs
P (t′, qex) because A1 makes at most qex queries

to its Execute oracle.
We now describe A2. Informally, we have A2 guess in advance the first Send1 query

corresponding to the eventual Test query of A′. This Send query to some instance Πi
U (and

all Send queries to instances partnered with Πi
U ) will be simulated as in the proof of Theorem

1; namely, A2 will make the appropriate query to its Execute oracle to obtain transcript T ,
“patch” T (by generating appropriate signatures) to obtain the modified transcript T ′, and
then use T ′ to answer queries of A′. All other Send queries of A′ will be answered by having
A2 simulate execution of P ′ itself. If the guess of A2 is incorrect, it aborts and outputs a
random bit; otherwise, it makes the appropriate Test query, forwards the result to A ′, and
outputs whatever A′ outputs. A key point here is that if the guess of A2 is correct then A′

is (informally) “limited” to sending to Πi
U (and partnered instances) messages contained in

T ′; adversary A′ can do otherwise only if it queries Corrupt(V ) for some V ∈ pidi
U , but then

Πi
U is no longer fresh (and we assume without loss of generality that A′ only makes a Test

query to a fresh instance, since it cannot succeed if this is not the case).
We now provide the details. First, A2 chooses a random α ∈ {1, . . . , qs/2} (note that

qs/2 is an upper bound on the number of Send1 queries made by A′, where a Send1 query is
defined as in the proof of Theorem 1). It then simulates the oracle calls of A′ as described
below (to aid the simulation, A2 maintains a list Nonces whose function will become clear).
As in the proof of Theorem 1, A2 aborts if Repeat or Forge occurs.

Execute queries. All Execute queries of A′ are answered by having A2 execute protocol
P ′ itself (A2 can do this efficiently because it has the secret keys of all players), resulting
in a value nonces and a transcript T . A2 stores (nonces, ∅) in Nonces and returns T to A′.

Send queries.

• On query Send0(U, `, ∗) (where a Send0 query is defined as in the proof of Theorem
1), A2 chooses random r`

U ∈ {0, 1}
k and replies with U |0|r`

U .

• On the αth Send1 query to an instance Π`
U , the values of pid`

U and nonces`
U are defined

(by the previous Send0 query to this instance and the current query, respectively).
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A2 first looks in Nonces for an entry of the form (nonces`
U , ∅); if such an entry exists,

A2 aborts. Also, if A′ had previously asked a Corrupt query to any user V ∈ pid`
U ,

then A2 aborts. Otherwise, A2 queries Execute(pid`
U ), receives in return a transcript

T , and stores (nonces`
U , T ) in Nonces. A2 then finds the message of the form U |1|m

in T , computes the signature σ ← SignSK′
U
(1|m|nonces`

U ), and returns U |1|m|σ to A′.

• On any other Send query to an instance Π`
U , A2 looks in Nonces for an entry of the

form (nonces`
U , T ). If no such entry exists, A2 stores (nonces`

U , ∅) in Nonces. In this
case or if T = ∅, A2 responds to this query by executing protocol P ′ itself (i.e.,
without making any calls to the Execute oracle); again, A2 can do this since it has the
secret information of all players. On the other hand, if T 6= ∅ this implies that A2 has
received T in response to its single Execute query. Now, A2 verifies correctness of the
incoming messages as in the specification of the compiler and terminates the instance
if verification fails. Additionally, A2 aborts if A′ had previously asked a Corrupt

query to any user V ∈ pid`
U . Otherwise, A2 locates the appropriate message U |j|m in

transcript T , computes the signature σ ← SignSK′
U
(j|m|nonces`

U ), and replies to A′

with U |j|m|σ.

Corrupt queries. These are answered in the obvious way.

Reveal queries. When A′ queries Reveal(U, `) for a terminated instance Π`
U , the value of

nonces`
U is defined. A2 finds an entry (nonces`

U , T ) in Nonces and aborts if T 6= ∅. Otherwise,
if T = ∅ it means that A2 has executed protocol P ′ itself; A2 can therefore compute the
appropriate session key and return it to A′.

Test query. When A′ queries Test(U, i) for a terminated instance, A2 finds an entry
(nonces`

U , T ) in Nonces. If T = ∅, then A2 aborts. Otherwise, A2 makes the appropriate
Test query (for one of the instances it had activated via its single Execute query) and returns
the result to A′.

Let Bad denote Forge ∪ Repeat, and recall that A2 aborts immediately if Bad occurs.
From the above simulation, we may also note that A2 aborts if Ex occurs (since in this case
T = ∅ when A′ makes its Test query). On the other hand, if neither Bad nor Ex occur, then
A2 does not abort (i.e., it correctly guesses the value of α) with probability exactly 2/qs.
Furthermore, the simulation is perfect in case A2 does not abort. Putting this together
(and letting Guess denote the probability that A2 correctly guesses α) implies

PrA2,P [Succ] = 2
qs
· PrA′,P ′[Succ ∧ Se ∧ Bad] + 1

2 · Pr[Ex ∨ Guess ∨ Bad]. (2)

Furthermore, |2 · PrA2,P [Succ]− 1| ≤ AdvKE−fs
P (t′, 1) since A2 makes only a single query to

its Execute oracle.
Using Eqs. (1) and (2) we obtain (in the following, Pr[·] always denotes PrA′,P ′ [·]):

∣∣2 · PrA′,P ′ [Succ]− 1
∣∣

= 2 ·
∣∣Pr[Succ ∧ Ex] + Pr[Succ ∧ Se ∧ Bad] + Pr[Succ ∧ Se ∧ Bad]− 1

2

∣∣

≤ AdvKE−fs
P (t′, qex) + 2 ·

∣∣Pr[Succ ∧ Se ∧ Bad] + Pr[Succ ∧ Se ∧ Bad]− 1
2 Pr[Se]

∣∣

≤ AdvKE−fs
P (t′, qex) + qs

2 · AdvKE−fs
P (t′, 1)
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+
∣∣2 · Pr[Succ ∧ Se ∧ Bad]− Pr[Se]− qs

2 Pr[Ex ∨ Bad]− ( qs

2 − 1)Pr[Se ∧ Bad] + qs

2

∣∣

= AdvKE−fs
P (t′, qex) + qs

2 · AdvKE−fs
P (t′, 1) +

∣∣2 · Pr[Succ ∧ Se ∧ Bad]− Pr[Se] + Pr[Se ∧ Bad]
∣∣

= AdvKE−fs
P (t′, qex) + qs

2 · AdvKE−fs
P (t′, 1) + |2 · Pr[Succ ∧ Se ∧ Bad]− Pr[Se ∧ Bad]|

≤ AdvKE−fs
P (t′, qex) + qs

2 · AdvKE−fs
P (t′, 1) + Pr[Bad].

Since Pr[Bad] ≤ Pr[Forge] + Pr[Repeat], this gives the desired result.

We remark that the above theorem is a generic result that applies to the invocation of
the compiler on an arbitrary group KE protocol P . For specific protocols, a better exact
security analysis may be obtainable.

4 A Constant-Round Group KE Protocol

In this section, we describe an efficient, two-round group KE protocol which achieves for-
ward secrecy. Applying the compiler of the previous section to this protocol immediately
yields (via Theorem 2) an efficient, three-round group AKE protocol achieving forward se-
crecy. The security of the present protocol is based on the decisional Diffie-Hellman (DDH)
assumption [23], which we describe now. Let

�
be a cyclic group of prime order q and let g

be a fixed generator of
�

. Informally, the DDH problem is to distinguish between tuples of
the form (gx, gy, gxy) (called Diffie-Hellman tuples) and (gx, gy, gz) where z 6= xy is random
(called random tuples);

�
is said to satisfy the DDH assumption if these two distributions

are computationally indistinguishable. More formally, define Advddh� (t) as the maximum
value, over all distinguishing algorithms D running in time at most t, of:

∣∣ Pr[x, y ← � q : D(gx, gy , gxy) = 1]− Pr[x, y ← � q; z ← � q \ {xy} : D(gx, gy, gz) = 1]
∣∣ ,

where we assume that g is fixed and known to algorithm D. Given the above,
�

satisfies
the DDH assumption if Advddh� (t) is “small” for “reasonable” values of t. (This definition
is appropriate for a concrete security analysis; for asymptotic security one would consider
an infinite sequence of groups G = {

�
k}k≥1 and require that Advddh�

k
(t(k)) be negligible in k

for all polynomials t.) One standard way to generate a group assumed to satisfy the DDH
assumption is to choose primes p, q such that p = βq +1 and let

�
be the subgroup of order

q in � ∗
p. However, other choices of

�
are also possible.

The protocol presented here is essentially the protocol of Burmester and Desmedt [17],
except that here

�
is a cyclic group of prime order assumed to satisfy the DDH assumption

(in [17],
�

was taken to be an arbitrary cyclic group assumed to satisfy the computational
Diffie-Hellman assumption). Our work was originally motivated by the fact that no proof of
security appears in the proceedings version of [17]; furthermore, subsequent work in this area
(e.g., [16, 13]) has implied that the Burmester-Desmedt protocol was “heuristic” and had
not been proven secure. Subsequent to our work, however, we became aware that a proof
of security for a variant of the Burmester-Desmedt protocol appears in the pre-proceedings
of Eurocrypt ’94 [22].6 Even so, we note the following:

6We are happy to publicize this, especially since it appears to have been unknown to many others in the
cryptographic community as well!
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• Burmester and Desmedt show only that an adversary cannot compute the entire
session key; in contrast, we show that the session key is indistinguishable from random.

• Burmester and Desmedt give a proof of security for their main protocol only for an
even number of participants n. They introduce and prove secure a modified protocol
(in which one player simulates the actions of two players) for the case of n odd.

• Finally, Burmester and Desmedt make no effort to optimize the concrete security of
the reduction; indeed, this issue was not generally considered at that time.

For these reasons, we believe it is important to present a full proof of security for this
protocol (taking care to achieve as tight a security reduction as possible) in a precise and
widely-accepted model.

As required by our compiler, the protocol below ensures that players send every message
to all members of the group via point-to-point links; although we refer to this as “broad-
casting” we stress that no broadcast channel is assumed (in any case, the distinction is
moot since we are dealing here with a passive adversary). For simplicity, in describing our
protocol we assume a group

�
and a generator g ∈

�
have been fixed in advance and

are known to all parties in the network; however, this assumption can be avoided at the
expense of an additional round in which the first player simply generates and broadcasts
these values (that this remains secure follows from the fact that we are now considering a
passive adversary). When n players U1, . . . , Un wish to generate a session key, they proceed
as follows (the indices are taken modulo n so that player U0 is Un and player Un+1 is U1):

Round 1 Each player Ui chooses a random ri ∈ � q and broadcasts zi = gri .

Round 2 Each player Ui broadcasts Xi = (zi+1/zi−1)
ri .

Key computation Each player Ui computes their session key as:

Ki = (zi−1)
nri ·Xn−1

i ·Xn−2
i+1 · · ·Xi+n−2.

It may be easily verified that all users compute the same key gr1r2+r2r3+···+rnr1 .
Note that each user computes only three full-length exponentiations in

�
since n� q in

practice (typically, q ≈ 2160 while n� 232). We do not explicitly include sender identities
and sequence numbers as required by the compiler of the previous section; however, as
discussed there, it is easy to modify the protocol to include this information.

Theorem 3 Protocol P is a secure group KE protocol achieving forward secrecy. Namely:

AdvKE−fs
P (t, qex) ≤ 4 · Advddh� (t′) +

6qex

|
�
|
,

where t′ = t + O(|P|qextexp) and texp is the time required to perform exponentiations in
�
.

Proof Let ε(t)
def
= Advddh� (t). We consider first an adversary making a single Execute query

and show that AdvKE−fs
P (t, 1) ≤ 4 · ε(t′′), where t′′ = t + O(n · texp) and n is the number of

parties involved in the Execute query. We then discuss how to extend the proof for the case
of multiple Execute queries without affecting the tightness of the security reduction.
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Since there are no public keys in the protocol, we may ignore Corrupt queries. Assume
an adversary A making a single query Execute(U1, . . . , Un). We stress that the number of
parties n is chosen by the adversary; since the protocol is symmetric and there are no public
keys, however, the identities of the parties are unimportant for our discussion.

Let n = 3s + k where k ∈ {3, 4, 5} and s ≥ 0 is an integer (we assume n > 2 since
the protocol reduces to the standard Diffie-Hellman protocol [23] for the case n = 2). A
detailed proof requires a slightly different analysis for each of the possible values of k and
depending on whether or not s = 0; for ease of exposition, we describe here the proof for
k = 5, s > 0 which is the most difficult case. In the real execution of the protocol, the
distribution of the transcript T and the resulting session key sk is given by:

Real
def
=





r1, . . . , rn ← � q;
z1 = gr1 , z2 = gr2 , . . . , zn = grn ;
Γ1,2 = gr1r2 , Γ2,3 = gr2r3 , . . . , Γn−1,n = grn−1rn , Γn,1 = grnr1 ;

X1 =
Γ1,2

Γn,1
, X2 =

Γ2,3

Γ1,2
, . . . , Xn =

Γn,1

Γn−1,n
;

T = (z1, . . . , zn, X1, . . . , Xn); sk = (Γn,1)
n · (X1)

n−1 · · ·Xn−1

: (T, sk)





.

Consider next the distribution Fake′ defined as follows (recall n = 3s + 5 and s ≥ 1):

Fake′
def
=





r1, . . . , rn ← � q;
z1 = gr1 , z2 = gr2 , . . . , zn = grn ;
Γ1,2,Γ2,3,Γ3,4 ←

�
; Γ4,5 = gr4r5

for i = 1 to s:
let j = 3i + 3
Γj−1,j = grj−1rj , Γj,j+1 ←

�
, Γj+1,j+2 = grj+1rj+2 ;

Γn,1 = grnr1 ;

X1 =
Γ1,2

Γn,1
, X2 =

Γ2,3

Γ1,2
, . . . , Xn =

Γn,1

Γn−1,n
;

T = (z1, . . . , zn, X1, . . . , Xn); sk = (Γn,1)
n · (X1)

n−1 · · ·Xn−1

: (T, sk)





.

Claim For any algorithm A running in time t we have:

∣∣Pr[(T, sk)← Real : A(T, sk) = 1]− Pr[(T, sk)← Fake′ : A(T, sk) = 1]
∣∣ ≤ ε(t′′) +

1

|
�
|
.

Proof Given algorithm A, consider the following algorithm D which takes as input a
triple (g1, g2, g3) ∈

� 3 (where furthermore a generator g ∈
�

is fixed): D generates (T, sk)
according to distribution Dist′, runsA(T, sk), and outputs whatever A outputs. Distribution
Dist′ is defined as follows (note that this distribution depends on g1, g2, g3):

Dist′
def
=





α0, β0, α
′
0, β

′
0, r0, α1, β1, γ1, r1, . . . , αs, βs, γs, rs ← � q;

z1 = gα0gβ0

2 , z2 = g1, z3 = g2, z4 = gα′
0g

β′
0

1 , z5 = gr0 ;

Γ1,2 = gα0

1 gβ0

3 , Γ2,3 = g3, Γ3,4 = g
α′

0

1 g
β′
0

3 , Γ4,5 = zr0

4 ;
for i = 1 to s:

let j = 3i + 3

zj = gγig1, zj+1 = gαigβi

2 , zj+2 = gri ;

Γj−1,j = z
ri−1

j , Γj,j+1 = gαi

1 gβi

3 zγi

j+1, Γj+1,j+2 = zri

j+1;

Γn,1 = zrs

1 ;

X1 =
Γ1,2

Γn,1
, X2 =

Γ2,3

Γ1,2
, . . . , Xn =

Γn,1

Γn−1,n
;

T = (z1, . . . , zn, X1, . . . , Xn); sk = (Γn,1)
n · (X1)

n−1 · · ·Xn−1

: (T, sk)





.
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We now analyze the output of D. On one hand, we have:
{
x, y ← � q; g1 = gx, g2 = gy, g3 = gxy; (T, sk)← Dist′ : (T, sk)

}
≡ Real,

representing the case when (g1, g2, g3) is a Diffie-Hellman tuple. On the other hand, when
D’s input is a random tuple, the distributions Fake ′ and

{
x, y ← � q; z ← � q \ {xy}; g1 = gx, g2 = gy, g3 = gz ; (T, sk)← Dist′ : (T, sk)

}

are statistically close to within a factor of 1
|

�
| ; the only difference is that in distribution Fake′

the value of Γ2,3 is chosen uniformly from
�

while in Dist′ this value is chosen uniformly

from
�
\ {g

logg g2

1 } (that the distributions are otherwise equivalent follows from random
self-reducibility properties of the Diffie-Hellman problem; see [35] [5, Lemma 5.2]). Thus

|Pr[x, y ← � q : D(gx, gy, gxy) = 1]− Pr[x, y ← � q; z ← � q \ {xy} : D(gx, gy, gz) = 1]| (3)

≥
∣∣Pr[(T, sk)← Real : A(T, sk) = 1]− Pr[(T, sk)← Fake′ : A(T, sk) = 1]

∣∣− 1

|
�
|
.

Completing the proof, note that the running time of D is dominated by the running time
of A and O(n) exponentiations in

�
; therefore, Expression (3) (which is D’s advantage in

solving the DDH problem) is at most ε(t′′).

We now introduce one final distribution:

Fake
def
=





r1, . . . , rn ← � q;
z1 = gr1 , . . . , zn = grn ;
Γ1,2, . . . ,Γn−1,n,Γn,1 ←

�
;

X1 =
Γ1,2

Γn,1
, X2 =

Γ2,3

Γ1,2
, . . . , Xn =

Γn,1

Γn−1,n
;

T = (z1, . . . , zn, X1, . . . , Xn); sk = (Γn,1)
n · (X1)

n−1 · · ·Xn−1

: (T, sk)





,

and prove the following claim:

Claim For any algorithm A running in time t we have:
∣∣Pr[(T, sk)← Fake′ : A(T, sk) = 1]− Pr[(T, sk)← Fake : A(T, sk) = 1]

∣∣ ≤ ε(t′′).

Proof Given algorithm A, consider the following algorithm D which takes as input a
triple (g1, g2, g3) ∈

� 3 (where furthermore a generator g ∈
�

is fixed): D generates (T, sk)
according to distribution Dist, runs A(T, sk), and outputs whatever A outputs. Distribution
Dist is defined as follows (note that this distribution depends on g1, g2, g3):

Dist
def
=





r1, r2, α0, β0, α
′
0, β

′
0, γ0, . . . , αs, βs, α

′
s, β

′
s, γs ← � q;

z1 = gα0gβ0

2 , z2 = gr1 , z3 = gr2 , z4 = gα′
0g

β′
0

2 , z5 = gγ0g1;

Γ1,2,Γ2,3,Γ3,4 ←
�

; Γ4,5 = g
α′

0

1 g
β′
0

3 zγ0

4 ;
for i = 1 to s:

let j = 3i + 3

zj = gαigβi

2 , zj+1 = gα′
ig

β′
i

2 , zj+2 = gγig1;

Γj−1,j = gαi

1 gβi

3 z
γi−1

j , Γj,j+1 ←
�

, Γj+1,j+2 = g
α′

i

1 g
β′

i

3 zγi

j+1;

Γn,1 = gα0

1 gβ0

3 zγs

1 ;

X1 =
Γ1,2

Γn,1
, X2 =

Γ2,3

Γ1,2
, . . . , Xn =

Γn,1

Γn−1,n
;

T = (z1, . . . , zn, X1, . . . , Xn); sk = (Γn,1)
n · (X1)

n−1 · · ·Xn−1

: (T, sk)





.

20



Arguing as in the previous claim (and again using the self-reducibility of the DDH problem),
we have:

∣∣Pr[(T, sk)← Fake′ : A(T, sk) = 1]− Pr[(T, sk)← Fake : A(T, sk) = 1]
∣∣

= |Pr[x, y ← � q : D(gx, gy, gxy) = 1]− Pr[x, y ← � q; z ← � q \ {xy} : D(gx, gy , gz) = 1]|

≤ ε(t′′).

In experiment Fake, let wi,i+1
def
= logg Γi,i+1 for 1 ≤ i ≤ n. Given T, the values

w1,2, . . . , wn,1 are constrained by the following n equations (only n − 1 of which are lin-
early independent):

logg X1 = w1,2 − wn,1

...

logg Xn = wn,1 − wn−1,n.

Furthermore, sk = gw1,2+w2,3+···+wn,1 ; equivalently, we have

logg sk = w1,2 + w2,3 + · · ·+ wn,1.

Since this final equation is linearly independent from the set of equations above, sk is
independent of T. This implies that, for any computationally-unbounded adversary A:

Pr[(T, sk0)← Fake; sk1 ←
�

; b ← {0, 1} : A(T, skb) = b] = 1/2.

Combining this with the previous two claims shows that AdvKE−fs
P (t, 1) ≤ 4 · ε(t′′) + 2/|

�
|.

For the case of qex > 1, a standard hybrid argument immediately shows that

AdvKE−fs
P (t, qex) ≤ qex · AdvKE−fs

P (t, 1).

Yet tighter concrete security can be obtained by again using the random self-reducibility of
the DDH problem [5, Lemma 5.2]. In particular, given a tuple (g1, g2, g3) ∈

� 3 and a fixed
generator g, one can efficiently generate qex tuples L = {(g1

1 , g1
2 , g1

3), . . . , (gqex

1 , gqex

2 , gqex

3 )}
such that (1) if (g1, g2, g3) is a Diffie-Hellman tuple, then all tuples in L are Diffie-Hellman
tuples whose first two components are randomly distributed in

� 2 (independently of any-
thing else); (2) if (g1, g2, g3) is a random tuple, then all tuples in L are randomly distributed
in

� 3 (again, independently of anything else). In the second case, with all but probability
qex

|
�
| it will be the case that logg gi

3 6= logg gi
1 · logg gi

2 for all i.

Paralleling the preceding proof, we may define distributions Realqex
, Fake′qex

, Dist′qex
,

Fakeqex
, and Distqex

which simply consist of qex (independent) copies of each of the corre-
sponding distributions; in the case of Dist′qex

and Distqex
we use the corresponding tuple

(gi
1, g

i
2, g

i
3) for the ith copy. Corresponding to the first claim, one could then show that for

any algorithm A running in time t:

∣∣∣Pr[(~T, ~sk)← Realqex
: A(~T, ~sk) = 1]− Pr[(~T, ~sk)← Fake′qex

: A(~T, ~sk) = 1]
∣∣∣ ≤ ε(t′) +

2qex

|
�
|
,
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where t′ is as in the statement of the theorem. Corresponding to the second claim, one
could show that for ant algorithm A running in time t:

∣∣∣Pr[(~T, ~sk)← Fake′qex
: A(~T, ~sk) = 1]− Pr[(~T, ~sk)← Fakeqex

: A(~T, ~sk) = 1]
∣∣∣ ≤ ε(t′) +

qex

|
�
|
.

Finally, using the same techniques as above, it is straightforward to see that even for a
computationally-unbounded A

Pr[(~T, ~sk0)← Fake; ~sk1 ←
� qex ; b← {0, 1} : A(T, ~skb) = b] = 1/2.

Putting these together gives the result stated by the theorem.
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