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ABSTRACT Stream ciphers are often used in applications where high
speed and low delay are a requirement. The Solitaire stream cipher was
developed by B. Schneier as a paper-and-pencil cipher. Solitaire gets its se-
curity from the inherent randomness in a shuffled deck of cards. In this pa-
per we investigate semigroups and groups properties of the Solitaire stream
cipher and its regular modifications.

1 Introduction

Stream ciphers are often used in applications where high speed and low
delay are a requirement. The Solitaire stream cipher was developed by B.
Schneier[1] as a paper-and-pencil cipher. Solitaire gets its security from
the inherent randomness in a shuffled deck of cards. Solitaire is an output-
feedback mode stream cipher. The next-state function F' is the composition
of four transformations F' = F, F3F5F} which permute of elements of a deck.
In [2] is considered the cycle structure of Solitaire. It is proved that Solitaire
is not reversible and described all irreversible states. In [3] are analyzed
properties of the key scheduling algorithm which derives the initial state
from a variable size key, and described weaknesses of this process. One of
these weaknesses is the existence of large classes equivalent keys.

In this paper we consider the method analysis of a cipher based on in-
vestigation properties of the group generated the cipher. We apply this
approach to studying properties of the Solitaire stream cipher. Methods
based on investigation group or semigroup properties of stream ciphers
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were not published in open .literature

In this paper we describe groups <F3>, <Fy>and <F3, Fy>. We prove
that the group <Fj, F;>is an intransitive group and describe its orbits.

We get that <Fj;>, <Fy>are cyclic isomorphic semigroups of order n
and |<Fi,Fy>|> (n — l)n2. Also we prove that semigroups <Fy, Iy, F3>,
<Fi, Fs>and <Fy, F3>are isomorphic and groups generated regular mod-
ifications of Solitaire are embedded to the semigroup <Fi, F», F3>.

Also we investigate group properties of regular modifications of the Soli-
taire stream cipher. We obtain that some properties of the semigroup prop-
erties of Solitaire and its regular modifications are the same.

Let n > 3. By A denote n — 2 and by B denote n — 1. We will suppose
that records of jokers as letters or numbers are identical, i.e. n —2 =‘A’, n —
1=B’.

If we select N — 2, n — 1, or only n — 2, or only n — 1 in Z,, then
denote ZAB={0,n — 3, A, B}, ZA={0,n — 3,n -1, A}, ZBE={0,n — 2, B}
respectively. Since numbers N — 2, n — 1 and letters A, B are identical we
could consider sets ZAB, 74, 75 as 7,,.

The following standard notation will be used throughout:

1. | X| denotes the cardinality of the set X;

2.N=1{1,2,3,4,..};

3. <P >denotes a cyclic group generated by P;

4. <P1,Pg,...,P,>denotes a group generated by Py, Pa, ..., Py;

5. S(X) denotes the symmetric group on X, S, = S(Z,);

6. E denotes the identity permutation;

7. (s)<P1,Ps,....,Pp,>=8<P1,Ps,....P,,>denotes the orbit of s;

8. G a denotes the stabilizer of A in G;

9. GX (g ) denotes a restriction the transformation group G (transfor-
mation g) to the set X;

11. a€ denotes the orbit of «;

10. A9=Ag={ag |a € A}, where g is an element of the transformation
group(semigroup) G;

12. A=AG= |J A%, where G is a transformation group (semigroup);

gi€G

13. G 2 H denotes that groups (semigroups) G, H are isomorphic;

14. < s[0], s[1]...s[n — 1] >denotes the permutation s € S,,.

For convenience we shall simultaneously use two records for the per-
mutation <s[0]...s[k1 — 1] A s[k1 + 1]...s[ka — 1] B s[ka + 1]...s[n — 1]>=
<6[0](5[k‘1 — 1] A 6[/(11]6[/(12 — 2] B 6[/(12 — 1](5[71 — 3]>AB7 where

S[J] fO’I" j:07k1_17
6ljl=19 sli+1] for g =ki, ks —2,
s[j+2] for  j=ko—1,n-3,

and <4[0]...8[n — 3]>€S,,_2.



iii

We also suppose that < s[0]...s[r—1] A s[r+1]...s[n—1] >=< §[0]...6[r—1]
A §[r]...6[n — 2] > 4,where

| sl] for  j=0,r—1,
6[‘7]_{5[j+1] for j=r+1,n-2,

and < 6[0]...6[n—2] >€ S,_1(ZM\A); < s[0]...s[r—1] B s[r+1]...s[n—1] >
< 6[0]...6[r — 1] B §[r]...6[n — 2] >p, where

| s[d] for j=0,7r—1,
6[3]{3[]'—1—1] for j=r+1,n-2,

and < 6[0]...6[n — 2] >€ S,_1.

2 Description of Solitaire

The Solitaire stream cipher is modeled by the autonomous automaton A, =
(Sn, Zmu{a),F,f), where functions F : S,, — S,,, f : S;, — Z,,u{a} and
« is an additional symbol. The cipher depends on m,n €N, for practice
m = 26, n =54. The state of Solitaire at time t(t =0, 1,...) is a permutation
=< 5¢[0]...s¢[n — 1] >€ S,, and s¢ is an initial state.
The next-state function F is the composition of four transformations
E—
F1Fs F3F4, which are given below. The transformation Fy : S(Z2) —
S(Z4),
Fi1:<s[0]...s[r] A slr+1)...s[n — 2]>4 —<s[0]...s[r + 1] A s[r+2]...s[n —
2]>4 for r #n — 2,
F1:< s[0] s[1]...s[n — 2] A>4 —<s[0] A s[1] s[2]...s[n — 2]>
The transformation Fy : S(Z5) — S(ZB),
Fo :< s[0]...s[r|B s[r+1]s[r+2]s[r+3]...s[n — 2| >p—<s(0]...s[r] s[r+1]
s[r 4+ 2|B s[r + 3]...s[n — 2]>p where r¢{n — 3,n — 2}
Fao :< s[0] s[1]...s[n — 3] B s[n — 2] >p—<s[0] B s[1]...s[n — 2] >p,
Fo :< s[0] s[1]...s[n — 2|B >p—<s[0] B s[1]...s[n — 2]>p.
The transformation F3 : S(ZAP) — S(ZAB),
Fs :< s[0]...s[k1 — 1] A s[k1]...B s[ka]...s[n — 3] >ap—<slka]...s[n —3] A
slk1]...B s[0]...s[k1 — 1]> 4B,

F3: <s[0]...s[k1-1] Bskq]...A ap —< s[kz]...s[n—3] B s[k1]...A s[0]...s[k1—
1]>AB-

The transformation Fy : S(ZAB) — S(ZAB). Let s[n — 1] = r. Then

Fa:< s[0]...s[r —1] s[r]s[r +1]...s[n — 2] s[n — 1] >—< s[r + 1]...s[n — 2]
s[0]...s[r]s[n — 1]>for s[n — 1] ¢ {A,B},

Fa :< s[0]...s[r — 1] s[r]s[r + 1]...s[n — 2] s[n — 1] >—< s[0]...s[n — 2]

s[n — 1] > for s[n — 1] € {A, B}.
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Consider the next-state and output functions of Solitaire at time ¢ (¢t =
1,2....).
The next-state function F

X¢ = (s¢)F1;
Y = (X¢)Fo;
Ve = (Ye)Fs;

St+1 = (V¢)Fa,

T.e. St+1 = (St)F1F2F3F4.

The output function f

Let St+1[0] =TI
a) If s;41[r] €{A, B}, then z, = a;
b) If spy1[r:] ¢{A, B}, then z; = s¢41[r¢](mod m),

le.zz = (St-l-l) f.

The map p: Z7, xS, —85,, is generated an initial state sg, which is a key
of Solitaire, from a passphrase k€Z} . The map p is modeled by the au-
tomaton A, = (Z,,, Sy, P) without an output with the next-state function
P:7,%x8, —S,.

The partial next-state function P(,y= F1F2F3P,, r €Z,,, where map P,. :
Sn — Sy,

(< s[0]...s[r]s[r + 1]...s[n — 1] >)P,=<s[r + 1]...s[n — 1]s[0]...s[r] > .

Let k = ki...kr be a passphrase of length L > 1, k; € Z,,, ] = 1,L.
bp =< 0 1..n — 1 > is an initial state of the automaton A,.

The map p

I. For t =1, L do:

1%y = (by)Fy;

2. ¥t = (X¢)F2;

3. Ve = (Ye)Fs;

4. b1 = (Vi) Pry.-

I1. Take so=br+1.

The directed set Az={t|z: # a,t = 1,2...} corresponds to the keystream
Z. Let the sequence 7z = 71...7|z,|, where 71 =min(Az),r;=min(Az\{r,...,
Tj—l})7 ]:27 |A?|7

Let the map g : Z, — Z7%,, (Z)g =7, 2't=2r,, t = 1,|Az]|. It is clear that
the map g decimations the keystream Z.

Letp;...py be a plaintext, c;...cy be a corresponding ciphertext and
(2)g==.

Decryption: ¢; = pt + 2’ (mod m), t =1,

Encryption: p; = pt — 2’ (mod m), t = 1,

=

=



3 Properties of the transformation group
<F3, F4s>

In this section we describe some properties of the transformation group
< F3,Fy>. We will suppose that n > 3 throughout.

First we consider the transformation group < F3 > of S,,. Let Ge<F3,
Fy>and I(G)={s € S(Z2P)|sG = s}.

Proposition 1 Let {A;, As}={A, B} Then
1. F3 is involution;

2. 1(Fy)={ <Ais[1]..s[n — 2] Ay>|<s[l]..s[n —2] >€S .}
and |1 (F3)|=2(n—2)!;

!
3. <Fs>has %f(n —2)! orbits of length 2;

Proof. For proof note that for any ky,ks, 0 <k;< ko< n —1. the fol-
lowing equalities are true.

(<s[0]...s[k1—1] Ay s[ky+1]...s[ka—1] Ag s[ka+1]...s[n—1]>) F3=(<s[ka+
1]...s[n — 1] Ay s[k1 + 1]... s[ka — 1]Ag s[0]...s[k1 — 1]>),

(<Aqs[l]...s[n — 2] Ag>)F3=<A; s[l]...s[n — 2] As>. m

Now let us prove some properties of the transformation group <Fy>. Let
O be a set, O] =n,n > 1. 7:5(0) — S(O) denotes left circular shift, i.e.

< s[0]...s[n — 1] > n =< s[1]...s[n — 1] s[0] >.
For any r € Z, we have , < s[0]..s[n — 1] > " =< s[r]...s[n — 1]
s[0]...s[r — 1] >.
It is clear that

I(F,) = {<s[0]..s[n —2] A>|<s[0]..s[n —2]>€ S, 1(Z\A) U
{<s[0]...s[n — 2] B>|<s[0]...s[n —2]>€ S,,_2}. |.

and |1 (F,)|=2(n—1)/

In the following propositions we consider properties of < F4>.

Proposition 2 Let {Ay, A3 }={A, B} and s=<s[0]...8[n — 2] r>, 1€ Z,_»
-1

n
Fy>|= ———
, then |(s)<Fy>| ged(rn = 1)

Proof. Note that (s)Fy =< s[r + 1]...s[n — 2]s[0]...s[r]s[n — 1] >=
(s)n"and Ls = |(s)n"| is the length of the orbit (s)n". Therefore, Ly is the
number of decisions of the equation Lyr=0 (mod n — 1). It follows that

n—1
L,

b:gcd(r,n—l)' "



vi

In the following propositions we describe properties of < F3, Fy >. Note
that F5F] F3=(F3F4F3)" for any r € N .

Proposition 3 Let {Ay, A1 }={A, B}, A={<A;5[1]...5[n — 2] A2>|<s[1]
S[n —2]>€S,, 3}, then <F3,F,;>A=<F3,F,> and |A] =2(n —2)!.

Proof. The proof is by direct calculation. m

Corollary 4 Let {Ay, A1}={A, B} and s=<Ais[l]...s[n-1]>€S, (748 ),
where sfn-1]# Aa, then(s)Fs €I(Fy).

The proof follows from propositions 2 and 3.
Let {AQ, Al} {A B} s =< S[ ] [kl — 1] Ay S[kl + 1] [kg — 1] Ay
slko +1]...8[n — 1]>, ko > k1. Denote by dist4p(s)=ko — k1—1 the number
of elements between jokers A and B.

Proposition 5 Let {As, A1 }={A, B} ands =< s[0]...s[k,—1] 4;s[k,+1]...
slky—1] A S[k,+1]... sin —1] > S, (Z2P). Ifsre(s) <Fy4 Fy>, then

.S
)
distap (s)=distap(st) ordistap(s/) =n —3—distap(s).
J A
ko

Proof. Note that <s[0]...s[k1 —1] A1 s[k1+1]...s[ka—1
] > F3=< [ ] [kl — 1] Aq S[kl + 1] [kg — 1] A, S[
i.e. distap(s)= distap(sF3).

Since F} is a cyclic shift s, we consider the following three cases.

In the first case s; =< [0 ] slkr — 1] Ay s[k1 + 1]...s[ka — 1] Ay s[ks +
1]...s[n—=1]>n" =<s[r]...s[k1 —1] A1 s[k1+1]...s[k2 —1] Ag s[k2+1]...s[n—2]
s[0]...s[r] s[n — 1]>. Thus dist s (s)=dist ap(s1).

In the second case s1 =< s[0]...s[k1 — 1] Ay s[k1 + 1]...s[ka — 1] As

[k2+1] [TL 1]>77 =< S[lirt] [kz* ]A2 S[k2+1] [TL 2] [ ]...S[klfl]
Ay s[ky +1]...8[k1 +t — 1] s[n — 1]>, where r = ky + t. Thus distap(s1)=
n—3— diStAB(S).

In the third case: s; = (s)n"=<s[ky + t]...s[n — 2] s[0]...s[k; — 1] Ay
sk + 1]...slka — 1JAg s[ka + 1]...s[ke +t — 1] s[n — 1]>for r = ko + ¢.
Therefore, dists, (A1, As)= dists(A1, As).

Since s/ = (S)FgFil...FgFiL for some ty,..t;, € Z,, it follows that
dist ap(s)= distap(s!) or distap(s)=n — 3 —dist 4z(s) ®m
Proposition 6 Let {As, A1 }={A, B} and s=<s[0]...s[k;—1] Ay s[ky +1]...
slky—1] Agsfko+1]... sin —1]>. If st €(s) <F3, F4>, then s/[n—1]e
{slky;—1], s[n —1],sk,—1]}.

The proof is straightforward.

Corollary 7 Let A,=S(Z4B )\ {<A s[1]..s[n — 2] B>,<B s[1]..s[n — 2]

A>| <s[1]..s[n —2] >€S, ,} . Then the group <Fs, Fy>"ris intransi-
tive.

2ol 1].afn=
T 1esln - 1>,

The proof follows from proposition 6.
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4 Properties of the semigroup
transformation <F;, F,, F3, F,>

In this section we describe properties of the semigroup transformation <F1,
Fay, F3, Fy>and the group that is generated regular versions of Solitaire.
We begin with definitions.

Let O be a set, |O|=d, d>1, and a map a: © — O. Let G be a trans-
formation semigroup of ©. Recall [5] that rg(e, ©)=|Balis the rank of «
and def (a, ©)=d— r9(a, ©) is the defect of a. def (G, ©)=d— |OF |[is the
defect of G.

Let G=<a>={a,a?,...,a? "1} be a cyclic semigroup. The r €N, denoted
ind( @), is called the index of G if the set {a”,...,a?"" "1} is a cyclic group
of order g¢.

Let S(Z ) = {s € Z2|s[r] =A} S(ZB,r) = {s € ZB|s[r] =B},r =
0,n—1, S(Z2B r1,1) = {s € ZAB |s[r1] =A, s[rz] =B}, 0<r1,ro <n—1,
T1£T.

It is clear that

S(z}) = US(7L7) S(Z7) = US(n?)
S(Z;?B): U S(Z;? ,rl,rg).

ri#r2
Let maps 04: S(Z2) — S(Z,_1), 0B: S(ZP) — S(Z,_1)

<s[0]...s[k — 1] A s[k]...s[n — 2]>4 ca=<s[0]...s[k — 1] s[k]...s[n — 2]>,
<s[0]...s[k — 1] B s[k]...s[n — 2|>p op= <s[0]...s[k — 1] s[k]...s[n — 2] >,

where k=0,n — 1, <s[0]...s[n — 2] >€ S,,_1(Z"\ A).
Let the map oap: S(ZAB) — S(Z,_2)
<S[ ] [kil — 1] A S[kil] .B S[k‘g] [n — 3]>AB OAB— <S[ ] [k‘l — 1]
ski)e. slke — 1] slke]...sln — 3]>,

where k17gk2,k1:O,TL — 1, kQZO,TL — 1, <$[0]...$[TL — 3]>€ Sn—2-

<s[0]...s[k — 1] A1 Ay s[k]...s[n — 3|>04p=<s[0]...s[k — 1] s[k]...s[n — 3]>

where {A;, As}={A, B}, k=0,n — 1, <s[0]...s[n — 3]>€S5,,_2.

Permutations s, s/ € S(Z4) are called A- equivalent if (s)oq = (s/)oa.
Permutations s,s/ € S(ZP) are called B- equivalent if (s)op = (s/)op
Permutations s, s/ € S(ZAB) are AB- equivalent if (s)oap = (s/)oas.

By s~ s/, s~psl, s~ 4 s/ denote A-equivalent, B-equivalent, AB-equivalent
permutations s, s/ respectively. Let AA={s/| s/ €S(Z2), s~ 481}, AB={s1|s1 €
S(ZB),s ~p st}, ALB ={s1 |s1 € S(ZAB), s ~ap s!} .

First we consider properties of semigroups < F1>, < Fe>and < F1,F,>

Proposition 8 Let the sets Q4 =S(Z)\ S(Z2*,0), 25=5(22)\s(2%,0).
Then
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1. SZ20)F'=0, def(F,,Z4) = (n—1)/.

2. S(Z,,0)F, "' =0, def(Fy,Z5)=(n—1)1.
3. < F1>, < Fa> are cyclic semigroups of order n and ind(F1)=ind(F2)
=1.

4. < F1>8, < Fy>Seare cyclic groups of order n —1; st €(s) < F,>%A
iff s~ast and |(s) < F >%|=n — 1. s €(s) < F2>%8 ; iff s~pst and
I(s) < F,>%8|=n—1.

5. < F1>%has (n —1)! orbits and < Fy>"®has (n — 1)! orbits.

6. < Fi>< Fo> .

n—1
Proof. The domain of the transformation F1 is S(Z4) = |J S(ZZ,r),
r=0

where S(Z2,r1)NS(Z,r2) = 0, r1479. Consider s =< s[0]...s[n—2]A>4 €
S(Z4,n —1). Then

Fi: <s[0]...s[n — 2] A>4 —<s[0] A s[1]...s[n — 2]>4,

FJ: <s[0]...s[n — 2] A>4 —<s[0]...s[5 — 1] A s[j]...s[n—2]>4 € S(ZA,])
for j=1,n — 1. (1)

Therefore, Fy : S(Z2,j) — S(Z2,j + 1) for j=0,n—2, Fy;:8(Z4,n —
1) — S(zZ4,1).

Obviously, S(Z24,n—1)F1=S5(Z2,0)F,=5(Z*, 1) Thus, S(Z,0)F; *=0.

no no no

n—1
Similarly. The domain of the transformation F is S(Z2) = |J S(Z5,r)
r=0

for S(ZB,r1) N S(ZB,ry) = 0, rizrs. Let s =< s[0]...s[n — 2]B >g€
S(ZB)n —1). Then

Fy: <s[0]...s[n — 2] B>p —<s[0] s[1] B s[2]...s[n — 2|>p,

F): <s[0]...s[n — 2] B> —<s[0]...s[j — 1] s[j] B...sjn —2]>5 € S(Z2,))
for j=1,n—1. (2)

Thus,

Fy:S(ZB.j) — S(ZB,j +2) for j=0,n —3,

Fa:5(Z8 . n—-2)— S(Z5 1),

Fo:S(ZB,n —1) — S(Z5,2).

Hence, S(ZB n—1)F,=S(ZB 0)F,=S(ZE,2) This implies that S(ZZ,0)
Fy '=0. Ttems (3)-(6) follow from (1) and (2). =

We consider regular transformations 1 4: S(Z4)— S(Z4), vp: S(ZB)—
S(ZB), 9a: S(ZM)— S(Z2), 9p: S(ZB)—S(ZB), where

a: <s[0]...s[n — 2] A>4 —<A s[0]...s[n — 2]> 4,

Pa:<s[0]...s[k] A s[k+1]...s[n—1]>4 —<s[0]...s[k] s[k+1] A...s[n—2]>4
for k=0,n — 2

Yp: <s[0]...s[n — 2] B>p —<B s[0]...s[n — 2|>z,
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Yp:<s[0]...s[k] B s[k+1]...s[n—1]>p —<s[0]...s[k] s[k+1] B...s[n—2]>p

for k=0,n — 2.
Va: <s[0]...s[n — 2] A>4 —<A s[1] s[2]...s[n — 2] s[0]> 4,

Va:<5[0]...5[k] A s[k+1]...s[n—1]>4 —<s[0]...s[k] s[k+1] A...s[n—2]>4
for k=0,n — 2

¥p: <s[0]...s[n — 2] B>p —<B s[1]s[2]...s[n — 2] s[0]>B,

Vp:<s[0]...s[k] B s[k+1]...s[n—1]>p —<s[0]...s[k] s[k+1] B...s[n—2]>p
for k=0,n — 2.

It is clear that < ¥4 >, <94 > and < ¥yp >, < Ip > are cyclic groups.

Note that 14, 94 are two regular modifications of Fy and < g >,
< ¥p > are two regular modifications of F'5. It is not hard to prove
that < ¢4 > is a cyclic group of order n. s/ € (S) <) ,> iff s~as. The
group < ¢4 > has (n—1)! orbits and |(S) < ¢ ,> | =n. < ¥4 > is a cyclic

n—1

group of order n(n — 1)and (s) < 94 > =J (s) n* < ¥4 >. There ex-
k=1

ist the following isomorphism of groups < A:>%< P>, < IA>=<Ip>,
<NPYA>EL< I g>, < napp>=<Up>.
Let s€S(Z8 ) such that s[k;] =A, s[kz] =B. Denote

dista(s) = m-1+k, —k; for k, <k,
distp(s) = Mm-1+k, -k, for k, >k;.
Let the transformation 7: S(ZAB)—S(Z4B) be given by
7: <58[0]...s[k1—1] A s[k;+1]...5[k2—1] B s[ka+1]...s[n—3]>—<s[0]...s[k1 +
1] A... S[kg + 1] BS[I’] - 3]>fOI'||(1 - k2| > 1.

7 : <s[0]...A B s[k] s[k + 1]...s[n — 3]>— <s[0]...s[k] A B
slk +1]...s[n = 3]>,

T : <s[0]...B A s[k] s[k + 1]...s[n — 3]>— <s[0]...s[k] B A
slk+1]...s[n = 3]>.

It is easy to prove that the transformation group < 7 >is an 1/2-
transitive cyclic group of order n. For any s € S(Z/'B) the orbit (s) < 7 >
of s is the set {s/|dista(s!) = dista(s),s! € AL}, |(s) <7 >|=n. For
any s € S(ZAP)the stabilizer < 7 >,=E.

Proposition 9 Let <y 4, ¥p>be a transformation group of S,. Then

1. <wa, Yp>is an 1/2-transitive group. (s)<wa,pp>=A2B and |ALE|
=n(n-1).



2. <4, Yp>has (n —2)! orbits.
3. the sets Q= {s/|dist ,(s/) =k,s/ € A?B}, where k=0,n — 2, |Q|=n

are imprimitive blocks of < ¥a,¥p >A8°

AAB w
4. <vYa,¥B >q8 =< J|j =0,n — 2> for any k=0,n — 1.

5. the group acting on imprimitive blocks is isomorphic to Z,_1.

o

| <avp>|=(n-1)n’
The proof is omitted.
Proposition 10 Let Qp=S(Z28 )\ (S(Z2,0)uS(Z5,0)). Then

1. Qap< F1,Fy>=Qap. def(< F1,Fy>, ZA4B)=2(n — 1)! and def(F,
Fo, ZAB )= def(FoFy, Z48)=2(n —1)! — (n —2)!.

2. s € (s)<F1, Fo>%8 jff s~apst and |(s)<Fi, Fo>%8|=(n —1)
(n—2).

3. the group < Fq,Fo>%8 has (n —2)! orbits.

4. the group < F1,Fy>%8 is isomorphic to the transformation group

<ty pp>5Zn%),

Proof. The domain of the transformations F1Fg, FoFy is
S(ZP)= U S(Z}P,r,r).
r17#1r2
From proposition 8 and S(Z2,0) N S(ZZ,0) = 0 for F;F, we have
S(ZAn —1)F; = S(Z2, 0)F, = S(Z4,1),

(S (ZAB)\S(Z;?70))F2 ((S(Z7,0\S(Z;'P,1,0) U S(Z;P,1,0)U

Qap)Fa=(S(ZB,2)\S(Z18,0,2)) U S(Z1B,0,2) UQap=S(Z28,0,2) U
Qap.

Similarly, for FoF; we get

S(ZB n-1)F, = S(ZB 0)F, =S(ZB,2),

(S(ZP\S(Z,7,0)F1=((S(Z7,0\S(Z;'7,0,1)) U S(Z;17,0, U

Qap)F1=(S(ZB, 1)\S(Z28,1,0)) US(Z1B 1,0) UQap=S(Z2B,1,0) U
Qap.

Thus,

S(ZABYF1Fy = S(Z48,0,2) U Qap, S(ZABYFF, = S(Z48,1,0) U

QaB.

This means that

def(Fle, Z;?B) = def(FgFl, Z,;?B) = 2(7’L — 1)' — (TL — 2)'

Note that (S(Z22,0,2) U Qap)F1 = Zag, (S(ZAB,1,0) U Qap)Fe =
Qup.

From Qap FIIZ Qap, Qap F;lz Qap we have Qap < F1,Fy >=

QaB.
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The proof of items (b)-(d) is straightforward. m
From propositions 9 and 10 we obtain that |<Fy, F5>|< n?(n — 1).
Corollary 11 If states of Solitaire are the following permutations:
1. s =<A s[1] s[2]...s/ n —2] B>eS(ZAB);
2. s =<s/0] s[1] 5[2]...sf n —3] A B>€S(ZAB);
3. s =<s/0]...s/[p—1] B s[p+1]...s/n —2] A>€S(ZAB), where
pe{0,n —2};
4. s = <s[0]...s/[p — 1] A s[ p+1]...s[n — 2] B>€S(ZAB), where
pe{0,n—4}U{n -2}
then (s)F ' =0.

Corollary 12 Let Qap=S(Z}B)\(S(Z2,0)US(ZB,0)) and a substitution
m: {8, 4}—{3. 4}. Then

1. (8(237, 0, Q)UQAB)(F 3)F @) (F1F2F 3y Fray) ' =0, def(Fy
FoFrsyFry, ZoP)=2(n —1)! = (n —2)!.

2. (S(Z;;‘B,O,Q)UQAB) (F,T(g)FW(4)F1F2)_1:®, def(F,T(g)Fﬁ(4)F1F2,
ZAB)=2(n —1)! - (n = 2).

3. (S(Z18,1,0)0048)(F n(3) Fr(a)(FoF 1 F r(3)F r(ay) "' =0, def(Fo F
F,T(g)FW(4), Z,‘?B):Z (n — 1)' — (n — 2)'

4. (8(Z28,1,000048) (Fr@) Fr@F2F1)7 =0, def(F ) F @ FaF,
ZAB)=2(n —1)! — (n —2).

The proof follows from proposition 10.

Proposition 13 In the following proposition we describe properties of the
<Fi, Fy, F3> semigroup.

1. If s€S(ZAB), then (s)<Fi, Fy, F3>= S(Z4B).

2. Let A:{ S(Z;?B, T1, 7’2)|r1,7‘2:0,n—1, ’/’1757’2}, g€<F1, Fy, F3>
and A € A. Then AIN A=A or A9N A=) . |[A|=n(n—-1).

3. Let s€S(ZAB ), Ay={sl|st ~aps, s €S(ZAB)}. Then the transforma-
tion semigroup G of A is isomorphic to the semigroup < Fq,Fy>%s,

4. Let Q=SZ2P)\(s(z2,0)usz?,0)uszZ n-1)usiz?
n—1)) Then < Fy,F,,F3> s transitive and | < F |, F,, F3>%| =
(n —2)!. The group < F1,F,, F3>% is isomorphic to

<tha, VB, F3>S(20%),

7L7 n’
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Proof. Note that

Fj: S(Z;?B, 7’1,7’2)—> S(Z;?B, n—rqg— 1,n - — 1),

F1: S(ZAB ry,r9)— S(ZAB, ri+1,r5) for 71 + 1 # ro and rizn —1,
(ZAB n —1,r9)— S(ZAB, 1,ry+1) for o #0,
(ZAB . n —1,0)— S(Z48, 1, 0) for ry #0,
(ZAB | 1ry,r9)— S(ZAB | ro,ry) for 11 +1 = 7y and rizn —1,

Fo: S(ZAB, ry,ry)— S(ZAB, ri,ro+2) for r1 —ry ¢{1, 2}and ry ¢{n —

Fo: S(ZAB, r1,r9)— S(ZAB, ry — 1,r1+1) for ry — 7o €{1, 2}, 1o ¢{Nn —
2,n — 1},

Fo: S(ZB, ri, n —2)— S(ZB | r1+1,1) for 1y €{2,n — 3},

Fo: S(ZB, ri,n —1)— S(zB n r1+1, 2) for r1 €{0, 1},

Fo: S(ZB, ri, n —2)— S(ZB, r1,1) for r; €{0, n — 1},

By the above it follows that for any g €< Fy, Fy, F3 > and A € A we
have AIN A=A or AIN A=(). Since |S(ZB)| =n! and [S(ZAB 11, 1s)| =
(N=2)!, r1,79=0,n — 1, 11 #rq, we get |A| = |S(ZABY\|S(ZAB r1,1p) =
n(n —1).

It is obviously that < Fi,F, >A~< Fy, Fy >S(Z'¢B)and S(Z;?B, n—ro—
L,n—ry—1) € S(ZAB ry,ry) < Fi,F, >. Therefore, the transformation
semigroup G of A is isomorphic to the semigroup < Fy, F, >%s.

Let s =< s[0] s[1]...s[j — 1] s[j] s[j + 1]... [ 3] A B>and sU) =< s]j]
s[1]...s[j — 1] s[0] s[j + 1]...s[n — 3] A B>, j=1,n — 3.

We will prove that for any j=1,n — 3, S(J) E (s) < Fy,F5, F3 >. The
following are true.

<s[0]A s[1]...s[j — 1] B s[j] s[j + 1]...s[n — 3]>€<s[0] s[1]...s[j — 1] s[/]

n7

[j+1] [ ]AB><F1,F2>
<s[0] A s[1]...s[j — 1]B s[j]s[j +1]...s[n = 3]>F3 =<sl[j] s[j+1]...s[n — 3]
A s[1]...s[j — 1] B s[0]>,
<s[j]A s[j +1]...s[n — 3] s[1]...s[j — 1B s[0]>€<s]j] s[j +1]...s[n — 3] A
s[1]...s[j — 1] B s[0]>< Fy,Fy >,
<s[j] A s[j+1]...s[n—3] s[1]...s[j—1] B s[0]>F3 =<s[0] A s[j+1]...s[n—3]
s[1]...s[j — 1] B s[j]>,
<s[0] s[j+1]...s[n— 3] A s[1]...s[j — 1] B s[j]>€<s[0] A s[j+1]...s[n— 3]
s[1]...s[j — 1] B s[j] >< Fy,Fy >,
s[n—3] A s[1]...s[j — 1|B s[j]>F3 =<s[j]A s[1]...s[j — 1]

<s[0] s[j +1]...
B s[0]s[j + 1]...s[n — 3]>,

<slj] A s[1]...s[j — 1] B s[0] s[j + 1]...s[n — 3]>e<s[j]A s[1]...s[j — 1] B
s[0]s[j + 1]...s[n — 3]|><F1, Fo>.

Therefore, for any j=1,n — 3 we get s) € (s) < Fy, Fy, F3 >.

Since, <s[0]...s[n — 3] A B>F3= <A B s[0]...s[n — 3]>, we have <A B
s[0]...s[n — 3]>€ (s) < F1,Fq,F3 >.

Thus, transpositions (s, s¢)) €<F;, Fy, F3>It is well known that the
symmetric group S, is generated by transpositions (0, 7), j=1,n — 1. There-
fore, S, = (s) < Fy, Fy, F5 >.
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Item 4 follows from proposition 10 and item 1. m

Recall [5] that a semigroupG divides a semigroup H (denote G|H) if
there exist a subsemigroup R of H such that G is isomorphic to R.

It is easily shown that < Fo > | < F1,F3 >, < F; > | < Fa,F3 >.

Theorem 14 < F,F,, F3>2<Fq,F3>2<Fy,F3y>.
Proof. The proof follows from proposition 9. =

Theorem 15 Let the set Q={S(ZAB, ry, 1)1, ro=0,n — 1, rzra}  and
< Py, F 3> be the transformation group of S(Z ;?B). Then

AB
n )

1. <4, F3> is imprimitive on S(Z

2. the sets S(ZfB, ri,ry), where ri,ro=0,n — 1,r1272, are imprimitive
blocks of <14, Fa> and [S(Z2P,r,ry)] = (n—2).

3. the number of imprimitive blocks is n(n — 1), i.e. |2 |=n(n—1).
4. the transformation group G of 1 is isomorphic to <ipa, Yp>.
5. <P, Fy>=< Y, Fy>=<yp, Fa> .

This proposition can be proved as proposition 13 for semigroups.

5 Conclusion

In this paper we began to investigate semigroups and groups properties of
the Solitaire stream cipher and its regular modifications. We described the
groups < F3 >, < Fy >, < F3, Fy > and proved that the group < F3, Fy >
is an intransitive group.

Also we described properties of the semigroups < F1> and < Fy> . As
particular, we proved that < F;> and < Fo> are isomorphic

We proposed and investigated group properties of regular modifications
of the Solitaire stream cipher It was considered group properties of < 14 >,
< 1 > which are regular modifications of < F; >, < Fy >. We found
that <14 > and < 1p > are isomorphic; | < ¥a,1¥p > | =n?(n—1) and
| < Fy,F5 > | < nz(n— 1)

We obtained that semigroups < Fi, Fb, F3 >, < Fy, F3 > and < F5, F5 >
are isomorphic This property is the same as for proposed regular modifi-
cations of Solitaire, i.e.< ¥ 4,9, Fs>=< 4, F3>=< g, Fy> .

We proved that some properties of the semigroup properties of Solitaire
and its regular modifications are the same. Therefore, we can use or inves-
tigate proposed regular modifications of Solitaire.
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