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Abstract

Padré and Sdez [PS| introduced the concept of a k-partite access
structure for secret sharing and gave a complete characterization of
ideal bipartite structures. We derive a necessary condition for ideal
tripartite structures, which we conjecture is necessary for all .

1 Introduction

A secret sharing scheme is a method for distributing shares of a secret value
s among a set of participants P in such a way that only certain “authorized”
subsets of P can reconstruct s by pooling their shares. The collection of
authorized subsets I' C 2% is called an access structure. Naturally S €
I'and S C T implies T' € I'. It is clear that the structure is determined
completely by [y, the set of minimal elements of I". For example, a ¢t-threshold
access structure consists of all § C P with |S]| > ¢; then I'y consists of all
subsets with |S| = t.

More formally, the secret s and the shares z, given to each p € P are ran-
dom variables, such that for any set S C P, H(s|{z,|p € S}) = 0 if and only
if § € I The scheme is called perfect if S ¢ I' implies H(s|{z,,p € S}) =
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H (s); this means that non-authorized sets do not obtain any new information
about s by pooling their shares. We write H(s|S) for H(s|{z,|p € S}).

Other things being equal, the security of a system degrades as the amount
of information to be kept secret increases. Thus the study of secret sharing
schemes has focused on the information rate, which is a measure of the size
of the shares relative to the size of s. Let > be a joint probability distribution
on s and the x, which gives a secret sharing scheme as defined above. Then
the information rate is defined as

H{(s)

max,ep H(x,)

,0(2), F) -

When p(3, ') = 1 then the scheme is called ideal. We define p*(I') as the
maximum information rate of all perfect schemes for I'. It is well-known that
perfect schemes exist for all T'; that p*(I') < 1 for all I, and that for most
structures, ideal schemes do not exist [St]. When p*(I') = 1 we say that I' is
ideal.

Let I' be an access structure on P = Uj<;<,Y; (all Y; disjoint). I' is a k-
partite access structure if, for any permutation o of P satisfying o(Y;) = Y;
for all 4, we have ¢(S5) € ' if and only if S € I". The sets Y; are called the
classes of I'. Intuitively, all members of a given class play identical roles in
the structure; thus to determine whether a set is authorized, we need only
know how many members it has from each Y;. For example, in a weighted
threshold scheme, all participants with the same weight are in the same
class. The hierarchical and compartmented structures introduced in [Sim]
are k-partite structures where k is the number of levels or compartments. Of
course, every access structure is k-partite for some k (in the extreme case
taking each Y; to consist of a single participant, so k = |P|); but it is natural
to consider families of structures in which the number of types of participants
is fixed and small, while the number of participants of each type can grow
large. We define N; = |Y;].

In a k-partite scheme, a subset S C P can be specified by a vector of
integers y = (y1,...,yx) where y; = |S N Y;|. Then I' can be thought of as
a set of points in [0, V7] x -+ x [0, Ng]. Of course (y1,...,yx) € ' implies
(z1,...,2k) € I for all vectors z with z; > y;. This permits a convenient
graphical representation of I' when k is 2 or 3.



2 Previous Work

In studying the information rate of k-partite structures, our fundamental tool
is the following result from [BDDV] (as generalized in [PS]), which contains
most earlier bounds on information rates as special cases:

Theorem 1 Let I be an access structure, let
0 —BycB;cCc---CB,¢gTl

and suppose that for each i = 1,...,m there exists X; C P such that
BuX,el but B;_1UX; &l

Then

gy < 2

(Using the notation of [GKP| whereby, for a statement S, (§) = 1 if S is true
and 0 if S is false).

Padré and Séez [PS]| give an explicit description of the class of ideal bipar-
tite access structures; it is precisely the class of quasi-threshold structures.
A quasi-threshold access structure I' is of the form I' = T'U AU B, where for
some integers n < Ny + No,ny < Np,ng < No, T consists of all (z,y) with
r+y>n,x>n—ng, andy > n—ny; Ais either empty or consists of all
(z,y) with > nq, and B similarly is either empty or consists of all (x,¥)
with y > ng. The various cases are illustrated in Figure 1.

3 A Necessary Condition for Ideal Tripartite
Structures

Given a tripartite structure I', we can consider two-dimensional “slices” of I’
which have one coordinate fixed. Such a slice is denoted I'y,_x. Such a slice is
of course a bipartite structure. It is easy to see that p*(I',,_x) > p*(I'). Given
a share-distribution scheme for I' realizing information rate r, we obtain a
scheme for I'y,_;, with information rate at least r by generating shares exactly
as we would for I', making public the shares that would have been given to



& r " T
n—n n—n
_ _ n
n—n, n N n—n, 1 N
N, N,
n
2 r l,
n—m n—n
-, m Ny n—n, n N

Figure 1: Ideal bipartite access structures

k members of Y;, and removing all of ¥; from the set of participants. In
particular, if I" is ideal, then every slice I';,_x must be a quasi-threshold
structure.

But the converse is not true; in Figure 2 we see an illustration of a tri-
partite access structure which is not ideal (filled circles represent authorized
sets, open circles unauthorized sets): Using theorem 1 with B; as indicated
and X; = (1,0,1), Xo = (1,0,0), X5 = (0,0, 1), we obtain p*(I") < 2/3, even
though each bipartite slice is ideal . We call this the “forbidden configura-
tion” for tripartite access structures.

Thus we are led to seek other necessary conditions on ideal k-partite
access structures which involve all k£ coordinates at once. Note that in a
bipartite quasi-threshold structure, there is a constant ¢ such that all (x,y) €
Iy with min(x,y) > 0 satisfy  + y = ¢: we will prove that the same thing
happens in three dimensions. We define

I'={(z1,...,21) € Dolming(x;) > 0}

We make use of a technical lemma, which follows easily from the defini-
tion of quasi-threshold structures: We omit the rather tedious formal proof,
appealing instead to the geometry of Figure 1.

Lemma 2 Let I' be an ideal bipartite access structure, and let (x,y) € L. If
there exists any (x',y') € I with @’ < x, then (x—1,y+1) € I'. Furthermore,
if (x — 1,y + 1) &Lq, then (0,y + 1) € I'y.
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Figure 2: A non-ideal access structure

Theorem 3 Let I’ be an ideal tripartite access structure. Then all sets in T
are the same size.

Proof: Let (z,y,2) and (z+0x, y+0dy, 2—k) be elements of I with x +dy #
k We will show that I' cannot be ideal; in fact we will show that p*(I") < 2/3.

There is no loss of generality in assuming that dy,dy, and k& are non-
negative. In fact we must have éx > 0; for if x = 0, then f‘(X:z) would
contain two points (y, z), (y+dy, z— k) whose coordinates had different sums.
Similarly dy > 0 and &k > 0.

Now note that if & = 1, we have the forbidden configuration, and can
apply theorem 1 with

B1:($—1,y,z—1),B2: ($,y,Z—1),B3:($+6X—1,y+6y,2:—1)

and
X; = (1707 1)7X2 — (0707 1)7X3 — (17070)

So we have k > 2. The proof now proceeds by induction on k, showing
that if this structure cannot be ideal when k = k' then it cannot be ideal
when k= k' + 1. Werequire A = (z+dx —L,y+dy —1L,z—k+1) &7l
(see Figure 3), otherwise we have the forbidden configuration as before. Also
note that, in order for the slice I'(x_,s4) to be ideal, we require T" = (x +
Ox,y +toy —L,z—k+ 1) €' by lemma 2. Now if 7" is minimal in the slice
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Figure 3: Proof of theorem 3

I'(x=245x), it is minimal in I' (because A ¢ I'), and by induction I' is not
ideal. The only other possibility is that (x + dx,0,z — k+ 1) € T.

Now we know that (x + dx,y — 1,2) € I' because it dominates (z +
dx,0,2 —k +1). Then by lemma 2, in order for the slice I'iz_.) to be ideal
we require P = (z+ 1,y — 1,2) € I.

Now consider the slice (Y = y). Since (z,z2) and (z + dx,z — k + 1) are
both minimal in this slice (the latter must be minimal since A & '), we have

r+z=x+ox+z—k+1

thus
oy =k—1
But now consider the slice I'(y_,_1y. We have that Q = (z +dx,y—1,2—
k+ 1) is a minimal point in this slice (since A ¢ I'). Thus P is not minimal
in this slice (since dx —k+1# 1). Sowe have Py = (x+ 1,y—1,2—1) € I.
But (z+1,y—1,2—2) €T (else I'(y—y_1) is not ideal). And now we get the
forbidden configuration (see Figure 3), with

Bl: ($,y—1,z—2),B2: ($,y—1,2’—1),B3:($,y,Z—1)

and
X; = (1707 1)7X2 — (17070)7X3 — (0707 1)



So we conclude that I' is not ideal; indeed if the conditions of the theorem
do not hold, then p*(I') <2/3. 1

Intuitively, theorem 3 suggests that a tripartite access structure cannot be
ideal unless it “sufficiently close” to being a simple threshold structure. It is
natural to ask if this result generalizes to an arbitrary number of dimensions.
We know of no counterexamples. Consider, for example, the hierarchical
structures introduced in [Sim|. The participants are divided into & mutually
disjoint levels: P = U¥ P, with P, being the “highest” level and Py the
lowest. For each level ¢ there is a threshold ¢; such that ¢; < o < -+ < {4.
The access structure is defined as

P={SCP:> |SNP| >t forsome 1<i<k}

i=1

A standard example to illustrate this is the case of a bank vault which can
be opened with the cooperation of three managers or two vice-presidents;
then two managers and one vice-president should also suffice, since one vice-
president can “stand in” for a manager. Clearly the sets P; form a k-partite
access structure. Such a structure is known to be ideal for any values of the
parameters; an ideal sharing scheme is given in [GPSN]. If S € I and each
coordinate is nonzero, then in particular |S N Pg| > 0; but if S is minimal, so
S — P, ¢ 1, then S must satisfy the definition with ¢ = &k and |S| = {; thus
every such § (if there are any) must be the same size.

References

[IBDDV]| C. Blundo, A. De Santis, R. De Simone, and U. Vaccaro, “Tight
Bounds on the Information Rate of Secret Sharing Schemes”, De-
signs, Codes, and Cryptography, v. 11 (1997) pp. 107-122

IGKP] R. Graham, D. Knuth, and O. Patashnik, “Concrete Mathematics:
A Foundation for Computer Science”, Addsion-Wesley, 1989

|GPSN| H. Ghodosi, J. Pieprzyk, and R. Sefavi-Naini “Cryptosystems for
Hierarchical Groups”, Lecture Notes in Computer Science v. 1172
pp. 275-286, Springer-Verlag 1996



[PS]

[Sim]

[St]

C. Padré and G. Séez, “Secret Sharing Schemes with Bipartite Ac-
cess Structure” IEEE Trans. Info. Th., v. 46 no. 7 (Nov. 2000) pp.
2596-2604 (earlier version in EUROCRYPT ’98)

G. Simmons, “How to (Really) Share a Secret” CRYPTO 88, Lec-
ture Notes in Computer Science v. 403, pp. 390-488, Springer-
Verlag, 1990

D. Stinson Cryptography: Theory and Practice, Boca Raton: CRC,
1995



	tripartite.ps-  1
	tripartite.ps-  2
	tripartite.ps-  3
	tripartite.ps-  4
	tripartite.ps-  5
	tripartite.ps-  6
	tripartite.ps-  7
	tripartite.ps-  8

