Identity Based Authenticated Key Agreement
Protocols from Pairings*

Liqun Chen! and Caroline Kudla?**

! Hewlett-Packard Laboratories, Bristol, UK
liqun.chen@hp.com
2 Information Security Group
Royal Holloway, University of London, UK
c.j.kudla@rhul.ac.uk

27 May 2004

Abstract. We investigate a number of issues related to identity based
authenticated key agreement protocols using the Weil or Tate pairings.
These issues include how to make protocols efficient; how to avoid key
escrow by a Trust Authority (TA) who issues identity based private keys
for users, and how to allow users to use different Trusted Authorities. We
describe a few authenticated key agreement (AK) protocols and AK with
key confirmation (AKC) protocols which are modified from Smart’s AK
protocol [Sm02]. We study the security of these protocols heuristically
and using provable security methods. In addition, we prove that our AK
protocol is immune to key compromise impersonation attacks, and we
also show that our second protocol has the TA forward secrecy property
(which we define to mean that the compromise of the TA’s private key
will not compromise previously established session keys). We also show
that this TA forward secrecy property implies that the protocol has the
perfect forward secrecy property.

1 Introduction

Key establishment is a process whereby two (or more) entities can establish
a shared secret key (session key). There are two different approaches to key
establishment between two entities. In one scenario, one entity generates a session
key and securely transmits it to the other entity. This is known as enveloping or
key transport. More commonly, both entities contribute information from which
a joint secret key is derived. This is known as key agreement. All the protocols
discussed in this paper are of this latter form.

A key agreement protocol is said to provide implicit key authentication (of
entity B to entity A) if A is assured that no other entity besides B can possibly
ascertain the value of the secret key. A key agreement protocol that provides
mutual implicit key authentication is called an authenticated key agreement

* This work is a revision of an earlier version [CK02].
** This author is funded by Hewlett-Packard Laboratories.

protocol (or AK protocol). A key agreement protocol provides key confirmation
(of B to A) if A is assured that B in fact possesses the secret key. A protocol
that provides mutual key authentication as well as mutual key confirmation is
called an authenticated key agreement with key confirmation protocol (or an
AXKC protocol).

It is desirable for AK and AKC protocols to possess the following security
attributes:

Known-key security: Each run of the protocol should result in a unique secret
session key. The compromise of one session key should not compromise other
session keys.

Forward secrecy: If long-term private keys of one or more of the entities
are compromised, the secrecy of previously established session keys should
not be affected. We say that a system has partial forward secrecy if the
compromise some but not all of the entities’ long-term keys can be corrupted
without compromising previously established session keys, and we say that
a system has perfect forward secrecy if the long-term keys of all the entities
involved may be corrupted without compromising any session key previously
established by these entities. There is a further (perhaps stronger) notion of
forward secrecy in identity-based systems, which we call TA forward secrecy,
which certainly implies perfect forward secrecy. This is the idea that the
TA’s long-term private key may be corrupted (and hence all users’ long-term
private keys) without compromising the security of session keys previously
established by any users.

Key-compromise impersonation resilience: Compromising an entity A’s
long-term private key will allow an adversary to impersonate A, but it should
not enable the adversary to impersonate other entities to A.

Unknown key-share resilience: An entity A should not be able to be coerced
into sharing a key with any entity C when in fact A thinks that she is sharing
the key with another entity B.

Key control: Neither entity should be able to force the session key to be a
preselected value.

The first key agreement protocol based on asymmetric cryptography was
the Diffie-Hellman protocol [DH76]. It is a fundamental technique providing
unauthenticated key agreement using exponentiation. Its security is based on
the intractability of the Diffie-Hellman problem. Many key agreement protocols
are based on the ideas of Diffie and Hellman, and such protocols can be described
in groups such as the multiplicative groups Z; (p a prime), Fom, or the group of
points on an elliptic curve over a finite field.

There have been many attempts to add authentication (and key confirma-
tion) to the Diffie-Hellman protocol. One of the well-known authenticated key
agreement (AK) protocols in the Diffie-Hellman family is the MQV protocol
due to Menezes, Qu and Vanstone [MQV95]. This is a two-pass AK protocol.
Law et al [LMQSV98] later presented a three-pass AKC protocol. It seems that
the MQV protocol provides mutual implicit key authentication, and has the fol-
lowing security attributes: known-key security, forward secrecy, key-compromise

impersonation and key control. As pointed out by Kaliski in [K01], this AK pro-
tocol is vulnerable to an unknown key share attack, although the later three-pass
AKC protocol seems resistant to this attack.

In 1984, Shamir [Sh84] proposed the idea of using an identity-based asymmet-
ric key pair where an arbitrary string (typically an identity string) can be used
as a user’s public key. A trusted authority (TA) is required to derive private keys
from arbitrary public keys, and also publishes public information required for
all encryption, decryption, signature and verification algorithms in the system.
Systems of this nature are referred to as identity-based. Shamir gave a practi-
cal identity-based signature scheme but left as an open question the problem of
finding an efficient identity-based encryption scheme.

An authenticated key establishment protocol is called identity-based if in the
protocol, users use an identity based asymmetric key pair instead of a traditional
public/private key pair for authentication and determination of the established
key.

A few identity-based key agreement protocols have been developed based on
Diffie-Hellman and using Shamir’s key set up idea. For instance, Okamoto [Ok86]
presented an identity-based scheme and Tanaka and Okamoto slightly modify
this in [TO91]. Girault and Paillés [GP90] developed an identity-based system,
which can be used for non-interactive key agreement. Another non-interactive
identity-based key agreement scheme is also described in Annex B of ISO/IEC
11770-3 [ISO11770].

In 2000, Sakai et al. [SOKO00] introduced a non-interactive identity-based
key agreement scheme based on pairings on elliptic curves. Around the same
time, Joux [Jo00] also used pairing techniques to present a (non-identity-based)
tripartite key agreement protocol. Then in 2001 the first feasible solutions for
identity-based encryption were published. One of them is Boneh and Franklin’s
identity-based encryption scheme [BF01], which uses the same key set-up as
Sakai et al. Shortly after that, a few identity-based key agreement protocols (as
well as signature schemes) based on pairing techniques were developed. Smart,
by combining the ideas from [BF01,MQV95,LMQSV98] and [Jo00], proposed an
identity-based authenticated key agreement protocol (ID-AK) and an identity-
based authenticated key agreement protocol with key confirmation (ID-AKC)
in [Sm02], although the security properties of these protocols have not been
formally proven.

The contributions of this paper are as follows:

— To introduce an ID-AK protocol more efficient than Smart’s.

— To modify Smart’s protocol and our more efficient AK protocol to include
the TA forward secrecy property which also prevents the TA from being able
to passively escrow users’ session keys.

— To introduce an AK protocol (also modified from Smart’s) which allows users
to choose different TAs.

— A discussion of the security properties of these protocols using heuristic
arguments as well as formal provable security methods.

This paper is a corrected version of [CK02]. In the previous version we claimed
that our authenticated key agreement protocols were secure in the model of
Blake-Wilson et al. [BJM97], omitting the fact that this is only true provided
the adversary is restricted in a certain way (by disallowing reveal queries). This
was pointed out to us by Zhaohui Cheng [C03]. This version of the paper aims
to correct this error.

2 Technical Background

2.1 Pairings

Pairings have recently had a number of positive applications in cryptography,
for instance, identity-based encryption [BFO01], identity-based key agreement
[Jo00,Sm02,SOKO00], identity-based signatures [He02,Pa02,SOK00], and short
signatures [BLSO01].

Let G; and G5 denote two groups of prime order g, where GG1, with an additive
notation, denotes a subgroup of the group of points on an elliptic curve; and G,
with a multiplicative notation, denotes a subgroup of the multiplicative group
of a finite field.

A pairing is a computable bilinear map between these two groups. Two
pairings have been studied for cryptographic use. They are the Weil pairing
[MOV93,5194] and a modified version [Ve01,BF01], and the Tate pairing [FMR99,
Ga01,GHSo002]. For the purposes of this paper, we let é denote a general bilinear
map, i.e., € : G; X G; — G4, which can be either a modified Weil pairing or a
Tate pairing, and which has the following three properties:

— Bilinear: It P, P1, P2, Q,Q1,Q2 € G1 and a € Z, then

é(PL+ P2,Q) = 6Py, Q)-6(Py, Q), and é(P, Q1 + Qz) = &(P, Qu).&(P, Q).
— Non-degenerate: There exists a P € G1 such that é(P, P) # 1.
— Computable: If P,Q € G1, one can compute é(P, Q) in polynomial time.

2.2 Some Mathematical Structures and Problems

A Diffie-Hellman (DH) tuple in G; isatuple (P,2P,yP, zP) € G for some
x,y, 2 chosen at random from Z, satisfying z = zy mod g.

Computational Diffie-Hellman (CDH) problem: Given the first three el-
ements in a DH tuple, compute the remaining element.
CDH assumption: There exists no algorithm running in expected polynomial
time, which can solve the CDH problem with non-negligible probability.
Decision Diffie-Hellman (DDH) problem: Given a tuple (P, zP,yP, zP) €
G1 for some z,y, z chosen at random from Z,, decide if it is a valid DH tuple.
This can be solved in polynomial time by verifying the equation é(z P, yP) =
é(P, zP).

Bilinear Diffie-Hellman (BDH) problem: Let P be a generator of G;. The
BDH problem in Gy, Gs,é is given (P,zP,yP,2P) € G} for some z,y, z
chosen at random from Z,, compute W = é(P, P)™¥* € Gs.

BDH assumption: There exists no algorithm running in expected polynomial
time, which can solve the BDH problem in G1,G4,é with non-negligible
probability.

The security properties of our authenticated key agreement protocols are
based on the CDH and BDH assumptions.

2.3 Security Model

In a later part of this paper, we will analyze the security of our protocols using a
security model which was initially proposed by Bellare and Rogaway in [BR93]
and later extended to the public key setting by Blake-Wilson et al in [BJM97].
Other papers also make use of suitably modified versions of this security model,
including Al-Riyami and Paterson in [AP02], where they analyze the security of
a tripartite authenticated key agreement protocol that is also based on pairing
techniques. We adapt the model to the identity-based setting and summarize
the adapted model as follows.

The model includes a set U of participants, each participant is modelled by
an oracle, e.g., II7 ; would model a participant I carrying out a protocol session
in the belief that it is communicating with another participant J for the nth
time (i.e. the nth run of the protocol between I and J). Oracles keep transcripts
which record messages they have sent or received as a result of queries they have
answered.

Each participant has a pair of identity-based (ID-based) long-term asymmet-
ric keys, where the public key is created using the participant’s identifier and
the private key is computed and issued by a TA. We assume there is a setup
algorithm Setup which produces a description of the groups G; and G5 and the
bilinear map €, assigns random tapes and oracles as necessary, and distributes a
long-term master key to the TA.

The model also includes an adversary, FE, who is neither a participant nor a
TA. F is modelled by a probabilistic polynomial time Turing Machine and has
access to all the participants’ oracles as well as the random oracles in the game.
FE can relay, modify, delay, interleave or delete messages. E is called the benign
adversary if she simply passes messages to and fro between participants. We
note that all communications go through the adversary. Participant oracles only
respond to queries by the adversary and do not communicate directly amongst
themselves.

The adversary at any time can create new participants by making the fol-
lowing query:

Create: This allows F to set up a new participant for any identity I D of her
choice. A new oracle is created to model this participant. The participant’s
public key is derived from ID, and the private key is obtained from the TA.
E is given the public key of the participant.

In addition it is assumed that F is allowed to make the following types of
queries of existing oracles as defined in [BJM97]:

Send: this allows E to send a message of her choice to an oracle, say Il ;, in
which case participant I assumes the message has been sent by participant
J. E may also make a special Send query A to an oracle I} ; which instructs
I to initiate a protocol run with J. An oracle is an initiator oracle if the first
message it has received is a A. If an oracle did not receive a message A as its
first message, then it is a responder oracle.

Reveal: this allows E to ask a particular oracle to reveal the session key (if any)
it currently holds to F.

Corrupt: this allows E to ask a particular oracle to reveal its long-term private
key.

An oracle exists in one of the following several possible states:

Accepted: an oracle has accepted if it decides to accept, holding a session key,
after receipt of properly formulated messages.

Rejected: an oracle has rejected if it decides not to establish a session key and
to abort the protocol.

State *: an oracle is in state
reject.

Opened: an oracle is opened if it has answered a reveal query.

Corrupted: an oracle is corrupted if it has answered a corrupt query.

* if it has not made any decision to accept or

If two oracles, say I} ; and HtJ’ 7, have received (via the adversary) properly
formatted messages exclusively generated by the other oracle, and exactly one
oracle is an initiator oracle, having received the special Send query A, we say
that these two oracles have had a matching conversation (see [BR93] for a formal
definition).

At some point in her attack, £ may choose one of the oracles, say I} ;, to ask
a single Test query. This oracle must have accepted, be unopened and neither
I nor J can have been corrupted. Furthermore, there must be no opened oracle
H’fL ; with which it has had a matching conversation. To answer the query, the
oracle flips a fair coin b € {0, 1}, and returns the session key held by Uy ; if
b =0, or else a random key sampled from {0, 1}* if b = 1.

To attack a protocol, E' does an experiment with the set of oracles generated
by a challenger. During the experiment E may ask a polynomially bounded
number of queries, including one Test query. At the end of E’s attack, she must
output a bit b’ as her guess for b. E’s advantage, denoted advantage” (k), is the
probability that F can distinguish the session key held by the queried oracle
from a random string, and is defined as:

Advantage? (k) = |Pr[p) = b] — 1/2|
Definitions of secure AK and AKC protocols are as follows:

Definition 1. [BJM97] A protocol is a secure AK protocol if:

1. In the presence of the benign adversary on 117 ; and Hf]’], both oracles always
accept holding the same session key, and this key is distributed uniformly at
random on {0,1}*; and if for every adversary E:

2. If uncorrupted oracles 11} ; and 114 ; have matching conversations then both
oracles accept and hold the same session key;
3. Advantage® (k) is negligible.

A function f(k) is negligible if for every ¢ > 0 there exists k. > 0 such that
f(k) < k=€ for all k > k.. A function is non-negligible if it is not a negligible
function.

Definition 2. [BJM97] A protocol is a secure AKC protocol if:

1. In the presence of the benign adversary on 117 ; and I ;, both oracles always
accept holding the same session key, and this key is distributed uniformly at
random on {0,1}%; and if for every adversary E:

2. If uncorrupted oracles 11} ; and 114 ; have matching conversations then both
oracles accept and hold the same session key;

3. The probability of No — Matching® (k) is negligible;

4. Advantage (k) is negligible.

In the third condition, No — Matching® (k) denotes the event that, when E
attacks the protocol, there exists an oracle I} ;, which accepted where neither [
nor J are corrupted, but there is no oracle Hf’,, ; which has engaged in a matching
conversation with II7 ;. This condition says that essentially the only way for any
adversary to get an uncorrupted entity to accept in a run of the protocol with
any other uncorrupted entity is by relaying communications like a wire.

Our proofs of security assume that a participant I does not enter into protocol
runs with itself, although we can remove this assumption provided that the BDH
assumption is still valid against all algorithms that take as input the values
(P,zP,yP,yP) instead of the values (P, zP,yP, zP).

2.4 Security Properties of the Model

We recall the security attributes which were mentioned in Section 1 and which
are commonly required of AK and AKC protocols. We consider which of these
attributes are implied by the above definitions of a secure AK or AKC protocol.

The property of known-key security is implied by the definitions. It follows
by the following two properties of the model: (i) the adversary E is allowed to
make Reveal queries to any oracle except for II7 ; and Hf,’ ; to obtain any session
keys except for the key shared between I} ; and IT% ;, called K7, and (ii) after
knowing all the other keys, her ability to distinguish between K;; and a random
number is still negligible. Therefore, the knowledge of any other session keys
does not help E to deduce any information about Kj ;.

The definitions also imply the unknown key-share resilience property. To
show this we give a small sketch of a proof by contradiction as follows:

Suppose II is a secure AK or AKC protocol and suppose that II is susceptible
to the unknown key-share attack. Then E has a non-negligible probability of
making an oracle I} ; accept holding a key K where I believes that there has
been a matching conversation with I1% ; and K is shared with J, but K is in fact

shared with some other oracle I1% y- (usually Y = I here). By the definitions of
the security model described in Section 2.1, E' can make a Reveal query to II%
to obtain K because it is neither I} ; nor IT; ;. E' can then choose oracle H’f J
to answer the test query. IT7 ; will answer the test query (because both IT} T and
ITY ; are unopened and both I and J are uncorrupted) and E will win the game.
Advantageg (k) would therefore be non-negligible, contradicting the definitions.

We note that the definitions do not imply the key compromise impersonation
or the forward secrecy properties. This is because the model does not allow the
adversary to make queries of corrupted oracles and therefore does not model
these types of attack. We prove these properties of our protocols separately later
in the paper using adapted models.

3 Smart’s ID-based AK Protocol

To describe the protocol, we use the notation, Mi : A — B : M, to state that
in the ith message flow, entity A sends a message M to entity B. This notation
will be used throughout the paper.

Smart’s ID-AK protocol [Sm02] involves three entities: two users Alice and
Bob who wish to establish a shared secret session key, and a TA from whom
they each acquire their own private key.

To provide a private key generation service, the TA uses a master pub-
lic/private key pair. The public key is (P,Ps = sP € () where P is a gen-
erator of G; and the private key is s € Z,;. When a user registers with the TA,
the TA issues a private key S = s@ for the user, where Q = H;(ID) € Gy,
H, is a hash function, H; : {0,1}* — Gy, and ID is the user’s identifier
string. Note that this kind of identity based asymmetric key setup has been
used in a number of ID-based encryption and signature schemes using pairings
[BF01,He02,Pa02,SOK00].

Suppose that the TA issues the following private keys for Alice and Bob
respectively: S4 = sQ4 where Q4 = H;(Alice’s ID), and Sp = sQp where
Qp = H1(Bob’s ID).

Alice and Bob each randomly choose an ephemeral private key, a,b € Zj,
and compute the values of the corresponding ephemeral public keys, T4 = aP
and Tg = bP. They then exchange the ephemeral public keys as follows:

Protocol 1.

M1 : Alice — Bob : Ty

M2 : Bob — Alice : Tg

Alice then computes Kap = é(Sa,Tp) - é(aQp, Ps), and Bob computes
Kpa = é(Sp,Ta) - é(bQa, Ps). If Alice and Bob follow the protocol, they will
compute the same shared secret:

K =Kap=Kpa=¢ébQa+aQp, Ps).

This shared secret value K is suitable to be used to derive a shared session key
[GHS02]. We then use a key derivation function Hy : G5 — {0,1}* to generate

the shared session key F'K = Ho(K). This function would generally be a secure
hash function, but we will model both H; and Hs as random oracles.

Smart informally argues that this protocol has the following security prop-
erties: mutual implicit key authentication, known key security, partial forward
secrecy (see discussion in the next section), imperfect key control (see discussion
in the next section), key-compromise impersonation, and unknown key-share
resilience. However no formal proofs are given for any of these claims.

We are now concerned about the following three issues:

Efficiency: In Protocol 1 (Smart’s protocol), each participant has to generate a
random number, perform two elliptic curve point multiplications, and com-
pute two pairings (which are the most expensive operations in the protocol).
In the next section, we will introduce a more efficient protocol, which seems
to offer the same security properties as Protocol 1.

Key escrow: As mentioned above, this protocol only has partial forward se-

crecy, and not perfect forward secrecy, which means the compromise of both
of the long-term private keys used in a key agreement protocol compromises
the session key established in that protocol. This also implies that the TA
(who can compute all the private keys in the system) is able to passively
escrow session keys established between users. This property may not ac-
ceptable for some applications. Although users in an ID-based system must
trust the TA to generate their private keys and not to impersonate them,
they may still want to conduct their own communications without the TA
being able to passively escrow their session keys as well.
This security feature holds in the identity-based key agreement protocols
using Shamir’s key set up [Ok86,TO91,GP90,1SO11770]. In Section 5, we
will describe a modification for Smart’s protocol that prevents the TA from
being able to compute the established key.

Single TA: In this protocol, both Alice and Bob register with a single TA.
This may be suitable for certain applications where Alice and Bob belong
to the same domain. However in reality, Alice and Bob may have registered
with different TAs and may still want to be able to share a key. Existing
identity-based key agreement protocols do not seem to provide this capabil-
ity. In Section 6, we will introduce an extended protocol to support such a
requirement.

In each of the following three sections, we give a modification of Smart’s protocol.
Each focuses on one of the above three issues.

4 A More Efficient AK Protocol

We describe our first modification of Protocol 1. Alice and Bob each randomly
choose an ephemeral private key, a,b € Z7, and compute the values of the cor-
responding ephemeral public keys, W4 = aQ4 and Wi = bQp. They then
exchange the public keys as follows:

Protocol 2.

M1 : Alice — Bob : Wy

M2 : Bob — Alice : Wpg

At the conclusion of the protocol Alice computes Kap = é(Sa, Wi + a@Qp),
and Bob computes Kpa = é(Wa + bQ a4, Sg). If Alice and Bob follow the pro-
tocol, they will compute the same shared secret:

K =Kap=Kpa=2éQa Qp)* .

Their shared secret session key is then FK = Hy(K).

The above protocol has a very similar construction to Protocol 1. However,
it is more efficient. Protocol 1 requires each party to perform two elliptic curve
point multiplications and two evaluations of the pairing. Protocol 2 requires each
party to perform two elliptic curve point multiplications, one elliptic curve point
addition and only a single evaluation of the pairing.

With the description of the security model in Section 2.2, we now state:

Theorem 1. Protocol 2 is a secure AK protocol, assuming that the adversary
does not make any Reveal queries, the BDH problem (for the pair of groups Gq
and Gs) is hard and provided that Hy and Hy are random oracles.

Proof. Conditions 1 and 2 of Definition 1 follow from the assumption that the
two oracles follow the protocol and in both cases have matching conversations.
Therefore both oracles accept (since they both receive correctly formatted mes-
sages from the other oracle) holding the same key FK (since K4 = Kpa by the
bilinearity of the pairing and the matching conversation). Since Hs is a random
oracle, FK is distributed uniformly at random on {0, 1}*.

Condition 3. We assume that there exists an adversary E who can win the
above game with non-negligible advantage n(k) in time 7(k), making at most
Ty queries to the Hy random oracle and T Create queries.

We now construct from F an algorithm F which solves the BDH problem
with non-negligible probability. Given input of, as described in Section 2, the
two groups G, Ga, the bilinear map é, a generator of P of G, and a triple of
elements x P,y P, 2P € Gy with z,y, 2 € Z; where g is the prime order of G and
G, F’s task is to compute and output the value g*¥* € G5 where g = é(P, P).

F chooses distinct random values I and J from {1,...,T¢}, and a value
le{l,.., Ty} F simulates the Setup algorithm and sets the TA’s master key
to be xP. I will also simulate all oracles required during the game.

F' then starts F, and answers all E’s queries as follows. F' maintains two
random oracles H; and Hs. E can query the Hy oracle directly at any time, but
the H; oracle is only used to answer Create queries (described later), and so is
never queried directly by FE.

Random Oracle queries: F' simulates the random oracle H; by keeping a list
of tuples (ID;,Q;) which is called the H;-List. When the H; oracle is queried
(via a Create query) with an input ID; € {0,1}*, F responds as follows. If ID;
is already on the H;-List in the tuple (ID;, Q;), then F outputs Q;. Otherwise:

1. If ID; is the Jth distinct H; query, then the oracle outputs Q—yP and adds
the tuple (ID;, Q;) to the H; list.

2. Otherwise F selects a random r; € Zj and outputs); = r; P, and then adds
the tuple (ID;, Q;) to the H; list.

F' simulates the Hs oracle in the same way, keeping an Hs list, but always
answers distinct queries randomly.

Create queries: We require that E never queries the H; oracle directly, but
always indirectly through the Create query. F' simulates the create query on
input ID; by querying the Hj oracle on ID; for the appropriate public key
Q; = r; P, and in addition sets up a new oracle with public key Q; and private
key S; = r;xP. The public key @; is given to E. We call the oracle set up by the
1th distinct Create query the ith participant. In particular, the Jth participant,
which we shall call participant J, will have public key @ ; = yP. We note that
F' is unable to compute the private key for this oracle.

Corrupt queries: F' answers Corrupt queries as specified by a normal oracle,
i.e., revealing the long-term private key of the related participant, except that if
FE asks I or J a Corrupt query, F' gives up.

Send queries: F' answers all Send queries as specified for a normal oracle, i.e.,
for the first Send query to an oracle, F' takes a random value in Zj to form its
contribution, except that if E asks II7 ; for any n its first Send query, F' chooses
a random s,, € Z; and answers s,172P = s,2Q . We only specify the response
to the first Send query to an oracle since this is the only Send query to which
the oracle will respond by outputting its ephemeral contribution to the session
key in our protocol. If the oracle is an initiator oracle, the first Send query will
be a special initiating query, and if it is a responder oracle, the first Send query
will contain an ephemeral input to II7 ; (purportedly from oracle .J).

Reveal queries: F' does not need to answer Reveal queries since we do not
allow the adversary to make Reveal queries.

Test query: At some point in the simulation, E will ask a Test query of some
oracle. If E' does not choose one of the oracles II7 ; for some n to ask the Test
query, then F' aborts. However if E does pick 7 ; for the Test query, then
II7 ; must have accepted, and I and J must be uncorrupted. Assuming that
I} ; obtained some value j@); as its input prior to accepting, the oracle should
hold a session key of the form Hs(é(zQr,s,2Qs + jQJ)). However F' cannot
compute this key, so F' cannot correctly simulate the Test query. Instead, F
simply outputs a random value.

If F" does not abort at some stage during the simulation and E does not detect
F’s inconsistency in answering the Test query, then E’s probability of success
is still n(k) as in a real attack. However for E to distinguish the session key
from a random value with non-negligible probability n(k), F must have queried
the Hy oracle on the value Hy(é(zQr, $n,2Q s + jQ)) with some non-negligible
probability 7' (k).

If F' does not abort at some point during the attack but E is able to de-
tect F’s inconsistency in answering the Test query, then E’s behavior becomes
undefined after this point. In particular, £ may not terminate, so we assume
that F' terminates E’s attack if it lasts longer that time 7(k). However for E
to be able to detect this inconsistency, £ must have queried Hy on the value

Hy(é(xQyr,8,2Q + jQJ)). Up until this point, E’s view of the simulation is
indistinguishable from a normal attack, so the number of Hy queries made by E
is still bounded by Ty at this point.

At the end of E’s attack, if F has not made at least [queries to the Hs oracle,
then F aborts. Otherwise F picks E’s Ith query (on some value h) to the Hs ora-
cle, which F guesses to be the value é(2Qr, 5,2Q s +jQs) = é(xP,yP) ™ (sn=+) =
8é(P, P)*¥*Y, with § = é(r;zP,jQ;) and v = r1s,. F outputs (h/0)"/7 as its
guess for the value é(p, p)*¥~.

So the probability that F' did not abort at some stage and produces the
correct output is at least

n' (k)

TETy
which is non-negligible. t

In Blake-Wilson et al. [BJM97], the proof of security of their AK protocol
also assumes that the adversary makes no Reveal queries. They also point out
that no protocol in which the initiator oracle and responder oracle generate the
shared key in the same way (ie. the protocol is role symmetric) can be secure
according to Definition 1. Since our protocol is role symmetric, it is certainly not
secure by Definition 1 without further restricting the adversary in some way.

To see a further example of why Protocol 2 is not secure according to Defi-
nition 1 unless we disallow the adversary to make Reveal queries, we illustrate
a simple “attack” in the model that the adversary could use to win the game.

In the example we refer to the adversary as F/, and assume A and B wish to
share a key.

A sends a@Q 4 (intended for B), but E forwards a@Q4 + cQa to B for some
CER ZZ

B sends bQp (intended for A), but E forwards bQp + cQp to A.

A’s transcript contains a@Q4 and bQp + cQp and A computes her key as
Kia=¢6(sQa,aQp +bQp + cQp).

B’s transcript contains bQpg and a@Q 4 + cQ 4. This is different to A’s tran-
script, so A and B have not had a matching conversation, but B computes his
key as Kp = é(bQa + aQa + cQa,sQp) = Ka.

Now A and B share the same key, but have not had matching conversations. £
cannot compute this key, but E can ask to reveal B’s key, and then choose oracle
A as her test oracle. This is a valid choice, since neither A or B are corrupted,
A is not revealed, and no oracle with which A had a matching conversation has
been revealed (since there exists no such oracle). E then trivially wins the game
since she learned the exact value of A’s key by revealing B’s key.

The problem is really that it is possible for two oracles to generate the same
session key without having had a matching conversation. We do not consider this
attack to be particularly useful to an adversary in real life, but it does illustrate
one of the reasons we restrict the adversary to not being able to make Reveal
queries. In fact several other protocols are vulnerable to such a type of “attack”,
such as Protocol 3 in [BJM97], Smart’s protocol [Sm02], and certain protocols
in [AP02].

Since we assume that the adversary cannot make reveal queries, our proof of
security does not guarantee the Known-key security property. However we can
heuristically argue that each protocol run produces a different session key, and it
seems difficult to deduce any information about future (new) session keys from
knowledge of past session keys under the BDH assumption.

4.1 Additional Properties of the Protocol

Since the security model which we used to prove Theorem 1 does not cover some
known active attacks, we now discuss some of the security properties related to
these attacks, using heuristic arguments to support our claims.

1. Partial forward secrecy. We consider the following three separate parts of
this property:

(1) Compromise of long-term secret keys S4 or Sp does not seem to lead to
the compromise of past communications. But compromising both S4 and Sp
does lead to the compromise of past communications. This is because K can
be computed as K = é(S4, Wg)-é(Wy, Sp), which requires knowledge of the
ephemeral exchanges and the long term private keys, but not the ephemeral
secret values. So the protocol does not offer perfect forward secrecy.

(2) Compromise of the TA’s master key s does lead to the compromise of
past communications, because K = é(Qa, Wg)*é(W4, @p)®. This means the
protocol does not offer TA forward secrecy.

(3) Compromise of one or both of the ephemeral private keys, a and b, reveals
neither the long-term secret keys, Sa, Sp and s, nor the shared secret session
key FK.

In the following section, we will modify Protocols 1 and 2 in order to provide
TA forward secrecy. This means that compromising the TA’s master key
(which also means compromising the long-term secret keys of all users) does
not lead to the compromise of past communications.

2. Imperfect key control. Protocol 2 does not have the full key control at-
tribute since Bob can select his ephemeral key after having received Alice’s
ephemeral key. Bob can force [bits of the shared secret key to have a nom-
inated value by evaluating K for roughly 2! different choices of b. As is
noted in [MWW98], the responder in a protocol almost always has an unfair
advantage in controlling the value of the established session key. This can
be avoided by the use of commitments, although this seems to intrinsically
require an extra round of communication.

3. Unknown key-share resilience. This property follows from Theorem 1 above
based on the discussion in Section 2.3.

4. Key-compromise impersonation. When an adversary knows Alice’s long-term
private key, S 4, the adversary is not able to impersonate other entities, say
Bob, to Alice in a successful protocol run. We establish this in the following
result.

Theorem 2. For any participants Alice and Bob, no polynomial time adversary
who knows Alice’s private key but not Bob’s private key can impersonate Bob

to Alice in Protocol 2, under the BDH assumption, assuming the adversary does
not make any reveal queries, and provided that Hy and Hy are random oracles.

Proof. First of all, to prove this theorem, we adapt the model in Section 2.3 to
allow an adversary E' to make a Test query to any oracle II7 ; where I (but not
J) has been corrupted. We also assume that, although the adversary may know
the long term key of the test oracle, we do not allow the adversary control over
the outputs of this oracle (otherwise the adversary can trivially win the game).

Now the proof follows exactly the proof of Theorem 1 except for the minor
adjustment to allow the adversary to corrupt participant I at any stage. We
notice that the challenger F' can compute the private key of I, so can answer
this query, and revealing this private key to the adversary makes no probabilistic
difference to the outcome of the game. So the rest of the proof follows that of
Theorem 1 exactly as before. O

5 Modification of Protocols 1 and 2 without Key Escrow

Note that in systems using identity-based cryptography (IBC), we cannot escape
the possibility of a TA impersonating any user in the system because the TA is
always able to do so. In PKI we have the same problem in fact. A CA (certifica-
tion authority) can generate a key pair, and (falsely) certify that the public key
belongs to a user A. The CA can then impersonate A to any other user B. In
both IBC and PKI we therefore have to assume that the trusted authority (TA
or CA) will not impersonate users.

However a property that we may require from our identity-based key agree-
ment protocol is that, if two users are actually communicating with each other
(that is, no user is being actively impersonated by the TA), then the TA can-
not passively derive (and therefore escrow) the established session key. This is
mainly a privacy issue since users must trust the TA with their long-term keys,
but may wish to be able to escape from the escrow environment (assuming no
active attacks by the TA) for communications they wish to keep confidential
even from the TA.

TA forward secrecy means that if the TA’s master key is compromised, this
should not compromise the previously established session keys. We notice that
this property also implies that the TA is unable to passively deduce information
about session keys established between users.

Recall that TA forward secrecy also implies the property of perfect forward
secrecy, another property we would like from our protocols. However the converse
is not necessarily true: perfect forward secrecy does not necessarily imply TA
forward secrecy since the TA knows not only all users’ long-term private keys,
but also s, the TA’s long-term master secret.

So TA forward secrecy seems like a good property for identity-based key
agreement protocols, and guarantees both the perfect forward secrecy property
and resistance to session key escrow by the TA.

To provide TA forward secrecy, the ephemeral keys (perhaps combined with
the long-term keys) are used in such a way that the result cannot be com-
puted by the TA (or by anyone else who knows only the long-term secret keys).
The most well-known method of achieving this is for the users to calculate a
Diffie-Hellman shared key from their ephemeral contributions. We now intro-
duce protocols modified from Protocols 1 and 2, which have the above desired
properties.

Protocol 1°:

There is a simple way to introduce a Diffie-Hellman shared key in Protocol
1 by changing the key derivation function Hs in Protocol 1 to HS : Go x G1 —
{0,1}*, and the shared session key becomes

FK = H)(K,abP).

where K is established as in Protocol 1.

We will refer to this protocol as Protocol 1°.

In this case, if an adversary compromises both the users’ long-term private
keys, S4 and Sp, at some point in the future, the adversary is not able to
compromise communications in the past, because the adversary can calculate
K but not abP. It is obvious that this modification also prevents the TA from
being able to compute the session key in passive attacks.

Protocol 2’:

Note that this exact modification cannot be used in Protocol 2 because in
Protocol 2, Alice and Bob exchange a@ 4 and b@ g, which are not Diffie-Hellman
contributions. If avoidance of key escrow is required, we suggest the following
modification.

Alice and Bob exchange aQ 4, aP and bQ g, bP. They then compute K as in
Protocol 2, and finally compute the shared secret key as FK = H)(K,abP). We
will refer to this protocol as Protocol 2’.

Compared with Protocol 1’; Protocol 2’ is more computationally efficient,
in particular in pairing computations since only a single pairing is required (as
opposed to two), but less efficient on the message bandwidth since two points
(as opposed to only one) need to be distributed by each user.

Theorem 3. Protocol 2’

i) is a secure AK protocol, assuming that the adversary does not make any
Reveal queries, the BDH problem (for the pair of groups G1 and G2) is hard and
provided that Hy and H} are random oracles, and

i) has the TA forward secrecy property, assuming that the CDH problem (for
group G1) is hard, and provided that H} is a random oracle.

Proof. (sketch) i) The fact that Protocol 2’ is a secure AK protocol by Definition
1 provided that the adversary does not make any reveal queries follows directly
from Theorem 1 (with slight modifications to the parsing of inputs to the Hs
oracle) since the properties proved for Protocol 2 follow directly for Protocol 2’.

ii) We note that when proving the TA forward secrecy property, we need to
slightly modify the game between the adversary and the challenger. E will be

given the TA’s master secret in the setup procedure, and will no longer need
to make corrupt queries since £ can now compute all private keys for herself.
However we will allow E to once again make reveal queries. We also now require
that when E chooses an oracle II7 ; for her test query, this oracle must indeed
have had a matching conversation with some other oracle HtJ, 1 We prove that
Protocol 2’ has TA forward secrecy as follows:

The proof follows along similar lines to the proof of Theorem 1. We assume
that there exists an adversary F who can win the above game with non-negligible
advantage n(k) in time 7(k), making at most Ty queries to the Hy random oracle
and T¢ Create queries.

We now construct from E an algorithm F which solves the CDH problem
with non-negligible probability. Given input of the group Gi, a generator of P
of G, and the elements aP,bP € Gy with a,b € Z; where ¢ is the prime order
of G1, F’s task is to compute and output the value abP € G1.

F’s operation is as before in the proof of Theorem 1, picking the values I, J
and [and simulating the running of the key generation algorithm, but in this
case, the TA’s public key is sP where s is known, and F is given the master
secret s.

I answers E’s queries as follows:

F simulates the H; oracle as before except that now Hy (IDy) is computed in
the same way as for any other input, so J’s public key is Q; = Hi(IDj) =r;P
for some r; €g Z;. The H> and Create queries are as before.

We now allow F to ask Reveal queries, and F' answers by outputting the
appropriate key, except if £ asks II} ; or HfL ; a Reveal query, then F' gives up.

If E asks 7 ; its first Send query, F' answers s,aQ a4 = spTaaP, s,aP and if
E asks IT% ; its first Send query, F' answers s;0Qp = s;r5bP, 5;bP.

Test query: If E' does not choose one of the oracles I} ; for some n to ask
the Test query, then F' aborts. However if E does pick 1} ; for the Test query,
then IT7 ; must have accepted after having had a matching conversation with an
oracle T1% ; for some t. Therefore I} ; obtained the value s;bQp = s;r5bP, s;bP
as its input prior to accepting. The oracle should hold a session key of the form
Hy(é(sQr, snaQ s+ 810Q), sns;abP). However F' cannot compute this key, so F'
cannot correctly simulate the Test query. Instead, F' simply outputs a random
value.

At the end of E’s attack, if £ has not made at least [queries to the H,
oracle, then F aborts. Otherwise F picks E’s Ith query (on some pair of values
h,h’) to the Hy oracle, and F outputs h'/s, s} as its guess for the value abP.

As before, the probability that F' did not abort at some stage and produces
the correct output is at least

' (k)
TETy

which is non-negligible. t

6 A Pairing Based AK Protocol with Separate TAs

Suppose that there are two trusted authorities, say TA; and TAy, which have
public/private key pairs (P,s1P € G1,81 € Z;) and (P,s2P € Gy,52 € Z)
respectively, where P, G; and G5 are globally agreed, e.g., recommended by an
international standards body.

Suppose also that Alice registers with TA; and gets her private key Sa4 =
$1Qa where Q4 = H;(Alice’s ID), and Bob registers with TAy and gets his
private key Sp = s2Qp where Qp = H;(Bob’s ID).

Protocol 1 can be modified as follows. Alice and Bob each randomly choose
an ephemeral private key, a,b € Z, and compute the values of the correspond-
ing ephemeral public keys, T4 = aP and T = bP. They then exchange the
ephemeral public keys as follows:

Protocol 3:

M1 : Alice — Bob : Ty

M2 : Bob — Alice : Ty

Alice then computes K p = é(Sa,TB) - é(@p,as2P), and Bob computes
Kpa=¢6(Sp,Ta)-é(Qa,bs1P). If Alice and Bob follow the protocol, they will
compute the same shared secret: K = Kap = Kpa = é(bSa + aSp, P). Their
shared secret session key is then FK = Hy(K), which does not have the TA
forward secrecy property (if the two TAs collude), or FK = H,(K, abP), which
has the TA forward secrecy property.

Efficiency: Each party is required to compute two elliptic curve point multipli-
cations and two evaluations of the pairing, and one extra elliptic curve point
multiplication if the TA forward secrecy property is required.

Security: This protocol has the same security properties as Protocol 1, except
for the second part of TA forward secrecy. For the standard version, the
compromise of either of the TA’s master keys s; or so does not lead to the
compromise of communications in the past. But knowing both s; and sy will
allow anyone to compute the session key via K = é(Qp,T4)%2 - é(Qa,Tr)"".
This implies that the two TAs must work together (or collude) in order to
determine any secret session keys. For the version with TA forward secrecy,
even the compromise of both s; and ss (or the collusion of both TAs) does
not compromise the shared session key. Based on Definition 1 described in
Section 2, we have the following theorem.

Theorem 4. Protocol 3 is a secure AK protocol, assuming that the adversary
does not make any Reveal queries, the BDH problem (for the groups G1 and G3)
s hard and provided that Hi and Ho are random oracles.

Proof. We assume in this proof that when the adversary picks an oracle I} ; for
its test query that participant I’s secret key is generated by TA1, and participant
J’s long term key is generated by TA,. This assumption may be omitted, but
it simplifies the proof somewhat. The proof of this theorem now follows that of
Theorem 1 except for the following minor changes.

When F' simulates the running of the key generation algorithm O, there are
now 2 TAs, so F' chooses TA;’s public key as s;zP and TAy’s public key as
sox P, and all other participants’ keys are computed as in the proof of Theorem
1. During E’s attack, F' answers all of E’s queries as it does in the proof of
Theorem 1, except that when E asks II} ; its first Send query, F' answers s, 2P
(and not s,r7zP as before). '

The rest of the proof follows the proof of Theorem 1 almost exactly (with
slight changes to the values of § and ~). We leave the details to the reader. O

In the protocol presented, each user gets their long term private key from a
single chosen TA. Therefore users have to trust the TAs not to impersonate any
entity using their key generation services. If users do not want an individual TA
to have too much power, each user can use multiple TAs instead of a single one.
[CHSS02,CHMSS02] have recently proposed a number of techniques for using
multiple TAs in ID-based cryptography, where the TAs do not have to share
secrets with each other, and users are able to flexibly choose a set of TAs for
each application.

7 Key Confirmation Process

This section describes how to add key confirmation to Protocol 2 to form an
AXKC protocol (the same can be done for Protocol 3). We derive an AKC protocol
from an AK protocol by adding the MACs of the flow number, identities and
the ephemeral public keys.

The following is a general protocol extended from Protocol 2. In particular,
W, Wg and K are computed as in Protocol 2. Here, MACs are used to provide
key confirmation; and Hy and Hj are two independent key derivation functions,
FK = Hy(K) and FK' = H3(K).

Protocol 4:

M1 : Alice — Bob : Wy

M2 : Bob — Alice : WB, MACFK/(Q, IDA, IDB, WA, WB)

M3 : Alice — Bob : MACFK/(37IDA7IDB7WA7WB)

If the protocol succeeds, Alice and Bob share the session key, F K.

Smart also adds key confirmation to his AK protocol to form an AKC pro-
tocol [Sm02], although it is slightly different to the method described here. It
also explicitly includes the session key material before the derivation function is
applied inside the MAC, which is not generally considered as secure as simply
including the ephemeral public keys.

The method used here is well known and is identical to that used to add key
confirmation to the MQV AK protocol as described in [LMQSV98]. This in turn
followed the key confirmation method used by Blake-Wilson et al in [BJM97].

By using Definition 2 of a secure AKC protocol in Section 2 and the concept
of a secure MAC, taken from [BJM97], we have the following theorem.

Theorem 5. Protocol 4 is a secure AKC protocol, assuming that the adversary
does not make any reveal queries, the BDH problem (for the pair of groups Gy

and G3) is hard, the MAC'is secure and provided that Hy, Hy and Hs are random
oracles.

The proof of this theorem follows similar lines to the proof of Theorem 9
in [BJM97], as well as our proof of Theorem 1, and we leave the details to the
reader.

8 Conclusions

We have investigated some security issues related to identity based authenticated
key agreement, and proposed a few new protocols modified from a previous
protocol to efficiently achieve certain security properties. We have then used
techniques from provable security to analyze the security properties of our new
protocols.

Interesting further work would be to find an ID-based AK protocol which
is provably secure in our model without having to place additional restrictions
on the adversary. It would also be interesting to develop a more comprehensive
model of security for key agreement protocols in which a definition of security
would automatically imply all the security properties deemed necessary in this

paper.

Acknowledgements

We thank Kenneth Paterson for invaluable comments on this latest version and
Zhaohui Cheng for pointing out the error in the original version of the paper.

References

[AP02] S. AL-RivamI AND K.G. PATERSON, Tripartite authenticated key agreement
protocols from pairings. In K.G. Paterson (ed), Proc. IMA Conference on Cryp-
tography and Coding, LNCS Vol. 2898, pages 332-359, Springer-Verlag, Berlin,
2003.

[BF01] D. BONEH AND M. FRANKLIN, Identity-based encryption from the Weil pairing.
In Advances in Cryptology - CRYPTO 01, LNCS 2139, pages 213-229, Springer-
Verlag, 2001.

[BJIM97] S. BLAKE-WILSON, D. JOHNSON, AND A. MENEZES, Key agreement proto-
cols and their security analysis. In Proceedings of the sixth IMA International Con-
ference on Cryptography and Coding, LNCS 1355, pages 30-45, Springer-Verlag,
1997.

[BLS01] D. BonEH, B. LyNN, AND H. SHACHAM, Short signatures from the Weil
pairing. In Advances in Cryptology - ASTACRYPT ’01, LNCS Vol.2248, pp. 514-
532, Springer-Verlag, 2001.

[BR93] M. BELLARE AND P. RoGawAy, Entity authentication and key distribution.
In Advances in Cryptology - CRYPTO ’93, LNCS 773, pages 232-249, Springer-
Verlag, 1994. Full version available at http://www-cse.ucsd.edu/users/mihir.

[C03] Z. CHENG, Private communication, December 2003.

[CHSS02] L. CHEN, K. HARRISON, N.P. SMART, AND D. SOLDERA, Applications of
multiple trust authorities in pairing based cryptosystems. In Proceedings of Infras-
tructure Security Conference 2002, LNCS 2437, pages 260-275, Springer-Verlag,
2002.

[CHMSSO02] L. CHEN, K. HARRISON, A. Moss, N.P. SMART, AND D. SOLDERA, Cer-
tification of public keys within an identity based system. In Proceedings of In-
formation Security Conference 2002, LNCS 2433, pages 322-333, Springer-Verlag,
2002.

[CKO02] L. CHEN AND C. KUDLA, Identity based key agreement protocols from pairings.
In Proceedings of the 16th IEEE Computer Security Foundations Workshop, pages
219-233, IEEE Computer Society Press, June 2003.

[DH76] W. DIFFIE AND M.E. HELLMAN, New directions in cryptography. In IEEE
Transactions on Information Theory, 22:644-654, 1976.

[FMR99] G. FREY, M. MLLER AND H. Rck, The Tate pairing and the discrete loga-
rithm applied to elliptic curve cryptosystems. In IEEE Transactions on Information
Theory, 45(5):1717-1719, 1999.

[Ga01] S. GALBRAITH, Supersingular curves in cryptography. In Advances in Cryptol-
ogy - Asiacrypt’ 01, LNCS 2248, pages 495-513, Springer-Verlag, 2001.

[GHS02] S.D. GALBRAITH, H.J. HOPKINS AND I.E. SHPARLINSKI, Secure Bilinear
Diffie-Hellman Bits. In the Cryptology ePrint Archive, Report 2002/155, 2002.
[GHS002] S.D. GALBRAITH, K. HARRISON AND D. SOLDERA, Implementing the Tate

Pairing. In ANTS 2002, pages 324-337, 2002.

[GP90] M. GIRAULT AND J.C. PAILLES. An identity-based scheme providing zero-
knowledge authentication and authenticated key exchange. In Proceeedings of ES-
ORICS ’90, pages 173-184, 1990.

[He02] F. HEss, Efficient identity based signature schemes based on pairings. In Pro-
ceedings of the 9th Workshop on Selected Areas in Cryptography, SAC 2002, LNCS
2595, pages 310-324, Springer-Verlag, 2003.

[ISO11770] ISO/IEC 11770-3, Information technology - Security Techniques - Key
management - Part 3: Mechanisms using asymmetric techniques. International Or-
ganization for Standardization, Geneva, Switzerland, 1999 (first edition).

[Jo00] A. Joux, A one round protocol for tripartite Diffie-Hellman. In Proceedings of
Algorithmic Number Theory Symposium, ANTS-IV, LNCS 1838, pages 385-394,
Springer-Verlag, 2000.

[KO1] B.S. KarLiskI JR, An unknown key-share attack on the MQV key agreement
protocol. In ACM transactions on Information and System Security, 4(3):275-288,
August 2001.

[LMQSV98] L. Law, A. MENEZES, M. QU, J. SOLINAS AND S. VANSTONE, An efficient
protocol for authenticated key agreement. Technical Report CORR 98-05, 1998.
Available at citeseer.nj.nec.com/law98efficient.

[MOV93] A. MENEZES, T. OKAMOTO AND S. VANSTONE, Reducing elliptic curve loga-
rithms to logarithms in a finite field. In IEEE Transactions on Information Theory,
39:1639-1646, 1993.

[MQV95] A. MENEZES, M. QU AND S. VANSTONE, Some new key agreement protocols
providing mutual implicit authentication. In Proceedings of the Second Workshop
on Selected Areas in Cryptography, SAC ’95, pages 22-32, 1995.

[MWWO98] C. MITCHELL, M. WARD AND P. WILSON, Key control in key agreement
protocols. In Electronics Letters, 34:980-981, 1998.

[Ok86] E. OkaMOTO, Proposal for identity-based key distribution system. In Elec-
tronics Letters, 22:1283-1284, 1986.

[Pa02] K.G. PATERSON, ID-based signatures from pairings on elliptic curves.
In Electronics Letters, Vol. 38 (18) (2002), 1025-1026. Available at
http://eprint.iacr.org/2002/004/.

[Sh84] A. SHAMIR, Identity-based cryptosystems and signature schemes. In Advances
in Cryptology - CRYPTO ’84, LNCS 196, pages 47-53, Springer-Verlag, 1984.
[Si94] J.H. SILVERMAN, Advanced topics in the arithmetic of elliptic curves, Graduate

Texts in Math., vol. 151, Springer-Verlag, Berlin and New York, 1994.

[Sm02] N. SMART, An identity based authenticated key agreement protocol based on
the Weil pairing. In Electronics Letters, 38:630-632, 2002.

[SOKO00] R. SakAl, K. OHGISHI AND M. KASAHARA, Cryptosystems based on pairing.
In The 2000 Symposium on Cryptography and Information Security (SCIS2000),
Okinawa, Japan, 2000.

[TO91] K. TANAKA AND E. OKAMOTO, Key distribution system for mail systems using
ID-related information directory. In Computers and Security, 10:25-33, 1991.
[Ve01] E. VERHEUL, Evidence that XTR is more secure than supersingular elliptic
curve systems. In Advances in Cryptology - EUROCRYPT 2001, LNCS 2045,

pages 195-210, Springer-Verlag, 2001.

