
Theoretical Use of Cache Memory as a
Cryptanalytic Side-Channel

D. Page

Department of Computer Science, University of Bristol
http://www.cs.bris.ac.uk/

Abstract

We expand on the idea, proposed by Kelseyet al. [14], of cache memory being
used as a side-channel which leaks information during the run of a cryptographic
algorithm. By using this side-channel, an attacker may be able to reveal or narrow
the possible values of secret information held on the target device. We describe
an attack which encrypts210 chosen plaintexts on the target processor in order to
collect cache profiles and then performs around2

32 computational steps to recover
the key. As well as describing and simulating the theoretical attack, we discuss
how hardware and algorithmic alterations can be used to defend against such tech-
niques.

1 Introduction

State of the art cryptanalysis has conventionally lay in the realm of mathematicians
who seek techniques to unravel the hard problems on which modern cryptosystems
are generally based. Recently, a new class of attack has become increasingly popular.
Side-channel analysis [23] moves the problem of revealing secret information from
the mathematical domain into the practical domain of implementation. By considering
the implementation of cryptosystems rather than their specification, researchers have
found they can mount attacks which are of low cost in terms of time and equipment
and are highly successful in extracting useful results.

Side-channel attacks are based around the general assumption that one can mea-
sure properties of the algorithm being processed and make deductions about exactly
what that processing entails. For example, simple (SPA) and differential (DPA) power
analysis [22] both rely on the attacker measuring the power usage of a processor while
executing a cryptographic algorithm. By performing executions of the algorithm and
using statistical tests on the resulting power profiles [2], the attacker is able to deduce
what data is being used at each stage of the execution. If this data is specified as be-
ing secret, the attacker can read it, as if public, when leaked though the power based
side-channel.

SPA and DPA are both non-invasive attacks in that the processing device need not
be altered or damaged in any way during the attack. Other side-channel attacks which
are progressively more intrusive include timing attacks [21], electro-magnetic radiation
analysis [13] and glitch and fault analysis based attacks [9]. In their review of side-
channel cryptanalysis, Kelseyet al. state:

1

“We believe attacks based on cache hit ratio in large S-box ciphers like
Blowfish, CAST and Khufu are possible.”[14, Section 7]

We show precisely how cache profiles can aid the recovery of secret information,
thereby confirming this prediction. Since cache memory represents a large proportion
of microprocessor designs, these profiles are potentially easier to collect than micro-
level features such as register or bus state used in related DPA and address-bit DPA [18]
attacks. Furthermore, our attack technique is deterministic in the sense that outside the
collection of profile information, it does not make use of the statistical techniques used
in DPA and similar cache based attacks that could be constructed using timing infor-
mation. These characteristics mean that cache behaviour analysis (CBA) attacks are
hard to defend against without removing the cache entirely and may be mounted with
less sophisticated equipment than other methods.

Although current smart-card processor cores [24] seldom incorporate cache mem-
ories, some next-generation [19] designs and many current embedded processors [3, 4]
do allow the inclusion of both instruction and data caches. Since adding a cache is
inexpensive in that it requires relatively few architectural alterations, such a step is at-
tractive because it offers a cost effective way to improve system performance. This
work presents preliminary research into how an attacker might use the presence of a
cache to their advantage. As such, it provides an attack method which, if not immedi-
ately threatening, warns against the use of cache memory in security conscious devices
without careful consideration.

We begin in Section 2 by giving a brief introduction to how cache memory works,
with particular emphasis to the elements that related to our attack. In Section 3 we
outline the environment in which we set our experiments before specifying an example
attack against DES [20] in Section 4. So as to provide balance to our attack techniques,
in Section 5 we consider some potential countermeasures and discuss their relative mer-
its. Finally, we present ideas for further research in Section 6 and concluding remarks
in Section 7.

2 Cache Memory

Cache memory, in the context of microprocessors, is a small area of very fast memory
that is placed between the processor and main memory. Since accesses to main mem-
ory are slow in comparison to the processor speed, performance is often impaired by
operations that need to load and store data. A cache, which operates at a speed closer
to that of the processor, helps to solve this problem by storing the most often used data
items, thus reducing the cost of accessing them. Accesses to both data and instruc-
tions can be cached in this way, the whole system relying on the assumption that there
is a working set of data items that are accessed most frequently. Since access to this
working set will be accelerated by the cache, the performance of the whole system will
improve.

However, since cache memory is faster and more expensive, it is smaller than main
memory and can therefore only house a subset of the data items held at a higher level.
A replacement policy manages which data items are stored in the cache when they are
accessed by the processor, meaning that data items in the cache that have not been used
for some time may be evicted and replaced by new items.

When the processor issues an access to the memory system, the address in memory
that is being referenced is first mapped into a cache line. In the most simple case this

2

−−−− −−−− −−−− −−−−false

−−−− −−−− −−−− −−−−false

−−−− −−−− −−−− −−−−false

−−−− −−−− −−−− −−−−false

0x000b000true

−−−− −−−− −−−− −−−−false

−−−− −−−− −−−− −−−−false

true

−−−−−

−−−−−

−−−−−

−−−−−

−−−−−

−−−−−

Valid Tag Content

0b001 0x20 0x21 0x22 0x23

0x01 0x02 0x03

This line contains address

This line contains address0b00001101

0b00100000

These lines are empty

Figure 1: An example cache structure with eight line and four elements per-line.

may be described as

cache line = addressmod cache size

although more complex mapping schemes exist for more complex cache types. Note
that since the cache is smaller than main memory, the mapping scheme causes a wrap-
around effect meaning more than one address may map to the same line. A cache line
will contain three main items of information: the cache valid flag that determines if the
cache line has valid information in it, the cache tag that describes what is contained in
the line, and the cache data that holds the actual memory contents.

In all but the most simple of caches, the cache line may contain data from several
different addresses inside the same content field. That is, several addresses may all
map to the same line and be contained within that line. This allows larger blocks of
data to be transfered to and from main memory at once which is more efficient than
dealing with many smaller transfers. The cache tag field allows such complexities in
the mapping scheme by offering uniquely identification such that we can always match
an address with the content of the mapped cache line.

Consider an example cache, shown in Figure 1, with a size of eight lines and a
line size of four elements that is accessed using 8 bit addresses. In this more complex
scheme, we use the lower bits of the address to select the entry within the cache line
meaning that the higher bits, the tag, identifies the content of the line as a whole

cache element= (address) mod line size

cache line = (address� (log2(line size)) mod cache size

cache tag = (address� (log2(line size) + log2(cache size)))

where� is bit-wise right shift. That is, the element number is calculated by selecting
bits zero and one of the address while bits two, three and four specifying the line
number. The cache tag is calculated by selecting all the other bits, i.e. except those
used to specify the line or element number. From these formula we can show that the
combination of element number, line number and tag allows us to distinguish between
the mapping of any two addresses. For example, consider the following mappings that
result from the equations above

address0b00001101 7! tag0b000 , line 0b011 , element0b01
address0b00000000 7! tag0b000 , line 0b000 , element0b00
address0b00100000 7! tag0b001 , line 0b000 , element0b00

3

We can see for example that address0b00001101 maps to line three and the value
we are interested in is in element one. Addresses0b00000000 and0b00100000
both map to line zero, element zero but we can distinguish between them since they
have different tag values.

When the processor accesses memory though the cache using a mapping of this
form, one of several situations occurs. If the line contains invalid data then we need
to load the memory content from main memory since the cache doesn’t contain it.
Similarly, if the cache tag held in the calculated cache line doesn’t match the cache tag
of the address, we also need to load the content from memory since although the line
contains valid information, it isn’t the information we are looking for. Either of these
two cases is called a cache miss since the cache doesn’t contain the data we want and
hence it must be fetched from main memory. If the line contains valid data and the tags
match, then a cache hit is signalled since the data is present and we can use it without
resorting to the slower main memory. The locality of reference phenominia means that
cache hits happen more often than cache misses and hence the operation of the overall
system is accelerated since there are less accesses to slower memory devices and more
to the fast, cached memory.

3 Attack Assumptions

A naive way to approach using cache behaviour is the construction of a database which
matches hit/miss profiles collected from an attack run with pre-computed profiles for
encrypting a plain-text under all possible keys. Although this sort of attack would be
successful, the amount of storage and computational power required to mount such an
attack is cripplingly large.

In order to improve on this naive approach, our work employs analysis on, and
knowledge of, the algorithms under attack. This analysis forms relationships between
parts of secret information based on the behaviour of the cache when the algorithm is
run. Such relationships can be used to weaken the cipher, or perhaps directly produce
the secret information, with some extra processing after the collection of cache profiles.

When discussing these techniques, we make several assumptions about the ability
of the attacker and the composition of the device being attacked:

� Firstly, we assume that the processing device being attacked accesses main mem-
ory through a conventional cache memory. Our example attack is based on the
ability to spot cache hits and misses in a profile and so devices which perform
direct memory access, i.e. without a cache, will not be endangered by this sort
of technique.

� We also assume an attacker has the ability to capture information about the cache
using a well understood method. We envisage this would be done by spotting
known features in a power or electro-magnetic profile in a similar way to how
SPA might attack an exponentiation algorithm. By observing the difference in
activity between a cache hit and cache miss, the attacker can construct a profile
that describes which event occurs within the cache for a given access.

� We assume knowledge about the cache structure, for example the line size, and
develop our attack based on these facts. Although the attack will need to change
based on the attributes of cache memory found in a real device, the general attack
principle remains the same.

4

� Since our example attack is based on accesses to the S-box style structures found
in many block ciphers, we assume that the value of these S-boxes is fetched from
a table in memory and not calculated directly using a mapping implemented
by processor instructions [1]. This means the access to memory will be routed
through the cache and produce an access profile without which such attacks are
useless.

� We assume that the cache is emptied on power-off of the host device and that we
start running our cryptographic algorithm with an empty cache in respect to the
data associated with the algorithm.

� Finally, we assume that we can match information gained from our capture abil-
ity to operations in the source code. That is, when a memory access happens
through the cache, we can tell which data structure in the algorithm is being ac-
cessed. This assumption basically means we need to deal with a deterministic,
in-order memory system.

Although these assumptions vastly constrain the usefulness of attacks against real de-
vices, none of them are particularly outrageous when considering the real-life operation
of next-generation smart-card devices and current embedded processors. The underly-
ing fact is that the behaviour of cache memory on-board a cryptographic device will
yield at least some useful information. Attacks will always need to be tailored to spe-
cific circumstances but, in general, more information is always better from the point of
view of the attacker.

In our example attack we assume the existence of a processor from which we can
glean the result of cache accesses. In order to simulate the information an attacker
might gain from a real device, we linked our algorithm implementations to the Dinero
cache simulation library [15] which was configured to model a1 kilobyte, four byte
per-line, direct-mapped variant of that found in a real processor core [19, 3, 4]. The
cache simulator produces a list of accesses for each run of the algorithm where each
access in the list relates to the S-box structures being read.

4 Example Attack

4.1 Introduction

Our example attack is against the DES [20] encryption algorithm whose core is de-
scribed as pseudo-code in Figure 2. In this discussion, we use the functionsID, E,
P andFD to denote the initial data, expansion, P-box and final data permutations as
well asT , IK andC in place of key rotation, initial key and compression permutations
respectively.S represents the whole S-box or substitution transformation whileSBn

denotes an access to S-boxn. Note that we assume that the S-box structures have been
rearranged for easy array-style indexing as is common in software implementations of
DES.

Additionally, we use several types of notation to select and concatenate bits sized
values to and from larger values. The notationx[y::z] selects a number of bits, between
indicesy andz inclusively, from the valuex and reforms them into a new value. Simi-
larly, the notationx[y; z] selects individual bits at indicesy andz and forms them into
a new value. The@ operator is used to concatenate, or recombine, groups of bits into
larger values.

5

void des(D, K[])
{

D = ID(D);

L’ = D[63 .. 32];
R’ = D[31 .. 00];

for(round = 0; round < 16; round++)
{

L = R’;
R = E(R’);

R = R ˆ K[round];

R = SB0[R[47 .. 42]] @ SB1[R[41 .. 36]] @
SB2[R[35 .. 30]] @ SB3[R[29 .. 24]] @
SB4[R[23 .. 18]] @ SB5[R[17 .. 12]] @
SB6[R[11 .. 06]] @ SB7[R[05 .. 00]];

R = P(R);

R = L’ ˆ R;

L’ = L;
R’ = R;

}

D = FD(R’ @ L’);
}

Figure 2: A pseudo-code implementation of DES.

Our goal in attacking this algorithm is to reveal the master keyK which is stored
as secret information in the target device and used to generate the key schedule for
encryption and decryption operations. Knowledge of this key would enable us to man-
ufacture a clone device which we could use for fraudulent purposes since the clone
would exactly replicate the behaviour of the original device.

4.2 Formulation

The formulation of an attack against DES assumes the in-depth knowledge of both
the algorithm and the operational behaviour of cache memory [11]. We only need to
consider the first two rounds of DES which are best described by the flow diagram in
Figure 3. From this diagram it is easy to trace the flow of information through the
algorithm and show how a given value is calculated from previous values.

The functionsS0 andS1 in the diagram represent the substitution transformations
in rounds zero and one respectively which are implemented by accesses to the S-box
structures in memory. We can trace through the diagram to produce two formulas for
the indices,I0 andI1, which perform the S-box accesses in transformationsS0 andS1

I0 = K0 �E0(R0) (1)

I1 = K1 �E1(L0 � P0(S0(K0 �E0(R0))))

The equations forI0 andI1 hold for a different sub-set of bits for each S-box in each
transformation. For example, the seventh S-box is accessed using bits zero to five
of the incoming index. Furthermore, depending on the cache behaviour with respect
to each S-box access, we can relate one index to the other. If we capture the cache
behaviour when the aforementioned S-box seven is accessed in transformationsS0 and

6

0R

0E

0S

0P

R1

E 1

S 1

P 1

R2

0L

1L

2L

0T

0C

0K

T 1

C1

K1

D K

IKID

Round 0

Round 1

Figure 3: A flow diagram of DES.

S1 and consider the correct sub-set of bits used in the indices, we produce the following
relationships

I0[05::00] =LINE I1[05::00] whenS1 yields a cache hit (2)

I0[05::00] 6=LINE I1[05::00] whenS1 yields a cache miss

where=LINE and 6=LINE arecache line equivalencieswhich take into account the
fact that since each cache line may store more than one data item, the indices may
result in the same cache line being accessed without actually being equal. That is, the
cache tagsof addressesI0 andI1, which dictate the cache lines they map to, may be
equal withoutI0 andI1 actually being equal in value.

Our equations in step 2 basically mean that if we concentrate on the cache profile
of one S-box and in round one it produces a hit, we know that the indicesI0 andI1
must map to the same line in the cache. Depending on the cache line size, we can force
these cache line considerate equations into direct equalities. We consider an example
cache which has a line size of four, i.e. each cache line can hold four S-box elements,
meaning that the bottom two bits of any access will be used as the selector within the
line rather than altering which line the access refers to. We can apply this knowledge
to solidify our relations thus

I0[05::02] = I1[05::02] whenS1 yields a cache hit (3)

I0[05::02] 6= I1[05::02] whenS1 yields a cache miss

This has allowed us to directly relate the values ofI0 andI1 with each other from a
cache hit or miss on accesses to a given S-box, in this case S-box seven. We continue
our analysis by using the bit selection on our indices to peal away layers of permutation

7

K0 E 0 R0()

K0 E 0 R00S

47..42 41..36 35..30 29..24 23..18 17..12 11..6 5..0

3..07..411..815..1219..1623..2027..2431..28

()()

47..0

31..0

SB0 SB1 SB2 SB3 SB4 SB5 SB6 SB7

Figure 4: A flow diagram of DES S-box access in round zero.

in order to simplify our expressions forI0 andI1. For example, given the expression

P0(X)[04::01] (4)

we can trace the bits we require in the output through the permutation in order to deduce
the bits from whence they came

P0(X)[04::01] = X [26; 10; 21; 28] (5)

This example shows that if we apply theP0 permutation to a valueX and are only
interested in a sub-set of bits in the output, which values ofX we need to consider in
their place. By applying this sort of technique to our equations forI0 andI1 we can
simplify them as follows

I0 = (K0 �E0(R0))[05::02] (6)

= K0[05::02]�E0(R0)[05::02]

= K0[05::02]�R0[04::01]

I1 = (K1 �E1(L0 � P0(S0(K0 �E0(R0)))))[05::02]

= K1[05::02]�E1(L0 � P0(S0(K0 �E0(R0))))[05::02]

= K1[05::02]� (L0 � P0(S0(K0 �E0(R0))))[04::01]

= K1[05::02]� L0[04::01]� P0(S0(K0 �E0(R0)))[04::01]

= K1[05::02]� L0[04::01]� S0(K0 �E0(R0))[26; 10; 21; 28]

The sticking point in using these equations is the instance of theS0 transformation
which represents S-box accesses in round zero. Note that in this case, cache behaviour
is irrelevant and we are interested only in the resultant value of the transformation in
our equation. Since we know the output bits we are interested in, we can expand our
expressions using knowledge about the flow of data through the S-boxes as shown in
Figure 4. We can see from this that the output of the S-box transformation, given the
sub-set of bits we are interested in, is taken from the output of four different actual
S-box accesses. Hence we make the following specialisation

S0(X)[26] = SB1(X [41::36])[02] (7)

S0(X)[10] = SB5(X [17::12])[02]

S0(X)[21] = SB2(X [35::30])[01]

S0(X)[28] = SB0(X [47::42])[00]

8

which we can insert into our expression thus

I0 = K0[05::02]�R0[04::01] (8)

I1 = K1[05::02]� L0[04::01]� Z

where

Z = SB1((K0 �E0(R0))[41::36])[02]@

SB5((K0 �E0(R0))[17::12])[02]@

SB2((K0 �E0(R0))[35::30])[01]@

SB0((K0 �E0(R0))[47::42])[00]

By rewriting all instances ofK0 andK1 in terms ofK, we find that

K0[05::02] = K[19; 50; 51; 02] (9)

K1[05::02] = K[27; 58; 59; 10]

K0[41::36] = K[31; 07; 62; 55; 45; 22]

K0[17::12] = K[17; 34; 59; 11; 41; 35]

K0[35::30] = K[61; 29; 38; 39; 20; 06]

K0[47::42] = K[54; 13; 30; 04; 15; 47]

which we can substitute into our equations forI0 andI1, before removing any remain-
ing permutation operations, to form a final result

I0[05::02] = K[19; 50; 51; 02]�R0[04::01] (10)

I1[05::02] = K[27; 58; 59; 10]� L0[04::01]� Z

where

Z = SB1(K[31; 07; 62; 55; 45; 22]�R0[31; 39; 47; 55; 63; 05])[02]@

SB5(K[17; 34; 59; 11; 41; 35]�R0[27; 35; 43; 51; 59; 01])[02]@

SB2(K[61; 29; 38; 39; 20; 06]�R0[63; 05; 13; 21; 29; 37])[01]@

SB0(K[54; 13; 30; 04; 15; 47]�R0[57; 07; 15; 23; 31; 39])[00]

From this final result and the relationships betweenI0 andI1 described in step 3, we
have developed equations that tie together different parts of key material for given
values of input data. When the indices for accesses to a given S-box in rounds zero and
one are equal, i.e. there is a cache hit recorded for the access to that S-box in round one,
these equations give us a equality test which we can use to check if a given combination
of key material bits are valid. The composition of the test will depend on which S-box
was considered when generating the equations forI0 andI1 but will take the general
form

K[x::y]�R0[x::y] = K[x::y]� L0[x::y]� Z

where

Z = SBn(K[x::y]�R0[x::y])[z]@

SBn(K[x::y]�R0[x::y])[z]@

SBn(K[x::y]�R0[x::y])[z]@

SBn(K[x::y]�R0[x::y])[z]

9

Since we can control the value ofD, and hence the values ofL0 andR0, we can force
the solidification of our relationships into tests by picking a value ofR0 and finding a
value ofL0 such that accessing the S-box under consideration in round one produces a
hit. We call the value ofL0 which provokes this cache hit thefixed pointof R0. Using
this technique and randomly picking values ofR0, we can manufacture as many tests
as we want by performing encryption queries to the target device, capturing the cache
profile, and testing if a givenL0 provoked a cache hit in round one when our chosen
S-box was accessed.

The point of generating these tests is that we can use them to perform an efficient
sub-key search which gives us a small number of candidate sub-key values with respect
to each S-box. For example, considering the final result for S-box seven in step 10
above, we might chooseR0 to be zero which, after finding the fixed pointL0 to be
0x0E , gives the test

K[19; 50; 51; 02] = K[27; 58; 59; 10]� 0x0E � Z

where

Z = SB1(K[31; 07; 62; 55; 45; 22])[02]@

SB5(K[17; 34; 59; 11; 41; 35])[02]@

SB2(K[61; 29; 38; 39; 20; 06])[01]@

SB0(K[54; 13; 30; 04; 15; 47])[00]

If we were to perform a brute-force search through the31 unique key bits used, with
bit 59 being used twice, only a small proportion of the bit combinations will be valid
under this equality. Since we can generate many of these tests for each S-box, each
with differentL0 andR0 pairs as demonstrated by the appendix to this paper, we can
apply many tests on a given combination of key bits and ensure very few are actually
considered valid.

4.3 Implementation

We considered an example attack against a secret key of

K = 0x0123456789ABCDEF (11)

which when we strip out the parity bits for clarity equals

K = 0x0022446688AACCEE (12)

Note that we consider a64 bit key since this is what out algorithm, and hence the
related key permutation and schedule operations, expects. It is important to note that
any valid key could have been used and that the existence of parity bits doesn’t effect
the correctness of performance of the attack since they don’t occur in our test equations.

We started by generating32 tests with respect to S-box zero, by taking the general
form for S-box zero indices found in the appendix, selecting a randomR0 and finding
the corresponding fixed pointL0. After finding 32 random point/fixed point pairs,
and hence creating the same number of equalities, we reduced the potential number of
candidate sub-keys by searching through the used key bits and applying all our equality
tests to all the combinations.

10

Eight candidate sub-key combinations passed all32 tests, whereCi;j denotes can-
didate key numberj which was gained from roundi of the attack method

C0;0 = 0x00024420C88024AA (13)

C0;1 = 0x00024420C88034BA

C0;2 = 0x00024420C8A004AA

C0;3 = 0x00024420C8A014BA

C0;4 = 0x00024460888024AA

C0;5 = 0x00024460888034BA

C0;6 = 0x0002446088A004AA

C0;7 = 0x0002446088A014BA

Interestingly, we found that performing32 tests on each combination was in fact overkill
since the same result could have been obtained using only9 tests. In order to move
closer to the actual result, we performed a second round of testing using32 more tests,
this time generated with respect to S-box one. The search again covered 31 bits of the
key space and resulted in a further eight candidate sub-keys

C1;0 = 0x00020046800A086E (14)

C1;1 = 0x00020046800A88EE

C1;2 = 0x40020046800A084E

C1;3 = 0x40020046800A88CE

C1;4 = 0x80820046800A086E

C1;5 = 0x80820046800A88EE

C1;6 = 0xC0820046800A084E

C1;7 = 0xC0820046800A88CE

This time, the full set of tests was required to narrow the candidate sub-keys to a man-
ageable number. Since the candidate sub-keys from each round of testing use different
bits of the key, we would ordinarily have to consider all logical combinations of the
candidates, i.e.

C0;0 _ C1;0 (15)

C0;0 _ C1;1

...

C0;7 _ C1;6

C0;7 _ C1;7

However, since we know that the two searches overlap in17 bits of their key usage, we
can eliminate a large number of these combinations. This is done by considering pairs
of sub-keys and discarding any which disagree in their use of overlapping bits. IfC0;i

andC1;j represent two candidate sub-keys from search zero and one respectively and
Mo represents a mask of the overlapping bits between the two rounds of testing, if

(C0;i � C1;j) ^Mo = 0 (16)

then the combined sub-key

C0;i _ C1;j (17)

11

is accepted as a valid candidate. After calculating the maskMo which represents the
overlapping bits to be

Mo = 0xC0821840840000AA (18)

and using the test in step 16 on values from steps 13 and 14, we were able to narrow
the number of potential candidates to four

C2;0 = 0x00024466888AACEE (19)

C2;1 = 0x00024466888ABCFE

C2;2 = 0x0002446688AA8CEE

C2;3 = 0x0002446688AA9CFE

At this stage in the attack, we are faced with the prospect of further rounds of testing in
order to narrow our candidate keys towards the final result. However, after performing
rounds zero and one of testing, we have covered49 of the56 non-parity key bits and
find that a further round of testing would only add a few extra bits to this coverage.
Since a brute force search of the bits not covered by search rounds zero and one is
much less expensive that performing further rounds of testing, this is the approach we
adopt.

If Mu represents a mask where if a bit is set, it needs to be included in the search,
i.e. it was not covered by any previous rounds of testing, and the value of this mask
with respect to rounds zero and one is

Mu = 0x0630800000044000 (20)

we can apply the following test to narrow the candidate keys towards a final result

DES(P;K) = DES(P;C2;i _Mu) (21)

That is, if the cipher-text produced by encrypting a known plain-text under the secret
key equals the cipher-text produced by encrypting the same plain-text under our com-
posed candidate key, we have found the final result. Note that we useMu to denote a
value which is derived from only the bits, given byMu, not covered by previous test-
ing. In trying to solve this equation, we first collect a known plain-text/cipher-text pair
from the target device with which to compare the results of our search. These values
could be taken from the first phase of the attack where we recover fixed points for our
equations by running queries on the device. We then search through possible values in
Mu and compare the result of our known encryption to that of our composite key given
by C2;i _Mu. We performed this search with our candidate keys and produced one
single result

C3;0 = 0x0022446688AACCEE (22)

which is the same as the key we started with and hence represents a successful attack.

4.4 Efficiency

In general, using our sub-key search method is significantly less expensive than per-
forming conventional brute force key search. The first phase of the attack is the collec-
tion of cache information from the target device in order to build our test equalities. If

12

we intend to performr rounds of testing each performingt tests on each key combina-
tion, we will need to perform at most

� = r � t� 24

DES operations (DOPS) on the target device in order to recover the fixed points and
hence generate the equalities. Once this is done, we move onto the search phase which
is the most costly operation in the attack. In total, we need to perform

� = r � t� 231

test operations (TOPS) since any test for a given S-box will utilise at most 31 unique
key bits. Finally, we need to finalise the candidate keys we have left after the search
operation by brute force searching the rest of the key space. We consider this phase to
take

 = c�m

DES operations wherec is the number of candidate keys produced by the search phase
andm is a constant related to how may residual bits need to be searched. Typically,
bothc andm will be small and hence the finalisation phase will not be costly in com-
parison with the main search phase. In our example, we chose the following parameters

r = 2

t = 32

i.e. we did two rounds of testing where in each round, generated by S-boxes zero and
one,32 tests were applied to each key combination. Since S-boxes zero and one overlap
in 13 bits of their key use, they cover a total of49 bits of the key. The remaining7 non-
parity bits of the key need to be searched by brute force DES search as part of the
finalisation phase. We therefore performed a workload of

� = 2� 32� 24

= 210DOPS

� = 2� 32� 231

= 237TOPS

 = 4� 256�(31+31�13)

= 29DOPS

We deliberately chose to perform32 tests on each combination of key bits since this is
roughly equivalent to performing one application of DES. Therefore, since32 TOPS
equals1 DOPS, our total workload was

210DOPS+ 232DOPS+ 29DOPS ' 232DOPS

This result indicates that with the help of cache information gleaned from the target
processor, the56 bit DES key is equivalent in terms of security to a32 bit DES key.
It is imperative to note that only the first attack phase counts as on-line processing.
That is, the attacker only needs access to the target device for as long as it takes to
generate the fixed points for the test operations, i.e. for as long as it takes to perform
210 DES operations. The expensive off-line phase of the processing effort, around232

13

DES operations, may take place off-line, at the attackers leisure and without the need
for access to the target device. We implemented the off-line processing phase of our
example attack described in Section 4.3 in software on a600 MHz UltraSPARC III
processor, and in hardware on a20 MHz Xilinx4000XL FPGA design [7] programmed
using the Handel-C hardware compilation system [6]. We were able to extract the key
in around seven hours in software and under three hours in hardware.

It is interesting to note that the minimisation of on-line workload is an important
factor in the viability of side-channel analysis attacks since without a low-cost way of
collecting operation profiles, useful access to the target device will be limited [5]. The
low on-line processing cost versus high off-line processing cost characteristic of this
attack may therefore be thought of as an advantage over techniques that require more
on-line work. That is, since we will always have more resources and time to perform
off-line processing it makes sense to have an attack whose characteristics are skewed
towards this fact.

5 Potential Countermeasures

Although CBA might offer effective methods to attack the security of a cryptographic
algorithm, there are measures which can be taken to limit the damage. The best way to
prevent attacks against the cache is to remove it from the processor design. Although
the cost versus performance tradeoff of removing the cache might be acceptable in
some situations, the technique is flawed in general since the degradation in performance
of the processing device is too valuable a factor to ignore. This discussion is therefore
limited to techniques which act to reduce the effectiveness of such an attack when the
cache is present.

We present several potential methods of guarding against CBA attacks which are
based on hardware modifications, algorithmic alterations or a combination of both. The
ideal solution will be the one which approaches the same performance-based efficiency
as when a normal cache is present but without the problems of having attacks using
information such as device gives. It is clear that other defences might be uncovered
through further investigation. However, none of our current ideas, apart from removing
the cache, can offer guaranteed protection from our attack methods since they all offer
some probabilistic level of security. This is mainly due to the fact that our assumption
is that the attacker is able to construct a profile of cache behaviour rather than using
statistical information such as timing of execution. Although a profile collection based
attack will be harder to do, and require more sophisticated hardare, it is possibly a more
realistic model of how a secure processor would be attacked in the wild. In the case
of timing based attacks against cache behaviour, defenses can fairly easily be realised
using timing skews or by inserting dummy operations [12] to alter the run-time of the
assumed fixed-length operation. To defend against our attack, one must mask the actual
occurance of cache behaviour, in a similar way that register access behaviour should
be masked to defend against DPA, an act which proves to be much harder to perform.

The defence which offers the best security versus cost ratio appears to be non-
deterministic access ordering described in Section 5.3 since it offers a level of pro-
tection based on calculatable, although probabilistic, parameters such as the level of
non-deterministic scheduling possible between the accesses. However, we note that
this defence requires significant hardware changes which might be prove too costly a
tradeoff in order to increase performance via the cache.

14

5.1 Full or Random Cache Warming

In order to change the profile of cache hits and misses between runs of the algorithm,
we can make a changes to the source code of the algorithm which warms [10] the
cache with data. This may range from fully loading an S-box into the cache, and hence
avoiding any misses from which information can be gained, to randomly loading S-
box elements such that the confidence in information gained from the cache is reduced.
For example, in the attack described in Section 4 we could alter the profile of hits and
misses to the S-box data structure by warming the cache with random elements from
that structure:

for(i = 0; i < warming factor; i++)
{

dummy = sbox[random number % sbox size]
}

By performing this operation at the start of the algorithm, we will fill the cache with
random elements from the S-box which will act to change the profile of hits and misses
in the cache depending on which elements were loaded. This approach is initially at-
tractive since it can be implemented in software as a prelude to the actually algorithm
rather than involving extra hardware elements. However, it does not guaranteed pro-
tection because it only actually masks the original access if we warmed the cache with
the right entry. In that respect, it is a probabilistic defence with the probability of ac-
tual protection related to the size of the S-boxes and the proportion of them which are
warmed into the cache.

To guarantee this as an effective countermeasure we need to warm the cache with
the entirety of all the S-boxes, rather than just random elements, but this is as bad as not
having a cache in the first place. Even so, full warming of the cache is implemented
inadvertently in algorithms such as Khufu [17] where the S-boxes are computed via
influence from the key material. In these cases, the entire S-box will be touched, and
hence loaded into the cache, before execution of the algorithm starts meaning that
assumptions about the ability to manufacture hits and misses no longer hold.

5.2 Rapid Avalanche Effect

Conventional wisdom states that a desirable property in hash function and cipher de-
signs is the demonstration of an avalanche effect. That is, any given bit in the input
should effect as much of the output as possible. If this effect happens quickly in the
algorithm, it is much harder to perform analysis on the flow of data since the amount
of unknown information that effects any given stage is very large.

We encountered the problems raised by the avalanche effect in Section 4. We found
that in DES,54 of the56 useful bits in the key influenced the behaviour of the algorithm
by the second round. This significantly complicates our equations and resulting tests
since considering cache accesses to any of the S-box structures means considering
the output from a further four S-boxes indexed by key material. If this were not the
case, the relationships would be significantly simpler and include far less unknown
information. This in turn would results in a more effective attack against the algorithm.

Since the rapid influence of the avalanche effect will make the formation of rela-
tionships based on cache behaviour harder, it follows that this is a good countermeasure
to consider.

15

5.3 Non-deterministic Access Ordering

Non-deterministic processors [16] have been proposed as a general defence to side-
channel attacks. These processors harness instruction level parallelism, inherent in the
implementation of an algorithm, to run instructions in a random order while main-
taining dependencies between them. Since the processor will run the instructions in
a different order on each run of the algorithm, the power profile will change between
runs making an attack significantly harder.

Similar principles can be applied to defending against CBA by allowing memory
access to occur out of order in the same way that register based instructions in a non-
deterministic processor. Although dependencies between instructions need to be ob-
served to prevent write-after-read or write-after-write hazards, a list of consecutive
reads to memory could be reordered producing a different cache profile per-ordering:

temp0 = sbox0[address] = hit) temp2 = sbox2[address] = miss
temp1 = sbox1[address] = hit) temp3 = sbox3[address] = miss
temp2 = sbox2[address] = miss) temp0 = sbox0[address] = hit
temp3 = sbox3[address] = miss) temp1 = sbox1[address] = hit

The accesses could also be reordered in a valid manner such that the cache profile
remains the same:

temp0 = sbox0[address] = hit) temp1 = sbox1[address] = hit
temp1 = sbox1[address] = hit) temp0 = sbox0[address] = hit
temp2 = sbox2[address] = miss) temp3 = sbox3[address] = miss
temp3 = sbox3[address] = miss) temp2 = sbox2[address] = miss

However, the attacker can not be sure that the deductions made from the cache access
information are valid since they are no longer able to match an access in the profile to
a reference in the source code. Furthermore, the addition of an instruction stream mu-
tation unit [12] might enable false memory accesses to further complicate the captured
access profile.

An optimistic attacker might suggest that they could count the total number of
cache hits and misses in round zero and and one of DES execution. Then, by changing
only input bits affecting a single S-box in round one and observing the change with
respect to the pre-recorded total, he might still be able to see if there is a hit or a miss.
For example, the attacker might record the hits and misses in round one as follows:

temp0 = sbox0[address] = hit
temp1 = sbox1[address] = hit
temp2 = sbox2[address] = miss
temp3 = sbox3[address] = miss

Then he cycles through bits in the address, i.e. the input data, which he knows might
alter accesses to only one S-box, e.g. S-box one. Eventually, he might hit on a value
which turns the hit resulting from the access to S-box one into a miss. Even if the
accesses are reordered, the attacker still has the knowledge that there were two hits
before; one hit afterwards; and his alterations only effected accesses to S-box one.

temp2 = sbox2[address] = miss
temp3 = sbox3[address] = miss
temp0 = sbox0[address] = miss
temp1 = sbox1[address] = hit

16

Therefore, he might claim that since there was one less hit before than after his altering
the address, the result of accessing S-box one must have been a hit. The opposite
deduction is true if he were to find one more hit, rather than one less after performing
the counting operations. However, in practice, this attack doesn’t work since thanks to
the avalanche effect in DES, it is impossible to find enough bits in the address through
which to cycle such that you can guarantee to alter the access pattern and notice the
difference.

If this scheme were implemented as an extension to a non-deterministic proces-
sor [16] where scheduling allows a reasonably large degree of movement for instruc-
tions, it could significantly reduce the determinism of a captured cache profile and
make CBA attacks much harder. However, it provides a probabilistic defence which
is bound by the amount of memory reordering potential in a given algorithm. If the
algorithm under attack has very few accesses to memory which can be reordered, due
to dependencies for example, the whole scheme will be ineffective in guarding against
CBA.

5.4 Non-deterministic Cache Placement

The use of randomised cache mapping policies [25] has been proposed as a method of
avoiding cache conflict caused by, for example, strided access patterns. This sort of
scheme works by introducing some skew in how a cache line is determined from the
address so that over time, the same address will be mapped into different lines. This
sort of technique offers high performance while adding a level of non-determinism to
the system by changing the mapping function between runs of an algorithm.

At first glance, it appears we might be able to use this property to defend against
a CBA attack by introducing some degree of non-determinism in the cache operation.
However, by looking at the problem more closely, this turns out to be impossible. If you
implement a randomised mapping policy in the cache you could non-deterministically
alter the performance, i.e. the number of hit and misses, between runs of the algorithm.
Although this is possible, it isn’t guaranteed since the mapping characteristics chosen
will entirely determine the performance given a fixed base architecture and workload.
Alternatively, you could elect to alter the mappings in the middle of a single execution
in an attempt to alter the pattern of hits and misses.

The problem in the first case is that unlike DPA, we aren’t interested in perfor-
mance differentials between runs of the algorithm but the deterministic occurrence of
a cache hit from a specific S-box access in the second round of DES execution. This is
something that altering the mapping between executions will not hide.

In the second case, altering the mappings in a more fine grained manner, e.g. on a
cache miss, will make all the data in the cache unretrievable every this is done. This
is because the mappings effectively determine where in the cache new data elements
are placed rather than whether the data can be found. By altering the mappings, all we
have done is to ensure none of the data can be found but new data entering the cache
will be placed in a different location. The net effect represents a massive performance
problem which doesn’t offer any better performance than not having a cache present.

Therefore, the introduction of non-determinism through randomised-cache map-
pings doesn’t offer an effective defence since is doesn’t guarantee a level of effective-
ness and isn’t able to hide the side-channel from the attacker.

17

6 Observations and Further Work

Our work so far has been fairly successful in developing techniques to use cache be-
haviour information in a cryptanalytic setting. Our example starts by analysing the flow
of data through the algorithm in question to form relationships between bits of secret
information. These relationships are brought about by the ability to reason about the
behaviour of the cache while the algorithm is running. We are able to control the plain-
text input to the algorithm in order to solidify these relationships and inspect possible
values of secret information. This process narrows the possible values it can take so
that key search may be executed more efficiently.

Clearly our attack, like most side-channel attacks, is specialised to a given cryp-
tographic algorithm and can not easily be generalised to other algorithms even if they
are similar in structure. However, we have outlined some general methods that are
potentially effective against a wide range of cryptographic algorithms and identified a
number of issues which will impact on our ability to use these methods in real-life:

� Our assumptions about cache line size will alter how our attacks are implemented
against a real device. Since the core element of our attacks is the ability to reason
about what meaning a cache hit or miss has, the fact that altering the cache line
size will alter the cache profile will need to be addressed in real world attacks.

� Our example algorithm is based on a Feistel network structure. It would be
interesting to investigate other algorithms, such as AES [8], that are based on
substitution/permutation network design. Additionally, it would be interested to
investigate algorithms such as Khufu which generate key-dependent S-boxes to
see if the scheduling operation is vulnerable to attack.

� The current state of our example attack is a product of the first round of research
and is therefore open to improvement. Specifically, it would be interesting to
improve the attack against DES such that it yields more useful results with less
computational effort on the behalf of the attacker. Additionally, it is important to
implement and test the effectiveness of our countermeasure proposals.

� We have only considered cache behaviour within large S-box structures. Al-
though potentially more complicated to analyse, there may be other data struc-
tures used by an algorithm which are amenable to being examined by similar
techniques. Although this would certainly need to be examined on the per-
algorithm basis, it may provide an interesting area for further work, perhaps
focusing on the use of the function call stack.

� Related to the item above, we could investigate implementations of algorithms,
such as DES, which perform permutation operations by table lookup. Although
this is costly in hardware, with memories becoming larger this may be a valid
optimisation technique in software which is exploitable using CBA.

The main item of further work to consider is the deployment of our methods in real
world situations against physical implementations. This step is vital to the success of
this work since side-channel analysis is an inherently real world attack and so consid-
ering simulated results is at best theoretical and at worst invalid.

18

7 Conclusions

Because of their ability to introduce non-linearity into block ciphers, S-boxes are gen-
erally considered to be vital for defense against mathematical based cryptanalysis

“S-boxes are considered to be the elements in the round transformation
that give the cipher its strength against cryptanalysis.”[8, Page 73]

However, this work shows that when considering implementation based cryptanalysis
the S-boxes can present an attackable side-channel. Side-channel analysis is a thorn
in the side of manufacturers of secure devices since it allows attackers to bypass con-
ventional, mathematical notions of security. By attacking the implementation of al-
gorithms rather than their specification, secret information can be liberated in a cost
effective and practical manner. Next-generation smart-card devices [19] and currently
available embedded processors [3, 4] allow the addition of cache memory as a way to
improve overall system performance. We have shown that using cache memory in a
processor without some thought can enable an attacker to infer details about what is
going on inside a secure processor by analysing the cache access behaviour.

We have presented a theoretical attack against DES, which acts to significantly
weaken the cipher once cache behaviour information has been collected. Our results
showed that a56 bit DES key is effectively only as secure as a32 bit key if an attacker
can spot cache hits and misses during execution of the algorithm. This example has
hinted at some general techniques for using cache behaviour in attacks against other
systems as well as a number of potential countermeasures which can make such attacks
harder.

Clearly the theoretical examples and countermeasures presented here require fur-
ther work to produce useful, implementable attacks against real hardware. However, it
is imperative to note that CBA can give the attacker more information that they would
otherwise have. Giving an attacker this extra information is dangerous if it can be
avoided since combining several attacks which each yield small amounts of informa-
tion may produce a composite attack that can reveal secret information and fully com-
promise security. Ultimately, designers of secure systems must considerany leaked
information as dangerous since an attacker is certain to use anything they can to their
advantage.

Acknowledgements

The author would like to thank James Irwin and Nigel Smart for useful discussion
throughout the duration of this work.

References

[1] A. Klimov and A. Shamir. A New Class of Invertible Mappings. In B.S. Kaliski
Jr. and Ç.K. Koç and C. Paar, editor,4th Workshop on Cryptographic Hardware
and Embedded Systems (CHES), volume , pages 471–484. Springer-Verlag, Lec-
ture Notes in Computer Science, August 2002.

[2] M-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart. Power Analysis, What Is
Now Possible... In6th International Conference on the Theory and Application
of Cryptology and Information Security. Springer-Verlag, December 2000.

19

[3] ARM Ltd. ARM7 Embedded Processor Core.http://www.arm.com/
armtech/ARM7_Thumb?OpenDocument , 2002.

[4] ARM Ltd. ARM9 Embedded Processor Core.http://www.arm.com/
armtech/ARM9_Thumb?OpenDocument , 2002.

[5] B. Schneier and A. Shostack. Breaking Up Is Hard to Do: Modeling Security
Threats for Smart Cards. InUSENIX Workshop on Smart Card Technology, pages
175–185. USENIX Press, 1999.

[6] Celoxica. Handel-C Language Overview. Technical report.

[7] Celoxica. Reconfigurable Hardware Development Platform: RC1000. Technical
report.

[8] J. Daemen and V. Rijmen.The Design of Rijndael. Springer-Verlag, 2002.

[9] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In 17th Annual International Cryptology Conference (CRYPTO), volume 1294.
Springer-Verlag, August 1997.

[10] M.C. Easton and R. Fagin. Cold-Start vs. Warm-Start Miss Ratios. InCommuni-
cations of the ACM, volume 21, pages 866–872, October 1978.

[11] J. Hennessy and D. Patterson.Computer Architecture A Quantative Approach.
Morgan Kaufmann, 1996.

[12] J. Irwin and D. Page and N.P. Smart. Instruction Stream Mutation for Non-
Deterministic Processors. In M. Shulte and S. Bhattacharyya and N. Burgess
and R. Schreiber, editor,13th International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pages 286–295. IEEE Computer
Society Press, July 2002.

[13] K. Gandolfi and C. Mourtel and F. Olivier. Electromagnetic Analysis: Con-
crete Results. InWorkshop on Cryptographic Hardware and Embedded Systems
(CHES), volume 2162. Springer-Verlag, May 2001.

[14] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel Cryptanalysis of
Product Ciphers. In5th European Symposium on Research in Computer Security,
volume 1485, pages 97–110. Springer-Verlag, 1998.

[15] M.D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. Tech-
nical Report CSD-87-381, University of California, Berkeley, Department. of
Computer Sciences, November 1987.

[16] M.D. May and H.L. Muller and N.P. Smart. Non-Deterministic Processors. In6th
Australasian Conference On Information Security and Privacy (ACISP), pages
115–129, 2001.

[17] R.C. Merkle. Fast Software Encryption Functions. InAdvances in Cryptology
(CRYPTO), volume 537, pages 476–501. Springer-Verlag, August 1990.

[18] T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Investigations of Power Analysis
Attacks on Smartcards. InUSENIX Workshop on Smartcard Technology, pages
151–162, May 1999.

20

[19] MIPS Technologies. MIPS 4KSc Smart-Card Processor Core.http://www.
mips.com/products/s2p9.html , 2002.

[20] National Institute of Standards and Technology (NIST). Data Encryption Stan-
dard (DES). Technical Report FIPS PUB 46-3, October 1999.

[21] P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In16th Annual International Cryptology Conference
(CRYPTO), volume 1109. Springer-Verlag, August 1996.

[22] P.C. Kocher and J. Jaffe and B. Jun. Differential Power Analysis. In19th Annual
International Cryptology Conference (CRYPTO), volume 2139. Springer-Verlag,
August 1999.

[23] N.P. Smart. Physical Side-Channel Attacks On Cryptographic Systems.Software
Focus, 1(2):6–13, 2000.

[24] STMicroelectronics. ST22 Smart-Card Processor Core.http://www.st.
com, 2002.

[25] N.P. Topham and A. Gonzalez. Randomized Cache Placement for Eliminating
Conflicts. IEEE Transactions on Computers, 48(2):185–192, 1999.

Appendix

With respect to S-box 0:

I0[47; 46; 45; 44] = K[54; 13; 30; 04]�D[57; 07; 15; 23]

I1[47; 46; 45; 44] = K[62; 21; 38; 12]�D[56; 06; 14; 22]� Z

where

Z = SB6(K[03; 43; 26; 01; 49; 44]�D[59; 01; 09; 17; 25; 33])[03]@

SB3(K[05; 63; 28; 37; 46; 23]�D[29; 37; 45; 53; 61; 03])[00]@

SB1(K[31; 07; 62; 55; 45; 22]�D[31; 39; 47; 55; 63; 05])[01]@

SB4(K[42; 36; 25; 10; 27; 60]�D[61; 03; 11; 19; 27; 35])[00]

With respect to S-box 1:

I0[41; 40; 39; 38] = K[31; 07; 62; 55]�D[31; 39; 47; 55]

I1[41; 40; 39; 38] = K[39; 15; 05; 63]�D[30; 38; 46; 54]� Z

where

Z = SB5(K[17; 34; 59; 11; 41; 35]�D[27; 35; 43; 51; 59; 01])[03]@

SB7(K[19; 50; 51; 02; 09; 33]�D[25; 33; 41; 49; 57; 07])[03]@

SB2(K[61; 29; 38; 39; 20; 06]�D[63; 05; 13; 21; 29; 37])[00]@

SB6(K[03; 43; 26; 01; 49; 44]�D[59; 01; 09; 17; 25; 33])[00]

With respect to S-box 2:

I0[35; 34; 33; 32] = K[61; 29; 38; 39]�D[63; 05; 13; 21]

I1[35; 34; 33; 32] = K[04; 37; 46; 47]�D[62; 04; 12; 20]� Z

21

where

Z = SB4(K[42; 36; 25; 10; 27; 60]�D[61; 03; 11; 19; 27; 35])[03]@

SB0(K[54; 13; 30; 04; 15; 47]�D[57; 07; 15; 23; 31; 39])[03]@

SB3(K[05; 63; 28; 37; 46; 23]�D[29; 37; 45; 53; 61; 03])[01]@

SB5(K[17; 34; 59; 11; 41; 35]�D[27; 35; 43; 51; 59; 01])[01]

With respect to S-box 3:

I0[29; 28; 27; 26] = K[05; 63; 28; 37]�D[29; 37; 45; 53]

I1[29; 28; 27; 26] = K[13; 06; 07; 45]�D[28; 36; 44; 52]� Z

where

Z = SB6(K[03; 43; 26; 01; 49; 44]�D[59; 01; 09; 17; 25; 33])[02]@

SB1(K[31; 07; 62; 55; 45; 22]�D[31; 39; 47; 55; 63; 05])[03]@

SB4(K[42; 36; 25; 10; 27; 60]�D[61; 03; 11; 19; 27; 35])[02]@

SB7(K[19; 50; 51; 02; 09; 33]�D[25; 33; 41; 49; 57; 07])[01]

With respect to S-box 4:

I0[23; 22; 21; 20] = K[42; 36; 25; 10]�D[61; 03; 11; 19]

I1[23; 22; 21; 20] = K[50; 44; 33; 18]�D[60; 02; 10; 18]� Z

where

Z = SB2(K[61; 29; 38; 39; 20; 06]�D[63; 05; 13; 21; 29; 37])[02]@

SB0(K[54; 13; 30; 04; 15; 47]�D[57; 07; 15; 23; 31; 39])[02]@

SB1(K[31; 07; 62; 55; 45; 22]�D[31; 39; 47; 55; 63; 05])[00]@

SB5(K[17; 34; 59; 11; 41; 35]�D[27; 35; 43; 51; 59; 01])[00]

With respect to S-box 5:

I0[17; 16; 15; 14] = K[17; 34; 59; 11]�D[27; 35; 43; 51]

I1[17; 16; 15; 14] = K[25; 42; 36; 19]�D[26; 34; 42; 50]� Z

where

Z = SB3(K[05; 63; 28; 37; 46; 23]�D[29; 37; 45; 53; 61; 03])[02]@

SB7(K[19; 50; 51; 02; 09; 33]�D[25; 33; 41; 49; 57; 07])[00]@

SB6(K[03; 43; 26; 01; 49; 44]�D[59; 01; 09; 17; 25; 33])[01]@

SB0(K[54; 13; 30; 04; 15; 47]�D[57; 07; 15; 23; 31; 39])[01]

With respect to S-box 6:

I0[11; 10; 09; 08] = K[03; 43; 26; 01]�D[59; 01; 09; 17]

I1[11; 10; 09; 08] = K[11; 51; 34; 09]�D[58; 00; 08; 16]� Z

22

where

Z = SB2(K[61; 29; 38; 39; 20; 06]�D[63; 05; 13; 21; 29; 37])[03]@

SB4(K[42; 36; 25; 10; 27; 60]�D[61; 03; 11; 19; 27; 35])[01]@

SB3(K[05; 63; 28; 37; 46; 23]�D[29; 37; 45; 53; 61; 03])[03]@

SB7(K[19; 50; 51; 02; 09; 33]�D[25; 33; 41; 49; 57; 07])[02]

With respect to S-box 7:

I0[05; 04; 03; 02] = K[19; 50; 51; 02]�D[25; 33; 41; 49]

I1[05; 04; 03; 02] = K[27; 58; 59; 10]�D[24; 32; 40; 48]� Z

where

Z = SB1(K[31; 07; 62; 55; 45; 22]�D[31; 39; 47; 55; 63; 05])[02]@

SB5(K[17; 34; 59; 11; 41; 35]�D[27; 35; 43; 51; 59; 01])[02]@

SB2(K[61; 29; 38; 39; 20; 06]�D[63; 05; 13; 21; 29; 37])[01]@

SB0(K[54; 13; 30; 04; 15; 47]�D[57; 07; 15; 23; 31; 39])[00]

23

