
New Signature Scheme Using Conjugacy Problem

Ki Hyoung Ko, Doo Ho Choi, Mi Sung Cho, and Jang Won Lee

Department of Mathematics, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
{knot,dhchoi,cms,leejw}@knot.kaist.ac.kr

Abstract. We propose a new digital signature scheme based on a non-commutative group
where the conjugacy search problem is hard and the conjugacy decision problem is feasible. We
implement our signature scheme in the braid groups and prove that an existential forgery of
the implementation under no message attack gives a solution to a variation of conjugacy search
problem. Then we discuss performance of our scheme under suggested parameters.

Key words: non-commutative, braid, digital signature, provable, conjugacy problem

1 Introduction

The braid groups were first introduced to construct a key agreement protocol and a public-
key encryption scheme [12] presented at CRYPTO 2000. Since then, there have been few
other attempts to apply the braid groups or other non-commutative groups to cryptography.
Regarded as positive results are the discovery of a hard-core predicate for the conjugacy search
problem in the braid group in [13], an implementation of braid computations in [6], and a
conversion of the public-key encryption scheme of [12] into a provable one in [11]. Regarded
as ambitious but unsuccessful attempts are the pseudorandom generator using the decision
problem of Diffie-Hellman type in the braid group in [13] and a public-key cryptosystem using
DLP and the conjugacy problem in matrix groups in [16]. But no signature schemes based on
non-commutative groups have been proposed so far.

The schemes in [12] are roughly based on the conjugacy problem that is natural and un-
avoidable on non-commutative groups. More precisely the schemes are based on the conjugacy
Diffie-Hellman problem. The role of two problems in the braid cryptosystems is exactly the
same as that of the discrete logarithm problem and the Diffie-Hellman problem in the ElGa-
mal scheme on a cyclic group. Besides multiplication among exponents, addition was needed
in the ElGamal signature scheme or DSA. But there is no operation corresponding to the
addition that is compatible with the conjugation operation in non-commutative groups. This
difficulty has been hampering a proposal of a signature scheme on non-commutative algebraic
structure.

In this paper we propose a new digital signature scheme based on a variation of the conju-
gacy problem in non-commutative groups. In fact our signature schemes can be implemented
on any non-commutative group where there is a gap between the computational version and
the decision version of the conjugacy problem. The philosophy of our scheme is somewhat
similar to [15, 5] that are based on a gap between two versions of the Diffie-Hellman problem
and this gap became a reality on the elliptic curve cryptography due to the Weil pairing.
But the difference is larger. In the discrete logarithm problem, the one-way function taking
powers on a fixed generator is onto and so the decision version does not make sense. On the
other hand the one-way function taking conjugates on a fixed element in a non-commutative
group is far from being onto. Therefore a gap may exists not only between two versions of the

2

Diffie-Hellman type problem but also between two versions of the conjugacy problem itself.
Obviously a gap between the latter implies a gap between the former.

Under our current knowledge, the computational version of conjugacy problem in the
braid group can be solved only by an exponential algorithm [9, 7] and so the computational
version can be regarded infeasible with the security bound determined by the best solution
known. In this paper we propose an oracle to solve the decision version of conjugacy problem
in the braid groups and so the braid group has the required gap. This oracle also makes the
decision problem of Diffie-Hellman type in the braid group considered in [13] feasible.

Our conjugacy signature scheme is implemented by using the gap in the braid group. This
new signature scheme has the following feature and implication:

– It is the first signature scheme based on a non-commutative group.
– The performance and the efficiency is comparable with popular signature schemes based

on number theory.
– It is randomized but yet simple so that the provable security of existential forgery under

no message attack is immediate and the based problem is closely related to the conjugacy
problem.

– Together with the key agreement and the public-key encryption in [12], it demonstrates a
usefulness of braid groups in cryptography.

– Various other signature protocols can be designed using the gap in the braid group.

This paper is organized as follows:
In section 2, we will explain two variations of the conjugacy problem in non-commutative

group and show their equivalence. Then we propose a general signature scheme on non-
commutative groups that have the gap between two versions of conjugacy problem.

In section 3, we give a brief introduction to braid groups and explain the difficulty of the
computational version. Then we give an algorithm for the decision version and discuss the
security and efficiency of this algorithm.

In section 4, we implement our signature scheme in braid groups. We discuss various meth-
ods of random braids including braid hash function and key generation. Then we give a proof
of the security and finally we suggest values for system parameters and give a performance
table.

2 Conjugacy signature scheme in non-commutative groups

In order to digitize a non-commutative group, we usually describe the group by a presentation
or as a multiplicative subgroup of a matrix group over a (polynomial) ring. A presentation of
a group is a set of generators and defining relations. A prerequisite to use a presentation is a
fast solution to the word problem. On the other hand most of groups given as a subgroup of
a matrix group are not useful in cryptography due to plenty of well-developed tools in linear
algebra.

2.1 Conjugacy problems in non-commutative groups

In a non-commutative group G, two elements x, y in G are conjugate each other, written
x ∼ y if y = a−1xa for some a ∈ G. Here a or a−1 is called a conjugator and the pair (x, y)
is said to be conjugate. Clearly ∼ is an equivalence relation. A simple and natural question
to ask in a non-commutative group G is the conjugacy problem that can be described as a

3

decision version and a computational version. The conjugacy decision problem(CDP) asks
to determine whether x ∼ y for a given instance (x, y) ∈ G × G. The conjugator search
problem(CSP) asks to find a ∈ G satisfying y = a−1xa for a given instance (x, y) ∈ G × G
such that x ∼ y. We have to be careful when we mention instances in an infinite group G. In
the current information theory, it is hard to discuss a uniform distribution in G of elements
described by randomly chosen information. To avoid any potential controversy, we always
assume that instances to a problem are randomly chosen in a finite subset of an infinite group
G restricted by system parameters.

We say a problem is solvable (feasible, respectively) if there is a deterministic finite (prob-
abilistic polynomial-time, respectively) algorithm that outputs a solution that is accurate
(accurate with non-negligible probability, respectively). The solvability is a mathematical no-
tion and the complexity of an algorithm is not an issue as long as it is finite. A solvable
problem is not necessarily feasible and vice versa.

The representation theory tells us that for any group G there are homomorphisms from
G to rings that are invariant under conjugacy relation. Therefore CDP is always feasible
although CDP may not be solvable. But the remaining question concerning CDP is how to
construct an efficient algorithm to solve CDP with overwhelming probability.

On the other hand, there are many candidates for non-commutative groups where CSP is
infeasible. However there is a normal form (such as Jordan form) of a conjugacy class in many
matrix groups and so it is difficult to find a non-commutative group given as a subgroup of a
matrix group that has an infeasible CSP. Therefore non-commutative groups with infeasible
CSP are usually given by presentations.

We believe that CSP is infeasible in the braid groups Bn even though it is solvable. We
will construct an efficient algorithm to give a solution to CDP with overwhelming accuracy.
Unfortunately we do not know whether there is a polynomial-time algorithm that decides
CDP.

2.2 Matching conjugacy problems in non-commutative groups

For a non-commutative group G, a pair (x, x′) ∈ G×G is said to be CSP-hard if x ∼ x′ and
CSP is infeasible for the instance (x, x′). If (x, x′) is CSP-hard, so is clearly (x′, x). We now
define two matching conjugacy problems in G that are equivalent and provide a foundation
of our signature scheme.

Matching Conjugate Search Problem (MCSP)
Instance: A CSP-hard pair (x, x′) in G and y ∈ G.
Objective: Find y′ ∈ G such that y ∼ y′ and xy ∼ x′y′.

Matching Triple Search Problem (MTSP)
Instance: A CSP-hard pair (x, x′) in G and y ∈ G.
Objective: Find a triple (α, β, γ) ∈ G × G × G such that α ∼ x, β ∼ γ ∼ y, αβ ∼ xy, and

αγ ∼ x′y.

If CSP in G is infeasible, instances of MCSP or MTSP can be given as x, x′, y ∈ G such
that x ∼ x′. In the description of the two matching problems, we do not want to exclude a
group where CSP is partially infeasible, that is, the probability that a random conjugate pair
(x, x′) is CSP-hard is non-negligible. If a conjugate pair (x, x′) is not CSP-hard, that is, an
element a ∈ G with x′ = a−1xa can be known, then y′ = a−1ya is a solution to MCSP and

4

(α, β, γ) = (b−1xb, b−1yb, b−1aya−1b) is a solution to MTSP for any b ∈ G and so the two
matching conjugacy problems are feasible. These solutions are said to be obvious.

Theorem 1. In a non-commutative group G, MCSP is feasible if and only if MTSP is fea-
sible.

Proof. Suppose that MCSP is feasible. Let α = b−1xb and β = b−1yb for some b ∈ G, and let
γ be a solution to MCSP for the instance (x′, α) and y. Then the triple (α, β, γ) is a solution
to MTSP.

Suppose MTSP is feasible and MCSP is infeasible. Let (α, β, γ) is a solution to MTSP for
a CSP-hard pair (x, x′) and y. Since β is a solution to MCSP for a conjugate pair (x, α) and
y and MCSP is infeasible, the pair (x, α) is not CSP-hard and so it is feasible to find b ∈ G
such that α = b−1xb. Similarly since γ is a solution to MCSP for a conjugate pair (x′, α) and
y, the pair (x′, α) is not CSP-hard and so it is feasible to find c ∈ G such that α = c−1x′c.
Then x′ = cb−1xbc−1 and this contradicts the fact that the pair (x, x′) is CSP-hard.

2.3 Description of conjugacy signature scheme

Let G be a non-commutative group where CSP is infeasible and CDP is feasible. We first
give a simple conjugacy signature scheme on G and discuss its potential weakness and then
we will improve it. Let h : {0, 1}∗ → G be a hash function, that is, h is a collision-free
one-way function that outputs an element of G expressed by a fixed amount of information.
For example h can be given by a composition of a usual hash function of bit strings with a
conversion from bit strings of a fixed length to elements of G.

Simple conjugacy signature scheme
Key generation: A public key is a CSP-hard pair (x, x′) in G and a secret key is a for

x′ = a−1xa.
Signing: Given a message m, a signature σ is given by σ = a−1ya for y = h(m).
Verifying: A signature σ is valid if and only if σ ∼ y and x′σ ∼ xy.

The simple conjugacy signature scheme is a deterministic signature scheme and is clearly
based on MCSP. But the secret key a is not zero-knowledge against many known message-
signature pairs unless the following problem is infeasible.

k-Simultaneous Conjugator Search Problem (k-SCSP)
Instance: k Pairs (x1, x

′
1), . . . , (xk, x

′
k) ∈ G×G such that x′i = a−1xia for all i.

Objective: Find b ∈ G such that x′i = b−1xib for all i.

It is reasonable to believe that k-SCSP becomes easier as k increases. In particular a
solution to CSP is almost unique for the braid groups and so k-SCSP is easier than CSP. We
modify the simple conjugacy signature scheme to a randomized signature scheme as follows:

Conjugacy signature scheme
Key generation: A public key is a CSP-hard pair (x, x′) in G and a secret key is a for

x′ = a−1xa.
Signing: Given a message m, choose b ∈ G at random and let α = b−1xb and y = h(m||α),

then a signature σ is given by a triple σ = (α, β, γ) where β = b−1yb and γ = b−1aya−1b.
Verifying: A signature σ is valid if and only if α ∼ x, β ∼ γ ∼ y, αβ ∼ xy, and αγ ∼ x′y.

5

The conjugacy signature scheme is clearly based on MTSP that is equivalent to MCSP. In
the conjugacy signature scheme, the secret key a is zero-knowledge unless 2-SCSP is feasible
no matter how many message-signature pairs are known. Indeed b can be known from each
message-signature pair if 2-SCSP is feasible and so many (y, aya−1) pairs are known for the
secret key a. We propose the conjugacy signature scheme as our new signature scheme on a
non-commutative setting and implement it on the braid groups.

3 Gap in braid groups

We will try to convince that CSP and MCSP is hard in the braid groups and construct an
efficient oracle for CDP. Consequently we show that the braid groups have a gap between two
versions of conjugacy problem.

3.1 Brief introduction to braid group

We introduce necessary terminologies and notations from the braid group rather than to
explain the theory of braid. The book [3] seems a good place to start studying braids and the
paper [6] contains most of needed implementations of the braid groups.

The n-braid group Bn is presented by the Artin generators σ1, . . . , σn−1 and relations
σiσj = σjσi for |i − j| > 1 and σiσjσi = σjσiσj for |i − j| = 1. Thus an n-braid b can be
written as a word of σ1, . . . , σn−1 and the word-length |b| is the (minimal) number of letters
in a word equivalent to b. In particular the word-length of a positive (exponent) word b is
the number of letters in b since the relations preserve word-lengths. A positive braid b is a
subword of a positive braid a, written b ≤ a if a = bc for some positive or trivial braid c.
Clearly ‘≤’ gives an partial order on the semigroup of positive braids.

The braid
∆ = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1

is called the fundamental braid. The fundamental braid ∆ nearly commutes with any braid
b, that is, ∆b = τ(b)∆ where τ is an automorphism of Bn defined by τ(σi) = σn−i. Since
τ2 is the identity map, ∆2 truly commutes with any braid. A subword of the fundamental
braid ∆ is called a permutation braid and the set of all permutation braids is one to one
correspondence with the set Σn of permutations on {0, 1, . . . , n − 1}. Thus a permutation
braid is denoted by a permutation π : {0, 1, . . . , n− 1} → {0, 1, . . . , n− 1}. For example, ∆ is
the permutation sending i to n− i. The word length of a permutation n-braid is ≤ n(n−1)/2.
The descent set D(π) of a permutation π is defined by D(π) = {i | π(i) > π(i + 1)}. Any
braid b can be written uniquely as

b = ∆uπ1π2 · · ·π`

where u is an integer, πi are permutation braids such that πi 6= ∆ and D(πi+1) ⊂ D(π−1
i).

This unique decomposition of a braid b is called a left canonical form. From the left canonical
form of a braid b, the infimum, the supremum, and the canonical length of b are defined as
inf(b) = u, sup(b) = u + `, and `(b) = `, respectively.

Pseudo-Anosov braids An n-braid can also be thought of as a homeomorphism of n-
punctured disk. In this dynamical point of view, braids are classified (up to a multiplication
by ∆2) into the following three types: A braid x is periodic if xm is the trivial braid for some

6

positive integer m and it is reducible if a set of more than one strands in x can be separated
from the rest of strands by a tube. Finally a braid x is pseudo-Anosov if it is neither periodic
nor reducible. The following lemma will be useful.

Lemma 1. If x is pseudo-Anosov and is not a power of another braid then ax = xa implies
a = ∆2ixj for some non-negative integers i, j.

Proof. Follows from a standard argument using invariant foliations.

We say a braid is sufficiently complicated if it is pseudo-Anosov and it is not a power of
another braid. It is not hard to check whether a braid is pseudo-Anosov. A randomly chosen
braid of a constant canonical length (not a constant word length) is pseudo-Anosov in a high
probability. Since the number of braids is exponential in canonical length and the canonical
length of a product of two braids is almost the sum of canonical lengths of two braids, a
randomly chosen braid is not a power of another braid. Consequently a randomly chosen
braid of a constant canonical length is sufficiently complicated in a high probability.

3.2 Conjugator search problem in braid groups

Although CSP in the braid groups Bn is solvable, it believed to be infeasible as the braid index
n increases. It should be noted that CSP may be solved by a polynomial algorithm in n if x is
extremely simple (for example, if the word length |x| is a constant smaller than n). A solution
for CSP is unique for a sufficiently complicated braid x in the sense that axa−1 = bxb−1

implies a = ∆2ixjb for some non-negative integers i, j by Lemma 1.
For any word W written over k letters, a solution b to k-SCSP satisfies a−1W (x1, . . . , xk)a =

b−1W (x1, . . . , xk)b by the homomorphic property of conjugation. If W (x1, . . . , xk) is suf-
ficiently complicated, the converse holds by the uniqueness of solution to CSP. Thus the
simultaneity disappears and so CSP is harder than k-SCSP.

If we let x′ = a−1xa and y′ = b−1yb in MCSP, then MCSP ask to find b, c ∈ Bn satisfying
a−1xab−1yb = c−1xyc for given x, y, a. Since (x, x′) is a CSP-hard pair, we have to exclude
the case a = b. If x and y are sufficiently complicated, we also have to exclude the cases either
x commutes with ab−1 or y commutes with ab−1 since knowing b is equivalent to knowing a
up to ∆2ixj or ∆2iyj by Lemma 1. MCSP seems hard in the remaining possibility for a and b
and consequently MCSP seems infeasible as long as an instance (x, x′) is CSP-hard and x, y
are sufficiently complicated.

Super Summit Set We now discuss a mathematical solution to CSP in Bn given by Gar-
side[9] and improved by Elrifai-Morton[7]. Given x ∈ Bn, let maxinf(x) be the maximum
among infimums of all braids conjugate to x and minsup(x) be the minimum among supre-
mum of all braids conjugate to x. Clearly maxinf and minsup are conjugacy invariants, that
is, if x ∼ y then maxinf(x) = maxinf(y) and minsup(x) = minsup(y). There are two useful
conjugations of a braid x = ∆uπ1π2 · · ·π` given by its left canonical form. The cycling on x
is given by τu(π1)−1xτu(π1) and the decycling on x is given by π`xπ−1

` . A series of repeated
cycling and repeated decycling on x produces a braid b such that inf(b) = maxinf(x) and
sup(b) = minsup(x).

The super summit set SSS(x) of x is defined by

SSS(x) = {b ∈ Bn | b ∼ x, inf(b) = maxinf(x), sup(b) = minsup(x)}.

7

Clearly the super summit set itself is a conjugacy invariant. It is not hard to see that SSS(x) is
a finite set with a rough upper bound (n!)minsup(x)−maxinf(x). Then a mathematical algorithm
to solve CSP for an instance (x, x′) can be given by generating SSS(x) and generating x′′ ∈
SSS(x′) from x′ by repeated cycling and repeated decycling and searching x′′ in SSS(x).
Obviously the complexity of this algorithm is at least the cardinality |SSS(x)|. None the less
this is the best algorithm to solve CSP in the braid group and therefore we use |SSS(x)| as our
security measure for CSP. As mentioned above, MCSP seems hard to solve for a CSP-hard
pair (x, x′) and so it seems reasonable to use |SSS(x)| as a security level for MCSP as well.

3.3 Conjugacy decision algorithm in braid groups (BCDA)

A character of a non-commutative group G is a function from G to a ring that is invariant
under conjugation. Then a character of G will be useful to the conjugacy decision algorithm if
we can compute it. A representation of G is a homomorphism from G to a matrix group over a
ring. Given a matrix M , the characteristic polynomial obtained by the determinant of M−λI
is invariant under conjugation on M . Thus for a representation Φ of G, the correspondence
g 7→ det(Φ(g)− λI) is a character for any λ in the ring.

Alexander polynomial test Mathematicians and physicists have been interested in the
theory of braid for a long time and many representations of the braid groups were found
and studied extensively. Good references on representations of the braid groups are the book
[3] and the expository article [17]. The most well-understood representation of the n-braid
group Bn is the (reduced) Burau representation that sends an n-braid b to an (n−1)×(n−1)
matrix Φ(b) over the Laurent polynomial ring Z[t, t−1]. Furthermore the Burau representation
is one of the fastest to compute. The character of Bn obtained by det(Φ(b)− I) is called the
Alexander polynomial of b, denoted by Pb(t).

For Alexander polynomials Pa(t), Pb(t) of two n-braids a and b, our Alexander polynomial
test compares their evaluations at randomly chosen r values t1, . . . , tr of t in a finite field
Z/pZ. The test algorithm outputs “1” if evaluations at all r points agree on two polynomials
or outputs “0” otherwise. If the canonical lengths of a, b are≤ `, then the degrees of Pa(t), Pb(t)
are ≤ `n(n− 1)/2 because the degree of the Alexander polynomial is bounded by the word-
length. Thus Pa(t)− Pb(t) has at most ≤ `n(n− 1)/2 roots. Consequently

Pr[Pa(t) 6= Pb(t) : Alexander polynomial test outputs 1] <

(
`n(n− 1)

2p

)r

.

Therefore the probability that our Alexander polynomial test fails becomes negligible as p
and/or r increase.

Given an n-braid b written in σ1, . . . , σn−1, the computation of the Burau matrix is done

by replacing σ1 =


−t
1 1

. . .
1

, σi =



. . .
1 t
−t
1 1

. . .

, σn−1 =


1

. . .
1 t
−t

.

The complexity of this step is O(`n3) since |b| = `n(n− 1)/2 and each generator corresponds
to a column operation involving at most 3 columns. The computation of the determinant can
be done in O(n3). Thus the complexity of overall Alexander polynomial test is O(`rn3).

8

Maxinf-minsup test Given a braid b, maxinf(b) and minsup(b) defined in the last section
are conjugacy invariants that can be computed efficiently. In fact they can be computed in
O(`2n log n) if ` = `(b) is smaller than n according to [4].

Security of conjugacy decision algorithm Our braid conjugacy decision algorithm(BCDA)
computes and compares maxinf, minsup, and Alexander polynomials evaluated r random
points in Z/pZ for r such that

(
`n(n−1)

2p

)r
is smaller than a security requirement.

Alexander polynomials of knots and links are well-understood by knot theorists and Pb(t)
agrees with the Alexander polynomial of the link obtained by closing up two ends of the
braid b. It is known that many knots or links share the same Alexander polynomial and it is
not known that there are two n-braids a and b but one exception such that Inf(a) = Inf(b),
Sup(a) = Sup(b) and Pa(t) = Pb(t). One exceptional case is when a is conjugate to the reverse
of b that is the word obtained by flipping the word b written in Artin’s generators from left
to right. If a is randomly chosen, this exception never occurs.

There are two conceivable attacks to our BCDA. Both attacks are on the Burau represen-
tation level. Given a conjugate pair (x, x′), an adversary attempts to find a braid a′ such that
Φ(a′)−1Φ(x)Φ(a′) = Φ(x′) and outputs a′−1ya′ as a solution to MCSP. Then this adversary
will face two obstacles. First the solution space of the (n−1)2× (n−1)2 homogeneous system
of linear equations obtained by equating entries in AX = XB for X = Φ(a′), A = Φ(x), and
B = Φ(x′) is of dimension ≥ 1. Since the image of Burau representation does not form a
submodule, it is difficult to find the correct image. A more serious difficulty is that there is
no known polynomial (in n) algorithm to invert the Burau representation.

The second attack on BCDA is based on the fact that the Burau representation is not
injective. Let a′ be a braid such that Φ(a′) = I. Then y and any conjugate of ya′ share the
same Alexander polynomial. However ya′ likely fails maxinf and minsup test. According to
[2], the simplest known example of such a′ in Bn for n ≥ 6 is

a′ = (−8|543201|251043|542310|031254|145032|215403|542310|103425|
235014|250143|451320|013245|145023|214503|021534|140235)

where the braid given by its left canonical form starts with ∆−8 and is followed by 16 per-
mutation n-braids fixing 6 through n − 1. Since maxinf(a′) = −8 and minsup(a′) = 8, it is
impossible to expect that maxinf(ya′) = maxinf(y) and minsup(ya′) = minsup(y).

Also BCDA can solve the decision problem of Diffie-Hellman type in the braid groups
considered in [13]. The decision problem of Diffie-Hellman type in the braid groups is to
determine whether y = b−1a−1xab for a 4-tuple (x, a−1xa, b−1xb, y) in Bn. Here a is an
element of bn2 c-lower braid subgroup LBn and b is an element of bn2 c-upper braid subgroup
UBn in Bn [11, 12]. Using BCDA, an algorithm D that solves the decision problem can
be defined as follows: D(x, a−1xa, b−1xb, y) = accept if and only if x(b−1xb) ∼ (a−1xa)y.
If D(x, a−1xa, b−1xb, y) = accept but y 6= a−1b−1xba, then y is a non-obvious solution of
MCSP for the instance (x, a−1xa) and b−1xb. Hence the failure probability of this algorithm
D is less than or equal to the success probability of MCSP. As noted in Section 3.2, MCSP
seems infeasible as long as an instance (x, a−1xa) is CSP-hard and x, b−1xb are sufficiently
complicated. Therefore the success probability of D seems overwhelming.

9

4 Implementation of conjugacy signature scheme in braid groups

Since braid groups are infinite and every cryptosystem has to run under finite resources, we
first need to establish system parameters to confine the infinite group to a finite environment.
Under this restriction, we implement a new signature scheme based on braid groups and prove
its equivalence to the based problem. We also give a computational security estimate in terms
of system parameters and then discuss efficiency of the scheme under specifically suggested
parameters.

4.1 Random braids and braid signature scheme

We first fix positive integers n, `, d as system parameters. Let

Bn(`) = {b ∈ Bn | 0 ≤ inf(b), sup(b) ≤ `}.

Then |Bn(`)| ≤ (n!)` and so it is finite. A random braid generator produces b ∈R Bn(`)
in O(`n) time using the random braid generator in [6]. A bit-string to braid conversion
c : {0, 1}N → Bn(`) for N = `blog2 n!c can be done in O(`n) time as follows: For a bit
string r ∈ {0, 1}N , cut r into of ` blocks r1||r2|| · · · ||r` of bit-length blog2 n!c and then for
each ri ∈ [0, n! − 1], write ri =

∑n−1
k=1 akk! by recursively dividing ri by 2 through n − 1

so that 0 ≤ ak ≤ k − 1 and then apply the random braid generator in [6] to the sequence
an−1, . . . , a1. We think that the values of our random braid generator and bit-string to braid
conversion distribute almost uniformly in Bn(`) for a small `. We will suggest ` = 3 and so
the distribution will not cause much a problem. For a large `, they can be replaced by slower
algorithms with better distribution.

For x, y ∈ Bn such that x ∼ y, the distance d(x, y) between x and y is defined by
min{`(b) | y = b−1xb}. The distance behaves like a metric in a conjugacy class except the fact
that d(x, τ(x)) = 0. For example one can show d(x, y) = d(y, x) by using inf(b−1) = − sup(b)
and sup(b−1) = − inf(b).

Random Super Summit Braid Generator From now on, we assume x ∈ SSS(x) and
inf(x) = 0 and sup(x) = `. Then SSS(x) ⊂ Bn(`). Define the d-neighborhood S(x, d) of x in
SSS(x) as follows:

S(x, d) = {y ∈ SSS(x) | d(x, y) ≤ d}.

For a randomly chosen x′ ∈ S(x, d), we will use a conjugate pair (x, x′) as a public key. Thus
the pair (x, x′) must be CSP-hard. The cardinality |S(x, d)| seems an obvious choice for the
security level and it will depend on all of n, `, d, x and in particular on the location of x inside
SSS(x). Unfortunately we do not know how to estimate a lower bound for |S(x, d)|.

A positive braid a is called a minimal super summit conjugator of x ∈ SSS(x) if a is minimal
among all positive braids b satisfying b−1xb ∈ SSS(x) with respect to the partial order ‘≤’.
Since ∆−1x∆ ∈ SSS(x), a minimal super summit conjugator is a permutation braid. Since any
minimal super summit conjugator must be greater than or equal to at least one generator σi,
there are at most n−1 minimal super summit conjugators of a given n-braid x. An algorithm
to generate SSS(x) is proposed in [8] using minimal super summit conjugators. The running
time of the algorithm is obviously proportional to the size of SSS(x).

Consider the directed graph Γ (x) where the super summit set SSS(x) is the set of vertices
and there is a directed edge from x1 to x2 if x2 = a−1x1a for some minimal super summit
conjugator a of x1. We believe that the higher the out-going valency near x in the graph Γ (x)

10

is, the larger the d-neighborhood S(x, d) of x is. It is not hard to write an heuristic algorithm
to pick a good braid x by investigating valencies.

We now describe how to generate a random braid in S(x, d). This procedure will be called a
random super summit braid generator denoted by RSSBG(x, d) = (x′, a) where x′ ∈R S(x, d)
and a ∈ Bn(d) such that x′ = a−1xa. We first choose b ∈R Bn(5`) if `(x) = `. Then we apply a
random sequence of cyclings and decyclings to b−1xb until we obtain a braid a−1xa ∈ SSS(x).
According to [4], the length of this sequence is at most in n2 and it is much smaller in an
average case. If `(a) ≤ d, then a−1xa is the output. Otherwise we start over again by choosing
new b. Our experiment shows the probability of success on each run is over 70% if d = ` + 1.

We now describe conjugacy signature scheme in braid groups using the system parameters
and the random braid generators that we have discussed. Assume that H : {0, 1}∗ → Bn(`)
is an one-way hash function obtained by composing an ordinary hash function : {0, 1}∗ →
{0, 1}N with the bit-string to braid conversion c.

Braid Signature Scheme (BSS)
Key Generating Algorithm: Gen(n, `, d) = (pk, sk):

1. Select a braid x ∈ Bn(`) such that x ∈ SSS(x);
2. Choose (x′, a)←

R
RSSBG(x, d);

3. Return pk = (x, x′) and sk = a.
Signing Algorithm: Sig(m, pk, sk) = σ:

1. Choose (α = b−1xb, b)←
R

RSSBG(x, d);

2. Compute h = H(m||α) for a message m and let β = b−1hb and γ = b−1aha−1b;
3. Return a signature σ = (α, β, γ) ∈ Bn(`)×Bn(` + 2d)×Bn(` + 4d).

Verifying Algorithm: V er(pk, m, σ) = {accept|reject}:
1. Compute h = H(m||α).
2. Return accept if and only if α ∼ x, β ∼ h, γ ∼ h, αβ ∼ xh, and αγ ∼ x′h.

4.2 Security of braid signature

In this section, we will show the security of the Braid Signature Scheme(BSS). We will adapt
the definitions of [1] and [10] where concrete security analysis of digital signatures were per-
formed.

We consider two different scenarios, no-message attack and adaptive chosen-message at-
tack. The forger F ’s advantage Adv(F) in two attack scenarios is defined to be

Adv(F) = Pr[(pk, sk)←
R

Gen(n, k, `, r); (m, σ)← FO(pk) : V er(pk, m, σ) = accept].

where O is the null in no-message attack or is the signing oracle S in adaptive chosen-message
attack. In an adaptive chosen-message attack model, a forger F may query to the signing
oracle. Thus we need to simulate the signing algorithm to complete a security proof. Unfor-
tunately we are able to simulate it only after making BSS inefficient. Since this modification
involves other technical ingredients, it seems inappropriate to discuss it in this article.

A forger F via no-message attack is said to (t, qH , ε)-break the signature scheme (Gen,
Sig, V er) if F runs in time at most t, makes at most qH queries to the hash function, and
Adv(F) ≥ ε. To provide the security proof against no-message attack in the random oracle
model, we use the random braid generator and a random hash function H. Here the hash
function H : {0, 1}∗ → Bn(`) are random in the sense that all outputs of H are uniformly

11

distributed in Bn(`). On the other hand, The advantage of an algorithm A in solving MTSP
is defined as follows:

Succ(A) = Pr[x ∼ x′, y ←
R

Bn(`) : A(x, x′, y) = a solution of MTSP].

We say that an algorithm A (t, ε)-solves MTSP if A runs in time at most t and Succ(A) ≥ ε.

Theorem 2. If there exists a (t, qH , ε)-forger F against no-message attack for BSS, then
there exists an (t′, ε′)-algorithm A solving MTSP where

ε′ =
1

qH
ε and t′ = t.

Proof. Suppose that a forger F via no-message attack (t, qH , ε)-breaks the proposed scheme.
We will use F to construct an algorithm A that (t′, ε′)-solves MTSP. Suppose that A is
given a challenge (x, x′ = a−1xa) ∈ Bn × Bn and y ∈ Bn, where x, x′ ∈ S(x, d) and y is
chosen at random in Bn(`). Then A runs F with public key pk = (x, a−1xa) and a hash
function H : {0, 1}∗ → Bn(`). F makes hash oracle queries during its execution. Because the
hash values H(m||α) depend on the message m and α of the corresponding signature, F has
already compute α when the hash oracle query m||α is requested. A picks an integer i0 from
{1, · · · , qH} at random.

Suppose F makes a hash oracle query on mi||αi for 1 ≤ i ≤ qH . If i = i0, then A returns
hi0 = y as a hash value of mi0 ||αi0 . Otherwise, A chooses a random braid ki ∈ Bn(`) returns
hi = ki as the hash value of mi||αi. Since the hash values hi are uniformly distributed in
Bn(`), hi’s act like random braids.

Eventually F halts and outputs a message-signature pair (m∗, (α∗, β∗, γ∗)). Without loss
of generality we may assume that F has requested the hash query m∗||α∗ before. Therefore
m∗||α∗ = mi||αi for some i. If i 6= i0, then A outputs failture and halts. Otherwise, A outputs
(α∗, β∗, γ∗) as a solution of MTSP given by x ∼ x′ and y.

If (m∗, (α∗, β∗, γ∗)) is a valid forgery, then it satisfies the following relations:

α∗ ∼ x, β∗ ∼ y, γ∗ ∼ y, α∗β∗ ∼ xy and α∗γ∗ ∼ x′y,

where H(m∗||α∗) = y. Therefore (α∗, β∗, γ∗) is a solution of MTSP and Succ(A) = ε′ =
1

qH
Adv(F) = 1

qH
ε. Since the running time of A is equal to the running time of F , t′ = t.

4.3 Parameters suggestion and performance

Among system parameters of BSS, we set ` = 3 and d = 4. We use the braid index n as the
security parameter. The theoretical security level of BSS is the size of the 4-neighborhood
S(x, 4) of x in its super summit set. If an adversary uses a super summit braid generator
similar to the one proposed in [8] to recover a secret key by solving CSP, then the search time
is proportional to BD where B is the average of out-going valencies and D is the average
radius in the graph of S(x, 4) explained in Section 4.1. For a good choice of x, our experiment
shows that BD ≈ (n

4)
n(n−1)

2 . The graph of S(x, 4) is never a tree and there will be lots of
repetition if we count the number of vertices in S(x, 4) using BD. We will suggest BD/2 as
an experimental lower bound of the size of S(x, 4). We recommend the security parameter
n = 20, n = 24 and n = 28 depending on a use of BSS.

12

As explained in Section 3.3, BCDA containing the maxinf-minsup test and the Alexander
polynomial test are used to decide conjugacy. In the Alexander polynomial test, the following
parameter are suggested: p is a prime such that 231 < p < 232, the number of round r is 3.
Then the probability that the test fails is much less than 1/280.

4.4 Performance table

The following table shows the sizes of a public key and a signature, the time to generate a
pair of public and private keys, to sign a message and to verify a signature for the suggested
security parameters. The security level is based on our rough estimate (n

4)
n(n−1)

4 for the size
of S(x, 4). This experiment was done on a computer with a Pentium III 866MHz processor.

n Public Key Size Signature Size Key Generation Time Signing Time Verifying Time Security Level

20 370 bit 1653 bit 17.82 ms 18.68 ms 30.87 ms 2220

24 478 bit 2138 bit 21.70 ms 22.79 ms 41.75 ms 2356

28 591 bit 2648 bit 24.42 ms 25.77 ms 59.59 ms 2530

Table 1. Performance of Braid Signature Scheme

5 Further study

A good lower bound for the size of the d-neighborhood of x should be found to give a better
understanding of the security level of BSS. Our current algorithm to select a good x with a
large d-neighborhood is heuristic and so is relatively slow. It takes about 1 second for n = 20.
Even though x can be generated in advance and can be used for many distinct pairs of public
and private keys, we think that there is a lot of room to improve this algorithm.

References

1. M. Bellare and P. Rogaway, The Exact Security of Digital Signatures-How to Sign with RSA and Rabin,
Proc. of Eurocrypt 96, LNCS 1070, Springer-Verlag (1996) 399–416.

2. S. Bigelow, The Burau representation is not faithful for n = 5, Geom. Topol. 3 (1999) 397-404.
3. J. S. Birman, Braids, links and mapping class groups, Annals of Math. Study 82, Princeton University

Press (1974).
4. J. S. Birman, K. H. Ko and S. J. Lee, The infimum, supremum and geodesic length of a braid conjugacy

class, to appear in Advances in Mathematics.
5. D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing, Proc. of Asiacrypt 2001,

LNCS 2248, Springer-Verlag (2001) 533–551.
6. J. C. Cha, K. H. Ko, S. J. Lee, J. W. Han and J. H. Cheon, An Efficient Implementation of Braid

Groups, Proc. of Asiacrypt 2001, LNCS 2248, Springer-Verlag (2001) 144–156.
7. E. A. Elrifai and H. P. Morton, Algorithms for positive braids, Quart. J. Math. 45 (1994) 479–497.
8. N. Franco and J. Gonzalez-Meneses, Conjugacy problem for braid groups and Garside groups, preprint

http://www.arxiv.org/abs/math.GT/0112310.
9. F. A. Garside, The braid group and other groups, Quart. J. Math. 20 (1969) 235–254.

10. S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against adaptive chosen-
message attacks, SIAM J. of Computing 17 (1988) 281–308.

11. K. H. Ko, M. S. Cho, D. H. Choi and J. W. Han, Provably Secure Public-key Encryption Scheme Based
on Braid Groups, Preprint (2001).

13

12. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. S. Kang and C. S. Park, New Public-Key Crytosystem
Using Braid Groups, Proc. of Crypto 2000, LNCS 1880, Springer-Verlag (2000) 166–183.

13. E. K. Lee, S. J. Lee, S. G. Hahn, Pseudorandomness from Braid Groups, Proc. of Crypto 2001, LNCS
2139, Springer-Verlag (2001) 486–502.

14. D. Pointcheval and J. Stern, Security Proofs for Signature Schemes, Proc. of Eurocrypt 96, LNCS 1070,
Springer-Verlag (1996) 387-398.

15. T. Okamoto and D. Pointcheval, The Gap-Problems: A New Class of Problems for the Security of
Cryptographic Schemes, Proc. of PKC 2001, LNCS 1992, Springer-Verlag (2001) 104–118.

16. S. H. Paeng, K. C. Ha, J. H. Kim, S. Chee and C. Park, New Public Key Cryptosystem Using Finite
Non Abelian Groups, Proc. of Crypto 2001, LNCS 2139, Springer-Verlag (2001) 470–485.

17. V. Turaev, Faithful linear representations of the braid groups, www.arxiv.org, math.QA/0103017 (2000).

