Coercion-Resistant Electronic Elections

Ari Juels' and Dario Catalarfoand Markus Jakobssén

! RSA Laboratories
Bedford, MA, USA
e-mail:aj uel s@ sasecurity.com
2 CNRS-Ecole Normale Supérieure
75230 Paris Cedex 05 - France, France
e-mail:dari o. cat al ano@ns. fr
3 Indiana University, School of Informatics
Bloomington, IN, USA
e-mail:mar kus @ ndi ana. edu

Abstract. We introduce a model for electronic election schemes that involves a more powerful adversary than in previous
work. In particular, we allow the adversary to demand of coerced voters that they vote in a particular manner, abstain from
voting, or even disclose their secret keys. We define a schemedodyeion-resistanif it is infeasible for the adversary

to determine whether a coerced voter complies with the demands.

A first contribution of this paper is to describe and characterize a new and strengthened adversary for coercionin elections.
(In doing so, we additionally present what we believe to be the first formal security definitions for electronic elections of
anytype.) A second contribution is to demonstrate a protocol that is secure against this adversary. While it is clear that a
strengthening of attack models is of theoretical relevance, it is important to note that our results lie close to practicality.
This is true both in that we model real-life threats (such as vote-buying and vote-cancelling), and in that our proposed
protocol combines a fair degree of efficiency with an unusual lack of structural complexity. Furthermore, while previ-
ous schemes have required use of an untappable channel, ours only carries the much more practical requirement of an
anonymous channel.

Key words: coercion-resistance, electronic voting, mix networks, receipt-freeness

1 Introduction

Most voters participating in shareholder elections in the United States have the option of casting ballots via a
Web browser [1]. Some voters near Geneva patrticipating in recent referenda in Switzerland in 2003-4 have been
able to cast binding votes electronically [19]. The UK government has enunciated plans are to allow its citizens
to vote electronically “ some time after 2006” [18]. These are just a few instances of a broadening trend toward
Internet-based voting. While voting of this kind appears to encourage higher voter turnout [37] and make accurate
accounting for votes easier, it also carries the potential of making abuse easier to perform, and easier to perform
at a large scale. A number of papers in the cryptographic literature have described ways of achieving robust
and verifiableelectronicelections, i.e., elections in which ballots and processing data are posted to a publicly
accessible bulletin board. For some recent examples (but not by any means an exhaustive list), see [8, 16, 21, 22,
27,29, 33, 36, 39].

There are two other threats, however, that it is equally crucial to address in a fair and democratic election
process: We speak abter coercionandvote buying. Internet-based voting does not introduce these problems,
but it does have the potential to exacerbate them by extending the reach and data collection abilities of an attacker.
This is highlighted in one way by the presence of a notorious Web site that provides a forum for the auctioning of
votes [2]. Seller compliance was in that case merely voluntary. Conventional Internet voting schemes, however,
including those described in the literature, actually provide an attacker with ready-made tools for verifying voter
behavior and thereby exerting influence or control over voters. Without careful system design, the threats of co-
ercion and vote buying are potentially far more problematic in Internet voting schemes than in ordinary, physical
voting schemes.

One commonly proposed way of achieving secure electronic voting systems is to use a cryptographic system
known as amix network[14]. This is a tool that enables a collection of servers to take as input a collection of
ciphertexts and to output the corresponding plaintexts according to a secret permutation. A straightforward way

2

to achieve an election system that preserves the privacy of voters, then, is to assign a private digital signing key to
each voter. To cast a ballot, the voter encrypts her choice and signs it, and then posts it to a bulletin board (i.e., a
publicly accessible memory space). When all ballots have been collected and the corresponding signatures have
been checked, the ciphertexts are passed through a mix network. The resulting plaintext versions of the voter
choices may then be tallied. Thanks to the privacy preserving property of the mix network, an adversary cannot
tell which vote was cast by which voter. This approach is frequently advocated in the mix-network literature, as
in, e.g., [8, 14, 22, 27].

In an ordinary mix-based scheme of this kind, an adversary can coerce a voter straightforwardly. The adver-
sary can simply furnish the voter with a ciphertext on a particular candidate, and then verify that the voter posted
a ballot containing that ciphertext. Alternatively, the adversary can demand the private signing key of the voter
and verify its correctness against the corresponding public key. An adversary attempting to buy votes can use the
same means. Other types of cryptographic voting schemes, namely homomorphic schemes [5, 16] and schemes
based on blind signatures [20, 36], suffer from similar vulnerabilities.

1.1 Previous work

Previous investigations of coercion-resistant voting have been confined to a property knoggegs-freeness
Roughly stated, receipt-freeness is the inability of a voter to prove to an attacker that she voted in a particular
manner, even if the voter wishes to do so. For a more formal definition, see [36]. The property of receipt-freeness
ensures that an attacker cannot determine exact voter behavior and therefore cannot coerce a voter by dictating her
choice of candidate. It also protects against vote-buying by preventing a potential vote buyer from obtaining proof
of the behavior of voters; voters can thergigtendto sell their votes, but defraud the vote buyer. The notion
of receipt-freeness first appeared in work by Benaloh and Tuinstra [5]; their scheme, based on homomorphic
encryption, was shown in [25] not to possess receipt-freeness as postulated. An independent introduction of the
idea appeared in Niemi and Renvall [34]. Okamoto [35] proposed a voting scheme which he himself later showed
to lack the postulated receipt-freeness; a repaired version by the same author, making use of blind signatures,
appears in [36]. Sako and Kilian [38] proposed a multi-authority scheme employing a mix network to conceal
candidate choices, and a homomorphic encryption scheme for production of the final tally. The modelling of their
scheme was clarified and refined by Michels and Horster [32]. The Sako and Kilian scheme served as a conceptual
basis for the later work of Hirt and Sako [25], followed by the more efficient approach of [3]; these two are the
most efficient (and correct) receipt-free voting schemes to date. A recenly proposed scheme by Bamkos
[31] distinguishes itself by an approach relying on tamper-resistant hardware, but is flawed.

All of these receipt-free voting schemes include somewhat impractical assumptions. For example, these
schemes assume the availability of amtappable channdbetween the voter and the authorities, that is, a channel
that provides perfect secrecy in an information-theoretic sense. (l.e., even encryption does not provide an untap-
pable channel.) The scheme in [36] makes the even stronger assumptiomobaymousintappable channel.
(It is also not very practical in that it requires voter interaction with the system three times in the course of an
election.) Moreover, all of these schemes (excepting [36]) lose the property of coercion-resistance if the attacker
is able to corrupt even one of the tallying authorities in a distributed setting. The scheme of Hirt and Sako still
retains coercion-resistance when such corruption takes place, but only under the strong assumption that the voter
knowswhichtallying authorities have been corrupted; the proposal of Bauétal. has a similar property.

A still more serious problem with of all of the receipt-free voting schemes described in the literature, however,
is the fact that the property of receipt-freeness alone fails to protect an election system against several forms of
serious, real-world attack, which we enumerate here:

! We are unaware of any mention of a break of this scheme in the literature, and therefore briefly describe one here. ThetMagkos
al. system employs an interactive honest-verifier ZK proof made by a smartcard to the voter. Presumably because of the simulability of
this proof, the authors describe the proof as being “non-transferable”. This is not true. In particular, an adversary can stipulate that the
voter engage in the proof using a challenge that the adversary has pre-selected. The proof then becomes transferable, yielding a means
of receipt construction by the adversary. As noted in [25], this type of attack also explaindevtigble encryptioiil3] does not solve
the problem of coercion in a voting system.

3

Randomization attack: This attack was noted by Schoenmakers in 2000 [40]; he described its applicability to
the scheme of Hirt and Sako. The idea is for an attacker to coerce a voter by requiring that she submit randomly
composed balloting material. In this attack, the attacker (and perhaps even the voter) is unable to learn what
candidate the voter cast a ballot for. The effect of the attack, however, is to nullify the choice of the voter with a
large probability. For example, an attacker favoring the Republican party in a United States election would benefit
from mounting a randomization attack against voters in a heavily Democratic district.

Forced-abstention attack: This is an attack related to the previous one based on randomization. In this case, the
attacker coerces a voter by demanding that she refrain from voting. All of the schemes cited above are vulnerable
to this simple attack. This is because the schemes authenticate voters directly in order to demonstrate that they
are authorized to participate in the election. Thus, an attacker can see who has voted, and use this information to
threaten and effectively bar voters from participatfon.

Simulation attack: The receipt-free schemes described above assume that the attacker cannot coerce a voter by
causing her to divulge her private keying material after the registration process but prior to the election process.
Such an attack, however, is a real and viable one in previously proposed schemes, because these permit an attacker
to verify the correctness of private keying material. For example, in [36], the voter provides a digital signature
which, if correct, results in the authority furnishing a blind digital signature. In [25], the voter, when casting a
ballot, proves knowledge of a private key relative to a publicly committed or published value. In general, receipt-
freeness does not prevent an attacker from coercing voters into divulging private keys or buying private keys from
voters and thesimulatingthese voters at will, i.e., voting on their behalf.

1.2 Our contribution

Our contribution in this paper is twofold. First, we investigate a stronger and broader notion of coercive attacks
than receipt-freeness. This notion, which we refer tacasrcion-resistancecaptures what we believe to be

the fullest possible range of adversarial behavior in a real-world, Internet-based voting scheme. A coercion-
resistant scheme offers not only receipt-freeness, but also defense against randomization, forced-abstention, and
simulation attacks — all potentially in the face of corruption of a minority of tallying authorities. We propose a
formal definition of coercion-freeness in the body of this paper. Two other properties are essential for any voting
scheme, whether or not it is coercion-resistant. Theseanectnessandverifiability. As formal definitions for

these properties are to the best of our knowledge lacking in the literature, we provide them as well in the paper
appendix; we thus provide what we believe to be the first formal security framework for electronic elections in
general.

To demonstrate the practical realizability of our definitions, we describe a voting scheme that possesses the
strong property of coercion-resistance proposed in this paper — and also naturally possesses the properties of
correctness and verifiability. Our scheme does not require untappable channels, but instead assumes voter access
to an anonymous channel at some point during the voting process. Anonymous channels can be realized in a
practical way by use of mixnets, e.g., [22, 33], while untappable channels require largely unrealistic physical
assumptions. We note in fact that anonymous channels are in fact a minimal requiremanty fooercion-
resistant schemes: An attacker that can identify which voters have participated can obviously mount a forced-
abstention attack. A drawback of our scheme is that, even with use of asymptotically efficient mix networks as
in [22, 33], the overhead for tallying authorities is quadratic in the number of voters. Thus the scheme is only
practical for small elections. Our hope and belief, however, is that our proposed scheme might serve as the basis
for refinements with a higher degree of practical application. We provide a security proof for our proposed scheme
in the paper appendix.

2 An exception is the scheme in [36], which does not appear to be vulnerable to a forced-abstention attack. This is because the scheme
seems to assume that the authority checks voter enrollment privately. In other words, the scheme does not permit public verification
that participating voters are present on a published voter roll. This is potentially a problem in its own right.

1.3 Intuition behind our scheme

In a conventional voting scheme, and also in receipt-free schemes like [25], the Woldentifies herself at

the time she casts her ballot. This may be accomplished by means of a digital signature on the ballot, or by an
interactive authentication protocol. The key idea behind our scheme is for the identity of a voter to remain hidden
during the election process, and for the validity of ballots instead to be checked blindly against a voter roll. When
casting a ballot, a voter incorporates a concealed credential. This takes the form of a ciphertext on a secret value
o that is unique to the voter. The secretis a kind ofanonymous credential, quite similar in spirit to, e.g., [9,

10]. To ensure that ballots are cast by legitimate voters, the tallying authdriperforms a blind comparison
between hidden credentials and a IIsiof encrypted credentials published by an election regisitalongside

the plaintext names of registered voters.

By means of mixing and blind comparison of ciphertext values, it is possible to check whether a concealed
credential is in the lisL or not, without revealing which voter the credential has been assigned to. In consequence,
an attacker who is given a fake credentiaby a coerced voter cannot tell whether or not the credential is
valid. (The attacker will learn how many ballots were posted with bad credentials. Provided, however, that some
spurious ones are injected by honest players, authorities, or even outsiders, the individuals associated with bad
ballots will remain concealed.) Moreover, the attacker cannot mount randomization or forced-abstention attacks,
since there is no feasible way to determine whether an individual voter has posted a ballot or not. In particular,
after divulging fake credentiat, a voter can go and vote again using her real credemtial

1.4 Organization

In section 2, we describe our setup and attack models and sketch a few of the major adversarial strategies. We
provide formal definitions for the security property of coercion-resistance in section 3. We describe the particulars
of our proposed scheme in section 4, prefaced by a summary of the underlying cryptographic building blocks. In
the appendices to the paper, we offer formal definitions for the correctness and verifiability of election schemes,
a detailed security-proof outline, and details on our choice of primitives for realizing our proposed scheme.

2 Modelling

An election system consists of several sets of entities:

1. Registrars:Denoted byR = {R, Ry, ..., Ry, }, thisis a set ofvy entities responsible for jointly issuing
keying material, i.e., credentials to voters.

2. Authorities (Talliers):Denoted byZ” = {13, 15, . .., T}, }, authorities are responsible for processing ballots
and jointly counting votes and publishing a final tally.

3. Voters: The set ofny voters, denoted by = {V1,V5,...,V,, }, are the entities participating in a given

election administered bfR. We leti be a public identifier foi/;.

We make use of aulletin board, denoted bys5. This is a piece of universally accessible memory to which
all players have appendive-write access. In other words, any player can write dafg tmt cannot overwrite
or erase existing data. Moreover, voters will be able to read the conte®8 @ince the vote casting phase has
ended. For notational convenience, we assume that data are writi88 to u-bit blocks for an appropriate
choice of 4. Shorter data segments may be padded appropriately. For simplicity of exposition, we assume no
ordering on the contents @5.

2.1 Functions

We define ecandidate slateC' to be an ordered set oic distinct identifiers{cy, co, . . ., ¢, }, €ach of which
corresponds to a voter choice, typically a candidate or party name. In an election, chaieg be identified ac-
cording to its index;. Thus, for cryptographic purposes the candidate slate consists of the infegérs. ., nc}

5

and may be specified by alone. We define tlly on an election under slaté to be a vectotX of no positive
integersey, xa, . . ., Ty, Such thatr; indicates the number of votes cast for choigeThe protocols composing
an election system are then as follows:

— Registering: The functionregister(SKrg, i, k1) — (sk;, pk;) takes as input the private registrar k6y<z,
a (voter) identifier and a security parameték, and outputs a key paisk;, pk;). This is computed jointly
by players inR, possibly in interaction with voter/;.

— \Voting: The functionvote(sk, PK 1, nc, 3, k2) — ballot takes as input a private voting key, the public key
of the authorities/, the candidate-slate specificatiop, a candidate selectiaf, and a security parameter
ko, and yields a ballot of bit length at mogt The form of the ballot will vary depending on the design of
the election system, but is in essence a digitally signed vote choice encrypted Bixder

— Tallying: The functiontally(SK7, BB, nc, {pki}.,, ks) — (X, P) takes as input the private key of the
authority 7, the full contents of the bulletin board, the candidate-slate size, all public voting keys, and a
security parameteks and outputs a vote tallyX', along with a non-interactive proa? that the tally was
correctly computed.

— Verifying: The functionverify(PKr, BB,n¢, X, P) — {0, 1} takes as input the public key of the author-
ities, the contents of the bulletin board, the candidate-slate size, the voting tally, and a non-interactive proof
of correct tallying. It outputs a ‘0’ if the tally is incorrect and a ‘1’ otherwise. (We characterize the behavior
of verify more formally in the paper appendix.)

We define an election schert® as the collection of these functions. ThES = {register, vote, tally, verify}.

Remark: There are many election models in use throughout the world. The model we propose here excludes
important variants. In some systems, for example, voters are asked to rank candidate choices, rather than just
listing those they favor. Many systems permit the useasite-in votes, i.e., the casting of a ballot in favor

of a candidate not listed on the slate for the election. We exclude write-in voting from our model because it
undermines the possibility of coercion resistance in any scheme where an observer can see a complete election
tally including write-in votes. An attacker may, for example, require coerced voters to cast write-in ballots for
candidate names consisting of random strings pre-specified by the attacker. This way, the attacker can: (1) Verify
that coerced voters complied with instructions, by looking for the random strings the attacker furnished, and (2)
Ensure that the votes of coerced voters are not counted, since random strings will most likely not correspond to
real election choices. (Thus, this would combine the forced abstentation attack and the randomization attack.)

2.2 Summary of the attack model

We consider the process for a single election as proceeding in these phases, corresponding largely with the
functions enumerated in section 2.1:

1. Setup: If not already available, key pairs are generated for ofRognd7 . The candidate slat€’ for the

election is published byk with appropriate integrity protection.

2. Registration: The identities and eligibility of would-be participants in the election are verifieddyGiven
successful verification, an individual becomes a registered voter, receivingRarcredential permitting
participation in the election. Previously registered voters may be able to re-use their credéhpalslishes
a voter roll L.

. Voting: Referring to the candidate sla€g, registered voters use their credentials to cast ballots.

4. Tallying: The authorityZ processes the contents of the bulletin bo&i# so as to produce a tally vectd¢€

specifying the outcome of the election, along with a proof of correctrdes$the tally.

5. Verification: Any player, whether or not a participantin the election, can refd/fo P and L to verify the

correctness of the tally produced yin the previous phase.

w

6

Assumptions in setup phase:Our security definitions permit the possibility of static, active corruption by the
adversary of a minority of players iR and7 in the setup phase. The security of our construction then relies
on generation of the key paif$ K7, PK7) and(SKg, PKr) by a trusted third party, or, alternatively, on an
interactive, computationally secure key-generation protocol such as [24] between the plajeemiththose in

7.

Assumptions prior to registration: The adversary may coerce a voter prior to the registration phase in the sense
of requesting in advance that the voter retain transcripts of the registration process, or by providing data in an
attempt to dictate voter interaction with the registrar.

Assumptions in registration phase: We make the assumption that the registration phase proceeds without any
corruption of voters. This assumption is at some level a requirement for a coercion-free election, as an attacker
capable of corrupting and seizing the credentials of a voter in this initial phase can mount a simulation attack.
More precisely, we must malad least oneof three assumptions about the registration phase:

1. Erasure of data from voter interaction witt is compulsory by the voter (e.g., enforced by smartcards
provided to voters). This prevents an attacker from requesting registration transcript data after the fact; or

2. The adversary cannot corrupt any player&inor

3. Voters become aware of the identity of any corrupted play&.in

The reason we require at least one of these assumptions is as follows. If none of these assumptions holds, then
the adversary can, on demanding information from a voter, verify the correctness of some portion thereof, where
the voter would not know what portion is being checked. In other words, the adversary can perform spot checks,
with a high probability of successfully detecting false transcripts. In consequence, the adversary can coerce voters
into divulging full transcripts of their interactions witiR, thereby enabling a simulation attack. In contrast, if at
least one of the assumptions holds, we show that it is possible to formulate a protocol that is coercion-resistant.

Assumptions on voting, tallying and verification phases: Subsequent to the registration phase, we assume
that the adversary may seize control of a minority of player§imnd any number of voters in a static, active
manner. (Sinc& does not participate in the process subsequent to registration, we need not consider adversarial
corruption of R at this point.) The adversary may also attempt to coerce voters outside its control by requesting
that they divulge private keying materfabr behave in a prescribed manner in voting. Voters are assumed to
be able to cast their ballots via fully anonymous channels, i.e., channels such that an attacker cannot determine
whether or not a given voter cast a ballot. This assumption is a requirement for any election scheme to be fully
coercion-resistant: If an attacker can tell whether or not a given voter cast a ballot, then the attacker can easily
mount a forced-abstention attack. In practice, an anonymous channel may be achieved by enabling voters to
cast ballots in public places, thereby mixing their votes with others, or by use of anonymizing, asynchronous
mix-networks, and so forth.

3 Formal definitions

We now turn our attention to formal security definitions of the essential propertiesméctnessverifiability,
andcoercion-resistancerespectively abbreviatecbrr, ver, andc-resist. Our definitions hinge on a set of ex-
periments involving an adversary in interaction with components of the election syst&s This adversary is
assumed to retain state throughout the duration of an experiment. We formulate our experiments such that in all
cases, the aim of the adversary is to cause an output value of ‘1’. Thus, for expeHhapﬁgA(-) on property

E € (ver, corr, cresist), we defineSuccE&A(-) = Pr[ExpE&A(-) =11.
3 We assume that the coercion takes place remotely. For example, the adversary may not continuously watch over the shoulder of a voter,

monitor her hard-drive, etc. Our proposed protocol does potentially defend against some shoulder-surfing, however, by permitting
voters to use fake keys and/or re-vote.

7

Accordingto the standard definition, we say that a quanfity) is negligiblein & if for every positive integer
c there is somé, such thatf(k) < k=¢ for k£ > [.. In most cases, we use the term negligible alone to mean
negligible with respect to the full set of relevant security parameters. Similarly, in saying that an algorithm has
polynomial running timewe mean that its running time is asymptotically bounded by some polynomial in the
relevant security parameters. As the properties of correctness and verifiability are of less relevance to our work
than coercion-resistance, we relegate the first two definitions to appendices A and B.

Coercion resistance: Coercion resistance may be regarded as an extension of the basic property of privacy.
Privacy in an election system is defined in terms of an adversary that cannot interact with voters during the
election process. In particular, we say that an election is private if such an adversary cannot guess the vote of any
voter better than an adversarial algorithm whose only input is the election tally. (Note, for example, in an election
where all voters vote Republican, the system may have the property of privacy, even though the adversary knows
how all voters cast their ballots in that election.)

Coercion resistance is a strong form of privacy in which it is assumed that the adversary may interact with
voters. In particular, the adversary may instruct targeted voters to divulge their private keys subsequent to regis-
tration, or may specify that these voters cast ballots of a particular form. If the adversary can determine whether
or not voters behaved as instructed, then the adversary is capable of blackmail or otherwise exercising undue
influence over the election process. Hence a coercion-resistant voting system is one in which the user can deceive
the adversary into thinking that she has behaved as instructed, when the voter has in fact cast a ballot according
to her own intentions.

Our definition of coercion resistance requires addition of a new function to voting syEfem

— The functionfakekey(PKr, sk, pk) — sk takes as input the public key of the authorities, and the pri-
vate/public key pair of the voter. It outputs a spurious kéy

Of course, for the functiofiakekey to enable coercion resistance, the kdymust be indistinguishable by the
adversaryA from a valid key, and only distinguishable by a majority of talliéfs This property is captured in

our experiment characterizing coercion resistance. To simplify the formulation of the experiment, we assume im-
plicitly that tally is computed by an oracle (with knowledge 8 7). It suffices, however, fo¥ to be computed

via a protocol that achieves correct output and is computationally simulable by the advetgaryo, it will be
recalled, may corrupt a minority df).

Our definition of coercion resistance centers on a kind of game between the advdraadya voter targeted
by the adversary for coercive attack. A coin is flipped; the outcome is represented by.dfldit= 0, then the
voter casts a ballot with a particular choige and provides the adversary with a false voting kdy in other
words, the voter attempts to evade adversarial coerciol=f 1, on the other hand, then the voter submits to
the coercion of the adversary; she simply furnishes the adversary with her valid voting:keyd does not cast
a ballot. The task of the adversary is to guess the value of theigdimat is, to determine whether or not the
targeted voter in fact cast a ballot. We permit the adversary in this definitional game to specify the ballot value
6. While it is somewhat unnatural for the adversary thus to specify the intention of the voter, this permits us to
achieve the strongest possible security definition.

If the adversary has perfect knowledge about the intentions of all voters, then coercion is unavoidable. For
example, if the adversary is attempting to coerce one voter in a given election and knows that all hundred of the
other eligible voters will cast ballots, then the adversary can mount an abstention attack straightforwardly. The
adversary in this case simply threatens the voter in the case that the total tally for the election is one hundred and
one. Similarly, suppose that the adversary does not know whether or not any given voter will cast a ballot, but
knows that all participating voters will cast a ballot for the Republican party. In this case, the adversary can win
the game we describe above by specifying a ballot value'Democrat”.

It is evident therefore that for any definition of coercion-resistance to be meaningful, the adversary must
have uncertain knowledge about how — and indeed whether — some voters will cast their ballots. In other words,
coercion-resistance requires that there be some “noise” or statistical uncertainty in the adversary’s view of voting

8

patterns. To our benefit, it is natural to expect that in a real-world election an adversary can obtain only fragmen-
tary knowledge about the likely behavior of voters. This means that coercion-resistance is a viable po8sibility.
For a collection ofn voters outside the control of the adversary —i.e., voters not subject to coercion —we charac-
terize the view of the adversary in terms of a probability distribution,, .. We letp be a symbol denoting a null
ballot, i.e., an abstention, and I&tdenote a ballot cast with an invalid credential. ThBp ., is a distribution

over vectory 31, B2, . .., Bn) € (nc U ¢U A)", i.e., over the set of possible ballot choices for an election plus
abstentions and invalid ballots. Thus, the distributidp ,,, serves the purpose in our experiment of defining the
distribution of the “noise” that conceals the behavior of voters targeted by the adversary for coercion. For a set
of n voting credentialgsk; }, we letvote({sk;}, PK7,nc, Dy ., k2) denote the casting of ballots according

to distributionD,, ,,.. In other words, a vectas, (o, . . ., 8,) is drawn fromD,, ,,, and voteg; is cast using
credentialsk;.

We are now ready to present an experimeniesist that defines the game described above between an
adversary and a voter targeted for coercion. Recallthat,, andks are security parameters defined above,
is the total number of eligible voters for the election, amd is the number of candidates, i.e., the size of the
candidate slate. We let, denote the number of voters that may be completely controlled, i.e., corrupted by the
adversary. We definey = ny — ng — 1. In other words, the number of uncertain votes equals the total
number of possible votes, minus those coming from voters controlled by the attacker, minus the vote coming
from the voter the attacker is trying to coerce (in the experiment). Noterthas therefore the number of voters
that contribute “noise” to the experiment.

We consider a static adversary, i.e., one that selects voters to corrupt prior to protocol execution. We assume
that the adversary has a list of “voter names,” i.e., a roll of potential participating voters.

We let — denote assignment ang: denote the append operation, while % denotes the beginning of an
annotative comment on the experiment. Our experiment treats the case in which the adversary seeks to coerce a
single voter; extension of the definition to coercion of multiple voters is straightforward. The experiments defined
here halt when an output value is produced.

4 Additionally, it is possible for voting authorities — or indeed any entity — intentionally to inject “chaff” in the form of blank and invalid
ballots into an election system.

ExperimenfExpCE'Sffjff}(kl, ko, k3, nv,na, ne)
V' «— A(voter names‘control voters”); % A corrupts voters
{(ski, pk;) < register(SKRg, i, ko) } ¥, % voters are registered
(7, B) < A({sk;}icv, “set target voter and vote? % A sets coercive target
if |V| #ny Orj ¢{1,2,...,’I’Lv} —Vor

B&A{1,2,...,nc}U¢then % outputs of4d checked for validity
output ‘0’;
bey {0,1}; % coinis flipped
if b =0 then % voter evades coercion

sk « fakekey(PKr, skj, pkj);
BB <= vote(sk‘j, PKr,nc, B, ks);

else % voter submits to coercion
S~k‘ — sk‘j;
BB < vote({sk;}ixjigv, PK1,nc, Dny e, k2); % ballots posted for honest voters
BB < A(sk, BB, “cast ballots’); % A posts toBB
(X, P) «— tally(SKr, BB, nc, {pk:} ¥, k3); % election results are tallied
b — A(X, P, “guessh”); % A guesses coin flip
if ¥ = bthen % experimental output determined
output ‘17;
else
output ‘0’;

The adversaryl in the above experiment is quite powerful, being capable (whenl) of complete coercion
of the targeted voter. In order to characterize the succesk @fe must compargl with a second adversary’.
A’ is capable of coercion only within the framework of an ideal voting experimentsist-ideal. In other words,
A’ characterizes the type of security against coercion that we would like to achid in

The main feature we are aiming for in our ideal experimentsist-ideal is for A’ to learn nothing from the
private keys she acquires from corrupted players and from the coerced player. In parti¢@annot use private
keys to perform active attacks. We caudeto express voting choices in a direct, ideal procedspannot cast
ballots, but merely enumerates the choices of players in her control. Additiopdliannot use private keys to
learn information about the voting behavior of honest players or the coerced playesnihiaformation thatA’
gets is the grand totat’ of votes in the election.

One feature of our experiment is counterintuitive. Because this is an ideal experidieistalwaysgiven
sk as the key of the coerced player. This is becad$should be unable to determine, on the basis of keying
material, from the situation in which coercion is successful or unsuccessful.

We require a function for the definition. We include here an ideal funcideal-tally that tallies the ballots
posted toBB in a special wayideal-tally tallies in a normal manner all of the ballots cast by honest voters,
i.e., prior to adversarial posting. The ballots castity however, are treated specially. In particular, the function
ideal-tally determines for each ball@ what the underlying private keyk; is. If i ¢ V, i.e., if the private key is
not one assigned to one of the corrupted players, then the corresponding vote is not counted. Additionally, any
double vote is not counted, i.a@deal-tally performs the weeding of double votes that normally occurs during the
tallying procedure. Finallyideal-tally does the following based on the value of the secrebblf b = 0, then
ideal-tally does not count any ballot cast (by the adversary) using privateske¥f b = 1, thenideal-tally does
include in the final tally a ballot cast using: (excluding double votes).

Our definition ofideal-tally here assumes that every ballot has a unique corresponding private key. This is
true of most natural ballot structures (and true of our proposed scheme). This definition, of course, also assumes
ideal functionality inideal-tally, namely the ability to extract private keys and plaintext votes from ballots. We do
not specify in our definition how this “oracle” power is achieves. In our proofs, we construct a simulator capable
of performing this functionality required frorideal-tally.

10

Note that althoughd’ learns the secret keys of voters, in our ideal experiment these secret keys in fact provide
A’ with no information useful in voting — the ideal functiddeal-tally ensures against misuse of keys — and no
information useful in learning votes — becaudénever see$.

We are now ready to present the experimentsist-ideal that characterizes the success4sf

ExperimentExpgd %5759 (ky, kg, ks, ny, na, ne)

V «— A’(voter names‘control voters”); % A’ corrupts voters

{(ski, pk;) < register(SKRg, i, ko) } Y, % voters are registered

(7, B) < A'(“set target voter and vote? % A’ sets coercive target

if |V| #ny Orj ¢{1,2,...,’I’Lv} —Vor

B&{1,2,....,nc}Udgthen % outputs ofd’ checked for validity

output ‘0’;

bey {0,1}; % coin is flipped

if b =0 then % voter evades coercion
BB <= vote(sk‘j, PKr,nc, B, ks);

sk < sk,

BB < vote({sk;}izjigv, PK1,nc, Dny e, k2); % ballots posted for honest voters

BB < A'(sk, {sk;}icv, “cast ballots); % A’ specifies vote choices

(X, P) « ideal-tally(SK7, BB, nc, {pki}.Y, ks); % election results are tallied

b — A(X,“guessh”); % A’ guesses coin flip

if ¥ = bthen % experimental output determined
output ‘17;

else
output ‘0’;

4 A Coercion-Resistant Election Protocol

We are now ready to introduce our protocol proposal. We begin by describing the cryptographic building blocks
we employ. Where appropriate, we model these as ideal primitives, as discussed in appendix D.

Threshold cryptosystem with re-encryption: Our first building block is a threshold public-key cryptosystem
CS that permits re-encryption of ciphertexts with knowledge only of public parameters and keys. The private
key for C'S is held by7 in our construction.

To describe our aim in the ideal, we would like any ciphertétto be perfectly hiding. We would like
decryption to be possible only by having a majority of playersZ/immgree on a ciphertext to be decrypted. We
model this latter ideal property as in terms of a special decryption oracle denot&dsy. We assume further
that any decryption performed b EC is publicly verifiable.

Selected cryptosystem:El Gamal [23] represents a natural choice of cryptosystem for our purposes, and is our
focus in this paper. For reasons that will become apparent later on we will adopt a modified version of the basic
El-Gamal scheme which can be seen as a simplified version of the well known Cramer-Shoup [17] cryptosystem
(only providing semantic security with respect to a passive adversary). VWedenote the algebraic group over
which we employ this modified EI Gamal (which we’ll call simply M-El Gamal), apdenote the group order.
For semantic security, we require that the Decision Diffie-Hellman assumption holddoj/gr41]. The public
key is (g1, g2, h) wheregy, g2, h are elements ig. The secretkey is € Z, such thath = g7.

To encrypt m one simply computésg;, g5, h"m) for randomr. Decryption is like plain EIl Gamal (one uses
termg;i only).

11

We letey here and elsewhere denote uniform, random selection from a set. A ciphertext in M-El Gamal on
messagen < G takes the form(a, 3,v) = (mh', g7, g5) for r €y Z,. For succinctness of notation, we some-
times letE,[m| denote a ciphertext on messageunder public keyh (assuming thay, andg. are considered
public parameters).

Further details on the security of the scheme may be found in appendix E. An important feature of the M-ElI
Gamal cryptosystem is that, exactly as the original version, it may be easily implemented in a threshold setting.
In other words, the private key may be distributed such that decryption can be performed by any quorum of
share holders, without leakage of additional information. We exploit this distributed form of M-El Gamal in
our proposed election scheme. As explained above, rather than focusing on a particular embodiment, we model
the process by a decryption oracle denoted/bf C. We refer the reader to appendix E and to [12] for further
discussion of threshold decryption in (plain) El Gamal.

Plaintext Equivalence Test (PET): A plaintext equivalence te$PET) [26, 30] is cryptographic primitive that
operates on ciphertexts in a threshold cryptosystem. The input to PET is a pair of ciphertexts; the output is a
single bit indicating whether the corresponding plaintexts are equal or not. PET may be realized as an efficient
distributed protocol that reveals no additional, non-negligible information about plaintexts. For a detailed de-
scription of efficient methods to perform this verification, along with proofs of the properties of the construction,
see [30]. Rather than focusing on a specific embodiment of PET, we model the ideal properties of the primitive
by means of an oracle denoted B\E'T', and with the property of public verifiability.

Mix network: A (re-encryption) mix network{/ N) is a distributed protocol that takes as input an ordered set
E ={Ey, E,, ..., E4} of ciphertexts generated in a cryptosystem like EI Gamal that permits re-encryption. The
outputof MV is an ordered seE” = {E]), E], E] ,}. Here,E] . is a re-encryption of;, while 7 is
a uniformly random, secret permutation. This is to say tha¥V randomly and secretly permutes and re-encrypts
inputs. Thus, the special privacy property of a mix network is this: An adversary cannot determine which output
ciphertext corresponds to which input ciphertext, i.e., which inputs and outputs have common plaintexts. Stated
another way, an adversary cannot determiiig) for any j with probability non-negligibly better than a random
guess. A number of mix network constructions have been proposed that offer privacy and robustness against a
static, active adversary capable of corrupting any minority ofith@ayers (servers) performing the mix network
operation. Some of these constructions offer the additional propertefiability. In other words, a proof is
output that is checkable by any party and demonstrates, relatiZzdnd the public key of the ciphertexts thht
is correctly constructed. It is convenient to conceptuallZéV as an ideal primitive in terms of an oracld N
for M N with the property of public verifiability.

There are many good choices of mix networks for our scheme; some examples of such schemes are those of
Furukawa and Sako [22] and Neff [33]. For further details, see appendix E.

Proofs of knowledge: As sketched in the above descriptions, we make use of NIZK (non-interactive zero-
knowledge) proofs of knowledge [6] in a humber of places. We do not describe these tools in detail, as they
are standard tools in the cryptographic literature. Instead, we refer the reader to, e.g. [15], for discussion of
construction and logical composition of such protocols, and [11] for a notational overview and discussion of
efficient realization. As is the usual case, our use of NIZK proofs enforces a reliance on the random oracle model
in the security proofs for our scheme [4].

4.1 Our proposed protocol

Setup: The key pair{ SKx, PKr) and(SKy, PKr) are generated (in an appropriately trustworthy manner,
as described above), afti{; and PK 5 are published along with all system parameters.

12

Registration: Upon sufficient proof of eligibility fromV;, the registrafR generates and transmitstpa random
string o; €y G that serves as the credential of the voter. Such credentials can be generated in a distributed
threshold manner (as in [24]), with each active servefRosending the votel; its credential. R then adds
S; = Epk, [0;] to the voter rollL.% The voter rollL is maintained on the bulletin boail5 and digitally signed
as appropriate bR.
We assume that the majority of playersiare honest, and can thus ensure that®hprovidesV; with a
correct credential. Nonetheless, it is possible fotto furnish V; with a proof thatS; is a ciphertext ors;. To
enforce coercion-resistance in the case where erasure of secrets by voters is not autatestgnated verifier
proof [28] must be employed for this proof. We note that credentials may be used for multiple elections.

Candidate-slate publication: R or some other appropriate authority publishes a candidate €latentaining
the names and unique identifiersgrfor no candidates, with appropriate integrity protection. This authority also
publishes a unique, random election identifier

Voting: Voter V; casts a ballot for candidatg comprising M-El Gamal ciphertexl(sEfi), Ezi)) respectively on
choicec; and credentiab;. In particular, fora,, az €y Zg:

B = (on, 01, 81) = (98", 65", ;h™), BS) = (a2, 0y,) = (g, 95, 0ih2).

The firstis a ciphertext on the candidate choice of the voter, the second a ciphertext on the credential of the voter.
Additionally, V; includes NIZK proofs of knowledge aof; andc;, a NIZK thata;, o have the same discrete

logarithm with respect to basig andg. and also a NIZK proofthat; € C, i.e., thal; represents a valid candi-

date choice. The latter can be accomplished, for example, using a disjuctive proof that the ciphertext constitutes a

valid encryption of a candidate choice @. These three NIZK proofs, which we denote collectively By, may

be accomplished efficiently using standard techniques. As is standard practice, the challenge vaRigsfer

constructed using a call to a cryptographic hash function, modeled in our security analysis by a random oracle

OW . Input toOW for these challenge values includes?;, E»> and commitment values required for realization

of the NIZK proofs.V; postsB; = (E1, E», Pf) to BB via an anonymous channel.

Tallying: To tally the ballots posted t$83, the authorityZ performs the following steps:

1. Checking proofs: 7 verifies the correctness of all proofs @i5. Any ballots with invalid proofs are dis-
carded. For the valid, remaining ballots, ld denote the list of ciphertexts on candidate choices (i.e., the
E4 ciphertexts), and leB; denote the list of ciphertexts on credentials (i.e., Byeciphertexts).

2. Eliminating duplicates: The tallying authorityZ performs pairwise PETs on all ciphertexts By, and
removes duplicates according to some pre-determined policy, using e.g., order of postiigs\éhen an
element is removed fronB,, the corresponding element (i.e., that with the same index) is removed from
A,. We let B} and A} be the resulting “weeded” vectors. This is equivalent to retaining at most one ballot
per given credential.

3. Mixing: 7 appliesM N to A} andBj (using the same, secret permutation for both). Agtand B be the
resulting lists of ciphertexts.

4. Checking credentials: 7 applies mix networkM N to the encrypted listl. of credentials from the voter
roll. 7 then compares each ciphertextB% to the ciphertexts ofl using PET.Z retains a vector g of all
ciphertexts ofA, for which the corresponding elements 8% match an element aof. according to PET.
This step achieves the weeding of ballots based on invalid voter credentials.

5. Tallying: 7 decrypts all ciphertexts im 3 and tallies the final result.

5 In our definitions above, we use the common terminology of private and public keys — with corresponding nekatimpk; — to
describe the credentials associated with voters. Shifting from a general exposition to our specific protocol, we apuwatEad of
sk; to denote a voter credential, as instead ofpk; to denote a public representation thereof. This change of notation aims to reflect
the fact that voters do not employ a conventional form of public-key authentication in our scheme.

13

How to cheat a coercer: One possible implementation of the functiéwkekey is simply for the coerced voter

V; to select and reveal a random group elemgntclaiming that this is the credential;. (If coerced multiple

times — whether for one or more elections — the vafgwould, of course, release the same vaiyé In addition,

partial or full transcripts from the registration phase may be given to the adversary. We discuss the process of
faking voting keys in more detail in appendix C.

We offer further discussion of security and a formal security proof in appendix D.

References
1. Proxyvote.com: Shareholder election website, 2004. URL: www.proxyvote.com.
2. Vote-auction, 2004. URL: www.vote-auction.net.
3. O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard. Practical multi-candidate election sy®&DCIA001
pages 274-283. ACM Press, 2001.
4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protodstsA@M Conference on
Computer and Communications Securipages 62—73. ACM, 1993.
5. J.C. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended abstr26th ACM STOCpages 544-553, 1994.
6. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-knowleSigeM J. Comput.,
20(6):1084-1118, 1991.
7. D. Boneh. The Decision Diffie-Hellman problem. ANTS '98 pages 48-63. Springer-Verlag, 1998. LNCS no. 1423.
8. D. Boneh and P. Golle. Almost entirely correct mixing with applications to voting. In V. Atluri, ed&@M CCS ’'02 pages 68-77.
ACM Press, 2002.
9. S. BrandsRethinking Public Key Infrastructures and Digital Certificates: Building in Privad§iT Press, 2000.
10. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with optional anonymity revoca-
tion. In B. Pfitzmann, editoEUROCRYPT ’'Olpages 93—-118. Springer-Verlag, 2001. LNCS no. 2045.
11. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B. KaliskiGRMBTO '97 pages 410-424.
Springer-Verlag, 1997. LNCS no. 1294.
12. R. Canetti, R. Gennaro, S. Jareckiand H. Krawczyk, and T. Rabin. Adaptive security for threshold cryptosystems. In M. Wiener,
editor, CRYPTO '99pages 98-115. Springer-Verlag, 1999. LNCS no. 1666.
13. Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In B. Kaliski, eGR¥PTO '97 pages
90-104, 1997. LNCS no. 1294.
14. D. Chaum. Untraceable electronic mail, return addresses, and digital pseud@gmrsunications of the ACN24(2):84—-88, 1981.
15. R. Cramer, |. Damgard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols. In
Y. Desmedt, editoiCRYPTO '94 pages 174-187. Springer-Verlag, 1994. LNCS no. 839.
16. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority election scheme. In W. Fumy, editor,
EUROCRYPT '97pages 103-118. Springer-Verlag, 1997. LNCS no. 1233.
17. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In
H. Krawczyk, editorCRYPTO '98 pages 13-25. Springer-Verlag, 1998. LNCS no. 1462.
18. M. Cross. Public domain. The Guardian: Guardian Unlimited Online 10 June 2004. Available at
http://www.guardian.co.uk/online/insideit/story/0,13270,1234942,00.html.
19. J. Fowler. Switzerland tests virtual democracy in national referendiechnology Review26 September 2004. AP Newswire.
Available at http://www.technologyreview.com/articles/04/09042604.asp.
20. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale elections. In J. Seberry and Y. Zheng, editors,
ASIACRYPT '92pages 244-251. Springer-Verlag, 1992. LNCS no. 718.
21. J. Furukawa. Efficient, verifiable shuffle decryption and its requirement of unlinkability. In Bao et al., K004 pages 319-332.
Springer-Verlag, 2004. LNCS no. 2947.
22. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In J. Kilian, eGRY¥PTO '01volume 2139 oL ecture Notes
in Computer Scienceages 368—-387. Springer-Verlag, 2001.
23. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logatERfasTransactions on Information
Theory, 31:469-472, 1985.
24. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. The (in)security of distributed key generation in dlog-based cryptosystems. In
J. Stern, editoEUROCRYPT '99pages 295-310. Springer-Verlag, 1999. LNCS no. 1592.
25. M. Hirtand K. Sako. Efficient receipt-free voting based on homomorphic encryption. In B. Preneel, EIRQCRYPT '00pages
539-556, 2000. LNCS no. 1807.
26. M. Jakobssonand A. Juels. Mix and match: Secure function evaluation via ciphertexts. In T. OkamotoAddéncesin Cryptology
- Asiacrypt '0Q pages 162—-177. Springer-Verlag, 2000. LNCS No. 1976.
27. M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic voting by randomized partial checking. In D. Boneh,
editor, USENIX '02 pages 339-353, 2002.
28. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In U. MaureEER@CRYPT

'96, pages 143-154. Springer-Verlag, 1996. LNCS no. 1070.

14

29. A Kiayias and M. Yung. Self-tallying elections and perfect ballot secrecy. In D. Naccache and P. Paillier, &KiGr§2, pages
141-158 Springer-Verlag, 2000. LNCS no. 2274.

30. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange. In M. Yur@R&dbO '02
pages 385-400, 2002. LNCS no. 2442.

31. E. Magkos, M. Burmester, and V. Chrissikopoulos. Receipt-freeness in large-scale elections without untappable channels. In
B. Schmidet al, editor,First IFIP Conference on E-Commerce, E-Business, E-Government ([gif)es 683-694, 2001.

32. M. Michels and P. Horster. Some remarks on a receipt-free and universally verifiable mix-type voting scheme. In K. Kim and
T. Matsumoto, editorsASIACRYPT '96Springer-Verlag, 1996. LNCS no. 1163.

33. A. Neff. A verifiable secret shuffle and its applicationto e-voting. In P. Samarati, edi@iy) CCS '01 pages 116-125. ACM Press,
2001.

34. V. Niemi and A. Renvall. How to prevent buying of votes in computer elections. In J. Pieprzyk and R. Safavi-Naini, editors,
ASIACRYPT '94pages 164-170. Springer-Verlag, 1994. LNCS no. 917.

35. T. Okamoto. An electronic voting scheme. In N. Terashéanal., editor,IFIP World Congresspages 21-30, 1996.

36. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In B. Chrisgéarépeditor, Security Protocols
Workshop pages 25-35. Springer-Verlag, 1997. LNCS no. 1361.

37. S. Parker. Shaking voter apathy up with lhe Guardian11 Dec. 2001.

38. K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution to the implementation of a voting booth. In
L. Guillou and J.-J. Quisquater, editoBJROCRYPT '95pages 393—-403. Springer-Verlag, 1995. LNCS no. 921.

39. B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to electronic voting. In M. Wiener, editor,
CRYPTO '99pages 148-164. Springer-Verlag, 1999. LNCS no. 1666.

40. B. Schoenmakers, 2000. Personal communication.

41. Y. Tsiounis and M. Yung. On the security of EIGamal-based encryptionWdnkshop on Practice and Theory in Public Key
Cryptography (PKC '98) Springer, 1998.

A Definitions of Correctness and Verifiability

Correctness: We first consider the property of correctness. This property is in fact twofold: First, it stipulates
that an adversaryl cannot pre-empt, alter, or cancel the votes of honest, i.e., voters that acemotlled
Second, it stipulates that cannot cause voters to cast ballots in such a way as to achieve double voting, i.e., use
of one credential to vote multiple times, where more than one vote per credential is counted in the tally.

In our experiment characterizing correctness, we give the adversary powers she does not normally have.
Namely, apart from getting to select a $&bf voters she will control, we also allow her to choose the candidate-
slate sizen, and to choose what votes will be cast by voters she does not control. The latter voters will indeed
vote according to the adversary’s wish — but only for the purposes of our thought experiment defining correctness,
of course. If the adversary still cannot cause an incorrect tally to be computed (i.e., one not corresponding to the
votes cast), then the scheme has the correctness property even in the real-world scenario in which the adversary
has less power. The aim of the adversary is to cause mordtfdrallots to be counted in the final tally on behalf
of the controlled voters, or to alter or delete the vote of at least one honest voter. (This corresponds to the the
condition that: (1) The verification of the tally succeeds, and (2) That either a vote is“dropped” or “added”.) Our
definition assumes implicitly thatlly is computed correctly by the authoriy. (The next property we consider,
namely verifiability, addresses the possibility that this is not so.) In what follows, wg¥étdenote the multiset
corresponding to entries in the vect®t, and|Y'| denote the cardinality of séf.

ExperimenExpgd "y (k1, k2, ks, nc, ny)

{(ski, pk;) — register(SKRg, i, ko) } Y,
V — A({pki},, “choose controlled voter sef”
{Bi}igv — A(“choose votes for uncontrolled votens”
BB <= {vote(sk‘i, PKr,nc, B, k2)}i€V;
(X, P) — tally(SKr, BB, nc, {pk:}™,, ka);
BB < A(“cast ballots’, BB);
(X', P') — tally(SKr, BB, nc, {pki}iy, ks);
if verify(PK7, BB,n¢, X', P') = ‘1" and
({8} Z (X7) or [(X")| — [(X)| > |V']) then

15

% voters are registered

% A corrupts voters

% A chooses votes for honest voters
% honest voters cast ballots

% honest ballots are tallied

% A posts ballots td3 8

% all ballots are tallied

% does functiorverify accept?

% didA successfully tamper?

output ‘17;
else
output ‘0’;

We say thakS possesses the property of correctness if for all polynomial-time adversdrigss the case that

corr

SuccE&A(kla ko, k3, ’I’Lv) is negligible.

Verifiability: As explained above, an election system has the property of correctness if computatidly of
always yields a valid tabulation of ballots. Given the ability of an adversériowever, to corrupt some number
of authorities among™, we cannot be assured thatly is always computed correctly. The property of verifiability
is the ability for any player to check whether the tally has been correctly computed, that is, to detect any
misbehavior by7 in applying the functiortally.

A strong security definition for verifiability is appropriate given the high level of auditability required for
trustworthy elections. Such a definition considers an attackerapable of controllingall of the voters and
tallying authorities in7". This attacker seeks to construct a set of ballots3#h and a corresponding tallyX
and proofP of correct tabulation such that the proof is accepted/byfy, but the tally is in fact incorrect. By
an incorrect tally, we mean one in which all of the valid ballots of a particular voter (i.e., corresponding to a
particular credential) are discounted, or else where multiple votes are tallied that could have been generated by
the same voting credential. Our experiment characterizing verifiability is as follows.

ExperimentExpge 4 (k1, k2, ks, nc, ny)
{(ski, pk;) — register(SKRg, i, ko) } Y, % voters are registered
(BB, X, P) — A(SKT, {(ski, pki) };¥,, “forge election’); % A concocts full election
(X', P «—tally(SKr, BB,nc, {pki};¥,, ks); % tally is taken onBB

if X # X'’ % doesA's tally differ from correct35 tally?
andverify(PKr, BB, nc, X, P) = ‘1’ then % does functiorverify accept?
output ‘17;
else
output ‘0’;

We say thakS possesses the property of verifiability if for all positive integess and all adversariegl with
polynomial running time, the quantit$uccgs’ 4 (k1, k2, k3, nv) is negligible. A technical strengthening of this
definition and that for correctness is possible, and discussed in the next section, appendix B, of this paper.

Another aspect of verifiability that we do not formally define, but do mention here and incorporate into our
proposed protocol is that of verification against voter rolls. In particular, it may be desirable for any election
observer to check that credentials were assigned only to voters whose names are on a published roll. This is not
technically a requirement if we rule out corruption of play@&sbut may still be desirable for high assurance of
election integrity. Our definitions can be modified accordingly.

16

B Remark on strong verifiability

We set forth our definitions of correctness and verifiability in appendix A to meet the minimal requirements
for a fair election and to achieve some measure of conceptual simplicity. These definitions are adequate for
most election scenarios, but have a technical deficiency that may be of concern in some cases. In particular, our
definitions allow for the possibility that a voter controlled by casts a ballot corresponding to vaofe but that

the ballot gets counted as a vote fét SinceA can choose the vote cast by a controlled voter in any case, this
technical deficiency only means thdt can potentially cause the votes antrolled voters onlyto change in the

midst of the election process. It does not providevith control of a larger number of votes. Most importantly, we

note that this definitional weakness does not apply to our proposed protocol, which meets the stronger definition
we now set forth.

Nonetheless, one can envisage some (somewhat artificial) scenarios in which stronger guarantees may be
desirable. For examplel might have the aim of causing the victor in an election to win by the slimmest possible
margin. In this case, if4 controls a majority of7, then.4 might seek to decrypt all of the ballots cast in an
election and alter the votes of controlled voters so as to favor the losing candidate.

We discuss now how our definition of verifiability may be modified to discount the possibility of this type
of attack. (Analogous modifications may be made to the definition of correctness.) In particular, we can re-
quire that P be a proof that every tallied vote corresponds uniquely to a credential for which a valid bal-
lot has been cast. For this, we require a natural technical restrictiomoon Let (vote(-)) denote the set
of possible outputs for the randomized functieate on a particular input. We require that an output bal-
lot be wholly unambiguous with respect to both the vgteand the credentiadk. In other words, we require
(vote(sko, PKT,nc, Bo, k2)) N (vote(sk1, PKT,nc, b1, k2)) = ¢ if Bo # (1 or sko # ski.

To achieve our strengthened definition of verifiability, we alter experink&apgs 4 (k1, k2, k3, ny) such that
if the following conditions 1 and 2 are met, then the output of the experiment is '1'. Otherwise itis '0’.

1. verify(PKr,BB,n¢c, X,P)="1

2. For every injective mapping : (X) — Z,,,, one of two conditions holds:
(@) 3B : B € BB, B € (vote(sk;, PKr,nc, 3, ke)),Vjf(j) # i
(b) 36 € X : f(B) =1i,YB € BB, B ¢ (vote(sk;, PKr,nc, 3, k2))

Conditions 2(a) and 2(b) here respectively specify that the adversary has successfully defeated the verifiability
of the system either by causing all of the valid ballots associated with a particular credential not to be counted or
else enabling multiple votes to be tallied for a single credential.

Given use of a verifiable mix network, our proposed protocol meets this stronger security definition for
verifiability.

C The Faking of Voting Keys

We provide some more detail here on the process whereby a voter fakes a voting credential in our proposed
protocol. Upon receiving a claimed credentig| the adversary would like to verify if it is correct. Let us consider

the possibility of doing so under each of our three possible assumptions on the registration phase discussed in
the body of the paper; in doing so, recall that we always assume that the adversary can corrupt only a minority of
servers in7, and so, will not be able to decrypt any of the semantically secure encryptions of credentials.

1. Assume that there is a mechanism forcing erasure of voter information no longer needed at the end of the
registration phase, and that only a minority of server®imay be corrupted. At the end of the registration
process, each voter will erase information specifying what part of the transcript leading to the credgntial
he got from what registration server. Without proofs or transcripts from individual servef, @f is not
possible for the adversary to verify the correctnessg,of

17

2. Assume that the adversary cannot corrapy server inR. As mentioned, the registration servers may if
desired use designated verifier proofs to prove to each voter that the share they send is authentic (i.e., will
be part of the recorded transcrift). While the voter will be convinced of these proofs, the adversary will
not; in fact, he cannot distinguish between real such proofs and proofs simulated bhereforeV; can
convincingly release fulsimulatedranscripts from the registration phase, corresponding to a credéntial

3. Assuming that the user knows what (minority of) serversiirare corrupted, but is not necessarily able
to erase data, he can present the adversary with registration transcripts that are consistent with the view of
the servers he knows to be corrupted, but inconsistent (in terms of the real shayewith the view of
the servers that are not. The latter transcripts will be accompanied by simulated designated verifier proofs.
Since the adversary may only corrupt a minority of server®inand a majority is required to compute the
credentialo;, there will be at least one share @f thatV; can change to obtain a fake credential=# o;,
without the detection of the adversary.

D Proving Coercion-Freeness

In this section, we provide a detailed outline for proof of the property of coercion-freeness in our proposed
election protocol. (We do not consider correctness or verifiability here, as these are more standard properties, and
the associated proofs are more straightforward.) For the purposes of this proof, we assume the use of the M-El
Gamal cryptosystem over a preselected gréupf orderg. The coercion-freeness of our scheme is dependent

on the Decision-Diffie Hellman (DDH) assumption ¢n Briefly stated, this assumption states that no algorithm

with running-time polynomial in the security parameters can distinguish between the two distributiohs

and D’ with non-negligible probability: HereD is the distribution of tuples of the forny:, g1, y2, g2), where

91,92 €U G, y1 = g7, andyy = g3 for z €y Z,; i.e., the pair(y;, g1) and(yz, g2) are related by a common
exponentD’ is the distribution of random tuples, i.e., tuples of the fofm, g1, y2, g2), wherey:, g1, y2, g2 €Ev

G. For detailed treatment of this assumption (expressed in an alternative, equivalent form), see, e.g., [7].

D.1 Assumptions

As explained above, we simplify our analysis by assuming ideal constructions for a number of components in our
election protocol. Our aim in doing so is twofold: (1) Our protocol is flexible enough to accommodate a range
of cryptographic building blocks from the literature and (2) We wish to retain a focus on the conceptual and
definition elements of our paper, and not on protocol details. Hence, we assume the availability of oracles for the
four following cryptographic operations in our protocol: mixing, plaintext equivalence testing (PET), threshold
ciphertext decryption, and calls to the one-way or hash function required for NIZK proofs. As in the main body
of the paper, denote these oracles respectivelyfly, PET, DEC andOW . Although the functioning of these
oracles should be clear from our protocol description, we present it again here:

— The oracleM N performs exactly the same function as a mix network. It accepts as input an ordered list
E = {Ey, E,, ..., E4} of ciphertexts under the public kel K7 of the tallying authorities. Its output o
is an ordered seb’ = {E/ |, E]), ..., E} ;) } for a secret, random permutationwhereF, ;) represents
a re-encryption of ciphertext;.

— The oraclePET takes as input a pair of ciphertext®&, E’) underPK 7. It outputs a ‘1’ if E and E’ have
identical corresponding plaintexts, and outputs ‘0’ otherwise.

— The oracleD EC takes as input a cipherteft underP K. It outputs the corresponding plaintext.

— The oracleO WV takes as input a query value {0, 1}*, and outputs a random valy®, 1}*+, wherek, is a
security parameter (that may depend/ank, andks). The output ofOW is consistent, in the sense that a
given input value always yields the same output value. This oracle may be viewed as the ideal embodiment
of a cryptographic hash function.

18

Each of these oracles accepts publicly viewable input from all participating authorities (talliers). Each tal-
lier may be thought of as having a publicly readable tape to which it may write input values for a given oracle;
each tape contains a write portion for each time-step of the protocol, which we assume to be synchronous. At
the end of a given timestep, an oracle produces output according to the following procedure. If a majority of
talliers have furnished identical non-null valugson their tapes, then the oracle processes inpand yields
the corresponding output. If there is no non-null majority input, then the oracle simply outputs the special sym-
bol L. The requirement for majority input ensures that the protocol execution is determined by honest players,
i.e., effectively reducesl to an honest-but-curious adversary once the ballot-posting phase for the election is
complete.

We additionally assume for simplicity that key setup and registration are performed by a trusted entity. Our
proofs may be extended to accommodate more general assumptions in which these two processes are performed
in a distributed manner.

D.2 Proof overview

Recall that our definition of coercion-freeness revolves around a game played between an addensara
voter targeted for coercion. The aim dfis to guess which of the following two behaviors the voter has adopted
during the execution of an election systétf: (1) The voter has divulged valid voting credentials and abstained
from voting or (2) The voter has divulged fake credentials and cast a ballot. In order to demonstrdi§ that
possesses coercion-freeness, we must showAltan guess successfully with probability only negligibly better
than a weaker poly-time adversa#dy interacting with an ideal election system. This adversdtys passive, and

its only input is the final tallyX’ of votes cast by honest voters in the completed election pluthe number of
ballots eliminated for invalid associated credentials.

Our proof strategy is to construct a polynomial-time algoritifirthat takes a set of ballotd” of honest
voters and simulates the election systéfin the experiment-resist. If the simulation is indistinguishable to
A from use of the true functional componentsksf, and.4 cannot cause the simulation to deviate from correct
execution, then we see thdtlearns nothing more than the correct election taXlyand the number of bad ballots
I'. This means in turn thatl is no more powerful than the ideal adversaty characterized in our experiment
c-resist-ideal. ThusES is coercion-free.

The inability of the adversary to cause deviation in the experiment from correct execution hinges on our oracle
definitions, which require majority agreement on input values. Given this, we show that the simulation produced
by S is indistinguishable by4 from a real experimental execution efresist under the DDH assumption on
G. Our proof relies on the semantic security of M-El Gamal (see appendix E). In particular, we make use of
the following, useful fact implied by the DDH assumption: A poly-time adversary that selects a plaintext
cannot distinguish between the distribution of M-El Gamal ciphertext30A;, A2, B) and the distribution
of triplets of the form(a1, as, 3), where €y G and oy, o are distributed exactly agA;, As), with non-
negligible probability (in the security parameters for G). In consequence of this observation, it is possiBle for
to simulate the election process by substitutagdom ciphertextsi.e., random triplets of group elements, for
the real ciphertexts that would be processed in a true execution of the expermesist. In particular,S can
simulate the ballots of voters not controled Bywith a list of random ciphertexts. Additionall\§ can simulate
the oracleM N by setting its simulated output to a list of random ciphertexts. Under the DDH assumption,
cannot distinguish between the random ciphertexts furnishefl byd the ciphertexts that would be processed in
a true execution oES.

D.3 The simulation

We now outline the steps of the simulation@f-esist executed byS. Throughout the simulation, according to
the usual technique in the literatu® maintains state for the simulated orac}@/” so as to ensure consistency of

outputvalues. LetV € D, . represent a set of ballots input into the simulation as representing the posting of

19

honest voters. At the very beginning the simulator receives a quadtyple-, h1, he) which is either a Diffie-
Hellman quadruple or a random one, according to some hiddeh Mbre formally,d = 1 if the quadruple is a
DH one and? = 0 otherwise. The goal of the simulator is to guess which situation is dealing with.

1. Setup: S chooses uniformly and at random two elementsz, €y Z, and setsh = g{'¢5?> mod p. S
publishes the public keyg, g2,) and also a randomized candidate sléte= {c;}.<, such that;; = g7’
forr; ey Z,. (For technical reasons in our proof, we require that candidate identifiers here be random, rather
than comprising the sdt1, 2, ..., nc}.)

2. Registration: S simulates the registrak, generating a set of credentigls; = g;"} for s; €y Z,. For the
encrypted credential lisk(, the simulatoS publishes a list oy ciphertexts (using a public key generated
as above).

3. Adversarial corruption: The adversaryd selects a seV’ of n4 voters to corrupt, as well as a votgifor
coercion and a target vote If any of these selections are invalid,i.e JifA nqorj ¢ V-V org & C ¢,
then the simulation is terminated.

4. Coin flip: Acoinb €y {0, 1} is flipped.

5. Credential release:S gives.A the set of credentialso; };cy as well as a credential for the targeted voter
j. If b= 1, thenS giveso = o;; otherwises is a random string.

6. Honest voter simulation: For each ballot element ifil”, the simulator posts a ballot consisting of two
ciphertexts(«; 1, 042,17 Bin), (a2, a;g, Bi2). S also furnishes the associated NIZK proofs of the form spec-
ified above. Since the associated challenges value comes @t and may therefore be predetermined
by S, the NIZK proof may be simulated using standard technigues.Agbe the list of these ballots. Let
A* be the associated set of plaintext ballot choice8lirfor which the associated credential is correct, i.e.,
excluding\ elements.

The simulator creates the ciphertexts above as follows. For each ballot elem&ntirthooses two elements
T, k; at random Ian and Setiam = hgl, 01271 = hgz, 5@1 = hgirlhgiIQCj), (012'72 = hlfz, 01272 = hgi,ﬁig =
hllfim hgimai)

7. Adversarial ballot posting: The adversaryd posts a set of ballot&; and associated NIZK proofs.

8. Decryption of ballots posted by the adversaryS checks the NIZK proofs inBy. Let B, be the list of
ballots with correct proofs. For each ballot; and each credential if; } ;v [0, the simulator decrypts
using his own private key (see above).

9. Tallying simulation: S simulates the behavior of honest tallying authorities. Since these are a majority, any
deviating behavior by tallying authorities in the control gf may be ignored. This part of the simulation
proceeds as follows:

(a) Proof checking: Let E denote the combined list of input ballots, and By. S simulates the behavior
of honest tallying authorities in rejecting all ballots with invalid associated NIZK proofs. Eete the
resulting ballot list.

(b) Eliminating duplicates: Since no mixing has yet occurred,may simulate the elimination of duplicate
ballots using its own decryption key. Ldfs be the resulting ballot list.

(c) Mixing: S simulates the oracl®/ N as applied taE, by outputting an equal-length lisE5 of random
ciphertext triples. LikewiseS simulates the mixing ofLy by outputting an equal-lengthed lidi; of
random ciphertexts.

(d) Checking credentials: S simulates the process of credential checking. In a true protocol execution,
this would involve sequential comparison usifit27” between each ballot i3 (more precisely, the
credential ciphertext therein) and the ciphertextdin Either a match is found, in which case a ballot
is deemed to be based on a valid credential, or else th&lig$ exhausted, and the ballot is rejected.

S simulates the output oP ET for this phase of the protocol using its own decryption key as before.
Let E, be the resulting ballot list.
(e) Decryption: This is done straightforwardly.

20

Now if the adversary outputs a guess tithe simulator returng’ as his own guess for the decisional Diffie-
Hellman challenge.

Observe that if the simulator’s input is a Diffie-Hellman triplet (thatlis= 1) then the simulation above is
perfectly indistinguishable from the experimdﬂkpﬁgféffﬁ.

As a matter of fact, assuming = ¢, g2 = g% h1 = ¢°, ha = g% for someg, any ciphertext of the form
(g = hi', ol y = by, B = KT Ry m) is actually a valid one. Indeeld’ = g% = g7"", hli = g = g}’
andhgiml hgimgm _ gbmmlgabmmgm _ 91177"2'%191277"2'12,,% — hbrim,.

This means that
Pr[§ = 1|d = 1] = Pr[Expg {3 (V) = 1] = Succgg ™ (V)
where we denoted with’ the view of the adversary.

Onthe other hand if the simulator’s input is not a Diffie-Hellman triplet (that is 0) then the view produced
by the simulation above does not give any information (in a strong information theoretic sense) about the votes
posted by the honest parties. This is because, assumirg g, g» = g%, hi = g, ho = ¢¢ for somec €y Z,,
one has that a ciphertext of the forfw; ; = 2", o | = hy', 31 = hy"" hy'**m) actually “masks” the message

. . . o . . . o
m perfectly. Indeedh’ = g*"i = gi’“, hy = g% = g5 " andh} hyi 2 m = gbritigeritam = gi’“rlgg "i%2m =

)) /e ol
g?nrlggmrggg Ti®2 0, hb“gg Ti%2, .

This means that, in this case, the probability that the simulator outputs one is equal to the probability that the
adversary outputs one in experimdigp® " esistideal
More formally

Pr[S = 1]d = 0] = Pr[Expgd {51! (V) = 1] = Succge el ()
This means that
Advdsdh =Pr[S=1ld=1]-Pr[S=1]d=0] = AdvcE-SrsZ’ist

under the Decisional Dlffie-Hellman Assumption this quantity is negligible.

E Some details on primitives

El Gamal: As explained in the body of the paper, El Gamal [23] represents a natural choice of cryptosystem
for our purposes, and is our focus in this paper. Recall that we;ldenote the algebraic group over which
we employ El Gamal, and denote the group order. For semantic security, we require that the Decision Diffie-
Hellman assumption hold ové&r[7, 41]. A public/private key pair in EIl Gamal takes the fofg(= ¢*),), where
x €y Z4. We letey here and elsewhere denote uniform, random selection from a set. The privatenay be
distributed among the players in7 using (¢, ny)-Shamir secret sharin@] over GFq]|, fort > np /2. This
private key may be generated by a trusted third party or via a computationally secure simulation of this process
[24]. Each player then holds a public/private key p&it(= ¢*), x;), wherez; is a point on the polynomial
used for the secret sharing. A ciphertext in El Gamal on messageg takes the form(a, 3) = (my", ¢g") for
r €y Z4. FOr succinctness of notation in the body of the paper, we sometimés, [et] denote a ciphertext on
messagen under public keyy. To re-encrypt a ciphertexty, (), it suffices to multiply it pairwise by a ciphertext
onm = 1, i.e., to compute a new ciphertefdt’, ') = (y" a, g") for ' €y Z,.

To decrypt a ciphertexta, 3), the plaintextm = «/3* is computed. To achieve a threshold decryption of
ciphertext(«, 3), each active player publishes a decryption sharg = 5. The values®, and thusn, may
be computed using standard LaGrange interpolation. Playeay prove the correctness of its share using an
NIZK proof of the form PK{s : 8; = $° Au; = g°} — essentially two Schnorr identification proof8][with
conjunction achieved using techniques described in, e.g., [15]. We omit many details in this description regarding
the scheduling of these operations and the use of commitments to avoid adversarial bias. (The reader is referred
to, e.g., [12, 24] for some discussion of these issues in relation to key generation.)

We note that another possible choice of cryptosystem for our voting scheme is that of Paillier [?].

21

Modified EI Gamal: As mentioned before our modified version of the EI Gamal cryptosystem can be seen
as a simplified version of the Cramer-Shoup [17], method. It is rather straightforward to prove that the scheme
is actually semantically secure under the decisional Diffie-Hellman assumption. The argument closely follows
the one presented in [17]. Here we provided a sketched version of such an argument. Imagine there exists a
probabilistic polynomial time algorithmd which can break the semantic security of the proposed scheme. Then
our goal is to describe a different algorithth(a simulator) which used to break the decisional DH problem.
So assumeé receives on input a quadruples, go, k1, he) and has to determine if this is a DDH quadruple or
not. S constructs the public key (for the M-El Gamal scheme) as follows. It chossesdz, at random and
setsh = g7'g"2 the rest is unchanged.

What is different is the decryption procedure because on ifgut3, C') = (g7, g5, h"m), S retrieves the
messagen asm = C - (A% B%2)~1

Note that in this way the simulator can always decrypt (and the distribution of the key is perfectly indistin-
guishable from real).

Next when the adversary comes up with the two messaggsn, he wants to be challenged ¢hproceeds
as follows. It flips a random (private) kit and encryptsn,, as follows

(R 5™ m, B, h)

(wherek is a random value)

Note that if the given quadruple is a DH one the ciphertext has the right distribution. This is bekause
gt andhk = g5 for somek’

andh{'h3?)* = h¥' (for the same:’)

If, on the other hand, the given quadruple is not a DH one then it is easy to check that ¢ans no
information at all about the encrypted message (this is because this time to decrypt adv has to know the secret
exponents:; andzs which remains information theoretically hidden by h).

Mix networks: As explained above, there are many good choices of mix networks for our scheme. The examples
with the strongest security properties are the constructions of Furukawa and Sako [22] and Neff [33]. Both of
these employ El Gamal as the underlying cryptosystem, i.e., an input ciphdffext (a,3) = (my*, g¥)

for some public keyy and published generata@r. Security in these constructions is reducible to the Decision
Diffie-Hellman assumption and a random-oracle assumption on a hash function. We also note that the security
of these and most other mix network constructions relies on a second mpat{ P, P», ..., Py}, whereP,

is an NIZK proof of knowledge of the plaintext faf;. This serves the purpose of rendering the cryptosystem
chosen-ciphertext-attack secure while still permitting re-encryption.

