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Abstract. Authenticated key exchange protocols tend to be either to-
ken based or password based. Token based schemes are often based on
expensive (and irreplaceable) smart-card tokens, while password-only
schemes require that a unique password is shared between every pair
of correspondents. The magnetic strip swipe card and associated PIN
number is a familiar and convenient format that motivates a combined
“two-factor” approach. Finally we suggest an extension of the scheme for
use in a client-server scenario.

Keywords: Authenticated key exchange, pairing-based cryptosystems.

1 Introduction

Consider a small group of people who wish to communicate in private. It is
inconvenient for them all to meet, so their point of commonality is access to a
Trusted Authority (TA). These people expect to be able to trust one another –
why else would they want to communicate in secret?

The trusted authority issues to each member of the group an individual secret
number associated with their identity. Each member then “splits” this number
into a small user-selected PIN number, and a larger number which is stored in
the hardware token. The individual secret can be reconstructed from these two
components whenever it is required in the key-exchange protocol. The hard-
ware token is in some convenient form-factor, but can easily be copied (which is
convenient as it allows backup copies to be created).

To communicate, each inserts their own token into a computer, types in their
memorised PIN number and the identity of their correspondent. The individual
secret is reconstructed, an ephemeral session key is calculated and the pair com-
municate in privacy.

Note that each participants PIN is a secret unto themselves alone. This there-
fore differs from schemes like SPEKE [11], where a different low entropy secret
must be shared between every pair of users, which could lead to a multiplicity
of PINs to be remembered.



Such a scheme as we propose is clearly open to the following active “insider”
attack. Bob steals or copies Alice’s token, takes it home and carries out multiple
off-line key exchange calculations trying every possible number for Alice’s PIN.
Eventually he will find it.

The scheme as proposed is also vulnerable to identity theft. If Trent should
rob Bob’s token and rubber-hose his password, then Trent can become Bob at
will, and can launch “insider” attacks. While we can assume that a token can
be secretly copied, it can also be assumed that PIN theft cannot be carried out
without the knowledge of the legitimate PIN-holder. However the scheme should
be able to withstand an outsider stealing or copying any number of tokens and/or
any number of passwords as long as none of the “stolen” passwords is associated
with any of the stolen tokens. This seems to be the best that can be expected
from such a scheme.

We recognise that, in common with schemes like SPEKE, ours is vulnerable to
an entity Trent who steals or copies a token, and is allowed to attempt multiple
on-line guesses of the associated PIN while attempting to form a connection
with legitimate users. It is assumed that suitable measures would be put in
place to detect multiple failed connections from a purported individual, and to
subsequently exclude him or her. We recognise however that in this context such
guessing attacks could be “spread around” and tried against many legitimate
individuals. For this reason the PIN number might be say 8 digits in length,
rather than the more common 4-digits.

Finally we would like our scheme to have the property of “forward secrecy”. If
at some time time in the future all long-term secrets are revealed, including those
of the trusted authority, previously recorded ciphertext should remain inviolable.

2 The proposed scheme

The key exchange algorithm reconstructs the individual secret from the large
number stored on the hardware token and the PIN. It is important that a correct
individual secret cannot be detected from its format – it is just a number, and
any number is possible. Essentially the relationship is linear and of the form
D = N + PIN , where D is the individual secret, and N is the number on the
token.

In our proposed scheme the trusted authority knows a master secret number
s. User identities are mapped using a suitable hash function to points on a
particular elliptic curve. The user Alice has her identity hashed and mapped to
a point A of large prime order on the curve, and chooses a desired PIN number
α. After authenticating herself to the trusted authority she receives A and sA,
calculates αA, subtracts the two, stores A and (s−α)A, and memorises α. As in a
simple secret sharing scheme these two halves need to be reunited to reconstruct
the correct value sA. Clearly Alice cannot determine s without solving a difficult
discrete logarithm problem. We have the simple linear relationship sA = (s −
α)A + αA.
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Note that if an increment is added to α, the effect can be offset by incre-
menting s by the same amount. So for example if α is incremented by δ, the
relationship (s + δ)A = (s − α)A + (α + δ)A holds. This implies that if two or
more correspondents increment their PINs by the same amount, they can still
complete the key agreement process, although this time the key will be a func-
tion of (s + δ). This in turn implies that an opponent who has stolen multiple
tokens cannot determine individual PINs – he cannot distinguish the effect of
(α+ δ) from α. So he can determine the difference between PINs, but not actual
PINs, which is useless if he should attempt to communicate with a legitimate
party.

First let us consider the implementation of such a protocol using standard
public key cryptographic constructions. One common approach is for a trusted
centre to digitally “sign” our identity [9], [16]. This secret signature (our individ-
ual secret) is subsequently used in the key exchange. Unless each correspondent’s
signature is valid, a mutual session key cannot be negotiated. The trusted au-
thorities public key is cleverly integrated into the key exchange to ensure that
this is true.

Now if every participant is to have their own PIN number, then it would
appear that this PIN must also be generated by the signing process. A simple
approach would be to remove part of the signature for use as a PIN. Unless the
removed part were “put back in” the exchange could not take place successfully.
However this will not satisfy our security requirement. An attacker who captures
a token can exhaustively search through all possible PINs until the complete
signature can be verified by the TA’s public key.

3 The Tate pairing

The Weil and Tate pairings are operations on pairs of points on an elliptic
curve. See [14] for some early applications, specifically in breaking elliptic curve
based cryptosystems based on certain weak curves, by reducing the ECDLP
problem to a DLP problem over an extension of the base field. More recently
these pairings have been found to have applications for “good”. For example
Joux’s clever tripartite Diffie-Hellman key exchange [12], Boneh and Franklin’s
ID-based encryption scheme [4], and the BLS short signature scheme [5].

The Tate pairing [8] is written as er(P, Q), where P and Q are both points
on a curve defined over Fpk , and P is of order r. Note however that there is
no requirement for Q to be of order r [17]. The Tate pairing evaluates as an
element of order r in the field Fpk . In a normal EC setting it is quite unexciting;
if P and Q are linearly dependent, that is if the curve group structure is cyclic,
it evaluates as 1. The trick is to use points on P and Q which lie in different
subgroups, so that P 6= sQ for any value of s. This can only happen on a curve
with a non-cyclic group structure. This behaviour is possible, and convenient,
if r | pk − 1 and k is small. But note that the elliptic curve discrete logarithm
problem on a curve with a small k value is readily reduced to a discrete logarithm
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problem in the field Fpk , and so parameter sizes must be adjusted upwards to
take account of this.

These rather restrictive conditions are met by certain non-supersingular
curves. In practise it is not difficult to find non-supersingular curves with mod-
erate values of k, for example the MNT curves described in [15], or using the
methods described in [1], [3], [6], or [19]. If k > 1 (which we will assume here)
a convenient way to make sure that P and Q are in seperate subgroups is to
ensure that P ’s coordinates are in Fp while Q’s coordinates are in Fpk . In fact as
pointed out in [2] when k is even Q can be conveniently placed on the “twisted”
curve over Fpk/2 . This also speeds up the calculation [17].

The Tate pairing has the following useful properties.

1. er(aP, bQ) = er(P,Q)ab for all a, b ∈ Fr (Bilinearity)
2. er(P, P ) = 1

A modified pairing works well with supersingular curves, for which k is always
guaranteed to be small, and this is the case we will look at first.

Consider the following supersingular elliptic curve over the field Fp, where
p ≡ 3 mod 4 is a 512-bit prime:

E(Fp) : y2 = x3 + x

The order of this supersingular curve is q+1, and k = 2 as r | p+1 | p2−1. The
discrete logarithm problem on this curve can be reduced to a discrete logarithm
problem in the field Fp2 , but this is still considered intractable for a prime of the
specified size.

On this supersingular curve, using the terminology of Verheul [20], we can
define a distortion map φ : E(Fp) → E(Fp2) which maps a point (x, y) to the
point (−x, iy) in a different subgroup, where i2 = −1. Note that the condition
p ≡ 3 mod 4 implies that i lies not in Fp, but rather in the quadratic extension
field, so the transformed point lies on the same curve defined over Fp2 .

Now consider the distorted Tate pairing :

êr(P, Q) = er(P, φ(Q)) = µ

where P (of order r) and Q are points on the curve, µ ∈ Fp2 is of order r,
and er(P,Q) is the Tate pairing [8]. Under these circumstances the distorted
Tate pairing will produce a non-trivial result (êr(P, Q) 6= 1). This pairing has
the following properies:

1. êr(aP, bQ) = êr(P,Q)ab for all a, b ∈ Fr (Bilinearity)
2. êr(P, P ) 6= 1
3. êr(P, Q) = êr(Q,P )
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4 The Key Exchange Protocol

The trusted authority generates a 512-bit prime p ≡ 3 mod 4 such that p + 1 =
c.r, where r is a 160-bit prime, and chooses a suitable hash function H : {0, 1}∗ →
E(Fp) which hashes identity strings to a point on the supersingular curve. It
publishes the public parameters {p, r,H}. The trusted authority then generates
its own secret 160-bit number s ∈ Fr.

For individuals to register with the trusted authority they must prove their
identity ID. In return they are supplied with I and their individual secret sI
where I = c.H(ID), a point of order r on the curve. They store on their hardware
token I and (s− ρ)I, where ρ is their personal choice of PIN number.

The protocol is illustrated in Table 1. To a passive eavesdropper this appears
very like an instance of the Diffie-Hellman key exchange in Fp2 . It would also
appear that anyone not knowing, and not able to construct from available in-
formation, êr(A,B)s or equivalently sA or sB, is not in a position to launch a
classical man-in-the-middle attack against it. Another way of looking at it is as
a SPEKE-like key exchange, where the group generator is only known to the
two legitimate participants. This is an established technique in the process of
standardisation [10], and no active attacks are known against it.

Alice
Generates random a < r

IDa →
B = H(IDb)

Pa = êr((s− α)A + αA, B)a

Pa →
If Pb ≤ 1 or Pb

r 6= 1 Abort
Key = Pb

a = êr(A, B)sab

Bob
Generates random b < r

← IDb

A = H(IDa)
Pb = êr((s− β)B + βB, A)b

← Pb

If Pa ≤ 1 or Pa
r 6= 1 Abort

Key = Pa
b = êr(B,A)sab

Observe that the fact that Alice can easily obtain Bob’s password if she has a
copy of his token can be blamed on the relationship êr(sA,B) = êr(A, sB) 6= 1,
which is clearly required by the protocol. As pointed out before it is now a simple
matter to search among δ until êr(sA,B) = êr((s− β)B + δB, A), in which case
δ = β. The underlying reason that this is possible is due to the fact that the
Decisional Diffie-Hellman (DDH) problem is easy in this setting [4], and hence
we can distinguish the action of a “right” password guess from a wrong one.

The fact that êr(sA,B) 6= 1 depends directly on the property êr(P, P ) 6= 1.
Since A and B are members of the same subgroup, we know that A = uP and
B = vP for some u, v and P . Therefore êr(sA,B) = êr(suP, vP ) = êr(P, P )suv.

4.1 Security Analysis

First we demonstrate that anyone who can determine the key from publicly
transmitted information is in a position to solve an instance of the Bilinear Diffie-
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Hellman problem (BDH) [4], which is believed to be hard. The BDH problem
can be described succintly thus: Given {P, sP, aP, bP}, determine êr(P, P )sab.

Assume an Oracle exists which when input the exchanged public data
{A,B, Pa = êr(sA, aB), Pb = êr(bA, sB)} outputs the key êr(A,B)sab.

Now we will demonstrate how this oracle can be used to solve
an instance of the BDH problem. Generate a random u and present
to the Oracle {P, uP, êr(sP, u(aP )), êr(bP, u(sP ))} which is the same
as {P, uP, êr(sP, a(uP )), êr(bP, s(uP ))}. The oracle will respond with
êr(P, uP )sab = êr(P, P )sabu. We recover êr(P, P )sab by raising the output of
the Oracle to the power of 1/u.

Note that the inverse is not necessarily true: It cannot be concluded that a
passive eavesdropper could use a BDH oracle to discover the key. This is because,
although A and B are from the same subgroup, and therefore A = xB for some
value of x, this x value will not be known due to the action of the hash function.

However a third group member who can solve BDH, can easily break the
authentication of the scheme, as pointed out by Michael Cheng [7]. Imagine a
third member X of the group has X and sX. Now A = wX for some w and
B = zX for some z, so if X can solve BDH with input {X, sX, wX, zX} then
he can find êr(X, X)swz = êr(wX, zX)s = êr(sA,B).

The inverse is also true – an oracle that can determine êr(sA,B) from
{X, sX,A, B} can be used to solve an instance of BDH: Supply as input
{P, sP, aP, bP} amd the output will be êr(P, P )sab.

The sixth step of the protocol checks the order of the value received from the
other party. This is to avoid a small subgroup confinement attack, whereby an
active attacker substitutes a value of small order. Such a value when exponenti-
ated remains in the same small subgroup, and can be found by a short exhaustive
search through all the possible subgroup members. This is a well-known attack
on Diffie-Hellman-like protocols, and the standard response is to check, as shown
above, that the received value is indeed in the subgroup of order r. However the
extra work involved can be avoided by using the technique of Lim-Lee [13]. The
idea is simple – ensure that there are no small subgroups, and if there are (for
example there may be an unavoidable subgroup of order 2), then explicitly check
for such cases. This places an extra constraint on parameter generation, however
in practise this is not a problem. It is however necessary that the idea, origi-
nally described in the Fp setting be adapted for the field Fp2 which has p2 − 1
elements. Briefly, ensure by design that the modulus p is of the form such that
p + 1 = 2rq, where q is also prime. Then process a received value as follows:
Raise it to the power of p− 1 using the frobenius action – this requires a single
modular division [17] – and then square it. The resulting value will either be 1,
in which case the protocol should be aborted, or it will be a point of large order,
whose order divides r.q.

Finally we maintain that this protocol has the property of forward secrecy.
The ephemeral values a and b are discarded after use, and without them the
agreed key cannot be determined in the future by anyone.
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5 A Client-Server Protocol

In a client-server context multiple clients are assumed to wish to access an in-
dividual server. In this context the security requirements are rather different.
Although the server may trust each client individually, it is not at all clear that
clients may trust one-another. Therefore in this context it is important that the
“insider” attacks cannot succeed, that is if Alice obtains Bob’s token, she cannot
determine his password.

The idea is to eliminate this attack by exploiting the fact that clients only
need to communicate with servers, not with one-another. This is acheived by
putting all the clients together in one sub-group, with the server in another.
We want a setting where there is no bilinear pairing between points in the
same subgroup that yields a non-trivial result. This implies a setting where the
conventional Tate pairing satisfies er(P, P ) = 1 and where no distortion map
exists. This will be the case for non-supersingular curves where k > 1. See [8]
section 2.4.

The first step then is to find a non-supersingular curve with low, even k value
(say k = 2), and for which no distortion map exists. A suitable example k = 2
curve is given in [17], and it is our experience that it is not difficult to find such
curves, using for example the “folklore” method described in [3]. Such curves do
not support a distortion map – see theorem 4.1 of [20].

Assume for simplicity that the server takes on itself the role of Trusted Au-
thority. It generates a k = 2 non-supersingular curve over Fp, where p is 512-bits,
such that the curve order is c.r and is divisible by the 160-bit prime r. It also
generates its own secret s ∈ Fr. It is assumed that the server does not require
a password. If the server’s identity is IDs, then this is mapped to a point S on
the same curve, but this time over the extension field Fp2 , using a second hash
function H2 : {0, 1}∗ → E(Fp2), such that S = H2(IDs). So S is a point on the
curve E(Fp2). The server issues the curve parameters and the H2 hash function.

Alice registers with the server exactly as before and is issued with A and an
individual secret of the form sA, where A = c.H(IDa) is a point of order r on
the base elliptic curve E(Fp). As before she partitions her individual secret up
between the hardware token, and a short memorised PIN. Note that here we use
the unmodified Tate pairing.

To log-in, Alice executes the following protocol.

Alice
Generates random a < r

IDa →
S = H2(IDs)

Pa = er((s− α)A + αA, S)a

Pa →
If Ps ≤ 1 or Ps

r 6= 1 Abort
Key = Ps

a = er(A,S)sax

Server
Generates random x < r

← IDs

A = c.H(IDa)
Ps = er(A, sS)x

← Ps

If Pa ≤ 1 or Pa
r 6= 1 Abort

Key = Pa
x = er(A,S)sax
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In this case the insider attack does not work, as for example between Alice
and Bob er(A, B) = 1. Note that there is a co-DDH problem which is easy to
solve in this setting, but the standard DDH problem remains hard.

5.1 Security Analysis

Assume now that an oracle exists which when input the exchanged public data
{A,S, Pa = er(sA, aS), Pb = er(bA, sS)} outputs the agreed key. Then such an
oracle can be used to solve an instance of the co-bilinear Diffie-Hellman (co-
BDH) problem [4], which is also believed to be hard. The co-BDH assumption
is that given {P, sP, aP,Q, sQ, bQ} it is hard to calculate er(P, Q)sab. Input
{P, Q, er(sP, bQ), er(aP, sQ)} to our oracle and it will respond with er(P, Q)sab.

6 Implementational issues

In both protocols we have made careful use of the observation from [17] that
the second parameter to the Tate pairing does not have to be of order r. This
leads to considerable savings, as co-factor point multiplication (by c) can be very
expensive. In the key exchange protocol no co-factor multiplication is required.
For the client-server protocol, the server is required to perform one co-factor
multiplication. However the calculation on the client side remains relatively light-
weight.

Both protocols can also profit by compressing the pairing output [18]. For
the case of k = 2 as suggested here, the pairing value can be compressed to
one-half of its normal length – a single Fp value suffices instead of a full element
of Fp2 . See [18] for details. This has immediate and obvious bandwidth benefits.
It also makes the pairing calculation a little faster [17].

7 Conclusions

Most pairing-based protocols work equally well over both supersingular and
non-supersingular curves, for example Boneh and Franklin IBE [4]. Here we
demonstrate for the first time that the differences between the two types of
pairing can be exploited to create protocols with quite different properties. This
in turn can be directly related to the difficulty (or non-difficulty) of solving the
DDH problem.

The client-server protocol in particular may find useful application. The user
password is remembered by the client and no vulnerable password file is stored
on the server. The server’s master key s is only needed for client registration
purposes. For day-to-day use the server only needs access to sS.
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