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Abstract

This paper is the third in a line considering the arithmetic in the ideal class group
of hyperelliptic genus two curves. The previous two papers deal with generalizations of
affine and projective coordinates. Now we investigate how one can obtain inversion free
formulae that are faster than projective by considering weighted coordinates. To that
end we make an extensive case study to deal with different characteristic, equation of the
curve, space requirement and situation of appliance.

1 Introduction

Although it is now more than a decade ago that Koblitz [4] suggested to use the ideal class
group related to hyperelliptic curves for discrete logarithm based cryptography, their use in
practice is just beginning to receive more attention. So far, the arithmetic in this group was
usually performed using Cantor’s algorithm (see Cantor [1] and Koblitz [4] for a generalization
to even characteristic). However, for fixed genus one can make these steps explicit and a more
clever ordering results in faster formulae for addition and doubling of classes. We now give
a brief overview of the results obtained so far for genus 2 curves and sketch the situation for
elliptic curves, which will lead to analogies in the case of g = 2.

1.1 Formulae for Genus 2 Curves

For genus 2 curves this was considered by Spallek [11] and by Krieger [5]. The first practi-
cal formulae were obtained by Harley [3], which were generalized to even characteristic by
Lange [6]; an improvement of the former paper can be found in Matsuo, Chao, and Tsujii [9].
A significant improvement was obtained independently by Takahashi [13] and Miyamoto, Doi,
Matsuo, Chao, and Tsuji [10]; this was generalized to even characteristic by Lange|[7] (see also
[12]). All these formulae involve (at least) 1 inversion per addition or doubling respectively.
[10] proposes to trade this inversion for several multiplications and squarings in that they
include an additional coordinate which contains the common denominator of all other coor-
dinates. This corresponds to projective coordinates in the case of elliptic curves. This setting



has been generalized and improved in [8] by Lange. A milestone on the road towards hyper-
elliptic curve cryptography in real life is Kim Nguyen’s hardware implementation of Lange’s
projective formulae reported at ECC 2002 - Workshop on elliptic curve cryptography, Essen.

1.2 Situation for Elliptic Curves

For elliptic curves, i.e. curves of genus 1, one can choose from several systems of coordinates
(see Cohen, Miyaji, and Ono [2]) such that depending on the requirement one can use the
optimal system for the respective purpose. Affine points are tuples (z,y) satisfying y? +
(a1z + a3)y = o3 + azz? + a4z + ag . The homogenized equations leads to points (X,Y, Z)
with the correspondence x = X/Z,y = Y/Z. The addition formulae for these points in
projective coordinates avoid inversions. The idea to achieve formulae faster than the projective
and still without using inversions is to allow weighted projective coordinates. In the elliptic
setting one lets (X,Y, Z) correspond to (z,vy) = (X/Z?,Y/Z3). These coordinates are called
Jacobian coordinates; in this system, additions are slightly more expensive while doublings
get considerably cheaper than in projective coordinates. Some computations done in the
process of adding or doubling can provide useful in the following operation. Thus, if the
space is not too restricted, one can include them in the set of coordinates. The coordinates
(X,Y,Z,72%, Z3) are called Chudnovsky Jacobian; they are faster than projective coordinates
with respect to both operations and allow faster additions and slower doublings compared to
ordinary Jacobian coordinates. To obtain faster doublings it is useful to work with Cohen’s
modified Jacobian coordinates (X,Y, Z,aZ*), where the elliptic curve is given by 42 = z3 +
ax + b. This is very useful if one can store several precomputations and then use a binary
(signed) window method to compute the scalar multiple as then there are much more doublings
than additions. Furthermore, Cohen, Miyaji, and Ono investigate mixed coordinates, i.e.
depending on the costs of inversions relative to multiplications they propose different sets of
coordinates for the precomputations, the additions and the general doublings.

In this paper we try to mimic their approach to generalize it to hyperelliptic curves.

2 The New System of Coordinates

2.1 General Setting

Let us briefly recall the facts about arithmetic for genus two curves we will need here. Let
IF, be a finite field of ¢ = p", p prime, elements, where p is the characteristic of the field. A
genus two curve over IF, with at least one IF -rational Weierstralpoint is given by

C:y? + (hox® + hiz + ho)y = 2° + fax* + f3a® + fox® + fiz + fo, hi, fi € Fy.

For short we write y2 + h(z)y = f(z). If p # 5 one easily gets f4 = 0 by the substitution
z + x — f4/5. In odd characteristic one also obtains h(z) = 0 by y — y — h/2. The group
one uses is the ideal class group of the maximal order of the function field F,(z,y)/(y* +
h(z)y — f(z)). Its size is O(q?). Each class can be represented by a pair of polynomials
[u,v], where 2 > degu > degv, u is monic and u|v? + h(z)v — f(z). Cantor’s algorithm
works with this representation as polynomials, however, if one uses the explicit formulae
it is enough to consider a class as the quadruple [u,ug,v1,v9] with the interpretation as
[2 + w1z + ug, v17 + v]- To achieve that u is monic one needs one inversion per addition or
doubling. We call these coordinates affine due to their similarity to elliptic affine coordinates.



For the complete investigation of affine addition formulae we refer to Lange [7].
In projective coordinates one lets [Uy, Uy, V1, Vo, Z] stand for [z + Uy /Zx + Uy /Z , V1| Z x +
Vo/Z]. This allows to double and add without field inversions (see Lange [8] for details).

2.2 Weighted Coordinates

Now, we suggest to let [Uy, Uy, Vi, Vo, Z1, Zo] correspond to the affine point [z + Uy /Z2 x +
Uo/Z3, V1| Z3 Zo x + V| Z3 Zs]. This means that now a point corresponds to a sextuple, thus
one needs one more entry than for projective coordinates. If we compare this to the case of
elliptic curves, for equal security the entries are of only half the size, thus the space require-
ments are similar.

We consider separately the cases p = 2 and p # 2. In the former case we also distinguish
ho = 0 or not. Furthermore, we assume f; = 0 in any case. For each of the cases we also
investigate the effects of enlarged sets of coordinates depending on the use of the system. We
only consider the main cases of addition and doubling; for applications it is usually enough
to implement these and check at the very end of every scalar multiplication if the result is
a valid class, as the other cases occur with very low probability (only O(1/q) and g ~ 28
in common use for cryptography) and one cannot run into division by zero as inversions are
avoided. A complete study of all cases and their treatment (only in the affine case) can be
found in [7] and the missing cases can easily be generalized from there.

3 Case of Odd Characteristic

In odd characteristic we assume that h(z) =0 and f4 = 0. We do not list the pure approach
but start with the enlarged set of coordinates [Uy, Uy, V1, Vo, Z1, Zo, 21, 22), Where 21 = Z2, zp =
Z2. These additional entries are updated during each addition or doubling. z is only used
for the doublings but is computed for the new coordinates anyways. As additions occur at
most half as often as doublings we do not include Z; Z3 which would be useful for additions,
because it is of less use to doublings and is not automatically updated. If space is more
restricted such that we can only use the sextuple of coordinates, we need two extra squarings
in the first step of the doubling or addition. We first list the algorithm to add two points in
these coordinates and then consider doubling. Finally, we put both together these algorithms
to compute scalar multiples, also paying attention to other systems of coordinates.

3.1 Addition

The addition algorithm given in the following table takes as input two points
U11,U10, Vi1, Vo, Z11, Z12, 211, 212,  [U21, Uso, Vai, Vao, Zo1, Zas, 221, 222] and outputs their
sum. We always include the polynomial f (and later h for even characteristic) in the in-
put to show which assumptions are made on the curve, although the coefficients might not
be used in the algorithm.

If one computes a scalar multiple of a point given in affine coordinates and has the interme-
diate results not-normalized, then in the addition the intermediate result enters in the new
weighted coordinates whereas the other class enters always as [Ui1,Uio, Vi1, Vio,1,1,1,1].
The number in brackets refer to this (cheaper) case. The next subsection concentrates on this
special case.



Addition, odd characteristic

Input

Output

[U11, Uro, Vi1, Vio, Z11, Z12, 211, Z12), [Ua1, Uso, Va1, Vao, Za1, Z22, 221, 222]

f=2°+ fazd + fox? + fiz + fo
U], U5V, Vi, 21, ZY, 2, 25] = [U11, Uro, Vi1, Vao, Z11, Z12, 211, 212)+
a1, U, Va1, Voo, Zor, Zao, 221, 222)

Step

Expression

Operations

precomputations:

z13 = 211212, %23 = Z21222, Z12 = 211713, 222 = 221723}
U1 = Uz1 211, Usg = Ungz11, Vo1 = Vo1212, Voo = Vogz19;

M (2M)

compute resultant 7 and precomputations:

y1 = Ur1291 — Ua1, y2 = Usp — Uro221, y3 = U11y1 + y2211;

r = yoyz +yiU10; S
ZYy = Zn1Zo1, Zo = ZioZng, Zn = Z§, Zin = ZyZ1, Zy = Zor;
7y = 787, Zp = 73, 25 = 7%

48, 11IM
(3S, 8M)

compute almost inverse:
1NV = Y1, NV = Y3;

compute s:

wo = Vipzae — Voo, w1 = Virzeo — Vo1, wa = invowp, ws = inviws;
s1 = (invg + z11invy) (wo + wi) — we — wa(z11 + Ut1);

50 = we — Urpws;

If 51 = 0 different case

8M (7M)

precomputations:
2 ! __ _ 7l _ Q2.
S1 =81, So = 801, Z1 = 121, S = Z1S0, So = S¢;
! ! ! ! __ 712,
R=rZ], so =804y, s1 = 8127, 21 = 47"

3S, 6M

compute [: . .
lo = s1Ua1, lo = soUso, 11 = (s0 + $1) (U0 + Ua1) — lo — lo;
lo =12+ S;

3M

compute U’:

V{ = RVay; 3 R
U = So +y1(S1(y1 + Ua) — 250) + yas1 + 2V7 + (2Ua1 + y1) Zo;
Ul =28 — y181 — 2b;

6M

precomputations:
la = lp — Ui, wo = Uy, w1 = BUT;

2M

compute V':
Vi =wy — 2 (L + V] = U));
Vg = wo — 21 (lo + RVay);

3M

total

7S, 4TM (6S, 37M)




3.2 Mixed Addition

Here we assume that one input is in affine coordinates while the other is in the new
coordinates. The output is in new coordinates, too.

Mixed Addition, odd characteristic

Input | [U11,Uio, Vi1, Vio), [Ua1, Uz, Va1, Vao, Zo1, Zaz, 221, 222]
f=a%+ faa® + for® + fiz + fo
Output | [U1, Uy, VI, Vi, Z1, Zy, 21, 23] = [U11, Uro, Vi1, Viol + [Uai, Uso, Vai, Vao, Zo1, Zao, 221, 222]
Step | Expression Operations
1 precomputations and resultant: 1S, ™
Z93 = Zo1Z22, 222 = 221223, Y1 = Ur1201 — Usx;
y2 = Uso — Uroza1, y3 = Uniys + ya, 7 = y2ys + yiUno;
2 compute almost inverse:
1NVl = Y1, 1NV = Y3;
3 compute s: ™
wo = Vipzoe — Voo, w1 = Vi1zoo — Vo1, we = invowo, ws = inviwy;
s1 = (tnvy + invy)(wo + w1) — we — ws(1 + Uty);
80 = we — Urgws;
If sy = 0 different case
4 precomputations: 45, ™
ZQ = TZz23, Zé = ZQZQl, ZQ = 222, Z{ = 31Z21, R = rS1;
50 = Sp%21, S() = 5091, S = S()ZQl, Sl = 8%, Zi = Z{Q, Zé = ZéQ;
5 compute [: 3M
lo = S1Ua1, lo = SoUso, 11 = (S1 + So)(Ua1 + Uzo) — lo — I;
lo=10+S5;
6 compute U’: ™
Vi = RV
Uy = (so — Un151)(80 — y151) + 11 — Uroz] + 2V{ + (2U21 + y1) Zo;
Ul =28 — 4151 — 25;
7 precomputations: 2M
12 = lz - U{, woy = ZQU(’), w1 = lQU{;
8 compute V': 3M
Vi =wi =21 (i + V] = Up);
Vo = wo — 21 (lo + RVa);
total 5S, 36M




3.3 Doubling

The formulae for doubling make obvious why we include 2z = Z2 as well.

Doubling, odd characteristic
Input | [Uy, Uy, V1, Vo, Z1, Za, 21, 2]
f =2+ f32® + fox® + frz + fo
Output | U1, UL VI, VY, Z1, ZY, 21, 2] = 2[Uy, Uy, Vi, Vo, Z1, Za, 21, 22]
Step | Expression Operations
1 precomputation and resultant: 3S, 8M
[70 = U()Zl, wo = ‘/12, w1 = U12;
ws = Voz1 — U1 Vi, 1 = woUp + Vows;
22 = Z27", ZQ = 2221, Zé = 22221, ZQ = 222,
2 compute almost inverse:
invy = — V1, invyg = ws;
3 compute k: 1S, 6M
73 = 2%, w3 = fazz +wi;
ki = z2(2(w1 — Vo) + ws), 23 = 2321;
ko = 20(U1(4Uy — w3) + 23.f2) — wo;
4 compute s = kinv mod u: 5M
wy = koinvg, w1 = k1invy;
s1 = (invg + inv1) (ko + k1) — wo — wi (1 + Uy);
S0 = Wo — wﬂjo;
If sy = 0 different case
5 precomputations: 3S, 5M
So =82, Z) = s121, 2, = Z1%, S = s Z1;
R=rZ!, 25 = Z2, sy = s¢s1, 51 = Z!s1;
6 compute [: 3M
lg = 81U1, l() = S()U(), ll = (30 + 81)(U() + U1) - l() - 12;
lo =1+ S;
7 compute U’: 2M
V] = RVy;
Uy = So + 4(V] +22,U1);
Ul =25 — 2b;
8 precomputations: 2M
lQ = lg — U{, woy = lQU(’), w1 = lZU{;
9 compute V': 3M
Vi =w1 — 2l + 2V = Up);
V§ = wo — 21 (lo + 2RV);
total 7S, 34M

3.4 Different Sets of Coordinates

So far we have given algorithms to perform the computations within one system and also
considered additions involving mixed coordinates. Now we are concerned with mixes of sys-
tems. To have suitable abbreviations, we denote by C; + Co = C3 the computation of an
addition, where the first input is in coordinate system C;, the second in Cy and the output



Table 1: Addition and Doubling in Different Systems, Odd Characteristic

Doubling Addition
operation ‘ costs || operation ‘ costs
2N =P 7S,38M | N+ N =P 7S, 51M
2P ="P 6S,3TM | N+P =P 4S, 51M
2N =N 7S,34M | N+ N =N 7S, 4TM
2P =N 6S,34M | N +P =N 58, 45M
2A="7P 55,25M | P+P="P 5S, 45M
2A=N 55,2IM | P+P =N 5S, 41M

A+N="P 53, 41M
A+P="P 3S, 39M
A+N =N 55, 36M
A+P=N 3S, 35M
A+ A=N 3S, 25M
2A=A | 1,55,22M | A+ A=A | 11, 3S, 22M

is in C3. Similarly, 2C; = C2 denotes a doubling with input in system C; and output in Co.
We denote the affine systems by A, the projective by P and the new by N. In the following
we estimate the costs of computing scalar multiples using various systems of coordinates. To
have the figures in mind, the following Table 1 lists the costs for the most useful additions
and doublings.

3.5 Scalar Multiples in Odd Characteristic

In this section we concentrate on the multiplication of k-folds kD, where k is an integer and
D is an ideal class. For references how to compute the respective expansions of k see [2] and
the references given therein.

Let £ = |logy k|, i.e. k= Zfié k;2'. The direct approach to compute kD for a given class D
is to use binary double-and-add starting with the most significant bit of k. For every k; = 1
we need to perform an addition as well as a doubling, for a 0 one only doubles. The density,
i.e. the number of ones in the expansion divided by the length, is asymptotically 1/2.

Here we deal with the ideal class group of hyperelliptic curves and the negative of a class is
obtained by negating the coordinates V; resp. v;. Hence, signed binary expansions are useful.
They have the lower density of 1/3 if one uses a NAF (non-adjacent form) of the multiplier,
and are approximately of the same length.

If we can afford some precomputations, windowing methods get interesting; we consider signed
expansions here. Let the window be of width w. The expansions we consider are of the form

k= 2ko(2kr (... 2kv—1 QbW [y] + W — 1)) ---) + W]0]),

where Wi] is an odd integer in the range —2% +1 < W[i] < 2% —1 for all 4, W[v] > 0,k > 0
and k; > w+ 1 for ¢ > 1.

We now first consider systems without precomputations and then investigate good matches
of coordinate systems for windowing methods. The reason for treating these cases separately



Table 2: Without Precomputations, Odd Characteristic

‘ Systems ‘ Cost ‘
2A=A, A+ A=A | £/3(41, 18S, 88M)
AN =N, A+ N =N | £/3(26S, 138M)
AN =N, N+P =N | £/3(26S, 14TM)

is that for precomputations the addition will involve the set of coordinates which is advanta-
geous for the precomputations, whereas in the system without precomputations this choice
depends on the efficiency of the mixed addition only.

3.5.1 No Precomputations

In this approach we perform ¢ doublings and ¢/3 additions per scalar multiple of length /.
The following Table 2 lists the number of operations depending on the coordinate system,
details are given below. We assume £ to be large and therefore leave out the costs for moving
from one system to the other as they occur only once. However, note that except for the first
line, where inversions are assumed to be cheap, this conversion involves no divisions.

If inversions are relatively cheap, affine coordinates cannot be beaten, thus, if the class is
given in a non-normalized system we first normalize it. This takes 11, 4M for P — A and 11,
™ for N' = A. Then we double £ and add ¢/3 times by the algorithms given in [7].
Otherwise, for affine input the new system is best, as the most common operation (doubling)
is cheaper than in any other fixed system and the mixed addition is also fast.

If the input is in P and inversions are very expensive, we need to find two systems C; and Cs
such that 2C; = Cy, 2C; = C2 and P + Co = C; are as cheap as possible, the first being the
most frequent operation. By Table 1 we choose C; = N. For Cs it is equal to choose N or
P, therefore we use N to save some bookkeeping. Thus the first doubling is done as 2P = N
and all further as 2N = N. There are approximately £ doublings 2N = N and ¢/3 additions
N+P=N.

If the input is in new coordinates we do the same except that the first doubling is 2N = N
needing 1 more S and we use 4M for N' — P.

To compare, using only projective coordinates we would need £/3(23S, 156M) and only new
coordinates results in £/3(28S, 149M).

3.5.2 Windowing Methods

To obtain the table of precomputed values, i.e. all odd multiples W[i]D for 1 < W[i] < 2% —1,
we need w — 1 doublings and 2¥~! — 1 additions.

Like in the previous case we distinguish cases depending on the relative cost of inversions.
If inversions are not too expensive, the precomputations are performed in affine coordinates.
To still trade off some inversions for multiplications, we make use of Montgomery’s trick of



Table 3: Precomputations, Odd Characteristic

‘ System H I ‘ S ‘ M ‘
A 20l yw—2| 3.2 +5w—-8 | 2202 ! +w-—2)
A w 3.2 145w —8 [25-2¢ T4 220 — 50
P 5-20=1 4 6w — 11 | 45-2¥~1 4+ 37w — 82

Table 4: Windowing Method, Odd Characteristic

‘Systems H I ‘ S ‘ M ‘
2A=A, A+ A=A [[n+0+25|5(n+0)+328 | 22(n+6+270)
IN=N, A+ N =N T(n+0) + 5222 | 34(n +0) + 3622
IN=N,N+P=N T(n+0) +5220 | 34(n +0) + 45770

simultaneous inversions. Like in [2] we first compute 2D, then (3D, 4D), then (5D, 7D,8D),
o(2u2+1)D,..., (2"t —1)D,2*~1D), and finally ((2*~' +1)D,..., (2% — 1)D). Com-
puting m inversions simultaneously is done by 1I, 3(m — 1)M. Thus we need

wl, w — 1 class-doublings, 2¥~1 — 1 class-additions, and 3(2¥~! — 2) extra M.

As most of the operations for the precomputations are additions, we choose projective coor-
dinates P if we want to perform the precomputations avoiding inversions. The costs for these
two approaches leading to A and also for precomputations in P are listed in Table 3.

If inversions are cheap we stick to the affine system to compute the scalar multiplication. If
we can afford the w inversions (or one more for non-affine input) to do the precomputations in
affine, we use the new system for doublings, and perform the additions using the new mixed
system A + N = N. Finally, if inversions are very expensive, the best match is obtained if
one uses projective coordinates for the precomputations, and the doublings are performed as
2N = N. Then the addition is done as N' 4+ P = N. This approach is equal to that of the
previous subsection with non-affine input. Again, here we did not need a second system Cs
for doublings.

In the main loop we perform K = "} ,k; doublings and v additions. To ease the formulae,
we assume K =4 —w/2+4+6,v = (£ —w/2 —60)/(w+ 2), where § = 1/2 — 1/(w + 2). Let
n = £ —w/2. The costs are listed in Table 4. Some more computations can be saved using
the tricks of [2]. Again we leave out the costs for conversions. For the precomputations see
Table 3.

4 Case of Even Characteristic with hy # 0

In this section we first state the algorithms to compute with the new system in even charac-
teristic. Here, we assume ho # 0, however, the formulae hold universally. The more special
case hy = 0 is considered separately in the following section. Like before it is interesting to
include some precomputations in the coordinates which are updated during each iteration. In



this approach we let:
1 = Z12,2'2 = Z22,23 == Z1Z2.

This turns out to be useful for both additions and doublings. While the costs remain un-
changed for doublings if one additionally puts z4 = 2123 one saves 1M in the addition. Thus,
here N denotes [Uy, Uy, V1, Vo, Z1, Za, 21, 22, 23, 24])- We first consider addition and mixed ad-
dition, then doubling and then turn our attention to the computation of scalar multiples.

4.1 Addition

Here we assume that both classes are in A. If one is in A the costs are given in brackets.

Addition, even characteristic, hy # 0

Input | [U11,Uio, Vi1, Vio, Z11, Z12, 211, 212, 213, Z14],

[Ua1, Uso, Var, Voo, Zar, Zaz, 201, 222, 223, Z24]

h = hox?® + b1z + ho, [ =a°+ f323 + fox® + fiz + fo

Output [U{, U(’), Vll, VOI, Zi, Zé, Zi, Zé, Zé, ZLIL] = [Un, U10, V11, Vl(), Z11, Zlg, 2115”125 213, 214]+
W21, Uso, Vai, Voo, Zat, Zaa, 221, 222, 223, #24)

Step | Expression Operations

1 precomputations: 6M (-)
Us1 = Ua1z11, Ugg = Uggz11, Vo1 = Vo1214, Voo = Vapz14;
Z1 = 211201, 43 = 213%23;

2 compute resultant r of Uy, Us: 1S, 8M
y1 = Uniza1 + U21, y2 = Uroza1 + Uzo, y3 = Uniyn + 422115 (1S, 7™™)
T = yoys + iU, Zo = 173, Z = ZyZy;

3 compute almost inverse:

1NV = Y1, 1NV = Y3;

4 compute s: 8M (TM)
wy = Vigzea + Voo, w1 = Vitzoa + Va1, wo = invowo, w3 = inviws;
§1 = (’in’Uo + invlzn)(wo + wl) + wo + w3(z11 + Un);

so = wa + waUio;

If sy = 0 different case

5 precomputations: 3S, 9IM
§0 = 80Z1, S() = :9%, Z{ = 81Z1, R = TZ{;
t=yi(yr + 1), Ul = w151, 1 = 8171, s0 = 5021
2 =72, 2 = 7R, 2 = 7178, 2 = 2\ 2L;

6 compute [: 3M
lo = 51Us1, lg = 50Uz, l1 = (s0 + 81)(Uao + Ua1) +lg + lo;
7 compute U’: 5M

U(I) =5+ tU{ + Y281 + Zé(hg(go + t) + h1Z{ + y122);
Ul = U{Z] + hozl + 25;

8 precomputations: 3M
lg = 12 + Z{go + hQZé + U{, woy = lQU(I], w1 = lQU{;
9 compute V': 4AM

Vi=w +2(lh + R‘:/21 + Up) + hizy;
Vo = wo + 71 (lo + RVa0) + hozy;

total 45, 46M (4S, 38M)
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4.2 Mixed Addition

If one knows in advance that A + N = N shall be computed, it is more useful to apply the
following algorithm to save one more squaring.

Mixed Addition, even characteristic, iy # 0
Input | [U11,Uio, Vi1, Viol, [Ua1, U2o, Va1, Vao, Zo1, Za2, 221, 222, 223, %24]
h = hox? + hix + ho, f = 2%+ f323 + fox? + fiz + fo
Output | [U1, Uy, Vi, Viy, 21, Z3, 21, 73, 25, 23] = [U11, Ui, Vi1, Vol +
U1, Uso, Va1, Voo, Zar, Zaa, 221, 222, 223, 224)

Step | Expression Operations

1 precomputations and resultant: 1S, ™
Y1 = Unizo1 + Uy, Y2 = Uzo + Uroz21, y3 = Uniys + 42
r = yoys + yiUvo, Zo = 1223, Zb = ZaZo;

2 compute almost inverse:
NV = Y1, 1NV = Y3;
3 compute s: ™

wo = Vigzaa + Voo, w1 = Vi12zoa + Vor, wo = invowp, w3 = inviwr;
s1 = (invy + invy) (wo + w1) — we — ws(1 + Uyy);

so = wy + Urpws;

If 51 = 0 different case

4 precomputations: 45, 6M
Z} = 81291, R =rs1, 80 = 50221, So = s0s1, S1 = s3;
Zo =73, 2 = Z2, o = 2R, 24 = Z1 7}, 2} = 2, 24;

5 compute [: 3M
lo = S1Uo1, ly = SoUao, 1 = (S1 + So)(Ua1 + Usg) — lo — Io;

6 compute U’: 5M
Ul = y151;

U(I) = 50(50 + hQZé) + U11(h22é + U{) + S1yo + hlzé + y122;
Ul =U{ + 2y + hozs;

7 precomputations: 3M
ZQ = lQ + Zigo + hQZé + U{, woy = le(l), w1 = le{;
8 compute V': 4AM

V] =wy + 2} (I1 + RVa1 + U}) + ha7;
Vi = wo + 2 (Io + RVag) + hoz};
total 55, 35M
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4.3 Doubling

Now finally we consider doublings.

Doubling, even characteristic, hy # 0

Input | [Uy,Uo, Vi, Vo, Z1, Z2, 21, 22, 23, 24]
h = hox? + hiz + ho, f = 2%+ f323 + fox® + fiz + fo
Output | [Uf, UL VI, VY, Z1, ZY, 21, 24, 2%, 23] = 2[U1, Uy, Vi, Vo, Z1, Za, 21, 22, 23, 24)

Step | Expression Operations

1 precomputation and resultant: 3S, 5M

Vi = hiz1 + hoUs, Vo = hoz1 + haly, 25 = 23;
wo = V2, w1 = UZ, we = h2z5 + h3wy;
w3 = z1(h1U1 + haUg + hoz1) + hows;
r = woly + Vows, Zo = 231, Z} = Zozu;
2 compute almost inverse:

= f/'l, 1NVY = W3;
3 compute k: 6M
w3 = f3z5 + wi;

k1 = w3z + Vihozs;

ko = Uiky +wo + z4(Vihy + Voha + foza);
4 compute s = kinv mod u: 6M

wy = koinvg, w1 = krinvy;

s1 = (inwg + inwv1) (ko + k1) + wo + wi(1 + U1);
so = wo + Upw1 215

If s; = 0 different case

5 precomputations: 35S, 8M
t = hosg + s1(hoUy + hy21), Zi = 5121, 99 = S%, Z{ = Z{2;
S =502, R= Zy7}, so = s0s1, 81 = Z!s1;

% = 25, 2 = DTy, & = el

6 compute [: 3M
lo = s1U1, lyp = soUy, 11 = (51 + S())(U1 + U()) — Iy — ls;
lo =1y + S + hazi;

7 compute U’: 1M
Uy = So + Zjt;
U] = 2z + hozs;

8 precomputations: 2M
12 = 12 + U{, woy = ZQU(’), w, = lQU{;
9 compute V': 4AM

Vi =wy — 2{(li + RVi + U}) + 2jhi;
Vo = wo — 21 (lo + RVo) + zjho;
| total 6S, 35M |

4.4 Different Sets of Coordinates

Using the same abbreviations as above, we state the costs for the operations in different
coordinate systems in Table 5.
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Table 5: Different Systems, Even Characteristic, ho # 0

Doubling Addition
operation ‘ costs || operation ‘ costs
2N =P 6S,3TM | N+ N =P 4S8, 48M
2P ="P 6S,36M | N+P =P 4S5, 48M
2P =N 6S, 35M | N + N =N 48, 46M
2N =N 6S,35M | N +P =N 4S, 4TM
2A="7P 55,24M | P+P =P 4S, 46M
2A=N 55,20M | P+P =N 4S, 45M

A+P="7P 3S, 39M
A+N =P 53, 3T
A+P=N 3S, 38M
A+N =N 5S, 35M
A+ A=N 48, 29M
2A=A 11, 55, 20M | A+ A=A | 1], 3S, 21M

Table 6: Without Precomputations, Even Characteristic, hy # 0

‘ Systems ‘ Cost ‘
2A=A, A+ A=A | £/3(41, 18S, 82M)
N =N, A+ N =N | £/3(23S, 140M)
N =N, N+P=N | £/3(22S, 152M)

4.5 Computation of Scalar Multiples

We follow the same lines as in the previous section.

4.5.1 No Precomputations

For cheap inversions one again uses the affine system alone. If one wants to avoid inversions
and has an affine input (or can allow 11 to achieve this) we perform the doublings as 2N = N
and the addition as A + N = N. For non-normalized input we work as in odd characteristic

Ci=C=N,C3="P.

4.5.2 Windowing Methods

To obtain the table of precomputed values we need w — 1 doublings and 2*~! — 1 additions.
Like before we choose either C3 = A or C3 =P

In the main loop we perform K = )i, k; doublings and v additions. The costs are listed
in Table 8 for the most useful matches of sets of coordinates. Again we leave out the costs
for conversions and mention that some constant number of operations can be saved if one
considers in more detail the first doubling and the final addition/doubling like in [2].
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Table 7: Precomputations, Even Characteristic, hy # 0

‘ System H I ‘ S ‘ M ‘
A vl w—213.2% 1 4+5w—8]21-2v1 420w — 41
A w 3.2 1450w —8 24291 4 20w — 47
P 2wl 4 6w — 10 | 47- 2%~ T + 40w — 87

Table 8: Windowing Method, Even Characteristic, ho # 0

| Systems | | S | M |
2A=A, A+ A=A |n+0+27|5(n+6)+325]17(n+6)+21275)
IN=N, A+ N =N 6(n+6)+522 ] 35((n+6)+270
AN=N,N+P=N 6(n+6)+42=8 | 35(n+6) + 4722

Compared to the results in odd characteristic this case is a bit more expensive. On the other
hand the arithmetic in binary fields is easier to implement and usually faster. Thus in the
end this still might turn out to be better. In the next section we consider the sub-case hy =0
in more detail. There the complexity is lower than for odd characteristic in any case.

5 Case of Even Characteristic with hys =0

Obviously this case can be considered as a special case of the previous section. However, if
one restricts the algorithms to this still very frequent case one can save some operations. Like
before we suggest to enlarge the set of coordinates by z1 = Z2, 20 = Zo, 23 = Z1Z2,24 = Z3 7.

To save space we can discard Zs.
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5.1 Addition

Addition, even characteristic, hy =0

Input | [U11,Uso, Vi1, Vio, Z11, Z12, 211, 212, 213, 214, [Ua1, Uao, Vo1, Vao, Zo1, Zaa, 201, 292, 223, 224]
h=hiz+ho, =2+ fsx3 + foz + fiz + fo
Output | [U7, Uy, VI, Vy, Z1, Zy, 21, 2y, 2324] = [U11, Uro, Vi1, Vio, Z11, Z12, 211, 212, 213, Z14)+
[U21, Uso, Va1, Voo, Zar, Ziaa, 221, 222, 223, 224)
Step Expression Operations
1 precomputations: 6M (-)
Ua1 = Ug1211, Uzo = Uspz11, Va1 = Vo1214, Voo = Vaoz14;
Z1 = 211291, £3 = 213%23;
2 compute resultant r of Uy, Us: 2S, 9M
y1 = Unizo1 + Ua1, y2 = Urozo1 + Uso, y3 = Uniyn + y22115 (28, 8M)
r = yoys + yilh, Zo =123, ZY = Zy 21, Zy = 23, Zy = ZpZh;
3 compute almost inverse:
iNvL = Y1, 1NV = Y3;
4 compute s: 8M (M)
wo = Viozoa + Voo, w1 = Virzo4 + Va1, we = invowo, ws = inviwi;
§1 = (’in’Uo + invlzn)(wo + wl) + wo + ’U}3(211 + Un);
50 = we + w3U1p;
If 51 = 0 different case
5 precomputations: 45, 8M
Sl = S%, Zi = 81Z1, R= ’I"Z{, S() = 80Z1, S = S()Z{;
So=82, 21 =722 2, =72, 2k =Z| 7}, 2} = 22}, 51 = 817}, s0 = 80Z};
6 compute [: 3M
lo = 81091, lo = soUz0, 11 = (80 + 1) (U20 + Ua1) + I + lo;
lo =1+ S;
7 compute U’: 4AM
Uy = So +y1(S1(y1 + Un) + Zo) + yas1 + hy 24;
Ul = y151 + 25;
8 precomputations: 2M
12 = 12 + U{, wy = ZQU(’), w, = lQU{;
9 compute V': 4AM
Vi = w1 + 2, (I, + RVay + U}) + 24hy;
VO, = wo + Zi(l() + RVQ()) + Zflho;
total 6S, 44M (6S, 36M)
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5.2 Mixed Addition
Now we deal with the special case A+ N = N.

Mixed Addition, even characteristic, ho = 0

Input | [U11,Uso, Vi1, Vao]; [U21, U2o, Vo, Vao, Za1, Z22, 221, 202, 223, 224]
h = hiz + hy, f:$5+f3373+f2$2+f1$+f0
OUtPUt [U{’ U(I)a Vll’ VE),’ Zi’ Zé’ Zi’ Zé’ Zil’ﬁ zzll] = [Ulla Uio, Vi1, VlO]+
(U1, U0, Va1, Vao, Z21, Z22, 221, 222, %23, %24]
Step | Expression Operations
1 precomputations and resultant : 2S, ™
Y1 = Uniza1 + Ua1, Yo = Uz + Uroz21, y3 = Uniyr + yo;
r = yoys + yiUw, Zo = 1293, Zy = ZaZn, Zo = Z3;
2 compute almost inverse:
v = Y1, INV) = Y3;
3 compute s: ™
wo = Vigzaa + Voo, w1 = Vi1zo4 + Vo1, wo = invowp, w3 = inviws;
s1 = (invg + inv1) (wo + w1) — we — w3 (1 + Ut1);
80 = we + Urgws;
If sy = 0 different case
4 precomputations: 45, T™M
Z{ = 31Z21, R = s, S() = S()Z21, S = S()Zi, So = Sg,
S0 = 8051, 81 = 8%, 2] = 22, 2y = ZR, 24 = Z| 7}, 2} = 2\ 2L;
5 compute [: 3M
la = s1Ua1, lo = s0U20, I1 = (51 + 50)(U21 + Uz0) — lo — lo;
lo =1+ S5;
6 compute U’: 4AM
Uy = So + y1(s1U11 + Z2) + yas1 + hi24;
Ui = y151 + 25;
7 precomputations: 2M
lo =1+ U{, wy = lQU(’), wp = lQU{;
8 compute V': 4AM
Vi = wy + 21 (l1 + RVay + hi2 + UY);
Vg = wo + 21 (lo + RVao + hoz3);
total 6S, 34M
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5.3 Doubling

Doubling, even characteristic, h; =0
Input [Ul,U(),Vl,VE),Zl,ZQ,Zl,ZQ,Zg,,Zd
h =hiz + hg, f=12%+ f323 + foxr? + fiz + fo
Output | [U1, Uy, V{, Vi, Z1, Z5, 21, 2, 25, 24] = 2[Ur, Uy, V1, Vo, Z1, Z2, 21, 22, 23, 24]

Step | Expression Operations
1 resultant: 2M
r= hl(h1U0 + U1h0) + h%zl, ZQ =1T24, Zé = 2224;
2 compute almost inverse:
invy = hy, invg = hiUy + hoz1;
3 compute k: 3S, bM

wo = V2, wy = UZ, z5 = 2%;

k1 = zo(fszs + wn);

ko = Uik + wo + z4(fazs + Vihy);
4 compute s: 6M
woy = k‘()’i’n/l)(), wy, = klz’m}l;

s1 = (invg + inv1) (ko + k1) + wo + (1 + Ur)ws;
so = wo + Upw 213

If s; = 0 different case

5 precomputations: 3S, TM
Z{ = S1%1, S() = 3%, S = 30Z{, R = ZQZ{;
A =P, 4= 74, o= 224, 7 = Al

_ _ gl
S0 = 8081, S1 = Z751;

6 compute [: 3M
lo = 51U, Ly = soUo, 11 = (s1 + 80) (U1 + Up) — Ly — lo;
lo =1+ S;

7 compute U’:
Uy = So + hi25;

Ui = 2;

8 precomputations: 2M
12 = lz - U{, woy = ZQU(’), w1 = lQU{;

9 compute V': AM

Vi =wy + 2 (L1 + RVi + UY}) + 25h1;
Vo = wo + 21 (lo + RVy) + z5ho;
| total 6S, 29M |

5.4 Different Sets of Coordinates

Finally, we state the number of operations in the case of even characteristic and with hy =0
in Table 9.

5.5 Computation of Scalar Multiples

Table 9 reveals that for this case the situation is different — additions involving N are less
expensive than those involving P. The reason for this might as well be that this special case
was not considered in too much detail in Lange [8].
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Table 9: Different Systems, Even Characteristic, ho = 0

Doubling Addition
operation ‘ costs || operation ‘ costs
2P =P 6S,33M | N+P =P 45, 48M
2N =P 6S,3IM | N+ N =P 6S, 46M
2P =N 6S,32M | N +P =N 48, 4TM
2N =N 6S,29M | P+P =P 48, 46M
2A="P 6S,2IM | N+ N =N 6S, 44M
2A=N 6S,19M | P+ P =N 4S, 45M

A+P="7P 35S, 39M
A+N =P 6S, 36M
A+P=N 3S, 38M
A+N =N 6S, 34M
A+ A=N 58, 256M
2A=A | 1L,5S,1T™ | A+ A=A | 1], 3S, 21M

Table 10: Without Precomputations, Even Characteristic, hy = 0

‘ Systems ‘ Cost ‘
2A=A, A+ A=A | £/3(41, 18S, 73M)
N =N, A+ N =N | £/3(24S, 121M)
N =N, NTN=N| £/3(24S, 131M)

5.5.1 No Precomputations

For cheap inversions one again uses the affine system alone. If one wants to avoid inversions
and has an affine input (or can allow 1I to achieve this) we do the same as in the general case
and perform the doublings as 2 = A and the addition as A + AN = A. For non-normalized
input we here suggest to use C; = C, = C3 = N.

5.5.2 Windowing Methods

To obtain the table of precomputed values we need w — 1 doublings and 2! — 1 additions.
Here we choose either C3 = Aor C3 =N
Table 12 states the number of operations for the most useful matches of sets of coordinates.

6 Conclusion and Outlook

As mentioned before one can save some constant number of operations in considering the first
and last additions separately. This is worthwhile for an implementation where the system of
coordinates of the input and output are fixed.

Since the field size for hyperelliptic curve cryptography is of only half the bit size of that of
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Table 11: Precomputations, Even Characteristic, ho =0

‘ System H 1 ‘ S ‘ M ‘
A 20l —2 3.2 L 45w —8] 21291 + 17w — 38
A w 3.20° 1 45w —8(24-29 1 417w — 44
N 602 T +w—2) |44-29"1 +29w — 73

Table 12: Windowing Method, Even Characteristic, hy = 0

‘Systems H I ‘ S ‘ M ‘
2A=A, A+A=A | n+0+205]5n+0)+327 |20(n+6)+22270)
N=N, A+ N=N 6((n +6) + 20) | 29(n +6) +3427
IN=N,N+N=N 6((n+6) +2=0) | 29(n +0) +442=2

elliptic curve cryptography the operations are approximately half as slow. Comparing the
results with the similar ones for elliptic curves one can assume that the complexity of scalar
multiplications is similar. It would be very interesting to have a hardware implementation
comparing these two systems.

A further possibility to choose coordinates is to allow even more entries to have a finer
distinction. One notices that U{ and V' are divisible by Z;. Perhaps this can lead to further
savings.
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