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Abstract. Undeniable signature is an intriguing concept introduced by
Chaum and Antwerpen at Crypto’89. In 1999, Lee and Hwang presented
two group-oriented undeniable signature schemes with a trusted center.
Their schemes are natural generalizations of Chaum’s zero-knowledge
undeniable signature scheme proposed in 1990. However, we find that
the Lee-Hwang schemes are insecure. In this paper, we demonstrate five
attacks on their schemes: four of them are universal forgery, in which
one dishonest member (maybe collude with a verifier) can get a valid
signature on any chosen massage, and another attack allows a dishonest
member to prevent honest members from generating valid signatures but
his cheating behavior is undetected. We also suggest heuristic improve-
ments to overcome some of the problems involved in these attacks.

Keywords: digital signatures, undeniable signatures, group-oriented
undeniable signatures, cryptanalysis.

1 Introduction

Undeniable signature is a special kind of digital signature in the sense that
the validity of an alleged signature cannot be verified without the coopera-
tion of the signer. The concept of undeniable signature was first proposed at
Crypto’89 by Chaum and van Antwerpen [4]. Followed by this pioneering work,
Chaum proposed a zero-knowledge undeniable signature scheme in [2]. Later, at
Auscrypt’92, by combining the two concepts of undeniable signature and group-
oriented signature [5, 6], Harn and Yang proposed the concept of group-oriented
undeniable signature [10], in which only when all members in an authorized sub-
set of a given group operate collectively, they can generate, confirm or deny a
signature on behalf of the group. If the authorized subsets are all subsets of ¢
or more members of a group with n members, then it is called a (¢t,n) threshold
undeniable signature scheme.

In [10], Harn and Yang also designed two concrete threshold undeniable sig-
nature schemes: (1,n) scheme and (n,n) scheme. However, Langford pointed out
that their (n,n) scheme only has a security of 2-out-of-n, because any two adja-
cent members can generate a valid threshold signature on any message [11]. Lin



et al. presented a general (¢,n) threshold undeniable signature scheme [14], but
it is also subjected to Langford’s attack. To overcome the Langford-attack, Lee
and Hwang constructed two group-oriented undeniable signature schemes with a
trusted center [12] by naturally generalizing Chaum’s zero-knowledge undeniable
signature [2] to group-oriented environment.

In this paper, we analyze the security of the Lee-Hwang schemes [12] and
demonstrate five attacks. Under reasonable assumptions, our attacks are simple,
straightforward and efficient. In these attacks, four of them are universal forgery,
in which one dishonest member (maybe collude with a verifier or the designated
combiner) can get a valid signature on any chosen massage, and another attack
allows a dishonest member to prevent honest members from generating valid
signatures but his cheating behavior is undetected. We also suggest heuristic
improvements to overcome some of the problems involved in these attacks.

The rest of this paper is organized as follows. Section 2 reviews two Lee-
Hwang group-oriented undeniable signature schemes. Section 3 presents five
attacks on their schemes. Section 4 addresses other two weaknesses of their
schemes. Section 5 proposes some heuristic improvements to the Lee-Hwang
schemes. Section 6 discusses related work. Finally, the conclusion is given in
section 7.

2 Review of Two Lee-Hwang Schemes

The Lee-Hwang schemes [12] consist of a trusted center T'C, a designed combiner
DC ! and a group of n members U; (i € A ={1,2,---,n}). The first is a (¢,n)
threshold undeniable signature scheme, and the other is a generalized group-
oriented undeniable signature scheme.

2.1 The (t,n) Threshold Undeniable Signature Scheme

System Setup

The trusted center T'C first determines the following public parameters:

— P, p: two large primes, such that P = 2p + 1.

— «: an element of order p in Zp.

— H(-): a collision free one-way hash function 2.

— I a security parameter (e.g. [ = 1023).

— x;: n public values, each z; is associated with the member U; such that

2 A a; i # ) (i) € A).

1 DC is an untruthful entity [15,13].

2 In order to guarantee the order of overwhelming part of H(m) is p, [LH99] required
that if the order of H(m) mod P is P — 1, then let H(m)? be the digest of message
m. Because this processing does not affect the discussion here, we will simply use
H(m) as the digest of message m.



After this, the T'C selects a secret random number S from Z, as the group
private key, and a random polynomial f(z) € Z,[z] of degree t — 1 such that
f(0) = S. Then, the T'C privately sends the share s; = f(z;) to the member U;
as his secret key, and publishes Y = o® mod P as the group public key.

Signing Protocol
Any ¢t members U; (i € B, |B] =t and B C {1,2,---,n}) can generate a

threshold undeniable signature on any message m as follows.

(1-1) Each U; calculates his partial undeniable signature z; = H(m)*“?: mod P,
where the Lagrange coefficient Cpg; is determined by

Cpi = Z x;/(z; — x;) mod p.
JEB,j#i
Then, U; sends z; to the DC.

(1-2) Upon receiving ¢ partial undeniable signatures, the DC' computes the thresh-
old undeniable signature Z on message m by

Z = H z; mod P (= H(m)ZiGB $iCpmed P y6d P = H(m)® mod P).
i€B

Confirmation Protocol

If t members U; (¢ € B) in the group agree to verify a undeniable signa-
ture pair (m, Z), then the verifier V' and these ¢ members run the following
confirmation protocol cooperatively.

(2-1) V chooses two random numbers a,b €r Z,, computes the value W =
H(m)®a® mod P and sends W to each member in B.

(2-2) After receiving W, each U; (i € B) selects a number k; €r Z,, and computes
the value K; = a* mod P. Then, all K; are broadcasted to let all members
in B compute a value R; by the following equation:

R =W H K; mod P(=W H ki mod P = Walsies ¥ mod P).
i€B i€B
Moreover, U; computes and broadcasts the following value R ;
R2,i = RlsicBi mod P.

Up to this, the DC' (and any member) calculates the following value Ro

Ry = [[ Rz mod P (= R{ mod P).
i€EB

At last, Ry and Ry are sent to verifier V.
(2-3) V sends a and b to each U; in B.



(2-4) Each member in B checks whether W = H(m)%a’. If it does hold, then the
value k =), p k; is revealed to V.

(2-5) V accepts (m, Z) as a valid signature pair if and only if the following two
equalities hold:

Ry =Wa* mod P, R, = Z°Y""* mod P.

Denial Protocol

Any t members, U; (i € B), can convince a verifier V that an alleged signature
pair (m, Z) is not generated by the group. For this goal, the following denial
protocol is run between these t members and V 3.

(3-1) V randomly selects two numbers ¢ € [0,!] and ¢ €g Z,,, then computes and
sends F1 = H(m)%a° mod P and E> = Z9Y ¢ mod P to each member in B.

(3-2) All members in B cooperate to find the value of ¢ by trial and error. Then,
each U; (i € B) chooses a random integer d; and sends blob(d;,q) to V as
his commitment to g 4.

(3-3) V sends ¢ to each member in B.

(3-4) Each member U; in B checks whether the following two equalities hold:

E, = H(m)% mod P, Ey=Z7Z7Y° mod P.

If they do hold, then each U; reveals his d; to the verifier V.
(3-5) V opens all blob(d;, q) to check whether all the committed values are equiv-
alent to ¢. If yes, V believes that (m, Z) is not generated by the group.

2.2 The Generalized Group-Oriented Undeniable Signature Scheme

Let £ be an access structure on A, i.e., the collection of all authorized sets B,.. To
allow each authorized set can generate a valid signature, Lee and Hwang designed
a simple and efficient generalized group-oriented undeniable signature scheme
such that each member has only one secret key. We only overview the setup
stage here because the signing, confirmation and denial protocols are almost the
same as the above scheme.

System Setup

Similar to the threshold case, the T'C' chooses S as the group private key, and
{P,p,a, Y} as the group public key. At the same time, the T'C' assigns a pair of
numbers (z;,s;) to each member U; in A, where z; is a public value and s; is
the secret key of member U;. Then, for each authorized set B, (|B;| = t,), the

3 In practice, if I = 1023, then the denial protocol could be conducted ten times to
reach the 1/2'°° level security [2]. That is, the occurrence of the following event is
no more than one in a million: V believes that S is not signed by the group, but in
fact S is the group’s signature on message m.

* blob(d;, q) means that the value of ¢ is committed by d; [2,12].



TC counstructs a polynomial f.(z) of degree t, by interpolating (¢, 4+ 1) points,
e. (0,5) and (z;,s;) (i € B,), as follows

(z — ;)
SH 0—z,) Z{ ) H_ ,(xi—xj)} mod p.
JjEB, 1€EDB,. JEB,, jFi

After this, the T'C' chooses a public value z., then computes and publishes
fr(z.) mod p for each B,.. Obviously, all f,.(z) have the properties that f,.(0) = S
and f.(z;) = s;, Vi € B,.. So, by using Lagrange interpolating equation on ¢, +1
points (z., f-(¢)) and (x;, s;) (i € By.), t, members in each B, can cooperatively
generate, confirm or deny a group-oriented undeniable signature in a similar way
as they did in the threshold scenario.

3 Five Attacks on Lee-Hwang Schemes

In [12], Lee and Hwang claimed that less than ¢ members in their threshold
scheme, or ¢, members in the generalized scheme, cannot generate, confirm or
deny the group-oriented undeniable signature. However, this is not true. We
demonstrate five attacks on their schemes: In the fist attack, against signing
protocols, one dishonest member can prevent honest members from generating
valid signatures but his cheating behavior is undetected; in the other four at-
tacks, against confirmation and denial protocols, one dishonest member (maybe
collude with the DC or a verifier V) can generate a valid signature on any cho-
sen message. So, these later four attacks are universal forgery, which should be
avoided in a secure digital signature scheme.

In the following attacks, for convenience but without loss of generality, we
always assume U; is dishonest and B = {1,2,---,¢}. Sometimes, the success of
an attack needs the help of the DC' or a verifier V, i.e. in this case, the DC' or
V' is also dishonest. This is reasonable because the DC' and V are untruthful
entities in the system. Here, we only describe attacks on Lee-Hwang threshold
undeniable signature scheme. Similar attacks can be applied to their generalized
group-oriented scheme.

3.1 One Attack on Signing Protocol

[Attack 1] In the signing protocol, no method is provided to verify the validity of
each partial signature z;. So dishonest member U; can cheat others by publishing
a false z; instead of true z;. Then, using his valid partial signature z; and
other published valid partial signature z; (if only the DC knows these valid
z;, we assume the DC colludes with U; and reveals these values to him.), he
can compute the valid threshold undeniable signature Z on message m by the
following equation.

¢
Z = ]._.[Zl mod P (= H(m)® mod P).
i=1



But the DC, other group members and the expected receiver of the valid
signature on message m can only get an invalid signature Z on message m by
the following equation

t
ZzZl-Hzi mod P.
=2

Once U gets the valid signature pair (m, Z), he keeps it secretly, and pub-
lishes it in a suitable time or reveals it to some relevant party for getting benefits.
When this unexpected receiver provides (m, Z) to the group and require to ver-
ify the validity of this signature pair, group members cannot deny it because is
indeed valid. The essence of this attack is that dishonest member U; (maybe
collude with the DC) successfully prevents other members from generating valid
signatures without any penalty, because his cheating behavior is undetected.

3.2 Two Attacks on Confirmation Protocol

[Attack 2] In this attack, U; colludes with a verifier V. Before attacking, they
have chosen a message m. Then V selects two numbers a and b, and computes W
normally. Member U, sets K1 = H(m)a* mod P, although each other member
U; (i = 2,---,t) honestly chooses k; and computes K; = ¥ mod P. After K
and all K; are broadcasted, Ry and R are calculated as follows

Ry =WEK K- K; mod P (= Wa** "% H(m) mod P),

Ry = R mod P (= ZeY " Mit+k [ (77)5 mod P).

Then, R, and Ry are sent to V and V reveals a and b to each member in B. At
last, k = k1 + k2 + -+ - + k; mod p is sent to V. Using the values of a, b and k,
Uy and V compute the signature Z on message m by the following equation

Z = Ry/(Z*Y"™") mod P (= H(m)® mod P).

[Attack 3] In this attack, under the assumption that Uy publishes the value
K last, he can get a valid threshold undeniable signature on any chosen message
m. The details are described as follows.

When U; has received W from V and all K; from U; (i = 2,3,---,t), he
computes and broadcasts his value K; as follows

Ky =H(m) (WK, K;)~! mod P.
Then, the following value Ry, instead of Ry, will be calculated by
Ry = WK K5+ K; mod P = H(m) mod P.

Followed by this value R1, Ry = RY mod P = H(m)® mod P will be produced.
Then, Ry and Ry are sent to V. As a response, V sends a and b back to each
member in B. Up to this, U; gets a valid signature pair (m, Ra).



In the step (2-4), Uy has the following two choices: (1) He selects a random
number k1 €g [0,p — 1] and reveals it to other members; (2) He disrupts the
confirmation protocol by telling other members that he lost the value of ky in
a reasonable excuse (e.g., by a computer crash). In the first case, V' will fail in
step (2-5) with probability of (p — 1)/p. But in the second case, possibly, the
protocol will be conduct again and this time U; behave honestly. Anyway, from
the above attack, U; gets a valid undeniable signature Ry on message m selected
by himself.

If U; cannot access the value of Ry, he will also succeed in this attack in
collusion with the DC or a verifier V to get Rs.

3.3 Two Attacks on Denial Protocol

[Attack 4] In [12], no details were given on how to find the value of g in the denial
protocol by trial and error method. A straightforward method is to compute the
values of Ef and H(m)® by using the signing protocol, then all members in B
find the value of ¢ from the following equation by trial and error:

EY/Ey = (H(m)®/Z)? mod P.

However, by exploring this method, the valid signature H(m)° on message m
is generated, so each member (and the DC') knows its value. Therefore, any
dishonest member of them can keep this signature privately or reveal it to a
third party which has interest in it. In some scenarios, it is also possible that all
members in B are unwilling to generate the signature on message m.

[Attack 5] U; colludes with a verifier V' to get a valid signature on any chosen
message m. For this sake, V prepares 1 = H(m) mod P and Es = Z%a° mod P.
When all members in B generated E7 by using signing protocol, U; knows
that this value is the valid signature Z on message m, i.e., Z = E{ mod P =
H(m)® mod P. In step (3-3), verifier V' disrupts denial protocol by claiming
he lost the value of ¢ because of a computer crash. Then, possibly, the denial
protocol will be repeated and at this time V behaves honestly. Generally, it
would be unreasonable to assume that the denial protocol will not be conducted
again only because a verifier erroneously sends a wrong value.

4 Other Weaknesses

Besides the five attacks demonstrated in the previous section, there are two
weaknesses in the Lee-Hwang schemes. Firstly, we need to add a requirement on
choosing values of all s; in their generalized scheme. Secondly, we address the
limitation of their schemes on how to efficiently and securely delete members.
In the generalized undeniable signature scheme, Lee and Hwang didn’t give
details about how to choose the secret sharing key s; for each member U;. If
the T'C simply selects these values as random numbers, it is possible that some
of fr(x) (see subsection 2.2) are not t,.-degree polynomials. Therefore, some



requirements should be met when selecting these values. For each authorized
subset B, = {i1,i2, ", }, let fr(z) = Z;T:o ar;jx’ (where, a,g = S). It is
obvious that the coefficients (a,g,ar1,- -+, ar,.) of f.(z) is the solution of the
following system of ¢, + 1 linear equations:

tr
— J -
Sij_zarjxijﬂ j_0717"'7tr-
Jj=0

We take s;, = S, 2;, = 0 and 0° = 1.

Let A, be the (. + 1) x (¢, + 1) coefficient matrix of the above linear
equations. According to Cramer’s rule, each a,; can be expressed as a,; =
det(A,;)/det(4,), forall j =0,1,---,¢.. A,; is the matrix obtained by replacing
the j-th column of A, with the column vector (s, 851, - -, 8;t,.). Since all x;, are
different, so Vandermonde matrix A, is nonsingular. Therefore, the necessary
and sufficient condition for f,.(z) to be a t,.-degree polynomial, i.e. a,¢, # 0, is
that

det(A, ) #0, VB, €L

Now, we discuss the problem about deleting members. In practical applica-
tions, members should be dynamically added or deleted according to the change
of structure of the group. Due to the existence of the trusted center TC, member
addition can be implemented easily in the Lee-Hwang schemes. However, how
to dynamically delete members seems difficult in their schemes. If one or several
members are deleted but the T'C' doesn’t update the group private key S, then
the information controlled by the deleted members can be used for generating
valid partial signatures. On the other hand, if the T'C' always updates the group
private key S after a member is deleted, each member’s secret key s; will be
updated too. This almost has no difference from re-setting up the whole system.
But in a large group, such an approach is inefficient due to expensive costs in
computation and communications. In fact, dynamically deleting member is an
open problem that stands in the way of practical applications of group-oriented
signatures [1].

5 Improvements

In the attack 1, the problem is that when a signature Z is generated, neither
the DC nor any member in B knows whether Z is a valid signature on message
m, unless all of them cooperatively conduct the confirmation protocol. If so, to
let all these ¢ members in B believe that they have generated a valid Z, the
confirmation protocol must be conducted t times: in each running instance, one
different member of them plays the role of verifier. If the scheme is improved
like this, other problem arises. For example, if all members in B are honest
in the procedures of generating and publishing their partial signatures, a valid
signature Z will be generated. But, in the verification procedure, one dishonest



member can conduct the confirmation protocol for an illegal verifier. The result
is that the illegal verifier is convinced of the validity of the undeniable signature
pair (m, Z) just when it is generated.

Therefore, in the signing protocol, some mechanisms, e.g. discrete logarithm
knowledge proofs [3, 18], should be provided such that any members in B can
verify the validity of partial signatures generated by others. At the same time,
each member should check whether Z is identical with the product of all z;,
t € B. Otherwise, the DC also can cheat honest members by publishing a false
Z which is not equivalent to the product of all z;.

The kernel problem in attacks 2 and 3 is that a dishonest member can use
a value of K; without knowing the value of k; such that K; = a* mod P. To
overcome this problem, some standard techniques, like knowledge commitments
or discrete logarithm knowledge proofs [3, 21], could be employed in confirmation
protocol.

The real reason for the success of attacks 4 and 5 is that values of the form
X% ie. EY and H(m)®, are generated in order to find the value of ¢ by trial and
error. A direct countermeasure is not to generate these values in the process of
finding q. Unfortunately, we have no idea to solve this problem at the moment.

6 Related Work

In [15], Michels and Horster discovered some attacks against several multiparty
signature schemes. Their attacks are in common that the attacker is an insider,
i.e. a dishonest group member, and the protocol will be disrupted. In fact, our
attack 4 is inspired by their attacks.

In [16], based on Schnorr’s signature scheme [19], Michels and Stadler pro-
posed an efficient convertible undeniable signature scheme in which confirmation
protocol and denial protocol are combined together into a verification protocol,
and furthermore, they extended their scheme to a (t,n) threshold undeniable
signature scheme. Since they used techniques of verifiable secret sharing of dis-
crete logarithms [17] and the particular form of values in verification protocol,
the attacks presented here cannot be applied to their scheme.

Base on the first undeniable RSA signature scheme [9] and Shoup’s threshold
RSA signature [21], Wang et al presented a threshold undeniable RSA signature
scheme in [23]. Our attacks presented here cannot be applied to this scheme
either because discrete logarithm knowledge proofs [3,21] are used to verify the
validity of partial signatures and no values of the form X¢ are calculated. Where
d, similar to the value of S in Lee-Hwang schemes, is the signing key in [23].

7 Conclusion

In this paper, we demonstrated five effective attacks on the Lee-Hwang group-
oriented undeniable schemes [12]. Four of these attacks are universal forgery, in
which one dishonest member (maybe collude with a verifier or the designated



combiner) can get a valid signature on any chosen massage, and the remainder
attack allows a dishonest member to prevent honest members from generating
valid signatures but his cheating behavior is undetected. To overcome some of
the problems involved in these attacks, heuristic improvements were also sug-
gested. But, how to solve the problem in the denial protocol is still open. At
the same time, the Lee-Hwang schemes have two strong limitations: it needs a
trusted center and cannot delete members efficiently. Furthermore, as pointed
out in [15], heuristic improvements cannot guarantee the security of a repaired
cryptosystem. So, threshold cryptosystems should be designed as provably secure
[22, 8]. These problems would be considered in the future research.
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