Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves

Tanja Lange

Information-Security and Cryptography,
Ruhr-University of Bochum,
Universitdtsstr. 150,

44780 Bochum, Germany,

lange@itsc.ruhr-uni-bochum.de,

http: //www.itsc.ruhr-uni-bochum.de/tanja

December 8, 2002

Abstract

We investigate formulae to double and add in the ideal class group of a hyperelliptic
genus 2 curve avoiding inversions. To that aim we introduce a further coordinate in the
representation of a class in which we collect the common denominator of the usual 4 coor-
dinates. The analysis shows that this is practical and advantageous whenever inversions
are expensive compared to multiplications like for example on smart cards.

1 Introduction

Hyperelliptic curve cryptography is now at the point of providing a real alternative to the
established elliptic curve cryptography. Using explicit formulae instead of Cantor’s algorithm
the complexity of arithmetic in the ideal class group of hyperelliptic curves is comparable to
that of elliptic curves (see [4, 5, 3] for genus 2). In the usual cases a general addition needs
1 inversion, 3 squarings and 22 multiplications whereas a doubling needs 2 more squarings.
Compared to elliptic curves the finite field has only half of the bit-size. Thus whenever one
would use elliptic curves in affine coordinates, i.e. allowing one inversion for each addition
resp. doubling, the ideal class group of a hyperelliptic genus two curve can now take that
role.

But there are environments in which inversions are extremely time or space critical. An
example are smart cards, as usually multiplications are optimized there, whereas divisions
are very slow — even with coprocessors . For elliptic curves one can fall back on several
inversion-free systems, like projective, Jacobian, Chudnovsky Jacobian, modified Jacobian
and mixed coordinates (see [2]).

So far there is only one article on a generalization of such ideas to genus two curves by
Miyamoto, Doi, Matsuo, Chao, and Tsuji [4]. Here, we take a similar approach obtaining
better running times and also allowing even characteristic for the finite field. To have a short
term we call the usual representation ’affine’ and the new one ’projective’ due to the obvious
resemblance with the elliptic case.

In addition, we consider a special kind of mixed coordinates: In applications the usual scenario
is that the device obtains a class in affine representation and computes a scalar multiple of



Tanja Lange, Inversion-Free Arithmetic 2

it. As inversions are slow, we allow the intermediate results to have an additional coordinate
containing the common denominator. In the course of computing, the doubling algorithm
usually obtains such a projective class and outputs one, but in the addition step one input is
in affine and the other in projective representation and the output is projective.

2 Background

In this note we use the same notation and approach as in Lange [3], thus we omit a long
introduction here and refer the reader to that paper (obtainable online). Like there we study
only the main cases in detail, as any special case occurs with very low probability and thus
can be either omitted or done by a less efficient routine.

The group one works in is the ideal class group of a maximal order of a hyperelliptic function
field. A hyperelliptic curve of genus two with an IF,-rational Weierstrafl point can be given
by an equation of the form

C:y? + (hox® + hiz + ho)y = 2° + faz* + f3z® + fox® + fiz + fo, hisfi €Fg,q=1p".

For short we write y? + h(z)y = f(z). Each class can be represented by an ordered pair of
polynomials [u,v] with 4 monic, degv < degu < 2 and with u|f —hv—v?. Most commonly we
have [u,v] = [22 + u1Z + ug, v1Z + vo] and the result [u/,v'] of adding two classes or doubling
one class has degu’ = 2 as well. In the process of computation one inversion is required
for each addition or doubling. Now, instead of following this line, we introduce a further
coordinate called Z like for elliptic curves and let the quintuple [Uy, Uy, V1, Vy, Z] stand for
22+ U1 /Z x+Uy/Z, V1| Z x + Vo) Z]. Tf the output of a scalar multiplication should be in the
usual affine representation we need one inversion and four multiplications at the end of the
computations. We now proceed in investigating the arithmetic in the main cases.

Like in the previous paper we state the formulae for arbitrary characteristic. If p is odd one
usually has h = 0 and if p # 5 also f4 = 0. In even characteristic h must be nonzero as
otherwise the curve would be singular. Furthermore, for security purposes the curve should
not be supersingular and this excludes the case of h = 1 which otherwise would be the most
efficient. For nonzero hy one can always achieve ho = 1. Furthermore, f; = 0 can easily be
achieved. In many cases one can also assume that hy, hg € {0,1}. Therefore we do not count
multiplications by these coefficients but include them in the formulae for completeness. If
these assumptions do not hold some steps should be arranged differently to maintain or only
slightly lower the efficiency.

3 Addition

Here we consider the case that we add two classes both in projective representation. This is
needed if the whole system avoids inversion and classes are transmitted using the quintuple
representation or if during the verification of a signature intermediate results should be added
(but see Avanzi [1] for an elegant and efficient way to avoid this) or when using precomputa-
tions to speed up and these are given in projective representation. Obviously this algorithm
also works for affine inputs if one writes [u1,v1] as [u11, u10,v11,v10,1]. The following table
lists the number of field operations needed to perform the respective steps. Numbers in brack-
ets refer to the case, that the first input is affine, i.e. has Z; = 1. See the next section for an
algorithm dedicated to this case.



Tanja Lange, Inversion-Free Arithmetic 3

Addition
Input | [U11,Uio, Vi1, Vio, Z1], [Ua1, Uao, Va1, Voo, Zo]
h = hoz? + hiz + ho, f = 2° + faz* + f323 + fox® + fiz + fo
Output | [U7, Uy, VI, Vg, Z'] = [Ur1, Uro, Vit, Vio, Z1] + [Ua1, Uzo, Vai, Vao, Zo]

Step | Expression Operations

1 precomputation: 5M
Z = ZiZiy, Uy = Z1Usy, Ugg = Z1Usg, Vo1 = Z1 Va1, Vog = Z1Vay; -)

2 compute resultant r of Uy, Us: 1S, 6M
z1 = Ui1Zo — Us1, 29 = Uy — U19Z2, 23 = U121 + 22471; (1S, 5M)
r = 2923 + Z%Um;

3 compute almost inverse of uy modulo u; :
1Y = 21, 1NVy = 23;

4 compute s: 8M
wo = Vi0Z2 — Voo, w1 = Vi1Z2 — Vay; (T™M)

Wo = INVQWQ, W3 = INVIW1;

s1 = (tnvy + Zrinvy)(wo + w1) — we — ws(Z1 + Ur1);
s0 = we — Urgws;

If s1 = 0 different case

5 precomputations: 1S, 9M
R=17r, sy =804, s3= 814, ﬁ = Rsg, E: 81(21 + ﬁgl);
S3 = 53, S = 5951, S = s3s1, S = sps3, R = RS;

6 compute [: 3M
lo = gﬁml lp = SUs, Iy = (S + 8) (U1 + Uzo) — lo — lo;
12 = 12 + g;

7 compute U’: 2S, ™

Ul = st + s121(t — 2s0) + zgg—}: )
+R(ha(s0 — t) + s1(m Z + 2V21) + (21 + 2Ua1 — f42));
Ul =28 — Sz + hyR — R,

8 precomputations: 4M
lo =1y — U{, wo = U(I)ZQ — S3lp, wy = U{lQ + Sg(U(I) — ll);

9 adjust: 3M
Z' = RSs, U = RU}, U} = RU};

10 compute V': 2M

Vo = wo + hoUg — 1?‘720 —hoZ";
Vi = wi 4 hoU} — RV — m 7',
| total 48, 47TM (4S, 40M) |

Remark: If in characteristic 2 one additionally has f4 = 0, one need not precompute ¢ in
Step 5 and therefore saves 1 multiplication as 3
U = s3 + S121(21 + Ua1) + 23S + R(haso + 21(r + has1) + s1(h1Z + halUs1)).

4 Mixed Addition

Assuming that one computes a scalar multiple of a class in affine representation using
(signed) double-and-add, one enters the addition algorithm with the fixed class in affine



Tanja Lange, Inversion-Free Arithmetic 4

representation and the intermediate result in projective. In the previous algorithm we treated
this as a less expensive case of the general addition. Now we show how a special algorithm
for this case can even do better.

Mixed Addition

Input | [U11,Uio, Vi1, Viol, [U21, U2o, Va1, Vao, Zo]
h = hox® + hix + ho, f = 2° + faz* + f3x3 + fox? + fiz + fo
Output | [U1, Uy, VI, Vg, Z'] = [U11, Uro, Vi1, Vio] + [Ua1, Uao, Var, Voo, Zo]

Step | Expression Operations

1 compute resultant r of Uy, Us: 1S, 5M

z1 = U112 — Uay, 29 = Uy — U19Z2, 23 = Ur121 + 29;
r = 2923 + Z%Um;

2 compute almost inverse of uo modulo w1 :
YL = 21, 1NVy = 23;
3 compute s: ™

wo = VigZa — Voo, w1 = V1122 — Va1, wa = invpwy, w3 = inviws;
s1 = (tnwg + invy)(wo + wy) — we — ws(1 + Uty);

s0 = we — Urpws;

If s; = 0 different case

4 precomputations: 2S5, 6M
R = 81T, Rz = ’1”2, Sl = S%, S = 8180, S = 5122;

5 compute [: 3M
lo = $51Us1, lo = SUz, l1 = (S1 + S)(U21 + Uzo) — l2 — lo;
Iy =lp+ S

6 compute U’: 10M

Uy = (so — U1151)(Za(so + her) — z181) + 2251 + U1 S+
+Ri(h122 + 2V21) + Rz(zl + 2Uy1 — f4Z2);

Ul =28 — 2181 + hoR — ZyRy;

7 precomputations: 4M
ly =ly — U}, wo = Uly — Sly, w1 = Ujly + S(U — 11);

8 adjust: 3M
Z' = RS, U] = RU}, U, = RU};

9 compute V': 2M

Vi = wo + hoU§ — RVag — hoZ";
V] = wy + hoU] — RVoy — hi Z';
‘ total 3S, 40M ‘

Remarks:

1. Using the above algorithm one saves 1 squaring more than is obvious form the general
addition algorithm. Thus it is worthwhile to implement this special algorithm in the
setting that the algorithm is to compute scalar multiples, classes given in affine repre-
sentation. If on the other hand one wants to avoid inversions at all and also usually gets
inputs in projective representation, the loss is not too large if the general algorithm is
implemented and is occasionally fed with an affine class.



Tanja Lange, Inversion-Free Arithmetic 5

2. In characteristic 2 one saves an additional multiplication in Step 6 as R(h1Zo+2Vy) =
Rhy and h; is assumed to be small.

5 Doubling

For the doubling algorithm the input is almost always in projective representation.

Doubling

Input [Ul,U(),Vl,V(),Z]
h = hez? + bz + ho, f = 2° + faz* + f32° + for® + fiz + fo
Output | [U, Uy, V{, Vg, Z'] = 2[Ur, Uy, V1, Vo, Z]

Step | Expression Operations

1 compute resultant and precomputations: 3S, 4M

Zo =72, Vi = Z+2Vi — hoUy, Vo = hoZ + 2Vy — haolUp; | (see below)
woy = V12, w1 = U12, wo = ‘712, w3 = %Z - U1V1;
r = f/()’w?, + UJQU();

2 compute almost inverse:
invy = — V1, invyg = ws;
3 compute k: ™

w3 = f3Zs + w1, wy = 2Up;

k1 = 2wy + w3 — Z(wy + 2f4,U1 + hoV1);

ko = Ui(Z 2wy + f4Uy + hoV1) — w3)+
+Z(Z(f2Z — Vihy — Voha — 2 f4Uy) — wo);

4 compute s = kinv mod u: ™

wy = koinvg, w1 = k1invy;

sg = (invg + inv1) (ko + k1) — wo — (1 4+ Up)wy;
§1 = S3Z, S0 = Wy — ZU()’wl;

If sy = 0 different case

5 precomputations: 2S, 6M
R=Z5r, R=Rs1, S1 = S%, So 33, t = haso;

81 = 8183, 89 = 8083, S = 94, R = Rsq;

6 compute [: 3M
lo = Uysy, ly = Upso, lh = (s1+ s0) (U1 + Up) — la — lo;
7 compute U’: 18, 4M

Uy = So + R(s3(2V1 — hoU1 + h1 Z) +t + Zr(2U1 — fuZ));
Ul =25+ hyR — R,

8 precomputations: 4M
lo=10+5— U{, wo = U(I)lQ — Silg, w1 = U{ZQ + Sl(U(l) — ll);

9 adjust: 3M
Z' = S1R, U = RU}, U} = RU};

10 compute V': 2M

Vg = wo + haUy — RVy — hoZ';
Vi = wy + hoU} — RV} — by Z';
‘ total 65, 40M ‘




Tanja Lange, Inversion-Free Arithmetic 6

Remarks:

1. First

of all one notices that doublings are much faster than general additions; this is

especially interesting as doubling occur much more frequently than additions in any
algorithm to compute scalar multiples.

2. Conc

erning the counting in Step 1 a remark is in order. Unless the characteristic is

odd and h # 0, the computation of Z2, V2, UZ and f/l? needs only 3 squarings instead
of the obvious 4. (In detail: if for odd characteristic h = 0 then V2 = 4V2. If p = 2

then

VZ = h3U? 4+ h3Z? and hy,hy € {0,1}. These details can be fixed for an actual

implementation.)

3. The numbers and formulae in the algorithm present the best average; for any specific

choic
ment

(a)
(b)

()

e of p, h and f some operations can be left out or be replaced by cheaper ones. We
ion the following.

If f3 = 0 one saves 1S and 1M as Z, = Z2? and Z,f3 need not be computed. R is
computed via R = (rZ)Z, as rZ is needed anyway, unless p =2 and f; =0

If in odd characteristic h = 0 and f4 = 0 one saves 2M in the computation of ky =
U1(2Zwy —w3) + Z(faZo — wp) as Zwy is already obtained during the computation
of ]{)1.

In characteristic 2 we can do even better. In the first step, Vl = h1Z + hoU; and
V() = h()Z + hQU(). Therefore we have w3 = h0Z2 + Z(h2U0 + hlUl) + h2w1 which
can be computed directly, hence, saving 1 multiplication. In Step 3 we replace
wg = ZV; and use it in k1 and kg leading to 6 M in this step. Furthermore, U} can
be computed with only two multiplications as Uy = Sy+ R(s3(hoU1+h1Z)+t+Rf4)
reducing the number of multiplications by 2M. In total this is —4M.

If additionally Ay = 0 the number of multiplications can even be reduced to 33M:
In Step 1 the computation of wy is not needed, ws can be done with 1 multipli-
cation like above and r = Zs(h2Z + hoh1U;y + h3Up). In Step 3, ws = 0 and the
multiplication to obtain k; vanishes. Including the computation of Ry = R? in the
precomputation Step 5 allows to reduce the number of multiplications by two as
Uy = Sy + hiR+ fiRy and U} = 25 + Ry.

Using binary Koblitz curves one has h, f € Fy[z], thus multiplications by fo and
f3 need not be counted, there are 2 such occurrences.

Combining with what was said above, the minimal number (up to my present
knowledge ...) of operations for a doubling in this case with hy =0 is

6S, 31M.

6 General Remarks and Outlook

We gave algorithms to perform inversion free arithmetic on hyperelliptic genus two curves that
are faster than any previous and also dealt with mixed addition. The practical implementation
on smart cards is investigated, first results will be presented at ECC 2002 - The 6th Workshop

on FElliptic

Curve Cryptography.

It is interesting to note that the value of the additional coordinate Z’' was not kept minimal.

One could

have avoided (at least) a factor of Z2Z, in the addition and of Z in the doubling.



Tanja Lange, Inversion-Free Arithmetic 7

However, as we tried to minimize the number of operations, we allowed the larger value of
Z%rs3 in both cases as this proved to be more efficient. Besides one sees that U] and U}, have
to be adjusted to have the same (larger) denominator Z’ as V{, V.

The author is currently investigating a generalization of weighted projective coordinates to
genus two curves not at least to avoid these extra multiplications in the adjustment step.
Additionally she looks for optimal matches to use mixed coordinates (this time the term
'mixed coordinates’ in the meaning of [2]).

References

[1] R.M. Avanzi. On multi-exponentiation in cryptography. Preprint.

[2] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed
coordinates. In Proceedings of Asiacrypt’98, volume 1514 of Lecture Notes in Comput.
Sci., pages 51-65. Springer, New—York, 1998.

[3] T. Lange. Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite
Fields via Explicit Formulae. Cryptology ePrint Archive, Report 2002/121, 2002.
http:/eprint.iacr.org/ or http:/www.itsc.ruhr-uni-bochum.de/tanja.

[4] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, and S. Tsuji. A fast addition algorithm of
genus two hyperelliptic curve. In Proc. of SCIS2002, IEICE Japan, pages 497-502, 2002.
in Japanese.

[6] M. Takahashi. Improving Harley Algorithms for Jacobians of genus 2 Hyperelliptic Curves.
In Proc. of SCIS2002, IEICE Japan, 2002. in Japanese.



