
Applying General Access Structure to Proactive
Secret Sharing Schemes

(Corrected Version)

Ventzislav Nikov1, Svetla Nikova2 ?, Bart Preneel2, and Joos Vandewalle2

1 Department of Mathematics and Informatics,
Veliko Tarnovo University,

5000 Veliko Tarnovo, Bulgaria
vnikov@mail.com

2 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Heverlee-Leuven, Belgium
svetla.nikova, bart.preneel, joos.vandewalle@esat.kuleuven.ac.be

Changes

S. Fehr [11] pointed out that denoting the complement ΓA = ∆c
A as honest

(or good) players structure appears to be a misleading term. Actually its dual
access structure Γ⊥

A should be called the honest (or good) players structure,
since for any set G of good players the complement Gc is the set of corrupted
players from ∆A. This reflects in some changes of the notations in Theorem 2
and Theorem 3 as well as in changes of the notations for good players structure
in some protocols.

Abstract. Verifiable secret sharing schemes (VSS) are secret sharing
schemes (SSS) dealing with possible cheating by participants. In this
paper we use the VSS proposed by Cramer, Damgard and Maurer [6, 7, 5].
They introduced a purely linear algebraic method to transform monotone
span program (MSP) based secret sharing schemes into VSS. In fact,
the monotone span program model of Karchmer and Wigderson [14]
deals with arbitrary monotone access structures and not just threshold
ones. Stinson and Wei [17] proposed a proactive SSS based on threshold
(polynomial) VSS. The purpose of this paper is to build unconditionally
secure proactive SSS over any access structure, as long as it admits a
linear secret sharing scheme (LSSS).

1 Introduction

Proactive security for secret sharing was first suggested by Ostrovski and Yung
in [15], where they presented, among other things, a proactive polynomial secret

? The author was partially supported by NATO research fellowship and Concerted
Research Action GOA-MEFISTO-666 of the Flemish Government.

sharing scheme. The proposed polynomial secret sharing proactive scheme in
[15] uses the verifiable secret sharing scheme of [16]. Proactive security refers to
security and availability in the presence of a mobile adversary. Herzberg et al.
[12] further specialized this notion to robust secret sharing schemes and gave a
detailed efficient proactive secret sharing scheme. “Robust” means that in any
time period, the shareholders can reconstruct the secret value correctly. There
are also many papers that discuss proactive security, see e.g. the references in
[16, 15, 12, 17].

We call the groups who are allowed to reconstruct the secret qualified, and the
groups who should not be able to obtain the information about the secret for-
bidden. The collection of all qualified groups is denoted by Γ , and the collection
of all forbidden groups is denoted by ∆. In fact Γ is monotone increasing and ∆
is monotone decreasing. The tuple (Γ,∆) is called access structure if Γ ∩∆ = ∅.
If Γ ∪ ∆ = 2P , where P is the set of participants, then we say that (Γ,∆) is
complete and we denote it by Γ . Otherwise we say that (Γ,∆) is incomplete.
By Γ− we denote the collection of minimal sets of Γ and by ∆+ we denote
the collection of maximal sets of ∆. It is obvious that the (Γ−,∆+) generate
the (Γ,∆). We will consider general monotone access structure (Γ,∆), which
describes subsets of participants that are qualified to recover the secret s ∈ K
(K - finite field) in the set of possible secret values.

There exists an adversary A which can corrupt a set of servers during any time
period. Corrupting a server means learning the secret information in the server,
modifying its data, sending out wrong message, and so on. Since the server can be
rebooted, the adversary is a mobile one. The collection of all possible corrupted
servers for fixed time period we call bad and is denoted by ∆A. The collection
of all possible uncorrupted servers for the same period of time we call good and
we denote it by Γ⊥

A . So, we can consider a second complete access structure Γ⊥
A ,

which is called an adversary access structure [13].
The simple example of adversary access structure is to set a number b to be

the maximum number of broken (corrupt) servers by adversary for fixed time
frame (i.e. threshold case).

The contribution of this paper is twofold: First, we introduce new operation
for the access structures which extends the notion of Q2(Q3) adversary structure
introduced by Hirt and Maurer [13]. This operation characterize which adversary
structure can be tolerated. Also this operation allows us to study how the partic-
ipants and the adversary structures are linked. Second, we propose a proactive
SSS for general access structures for both, participants and adversary, as long
as the participants access structure admits a LSSS and some conditions for both
access structures hold.

2 Preliminary

2.1 Notations

Let K be finite field. An (n, t)-Vandermonde matrix (over K) with t < n, is
a matrix whose i-th row is of the form (1, αi, ..., α

t−1
i), where α1, ..., αn ∈ K.

For an arbitrary matrix M over K, with m rows labelled by 1, . . . ,m and for
arbitrary non-empty subset N of {1, . . . ,m}, let MN denote the matrix obtained
by keeping only those rows i with i ∈ N . If {i} = N we write Mi. Consider the
set of row-vectors vi1 , . . . , vik

and let N = {i1, . . . , ik} be the set of indices, then
we denote by vN the matrix consisting of rows vi1 , . . . , vik

. Instead of < ε, vi >
for i ∈ N we will write < ε, vN >. Let MT

N denote the transpose of MN , and let
ImMT

N denote the K-linear span of the rows of MN . We use KerMN to denote
the kernel of MN , i.e. all linear combinations of the columns of MN , leading to
0.

It is well known that any square Vandermonde matrix has non-zero determi-
nant. If M is an (n, t)-Vandermonde matrix over K and N is non-empty subset
of {1, ..., n}, then the rank of MN is maximal (i.e. is equal to t, or equivalently,
ImMT

N = Kt) if and only if |N | ≥ t. More over: Let ε denote the column vector
(1, 0, ..., 0) ∈ Kt. If |N | < t, then ε /∈ ImMT

N , i.e. there is no λ ∈ K |N | such that
MT

Nλ = ε.
Let us define the standard inner product < x, y > and x ⊥ y, when < x, y >=

0. For a K-linear subspace V of Kt, V ⊥ denotes the collection of elements
of Kt, that are orthogonal to all of V (the orthogonal complement), which is
again a K-linear subspace. For all subspaces V of Kt we have V = (V ⊥)⊥,
(ImMT

N)⊥ = KerMN or ImMT
N = (KerMN)⊥, < x,MT

Ny >=< MNx, y >
Hence from ImMT

N = (KerMN)⊥ follows the lemma.

Lemma 1. [5] The vector ε /∈ ImMT
N if and only if there exists k ∈ Kt such

that MNk = 0 and k1 = 1.

Let v = (v1, . . . , vt) ∈ Kt; w = (w1, . . . , wt) ∈ Kt; The tensor product v ⊗ w is
defined as a matrix t× t that the j-column is equal to vjw.

2.2 Definition

Now, generalizing the notion of Q2(Q3) adversary structure introduced by Hirt
and Maurer [13], we introduce a new operation for the access structure.

Definition 1. For the access structure (Γ,∆) we define the operation ∗ as fol-
lows: n ∗∆ = {A = A1 ∪A2;A1 ∈ (n− 1) ∗∆,A2 ∈ ∆}, for n = 2, 3,

Let us consider the tuples (Γ,∆), (Γ, 2∗∆), . . . , (Γ, n∗∆). They are access struc-
tures if and only if Γ ∩ n ∗∆ = ∅.

Definition 2. For the complete access structure Γ we define the operation ∗ as
follows: First we set ∆ = 2P \ Γ and (as in Definition 1) calculate n ∗∆. Then
we define n ∗ Γ = 2P \ n ∗∆, for n = 2, 3, . . .

Now we can consider the sequence Γ, 2 ∗ Γ, . . . , n ∗ Γ , of access structures if and
only if n ∗ Γ 6= ∅, i.e. if n ∗ Γ is non-trivial one.

Lemma 2. Let Γ be a complete access structure, then n ∗ Γ 6= ∅ for every n if
and only if there exists a Pi ∈ P such that {Pi} /∈ ∆.

2.3 The settings

We will follow the settings of the scheme in [15, 12, 17]. Consider system of n
servers P = {P1, P2, . . . , Pn}, which are connected to a common broadcast chan-
nel. We can also assume that the system is synchronized. To make things simpler,
we assume that there are private channels between each pair of servers and that
the messages sent by broadcast are safely authenticated. With this assumptions,
we are able to focus on the proactive scheme itself.

There is also a dealer D who should share the secret s ∈ K and a mobile
adversary A. For the system of servers P , we consider the access structure (Γ,∆)
of qualified and forbidden groups. Since this access structure is set up in the
beginning of the procedures and is not changed during the all life of the system
we will call it static. On the other hand the adversary access structure Γ⊥

A

is dynamic. We prove in this paper that if both access structures fulfill some
requirements it is possible to build an unconditionally secure proactive scheme.

3 VSS

Since secret sharing was proposed initially by Shamir [18] and Blakley [2], re-
search on this topic has been extensive. In the “classic” secret sharing schemes,
there are assumed to be no faults in the system. Chor et al. [8] first defined the
complete notion of VSS. There are two aspects of the security in a VSS. One
is the security of the secret and the other is the security of the verification. In
[1] it was shown that in any unconditionally secure threshold VSS, b < n/3. In
[17] Stinson and Wei proposed more efficient unconditionally secure VSS with
threshold t and with b ≤ n/4− 1.

In this section we provide an unconditionally secure VSS which will be used
in the proactive scheme later.

3.1 LSSS and MSP

Brickell [4] points out how the linear algebraic view leads to a natural extension
to a wider class of secret sharing schemes that are not necessarily of the thresh-
old type. These have later been generalized to all possible so-called monotone
access structures by Karchmer and Wigderson [14] based on a linear algebraic
computational device called monotone span program (MSP).

Definition 3. [14, 5] The quadruple M = (K,M, ε, ψ) is called a monotone
span program, where K is a finite field, M is a matrix (with m rows and d ≤ m
columns) over K and ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function. The
size of M is the number of rows m.

Here ψ labels each row with a number from [1, . . . ,m] corresponding to a fixed
player, so we can think of each player as being the “owner” of one or more rows.
And for every player we consider a function ϕ which gives the set rows owned
by the player. In some sense ϕ is the inverse of ψ.

Theorem 1. [3, 9] MSP is said to compute an access structure (Γ,∆) if and
only if it is the case that:
a) ε ∈ ImMT

N when N is a member of Γ .
b) ε /∈ ImMT

N when N is a member of ∆.

A SSS is linear if the dealer and the participants use only linear operations to
compute the shares and the secret. Each linear SSS (LSSS) can be viewed as
derived from a monotone span program computing its access structure. On the
other hand, each monotone span program gives rise to an LSSS. Hence, one can
identify an LSSS with its underlying monotone span program. Note that the size
of M is also the size of the corresponding LSSS. Now we will consider any access
structure, as long as it admits a linear secret sharing scheme.

3.2 Definition

Now a formal definition of VSS follows.

Definition 4. [17] Suppose there are a dealer D and participants P1, . . . , Pn

connected by private channels. They also have access to broadcast channel. There
is a static adversary A, that can corrupt a set of the participants from ∆A in-
cluding the dealer D. Here static means that the participants controlled by the
adversary are fixed.
Let π be a protocol, consisting of two phases: Share and Reconstruct.
At the beginning of the Share the Dealer inputs a secret s ∈ K.
At the end of Share each participant Pi is instructed to output a Boolean value
veri.
At the end of Reconstruct each participant is instructed to output a value in
K.

Now we are ready to define unconditionally secure VSS, as follows.

Definition 5. [17] The protocol π is unconditionally secure Verifiable Secret
Sharing protocol if the following properties hold:

1. If a good player Pi outputs veri = 0 at the end of Share then every good
player outputs veri = 0;

2. If the dealer D is good, then veri = 1 for every good Pi;
3. If a group of good players Pi output veri = 1 at the end of Share, then

there exists an s′ ∈ K such that the event that all good Pi output s′ at the end
of Reconstruct is fixed at the end of Share and s′ = s if the dealer is good;

4. If |K| = q and s is chosen randomly from K, and the dealer is good,
then any forbidden coalition cannot guess at the end of Share the value s with
probability better than 1/q.

One obvious requirement for the access structures is the following.

Lemma 3. Let the adversary access structure be Γ⊥
A and the considered access

structure for participants P be (Γ,∆). In order to build the VSS based on linear
SSS the following conditions should hold:
i) ∆A ⊆ ∆;

ii) Γ ⊆ Γ⊥
A ;

i.e. the set of bad servers is a subset of the set of forbidden ones, and the set of
good servers is a subset of the set of good ones.

3.3 VSS with a dealer

We first state the share phase as follows.

Distribution (Share) Phase Let s ∈ K be a secret.
1. The dealer D chooses a random symmetric matrix R ∈ Kd,d, subject to s

in its upper left corner. He sends vϕ(k) = Mϕ(k)R (the row-vectors) to Pk.
2. After receiving vϕ(k), each Pk sends Mϕ(e)v

T
ϕ(k), to Pe for 1 ≤ e ≤ n,

(e 6= k).
3. Each Pe checks whether Mϕ(e)v

T
ϕ(k) = vϕ(e)M

T
ϕ(k), for k = 1, . . . , n, (k 6= e).

If Pe finds that this is not true then Pe broadcasts accusation to Pk in the form
(e, k).

4. Each Pi computes the minimum subset G ⊂ {P1, . . . , Pn}, such that any
ordered pair (e, k) ∈ G × G is not broadcasted. If G ∈ Γ⊥

A , then Pi outputs
veri = 1 otherwise Pi outputs veri = 0.

It is obvious that every good participant computes the same subset G at the
end of Share. Next we consider the reconstruction phase. Note that although
the adversary is static, he could provide correct information in Share phase but
wrong information in Reconstruction phase. It means that the adversary access
structure in reconstruction phase is (2 ∗ ΓA)⊥.

Reconstruction Phase 1. Each player Pi sends the < εT , vϕ(i) > to Pk, where
i, k ∈ G.

2. After receiving the information, Pk computes λ, such that MT
ϕ(G̃)

λ = ε,

for some group G̃ ⊂ G and G̃ ∈ (2 ∗ ΓA)⊥.
3. Denote by R1 the first column in R. So, s =< R1, ε >=< R1,M

T
ϕ(G̃)

λ >=
< Mϕ(G̃)R1, λ >=< (Mϕ(G̃)R)1, λ >= < (Sϕ(G̃))1, λ >, where (Sϕ(G̃))1 is the
column-vector of the first coordinates of each share, i.e. < εT , vϕ(G̃) >.

Note that joint information held by the players in G is Sϕ(G) = Mϕ(G)R.
We are now in position to prove the following theorem.

Theorem 2. The scheme of this section is an unconditionally secure verifiable
secret sharing scheme if the following condition is satisfied:

iii) (2 ∗ ΓA)⊥ ⊆ Γ .

Proof. We prove that the above scheme satisfies the conditions of the VSS as
follows.
1. If a good player Pi outputs veri = 0, then all players in G̃ ∈ (2 ∗ ΓA)⊥ will
also output veri = 0.
2. If the dealer is good, then since R is symmetric we have (MiR)T = RMT

i and
hence Mjv

T
i = vjM

T
i holds for all good players Pi, Pj . Thus all good players are

in G̃. Therefore veri = 1 for each good player Pi.

3. Suppose that all players from G ∈ Γ⊥
A output veri = 1 at the end of the

Share. Then in G no one complained to the others. Since we assume that there
are ∆A bad players, there are at least G̃ ∈ (2 ∗ΓA)⊥ good players in G. Further
because of condition iii) the players in G̃ can determine the secret s′ ∈ K. Of
course s′ = s if the dealer is good.
4. Regarding privacy let N be the “rejected” set and let us consider joint infor-
mation held by the players in N , i.e. Sϕ(N) = Mϕ(N)R. Let u ∈ K be arbitrary
and k satisfy Mϕ(N)k = 0 and k1 = 1. Then k⊗k is a symmetric matrix, which
has 1 in its upper left corner and satisfies Mϕ(N)(k⊗ k) = 0. This is enough to
show that for each possible secret, the number of symmetric matrices with that
secret in its upper left corner and consistent with the joint information of N are
the same. Consider the equation Mϕ(N)(R + (u− s)k⊗ k) = Sϕ(N) and let the
first coordinate of the first column vector be equal to u. This means that from
the point of view of the players in N , Sϕ(N) can be consistent with the secret
u. The number of R̃ ∈ Kd,d with u in its upper left corner is clearly equal to
|KerMϕ(N)| (which is independent of u) and the players in N have no infor-
mation about s (here we must take into account that all elements of R, except
possibly the first one, have been chosen at random). Note that from iii) it follows
that for any B ∈ 2 ∗∆A we have Bc ∈ Γ . ut

3.4 VSS without dealer

Secret sharing without dealer means that there is no dealer in the scheme, who
knows and distributes the secret. We can remove the dealer from our scheme
as follows. The other properties of the scheme are the same as in the previous
subsection.

Distribution Phase 1. Each Pk chooses an independent symmetric matrix
R(k) subject to sk be in the upper left corner. Then Pk sends v(k)

ϕ(e) = Mϕ(e)R
(k)

to Pe through a private channel.
2. After receiving v

(k)
ϕ(e) each Pe sends Mϕ(j)(v

(k)
ϕ(e))

T to Pj for 1 ≤ j ≤ n

through a private channel.
3. Pj checks whether Mϕ(j)(v

(k)
ϕ(e))

T = v
(k)
ϕ(j)M

T
ϕ(e) for 1 ≤ e ≤ n. If Pj finds

that this is not true, then Pj broadcasts accusation (k; j, e).
4. For every k 6= j, each player Pj computes the maximum subset G(k), such

that for any pair (j, e) ∈ G(k) × G(k), (k; j, e) is not broadcasted. If G(k) ∈ Γ⊥
A ,

then Pj says Pk is a honest dealer and puts the value k in a list G.
5. If G ∈ Γ⊥

A , then Pj outputs verj = 1 and computes his share as
vϕ(j) =

∑
e∈G v

(e)
ϕ(j). Otherwise, Pj refuses the shares and outputs verj = 0.

Reconstruction Phase This phase is the same as in the previous scheme. Note
that in this case the shared secret is s =

∑
i∈G si In this scheme each player in

turn plays the role of the dealer. Thus the security of the scheme follows from
the security of previous scheme. We need only to show that each good player has

the same list G, which is obvious. So, we obtain a key pre-distribution scheme
without dealer.

4 Proactive scheme

The secret value needs to be maintained for a long period of time. The life
time is divided into time periods which are determined by the global clock. At
the beginning of each time period the servers engage in an interactive update
protocol. The update protocol will not reveal the value of the secret. At the
end of the period the servers hold new shares of the secret. We distinguish the
following phases in each time period [12]. At the beginning we have Distribution
or Recovery, during the period Renewal and at the end Reconstruct or Detection
followed of Recovery for the beginning of next period.

It is a common expectation that once we have the concept of proactivity very
often it is quite easy to add it on top of an existing distributed protocol as VSS,
notwithstanding many known VSS are not easy to adapt for proactive property.
All proactive schemes known to the authors are for the threshold case; in this
section we propose a scheme applying general access structure.

4.1 Distribution Phase

In the initial step, we assume that there is a dealer to set up the scheme. After
the initialization phase the dealer will no longer be needed.

In the initialization, we use the share phase of the VSS described before. The
first four steps are the same. Then the last one is as follows:

5. If the set of the servers with output veri = 1 is from Γ⊥
A , then the dealer

D erases all the information about the scheme on his end. Otherwise the dealer
reboots the whole system and initializes the system again.

4.2 Share Renewal

In this phase we will use one additional row to the matrix M and denote it by
M0 = (1, 0, . . . , 0). In the Share Renewal phase, all good servers G from the
distribution phase do the following:

1. Each server Pe ∈ G selects a random symmetric matrix R(e), subject to 0
being in upper left corner.

2. Pe sends v(e)
ϕ(k) = Mϕ(k)R

(e) to all Pk by a private channel and broadcasts

v
(e)
0 = M0R

(e).

3. Pk checks whether v(e)
ϕ(k)M

T
0 = Mϕ(k)(v

(e)
0)T and < v

(e)
0 , εT >= 0. If the

conditions are satisfied, then Pk computes and sends to Pj the valuesMϕ(j)(v
(e)
ϕ(k))

T .
Otherwise Pk broadcasted an accusation of Pe.

4. Pj checks whether Mϕ(j)(v
(e)
ϕ(k))

T = v
(e)
ϕ(j)M

T
ϕ(k) for the values of e not

accused by some set of servers from (2 ∗ ΓA)⊥ (in step 3). If the set of values
of k for which equations are not true is from (2 ∗ ΓA)⊥, then Pj broadcasts an
accusation of Pe.

5. If Pe is accused by some set of servers from (2 ∗ ΓA)⊥ (from steps 3 and
4), then he can defend himself as follows. For those Pi that Pe is accused by, Pe

broadcasts v(e)
ϕ(i). Then all servers Pk check whether v(e)

ϕ(k)M
T
ϕ(i) = Mϕ(k)(v

(e)
ϕ(i))

T

and broadcast “yes” or “no”. If the set of servers broadcasting “yes” is from
(2 ∗ ΓA)⊥, then Pe is not a bad server.

6. Pj updates the list of bad servers L by including all values e for which Pe

is accused by at least one set from (2 ∗ ΓA)⊥ or found bad in the previous step.
Then Pj updates its shares as vj ←− vj +

∑
e/∈L v

(e)
j .

In this phase the real shares are not involved, so no information about them
could be revealed. Secondly, from the protocol we know that every good server
should have the same list L. Therefore, the good server will keep consistent
shares after renewal.

Note that a good server Pe can be accused by at most 2 ∗∆A servers. In this
case, Pe will broadcast its defense. On the other hand, suppose Pe gives to Pi a
wrong share, i.e the received share Pi is not consistent with some set of servers
from (2∗ΓA)⊥. Then Pi will accuse Pe in step 4. If Pe broadcasts a correct share
in the defense, then Pi can correct his share. Otherwise Pe will be found to be
bad.

4.3 Recover a share

When a server is corrupted or replaced, it needs to be rebooted and thus it needs
to recover the secret shares.

Detection First we provide a protocol, to detect the corrupted servers, which
we call detection.

1. Pe computes and sends Mϕ(k)v
T
ϕ(e) to Pk for k = 1, 2, . . . , n by private

channels.
2. Pk checks whether Mϕ(k)v

T
ϕ(e) = vϕ(k)M

T
ϕ(e). Then broadcasts an accu-

sation (k, e), which contains those e, such that the equations are not true or
Mϕ(k)v

T
ϕ(e) was not received.

3. Each good server (e.g. not in L from renewal phase) updates the list L so
that it contains those e accused by some set of servers from (3 ∗ ΓA)⊥.

At the end of the detection we have a set of bad servers L and corresponding
set of good servers G = P \ L.

Recovery After running detection in the end of the time period the system will
recover the shares for all servers Pe, e ∈ L which is in fact the beginning of the
new time period for the system. The recovery protocol is as follows.

1. For each e ∈ L the server Pe is rebooted.
2. Every good server Pi (i /∈ L) computes and sends Mϕ(e)v

T
ϕ(i) to Pe.

3. Upon receiving the data, Pe computes rows vϕ(e), such that Miv
T
ϕ(k) =

viM
T
ϕ(k), i ∈ ϕ(e) for some set of indices k from (3 ∗ ΓA)⊥ it received. Pe sets

vϕ(e) as its shares.
Remark: Let us denote by cϕ(k) = Miv

T
ϕ(k), for i ∈ ϕ(e) and k /∈ L. So Pe is

searching for vectors (shares) vi ∈ Kd, i ∈ ϕ(e) such that the following system

of equations holds viM
T
ϕ(G) = cϕ(G). Now we conclude that from the pairwise

checking protocol and the requirement v) from Theorem 3 such a vector vi always
exists and is unique.

Recall that cϕ(G) = Miv
T
ϕ(G) = MiRM

T
ϕ(G) hence there exists always a solu-

tion vi of the equations viM
T
ϕ(G) = cϕ(G). So, the question is whether the solution

is unique. M. van Dijk [10] observes in the proof of Theorem 3.1.2 (p.56) the
equality of the following quantities, when G ∈ Γ : the row rank of Mϕ(G), the col-
umn rank of Mϕ(G) and the dimension of the row space of Mϕ(G). Let us denote
by d2 = |ϕ(G)| the number of rows that the group G uses for their shares. Thus
it follows that d ≥ d2 and the number of linearly dependent columns is d − d2.
Therefore in order to have an unique solution for vi we should have d = d2.

4.4 Reconstruct the secret

The reconstruction protocol is similar to the reconstruction of VSS given above.
We need only to change the first two steps as follows:

1′. For all good servers Pi, Pk ∈ G, Pi sends the value < εT , vϕ(i) > to Pk.
2′. Pk computes λ, s.t. MT

ϕ(G̃)
λ = ε, for some group G̃ ⊂ G and G̃ ∈ (3∗ΓA)⊥.

3. As in VSS case the secret s =< (SG̃)1, λ >.
We are now in a position to prove the following theorem.

Theorem 3. The scheme described in this section is an unconditionally secure
proactive secret sharing scheme if the following conditions are satisfied:
iv) (3 ∗ ΓA)⊥ ⊆ Γ .
v) For each group N ∈ Γ− the number of rows |ϕ(N)| for the group is equal to
number of columns of matrix M .

Note that the requirement v) is satisfied in the threshold case.
The proof follows from Theorem 2 and from the description of the protocol.

References

1. M.Ben-Or, S.Goldwasser, A.Wigderson, Completeness theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation, Proc. ACM STOC’88,
1988, 1-10.

2. G.R.Blakley, Safeguarding cryptographic keys, AFIPS Conference Proc. 48,
1979, 313-317.

3. G.R.Blakley, G.A.Kabatianskii, Linear Algebra Approach to Secret Sharing
Schemes, Springer Verlag LNCS 829, 1994, 33-40.

4. E.F.Brickell, Some ideal secret sharing schemes, J. of Comb. Math. and Comb.
Computing 9, 1989, 105-113.

5. R.Cramer, Introduction to Secure Computation, Secure Computation 2000.
6. R.Cramer, I.Damgard, U.Maurer, General and Efficient Secure Multy-Party

Computation from any Linear Secret Sharing Scheme, Weizmann Workshop on
Cryptography, Weizmann Institute of Science, Rehovot, Israel, June 1998.

7. R.Cramer, I.Damgard, U.Maurer, General Secure Multy-Party Computation
from any Linear Secret-Sharing Scheme, Proc. EUROCRYPT 2000, Springer Ver-
lag LNCS 1807, 316-335.

8. B.Chor, S.Goldwasser, S.Micali, B.Awerbuch, Verifiable secret sharing and
achieving simultaneity in the presence of faults, Proc. of the IEEE 26th Annual
Symp. on Foundations of Computer Science 1985, 383-395.

9. M.van Dijk, A Linear Construction of Secret Sharing Schemes, DCC 12, 1997,
161-201.

10. M.van Dijk, Secret Key Sharing and Secret Key Generation, Ph.D. thesis, 1997,
TU Eindhoven.

11. S. Fehr, V. Nikov, S. Nikova, private communication.
12. A.Herzberg, S.Jarecki, H.Krawczyk, M.Yung, Proactive secret sharing or:

How to cope with perpetual leakage, Proc. CRYPTO 1995, Springer Verlag LNCS
963, 339-352.

13. M.Hirt, U.Maurer, Player Simulation and General Adversary Structures in Per-
fect Multiparty Computation, J. of Cryptology 13, 2000, 31-60.

14. M.Karchmer, A.Wigderson, On Span Programs, Proc. of 8-th Annual Structure
in Complexity Theory Conference, San Diego, California, 18-21 May 1993. IEEE
Computer Society Press, 102-111.

15. R.Ostrovsky, M.Yung, How to withstand mobile virus attack, ACM Symposium
on principles of distributed computing, 1991, 51-59.

16. T.Rabin, M.Ben-Or, Verifiable secret sharing and multiparty protocols with
honest majority, Proc. of the 21st Annual ACM Symp. on Theory of Computing
1989, 73-85.

17. D.R.Stinson, R.Wei, Unconditionally Secure Proactive Secret Sharing Scheme
with combinatorial Structures, SAC’99, Springer Verlag LNCS 1758, 200-214.

18. A.Shamir, How to share a secret, Communications of the ACM 22, 1979, 612-613.

