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Abstract
We present a simple to implement and efficient pseudorandom generator based

on the factoring assumption. It outputs more than pn/2 pseudorandom bits per p
exponentiations, each with the same base and an exponent shorter than n/2 bits. Our
generator is based on results by H̊astad, Schrift and Shamir [HSS93], but unlike their
generator and its improvement by Goldreich and Rosen [GR00], it does not use hashing
or extractors, and is thus simpler and somewhat more efficient.

In addition, we present a general technique that can be used to speed up pseudoran-
dom generators based on iterating one-way permutations. We construct our generator
by applying this technique to results of [HSS93]. We also show how the generator given
by Gennaro [Gen00] can be simply derived from results of Patel and Sundaram [PS98]
using our technique.

1 Introduction

1.1 Background

Blum and Micali [BM84] and Yao [Yao82] introduced the notion of a pseudorandom generator
secure against all polynomial-time adversaries. Since then, multiple constructions have been
proposed. We do not survey them all here; rather, we focus on the ones that are of particular
relevance to our work.

Almost all of the proposed constructions (starting with discrete-logarithm-based one of
[BM84]) consisted of repeatedly applying some one-way function and outputting its hardcore
bits. The first generator based on the factoring assumption was proposed by Blum, Blum
and Shub [BBS86]. It iterated modular squaring with an n-bit modulus, extracted one bit
of output per iteration, and was originally proven secure based on the quadratic residuosity
assumption. This was later improved by [ACGS88], who showed that that only the factoring
assumption is needed and that O(log n) bits could be extracted per iteration.

H̊astad, Schrift and Shamir [HSS93] demonstrated that discrete logarithm modulo a prod-
uct of two primes hides n/2 + O(log n) bits, based only on the factoring assumption. They
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suggested how to construct a pseudorandom generator based on this result by repeatedly
exponentiating a fixed base g to an n-bit exponent; however, their construction required the
use of hash function families to obtain uniformly pseudorandom bits (because the result of
modular exponentiation could not be used in the next iteration of the generator, as it was not
indistinguishable from a uniformly distributed n-bit string, nor from a uniformly distributed
value in ZN). This resulted in a loss of Θ(log2 n) bits per iteration, thus giving a generator
that output n/2 − Θ(log2 n) pseudorandom bits per fixed-base modular exponentiation and
one hashing. Note that having the same base for each modular exponentiation is important,
because it allows for precomputation (as further described in Section 4).

Goldreich and Rosen [GR00] further improved this generator by demonstrating, in par-
ticular, that one can use exponents of length n/2 instead of full-length exponents. However,
families of hash functions (or, rather, extractors) were still necessary, thus resulting in a loss
of efficiency of each iteration, and the number of bits obtained. Namely, their generator
obtains n/2 − O(log2 n) pseudorandom bits per a fixed-base modular exponentiation (with
half-length exponent) and one application of extractor.

1.2 Our Contributions

We improve the pseudorandom generators of [HSS93] and [GR00] by removing the need for
hashing or extractors. Thus, our generator obtains n/2 + O(log n) bits of randomness per
half of a fixed-base modular exponentiation (to be precise, our exponent is n/2 − O(log n)
bits long). The resulting construction is thus simpler and faster than the ones of [HSS93]
and [GR00].

Our generator is quite similar to the one of Gennaro [Gen00]: it also essentially repeatedly
raises a fixed base to a short exponent, outputs some bits of the result, and uses the rest as
an exponent for the next iteration. The main difference is that Gennaro’s generator, while
more efficient than ours, works modulo a prime and requires the nonstandard assumption
that discrete logarithms with short exponents are hard. Our generator, on the other hand,
requires only the assumption that factoring products of safe primes is hard. As explained
later in the text, that is a trivial consequence of the standard factoring assumption, if safe
primes are frequent. Gennaro’s generator also requires the assumption that safe primes are
frequent.

We present a more general technique, which abstracts and clarifies the analysis of our
generator and those of [Gen00, GR00]. The technique is a modification of the Blum-Micali
paradigm [BM84] for constructing pseudorandom generators by iterating a one-way permu-
tation and outputting hardcore bits. We observe that, whenever the one-way permutation’s
hardcore bits are a substring of its input1 (as is the case for most natural one-way permuta-
tions), then the pseudorandom generator construction can be modified so that a substring
of the input to the one-way permutation remains fixed in all iterations. This can potentially
improve efficiency through precomputation. This general technique already yields most of

1In fact, it is not required that the hardcore bits be precisely a substring; as long as the input can be fully
decomposed into two independent parts, one of which is hardcore bits, our approach can be applied. For
example, if the hardcore bits are a projection of the input onto a subspace of Zn

2 , and the “non-hardcore”
bits are a projection onto the orthogonal subspace, then we are fine.
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the efficiency gains in our generator and those of [Gen00, GR00], and also applies to other
pseudorandom generators (such as [BBS86]). In particular, it explains how Gennaro’s gen-
erator is obtained from Patel’s and Sundaram’s [PS98], providing a simpler proof than the
one in [Gen00].

2 An Efficient Pseudorandom Generator

Let:

• |x| denote the length of a string x, and xi denote the i-th bit of x;

• P,Q of equal length be safe primes (P = 2P ′ + 1, Q = 2Q′ + 1, P ′ and Q′ are prime);

• N = PQ and g be a random element of the group QRN of quadratic residues mod N ;
�log2 N� = n;

• s, s /∈ QRN be two quadratic non-residues, such that JN(s) = 1 and JN(s) = −1;

• m = m(n) = �n/2� + O(log n); c = c(n) = n − m;

• p(·) be a polynomial.

Construction 1.

INPUT y ∈ ZN

FOR i = 0 TO p(n)
OUTPUT ym . . . y1

LET y ← gyn...ym+3 · sym+2 · sym+1 mod N

On an input y ∈ ZN , this generator outputs m pseudorandom bits per one modular expo-
nentiation with a c-bit exponent.

Construction 1 can be optimized, because it uses the same fixed base g in every iteration.
Thus, we can precompute some powers of g to speed up exponentiation. Contrary to popular
belief, the “naive” precomputation strategy of computing g, g2, g4, g8, . . . , g2c−2

is not very
good (it would require roughly (c−2)/2 multiplications per iteration). It is better to use the
technique of Lim and Lee [LL94]. As a simple example, consider precomputing just three

values: g, g2(c−2)/2
, and their product. Then one can perform the square-and-multiply algo-

rithm “in parallel,” looking simultaneously at two positions of the bit string that represents
the exponent: i and i + (c − 2)/2. This would result in an algorithm that takes (c − 2)/2
squarings and fewer than (c − 2)/2 multiplications. Generalizing this idea, we precompute
the values g, g2a

, g22a
, g23a

, . . . , g2c−2−a
for some a (e.g., a = (c − 2)/2 or a = (c − 2)/4), as

well as the products of all subsets of these values. Then we can perform the square-and-
multiply algorithm “in parallel” by looking at (c − 2)/a positions in the exponent at once,
thus obtaining an algorithm that takes (c − 2)/a squarings and multiplications. In particu-
lar, this algorithm would outperform the naive precomputation strategy when a = (c−2)/4,
while precomputing just 15 values instead of c − 2. In fact, if one has space to precompute
c − 2 values, then this algorithm will require just (c − 2)/ log(c − 2) multiplications and
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squarings. Finally, it should be noted that this technique can also be used to speed up the
pseudorandom generators given in [GR00], [HSS93] and [Gen00].

A further small optimization is possible if we choose P to be 3 modulo 8, and Q to be 7
modulo 8 (N is then called a Williams integer). In that case we can fix s = −1 and s = 2,
because −1, 2 /∈ QRN and JN(−1) = −1, JN(2) = 1. The last line of the generator then
becomes:

LET y ← gyn...ym+3 · (−1)ym+2 · 2ym+1 mod N.

In Section 4, we prove that Construction 1 indeed is a pseudorandom generator, using the
techniques from Section 3, under the following assumption:

The first assumption is that products of safe primes are hard to factor:

Assumption 2. Let Nn denote the set of all n-bit products of equally sized safe primes:

Nn = {PQ | |PQ| = n, |P | = |Q|, P and Q are safe primes }.

Let A be a probabilistic polynomial-time algorithm. There is no constant c > 0 such that for
all sufficiently large n:

Pr[A(P · Q) = P ] >
1

nc

where N = P · Q is chosen uniformly from Nn.

To clarify the relation of the previous assumption, and the standard factoring assumption,
let us take a look at:

Assumption 3. For sufficiently large k, a polynomial in k fraction of integers between 2k

and 2k+1 are safe primes.

Clearly, Assumption 2 follows from the standard factoring assumption and Assumption
3. However, in the rest of the paper, we will use Assumption 2 specifically, because it is
possible that it holds independently of Assumption 3.

3 General Construction and Proof Technique

In this section, we describe a general technique that we use to prove the pseudorandomness
of the generator given in Construction 1. This general technique can also be used to speed
up other pseudorandom generators, because it allows one to keep some bits of the seed the
same in every iteration, thus permitting precomputation. In particular, we demonstrate that
it is possible to keep the bits at hardcore positions intact, throughout the execution of the
generator. This technique can be used to prove pseudorandomness of Gennaro’s generator
from [Gen00] (see Section A).
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3.1 Background

We recall without proof two well-known facts (see, e.g. [Gol01]). The first one says that one-
way permutations plus hard-core bits give one a PRG with fixed expansion. The second one
says that from a PRG with fixed expansion one can obtain a PRG with arbitrary (polynomial)
expansion by iterating: dropping some bits of the output and using the remaining ones as a
seed for the next iteration.

Let f : {0, 1}n → {0, 1}n be a one-way permutation and H : {0, 1}n → {0, 1}m be
hardcore for f . Let ◦ denote concatenation of strings.

Lemma 4. G1 : {0, 1}n → {0, 1}n+m:

G1(x)
def
= f(x) ◦ H(x)

is a pseudorandom generator with an n-bit seed x.

Lemma 5. Let G1 : {0, 1}n → {0, 1}n+m (for m polynomial in n). Let G : {0, 1}n →
{0, 1}mp(n), where p is a polynomial, be the following algorithm with an n-bit input x0:

FOR i = 0 TO p(n)
LET xi+1 ◦ hi ← G1(xi), where |xi+1| = n and |hi| = m
OUTPUT hi

If G1 is a pseudorandom generator, then G is a pseudorandom generator.

Traditionally (e.g., [BM84, Yao82]), the Lemmata 4 and 5 are combined in the following
well-known construction.

Construction 6.

FOR i = 0 TO p(n)
LET xi+1 ← f(xi)
OUTPUT H(xi)

Visually,

G(x0): x0
f−→ x1

f−→ x2
f−→ · · ·

output: H(x0) H(x1) · · ·
The following summarizes this section:

Lemma 7. Let f : {0, 1}n → {0, 1}n be a one-way permutation and H : {0, 1}n → {0, 1}m be
hardcore for f . Let p(·) be a polynomial. Then Construction 6 is a pseudorandom generator.

3.2 New General Constructions

There is no reason that the above two theorems have to be combined specifically as in
Construction 6. Below we propose an alternative way to combine them.

Let:
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• [·, ·] denote some bijective mapping, efficiently computable in both directions (direct
and inverse), between pairs of strings h, r from {0, 1}m ×{0, 1}n−m and strings x from
{0, 1}n: [h, r] ↔ x (such mapping can be as simple as concatenation, but there is no
reason to restrict ourselves to it)

• US denotes the uniform distribution on set S

• D1 ∼ D2 denote that D1 is computationally indistinguishable from D2

• D1 	 D2 denote that D1 is statistically close to D2

Suppose the n-bit value x represents the pair of values [h, r], where |h| = m and |r| =
n−m. Suppose the hard-core function simply selects the first element of this pair: H(x) = h.
Then f can be viewed as:

hi ri
f−→ hi+1 ri+1

and G1 provided by Lemma 4 as G1(xi) = G1([hi, ri]) = xi+1 ◦ hi = [hi+1, ri+1] ◦ hi (i.e., we
simply split the (n+m)-bit output of G1 into two strings, xi+1 and hi, and further split xi+1

into two strings hi+1 and ri+1):

hi ri
G1−→ hi+1 ri+1 hi

Consider now a function G′
1: G′

1(xi) = [hi, ri+1] ◦ hi+1:

hi ri
G′

1−→ hi ri+1 hi+1

Clearly, since G1 is a PRG, so is G′
1 (because if the output G′

1 could be distinguished from
uniform, then so could G1, by applying the appropriate bijections and swapping strings hi

and hi+1).
Applying Lemma 5 to G′

1, we get the following PRG G′ with an n-bit seed x0 = [h0, r0]:

Construction 8.

FOR i = 0 TO p(n)
LET [hi+1, ri+1] ← f([h0, ri])
OUTPUT hi+1

Visually,

G′(x): [h0, r0]
G′

1−→ [h0, r1]
G′

1−→ [h0, r2]
G′

1−→ · · ·
output: h1 h2 · · ·

The potential benefit of this construction is that part of the input to f (namely, h0)
remains the same for every iteration. For many f (such as the one in the next section) this
results in increased efficiency, because some precomputation is possible.

Suppose further (in addition to everything assumed in Construction 8) that there exists
an efficient algorithm R, that, given f([h, r]) and h, computes f([0m, r]) (for any h, r), and
such that R(Un × Um) = Un. Let G′′

1(r) = f([0m, r]). Then G′′
1 is a PRG (because otherwise

G1([h, r]) = f([h, r]) ◦ h could be distinguished from random by computing R(G1([h, r])) =
G′′

1(r)).
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Represent the n-bit output of G′′
1(ri) as [hi+1, ri+1]. Then by applying Lemma 5 to G′

1,
we get the following PRG G′′ with an (n − m)-bit seed r0:

Construction 9.

FOR i = 0 TO p(n)
LET [hi+1, ri+1] ← f([0m, ri])
OUTPUT hi+1

Visually,

G′(x): r0

G′′
1−→ r1

G′′
1−→ r2

G′′
1−→ · · ·

output: h1 h2 · · ·
This construction has the further benefit that the fixed part of the input to f is always

0m (rather than a random value h0). Thus, even more precomputation may be possible (as
shown in the next section). Moreover, the seed for this construction is only n − m, rather
than n, bits long.

The summary of this section is given in the following:

Lemma 10. Let f : {0, 1}n → {0, 1}n be a one-way permutation and H : {0, 1}n → {0, 1}m

be hardcore for f . Let p(·) be a polynomial. Let [·, ·] denote some bijective mapping, efficiently
computable in both directions (direct and inverse), between pairs of strings h, r from {0, 1}m×
{0, 1}n−m and strings x from {0, 1}n: [h, r] ↔ x, such that H([h, r]) = h. Then Construction
8 is a pseudorandom generator.

Lemma 11. Let (in addition to the conditions stated in Lemma 10) there exist an efficient
algorithm R, that, given f([h, r]) and h, computes f([0m, r]) for any h, r. Let R(Un ×Um) =
Un. Then, Construction 9 is a pseudorandom generator.

3.3 Generalizing to other distributions

It is not necessary to restrict Lemmata 4 and 5 only to binary strings. Indeed, we can slightly
generalize the notion of a pseudorandom generator to allow domains and ranges other than
just {0, 1}k.

Definition 12. Let D and R be two efficiently samplable sets of binary strings. A determin-
istic polynomial-time algorithm A is called a (D → R)-pseudorandom generator if it holds
that A(UD) is indistinguishable from UR.

Given this definition, we can reformulate Lemmata 4 and 5 as follows. Let D,R ⊂ {0, 1}n

be efficiently samplable and let f : D → R be a bijection. Let H : D → {0, 1}m be hardcore
for f .

Theorem 13. G1(x)
def
= f(x) ◦ H(x) is a (D → R × {0, 1}m)-pseudorandom generator.

Suppose further that f is a permutation of D.

Theorem 14. If G1 is a (D → D × {0, 1}m)-pseudorandom generator, then a (D →
{0, 1}mp(n))-pseudorandom generator can be obtained by iterating G1 like in Lemma 5 (but
with xi ∈ D).
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Construction 8 can also be formulated in terms of more general sets. Namely, suppose that
the uniform distribution on D can be decomposed into a direct product of two independent
parts: uniform on hardcore bits, and the appropriate distribution on the rest. Then we
can swap the hardcore bits as in Construction 8, because both hi and hi+1 are uniform and
independent from ri+1 anyway. Of course, we do not need true uniformity and independence,
but only enough to fool a polynomial-time adversary.

More precisely, let D ⊂ {0, 1}n be an efficiently samplable domain; let G1 be a (D → D×
{0, 1}m)-pseudorandom generator that maps [h, r] ∈ D to [h′, r′]◦h. Let V be the projection

of D onto its non-hardcore bits: for r ∈ {0, 1}n−m, Pr [V = r]
def
= Prx∈D [(∃h) x = [h, r] ].

Lemma 15. If the uniform distribution UD is indistinguishable from [U{0,1}m , V ], then G′
1

is a ([U{0,1}m , V ] → [U{0,1}m , V ] × {0, 1}m)-pseudorandom generator, and can be iterated as
in Construction 8 to obtain a (D → {0, 1}mp(n))-pseudorandom generator.

Lemmata 10 and 11 (and consequently Constructions 8 and 9) can be reformulated for
more general sets D, R, just like Construction 8.

4 Proof of Correctness of Our Generator

We use the idea described in Section 3 to prove that the algorithm given in Construction
1 is a (ZN → {0, 1}mp(n))-pseudorandom generator, under Assumption 2. To be precise,
Section 3 was written in terms of one-way functions, while Construction 1 first of all selects
a one-way function from a family by picking N and g. Of course, the generic constructions
of Section 3 still apply (with appropriate technical modifications), because Lemmata 4 and
5 still hold (see [Gol01]).

4.1 Establishing a single iteration

We start by recalling Theorem 5 of [HSS93]. Let N be a random n-bit Blum integer, and
let g be a random quadratic residue in Z

∗
N .

Theorem 16 ([HSS93]). If Assumption 2 holds, then h : {0, . . . , ordN(g) − 1} → {0, 1}m,
h(x) = xm . . . x1 is hardcore for f : {0, . . . , ordN(g)− 1} → QRN , where f(x) = gx mod N .2

Using Theorem 13, a direct consequence of the previous theorem is:

Corollary 17. If Assumption 2 holds, then the distributions (gx mod N, xm . . . x1) and
(gx mod N, r), for uniformly randomly chosen x < ordN(g), r ∈ {0, 1}m, are indistinguish-
able.

2The usual definitions of one-way function and hardcore function require that their domain be efficiently
samplable. However, that is not the case with the domain of f and h, since ordN (g) = φ(N)/4, which may
not be revealed. This will not be a problem, because {0, . . . , N/4} is efficiently samplable, and the uniform
distribution on that domain is statistically close to the uniform distribution on {0, . . . , ordN (g) − 1}.
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Note that this does not automatically give a pseudorandom generator suitable for itera-
tion, because it is not of the form (D → D × {0, 1}m). In [HSS93], universal hash functions
are used to achieve this.

However, by slightly modifying the function f(x) = gx, it is possible to obtain a simple
pseudorandom generator that permits iteration. The intuitive idea is to try to make f a
bijection of the entire ZN . To do so, we first make sure that g generates the entire QRN by
picking N as a product of two safe primes: then a random g ∈ QR(N) is overwhelmingly
likely to generate QRN .3 We then observe that QRN has 4 cosets: s·QRN , s·QRN , s·s·QRN

and itself, QRN . So we can add another two bits to the domain of f , and use these bits
to pick which coset we map to, thereby covering the whole Z

∗
N . These modifications do not

reduce the number of hardcore bits from Theorem 16.
The range of f is thus Z

∗
N , which is very close to ZN . The domain is also very close to

ZN : it is {0, 1, . . . , φ(N)/4− 1}×{0, 1}×{0, 1}, which is essentially the same as Z
∗
N . Thus,

even though our modified f is not a permutation of ZN , it is almost one.

Theorem 18. Let h′ : {0, 1, . . . , φ(N)
4

− 1} × {0, 1} × {0, 1} → {0, 1}m be defined as:

h′(x, b1, b2) = xm . . . x1.

Let f ′ : {0, 1, . . . , φ(N)
4

− 1} × {0, 1} × {0, 1} → Z
∗
N be as follows:

f ′(x, b1, b2) = gx · sb1 · sb2

(x ∈ {0, 1, . . . , φ(N)
4

− 1}, b1, b2 ∈ {0, 1}, all arithmetic is in Z
∗
N).

If Assumption 2 holds, then F ′ = (f ′, h′) is a ({0, 1, . . . , φ(N)/4− 1}× {0, 1}× {0, 1} →
Z
∗
N × {0, 1}m)-pseudorandom generator.

Proof. The proof is by a simple reduction to Corollary 17. The details are straightforward
and are given in Appendix B.

Now some care is needed to modify the generator F ′, so that it may be iterated, since its
domain and range are not as required by the constructions of Section 3. What makes iteration
possible is that there are efficiently computable “almost bijections” between {0, 1, . . . , φ(N)

4
−

1} × {0, 1} × {0, 1} and ZN , as well as between Z
∗
N and ZN . Hence, we can use ZN as the

domain and as the range of f , and that should not make significant difference. The following
is merely a formalization of this statement:

Corollary 19. Let
F : ZN → ZN × {0, 1}m

be as follows:
F (x) = (gxn...xm+3xm...x1 · sxm+2 · sxm+1 , xm . . . x1)

(all arithmetic is in Z
∗
N). If Assumption 2 holds, then F is a (ZN → ZN × {0, 1}m)-

pseudorandom generator.
3For N = PQ with safe P,Q, the subgroup QRN of quadratic residues in Z

∗
N is of order φ(N)/4 = P ′Q′

and is cyclic. QRN is cyclic, because QRN
∼= QRP × QRQ, and QRP and QRQ are cyclic of distinct prime

orders P ′ and Q′, respectively. Hence, the order of almost any element of QRN is P ′Q′, and therefore almost
any element of QRN is a generator (unless it is 1 modulo P or Q). Furthermore, such N are clearly Blum
integers and Corollary 17 holds for them if Assumption 3 holds.
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Proof. Let F ′(x, b1, b2) be as in Theorem 18. Let D′ = {0, . . . , φ(N)
4

− 1} and

D = {0, . . . , Nn . . . Nm+3

m︷ ︸︸ ︷
1 . . . 1}. Also, let N = Nn . . . Nm+311

m︷ ︸︸ ︷
1 . . . 1.

We will prove the following:

F (UZN
) 	 F (UZN

) = F ′(UD × U{0,1} × U{0,1}) 	 F ′(UD′ × U{0,1} × U{0,1}) ∼
∼ UZ

∗
N
× {0, 1}m 	 UZN

× {0, 1}m.

• F (UZN
) 	 F (UZN

) because UZN
	 UZN

• F (UZN
) = F ′(UD×U{0,1}×U{0,1}), because F ′(x, b1, b2) = F (xn−2 . . . xm+1b1b2xm . . . x1)

• F ′(UD × U{0,1} × U{0,1}) 	 F ′(UD′ × U{0,1} × U{0,1}) because UD 	 UD′ (since |D| =
N
4

+ O(
√

N))

• F ′(UD′ × U{0,1} × U{0,1}) ∼ UZ
∗
N
× {0, 1}m by Theorem 18

• UZ
∗
N
× {0, 1}m 	 UZN

× {0, 1}m because UZ
∗
N
	 UZN

.

4.2 Iterating

By Theorem 14, F can be iterated to yield polynomial expansion: in each iteration, we
output h(x), and use gxn...x3 · sx2 · sx1 as the next input for F . Better yet we show that
Construction 9 can be used to give a more efficient generator with polynomial expansion.
There are two conditions that need to be satisfied for that: there has to be a pairing [·, ·]
with properties described in Lemma 15, and F has to exhibit the self-reducibility property
described in Construction 9.

In the following simple lemma, we define a pairing [·, ·] such that [h, r] → h is hardcore
for F , and demonstrate that the condition stated in Lemma 15 holds for [·, ·].
Lemma 20. Let Um denote the uniform distribution on {0, 1}m. Let V be the projection
of UZN

onto the non-hardcore bits. Let [·, ·] : {0, 1}m × {0, 1}c ↔ {0, 1}n such that [h, r] =
rc . . . r1hm . . . h1.

Then, [Um, V ] ∼ UZN
.

Proof. We prove that [Um, V ] 	 UZN
via a straightforward statistical distance argument.

See Appendix B.

Next, we show that F is self-reducible in the sense of Construction 9. To do that, we
only need to provide the reduction algorithm R. We define it simply as R(y, h) = y · g−h.
Clearly, R is efficiently computable, R(UZN

× Um) = UZN
, and a simple calculation verifies

that R(F ′′([h, r]), h) = F ′′([0, r]), where F ′′ : ZN → ZN , F ′′(x) = gxn...x3 · sx2 · sx1 (F ′′ is the
one-way function that we use to obtain F ).

Based on the observation about self-reducibility and Lemma 20, we can apply Construc-
tion 9 to F , thus obtaining the following pseudorandom generator:
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Construction 21.

INPUT y ∈ ZN

FOR i = 0 TO p(n)

LET e ← yn . . . ym+3

m︷ ︸︸ ︷
0 . . . 0

LET y ← ge · sym+2 · sym+1

OUTPUT ym . . . y1

The output distribution of this generator is the same as that of Construction 1. That is
because, in Construction 21, ge = (g2m

)yn...ym+3 , but g and g2m
are distributed identically

because g → g2m
is a permutation over QRN , so instead of ge, we can write gyn...ym+3 .
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A A Simple Proof of Gennaro’s Generator

The technique of Section 3 can also be used to simplify the proof of pseudorandomness of
the generator given in [Gen00]:

Let p be an n-bit safe prime, g a generator of Z
∗
p, and c = ω(log n).

INPUT y ∈ Zp

LET γ ← g2n−c+2

FOR i = 0 TO p(n)
LET x ← y

LET y ← γxn...xn−c+2 · gx1 (= gxn...xn−c+2

n−c︷ ︸︸ ︷
0 . . . 0x1)

OUTPUT yn−c+1 . . . y2

Informally, this generator is based on the assumption that, for n, p and g as above, expo-
nentiation x → gx mod p is one-way even if we restrict its domain only to short ω(log n)-bit
exponents.

In [PS98], it is shown that, if the above assumption holds (also known as Discrete Log-
arithm with Short Exponent, or DLSE), then the full-length-exponent exponentiation in Z

∗
p

has n − ω(log n) hardcore bits. More precisely:

Theorem 22. Let p be an n-bit safe prime and let g be a generator of Z
∗
p. Define f : Zp−1 →

Z∗
p as f(x) = gx mod p. Fix some c = ω(log n). If DLSE holds, then H(x) = xn−c . . . x2 is

hardcore for f .

The proof of this theorem can be found in [PS98].
The proof of pseudorandomness of the above generator is similar to the proof in Section

4. First, similarly to Corollary 19, it can be shown that extending both the domain and the
range of f to Zp does not hurt pseudorandomness. More precisely, for f ′ : Zp → Zp such that
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f ′(x) = gx mod p, it holds that x → (f ′(x), H(x)) is a (Zp → Zp × {0, 1}m)-pseudorandom
generator4 (m = n − c − 1).

By applying Construction 9 to f ′, we obtain exactly the generator given above. So we
only need to demonstrate that the two conditions for Construction 9 are fulfilled.

Let us first define the pairing described in Lemma 15. Let [·, ·] : {0, 1}m × {0, 1}n−m ↔
{0, 1}n such that [h, r] = rn−m . . . r2hm . . . h1r1. Obviously, [h, r] → h is hardcore for f (it is
the same as H). Let V be the projection of UZp onto bits that are not hardcore for f (1, m+2,
. . . , n). Then, an argument similar to the one in Lemma 20 shows that [U{0,1}m , V ] ∼ Zp

We still have to give the reduction algorithm R required for Construction 9. But, R(y, h)
is simply y · g−2h. It is easy to check that R([h, r], h) = [h, 0] and that R(UZp × Um) = UZp .

B Proofs

Proof of Theorem 18 Consider the function f : {0, 1, . . . , φ(N)
4

− 1} → Z
∗
N , f(x) = gx. If

Assumption 2 holds, then by Corollary 17, x → (gx, xm . . . x1) is a ({0, 1, . . . , φ(N)
4

− 1} →
QRN × {0, 1}m)-pseudorandom generator. This is because ordN(g) = φ(N)

4
.

Suppose that a PPT A distinguishes, with non-negligible probability, F ′(U{0,1,...,
φ(N)

4
−1}×

U{0,1} ×U{0,1}) against UZ
∗
N
×{0, 1}m. Then, we can build a PPT B that distinguishes, with

non-negligible probability, (gx, xm . . . x1) against (gx, r) (r ∈R {0, 1}m, x ∈R {0, . . . , φ(N)
4

−
1}): on input (y, h) ∈ Z

∗
N × {0, 1}m, B generates random b1 ∈R {0, 1} and b2 ∈R {0, 1} and

outputs A(y · sb1 · sb2 , h). Clearly, if (y, h) is distributed according to UQRN
× U{0,1}m , then

(y · sb1 · sb2 , h) is distributed according to UZ
∗
N
× U{0,1}m . Similarly, if (y, h) is distributed

according to (gx, xm . . . x1) (x is a random variable on {0, . . . , φ(N)
4

− 1}), then (y · sb1 · sb2 , h)
is distributed according to F ′(U{0,1,...,

φ(N)
4

−1} × U{0,1} × U{0,1}).

Proof of Lemma 20 Let M = Nn . . . Nm+1. Obviously, Prr∈V

[
r = s

]
= 2m

N
, for s < M

and |s| = c.

Let M ′ = Nn . . . Nm+1 0 . . . 0︸ ︷︷ ︸
m

. Then, Prr∈V

[
r = M

]
= N−M ′

N
.

So, Prh∈Um, r∈V

[
[h, r] = j

]
= 1

N
, for j < M ′. Also, Prh∈Um, r∈V

[
[h, r] = j

]
= N−M ′

N2m , for

j ≥ M ′.
Finally, the statistical distance between UZN

and [Um, V ] is

M ′+2m−1∑
j=0

∣∣∣Prx∈UZN

[
x = j

]
− Prh∈Um, r∈V

[
[h, r] = j

]∣∣∣ =

=
M ′+2m−1∑

j=M ′

∣∣∣Prx∈UZN

[
x = j

]
− Prh∈Um, r∈V

[
[h, r] = j

]∣∣∣ ≤
4More precisely, the output of this generator is indistinguishable from H(UZ∗

p
). But, it is not hard to see

that H(UZ∗
p
) 	 U{0,1}m .
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≤
M ′+2m−1∑

j=M ′

∣∣∣Prx∈UZN

[
x = j

]∣∣∣ +
M ′+2m−1∑

j=M ′

∣∣∣Prh∈Um, r∈V

[
[h, r] = j

]∣∣∣ ≤

≤ 2m

N
+

2m(N − M ′)
N2m

=

=
2m + N − M ′

N
= negl(n).
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