
Key-collisions in (EC)DSA: Attacking Non-repudiation* 

Tomáš Rosa 

http://crypto.hyperlink.cz, email: t_rosa@volny.cz 

Abstract. A new kind of attack on the non-repudiation property of digital signature schemes is 
presented. We introduce a notion of key-collisions, which may allow an attacker to claim that the 
message (presented to a judge) has been signed by someone else. We show how to compute key-
collisions for the DSA and ECDSA signature schemes effectively. The main idea of these attacks has 
been inspired by the well-known notion of message-collisions, where an attacker claims that the 
signature presented at the court belongs to a different message. Both of these collision-based attacks 
significantly weaken the non-repudiation property of signature schemes. Moreover, they weaken the 
non-repudiation of protocols based on these schemes. It is shown that key-collision resistance of the 
(EC)DSA schemes requires the incorporation of a mechanism ensuring honest generation of (EC)DSA 
instances. The usage of such a mechanism shall be verifiable by an independent third party without 
revealing any secret information. We propose and discuss basic general countermeasures against key-
collision attacks on the (EC)DSA schemes. 

1. Introduction 

The service of non-repudiation is one of the most basic cryptographic goals ([11]). The commonly agreed 
definition of this service says that: The non-repudiation property of a given action allows an independent 
third party to make sure that a particular event did (or did not) occur ([10]). Note that the independent 
party is typically a judge. Such a property is of a great importance for applications where cryptographic 
mechanisms enter an area of law. A good example of such a service is the introduction of electronic 
signature standards and laws ([3, 4]), which is an ongoing activity through the whole world. There are also 
other areas where the non-repudiation plays an important role, for instance we may refer to asymmetric 
traitor tracing schemes [9], which achieve their non-repudiation by using signature schemes having this 
property. All these examples show that contemporary cryptographic mechanisms must not only protect 
data, but also be judiciously sound. 

In this article we show an approach which can be used to break the non-repudiation service in systems 
which are based on the (EC)DSA ([6]) signature schemes. The main idea behind our attack may be called 
an “alternative explanation”. This is a familiar and effective way in which a signature may be denied. An 
attacker constructs the alternative explanation that argues that there is the (mathematically) valid signature, 
while she claims that she has never signed the document presented at the court. Such an argument is then 
presented to the judge. We should note, that the provable mathematical connection between document 
signing and signature verification is that proper signing implies verifying the signature as a valid one. 
Proving this implication in the opposite direction, i.e. that verifying the signature as a valid one implies that 
the document was properly signed before, is somewhat tricky. In most schemes, this “proof” is just based 
on that there is no sound alternative explanation of why the verification procedure says that the signature is 
valid. Then, presenting such an alternative explanation means that the trial must be tried basing on other 
evidences, what may at least be very inconvenient. Therefore, a possibility of the alternative explanation 
existence should be minimized, especially on the elementary mathematical level. A well-known way to get 
the alternative explanation is to exploit collisions of a hash function used in the signature scheme. The 
attacker then claims that she has signed a different message, instead of that message presented at the court. 
Such a threat is well recognized and an adequate attention is usually paid to collision resistance of hash 
functions in signature schemes. Apparently, some attention is also paid to the inner collision resistance of 
the signature transformations ([15, 16]). In this article we show that it is also possible to get a collision of 
public keys (more precisely of public signature scheme instances), which we refer to as a key-collision (k-
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collision, c.f. §2 for the definition). Then, the alternative explanation says that it was someone else who has 
signed that message. A straightforward decision that users have both signed this message would not be 
proper, likewise we do not accept the decision that the user has signed both messages in the case of the 
message-collision (m-collision). Moreover, there may be cases where it is logically impossible for two 
users to have signed the given message. For instance, when the signature scheme may be employed in an 
authentication service which disallows more than one user to be authenticated at the same time. 

It is easy to see that m-collisions and k-collisions both weaken the non-repudiation property according to 
the definition stated above. It is worth to note again (c.f. [15]) that attacks on the non-repudiation may 
expose surprising weaknesses, since it is often a private key owner who plays the role of an adversary here. 
However, we usually tend to view such a person as the honest user who is a prime target of malicious 
attackers, and therefore she must be protected using all accessible means. 

In the following text we show a formal definition of the term k-collision (§2), then we introduce the 
notion of GDSA (§3), which is a general construction that encapsulates elementary common algebraic 
properties of DSA and ECDSA. Besides allowing us to study our subject for both schemes at the same 
time, it also demonstrates the generality of properties which allow us to search for k-collisions effectively. 
A concrete algorithm for k-collision searching is presented in §4 then. Section §5 shows basic limits of k-
collision computation for (EC)DSA. Use of this observation is made in §6, where general countermeasures 
are introduced. Some heuristic remarks that did not fit elsewhere are summarized in §7 as possible 
inspirations for further research. Finally, we conclude in §8. 

Proposition 1.1. Unless stated otherwise, the term “breaking a signature scheme (instance)” means an 
ability to compute a private key only from publicly known values (i.e. a public key, message signatures, 
etc.). 

Proposition 1.2. Unless stated otherwise, the elements of Zn will be regarded as the lowest positive 
integers representing particular equivalence classes in Zn. 

Proposition 1.3. In case it is clear from a context, we will shorten a notation of indexed variables 
according to the following example: xA, xB →written as  xA,B. 

2. K-collisions – Definitions 

Definition 2.1. We write as (Pub, m, S)ρ the relation ρ saying that S is a valid signature of the message m 
under the public signature scheme instance Pub. 

The term public instance and the structure of S are defined in §3. It suffices to understand them 
heuristically through a general meaning here. 

Definition 2.2 (k-collision). The five-tuple (PubA, mA, PubB, mB, S), where PubA and PubB are public 
instances of a signature scheme, mA and mB are messages and S is a signature, form a k-collision if the 
following holds: PubA ≠ PubB, (PubA, mA, S)ρ and (PubB, mB, S)ρ. Furthermore the public instances PubA,B, 
messages mA,B, and their signature S are referred to as k-colliding public instances, k-colliding messages 
and k-colliding signature respectively. 

Definition 2.3 (1st and 2nd order k-collision). We use the term 1st order k-collision to refer to the k-
collision, where mA = mB. We use the term 2nd order k-collision to refer to the k-collision, where mA ≠ mB. 

The sets of all 1st order and 2nd order k-collisions decompose the set of all k-collisions for a given 
signature scheme. In this paper, we study algorithms which can be used for the purpose of k-collision 
searching. The following definition introduces the basic properties of such algorithms. 

Definition 2.4 (k-collision searching algorithms properties). 

i) We say that an algorithm is non-cooperative if it finds a k-collision for a given public 
signature scheme instance PubA, a k-colliding message mA, and a signature S, such that 
(PubA, mA, S)ρ, without needing any further information which is not publicly accessible. We 
say that the algorithm is cooperative, otherwise. 



ii) An algorithm for k-collision searching is message-independent if it allows the k-colliding 
messages mA,B to be pre-set to arbitrary strings. 

iii) An algorithm is proper if it does not disallow respective owners of k-colliding public 
instances PubA,B to know their relevant private keys. I.e., we may assume that the owner of 
PubA knows PrivA and the owner of PubB knows PrivB. 

Non-cooperative algorithms have a special importance here, since they allow an attacker to do so-called 
signature stealing. Using such an algorithm, the attacker may pretend to have signed an important 
document which has actually been signed by someone else. The real author of the signature does not have 
to provide any secret information to the attacker, so the attacker “steals” her signature. There are practical 
cases in which such an attack brings some benefits to the attacker, for instance, bypassing an authorship 
proving service. 

A message-independent algorithm for k-collision searching can be used to search for both 1st order and 
2nd order k-collisions. Furthermore, it is reasonable to require such an algorithm to be proper in case the 
judge requests the respective owners of PubA,B to prove that they know their respective private keys. 
Therefore, we focus on the design of a proper message-independent non-cooperative algorithm for k-
collision searching. Such an algorithm is described in §4. 

2.1 Illustrative example of a practical attack 

Let us imagine the following scenario: There is a scientific conference whose potential participants are 
requested to submit anonymous papers. To thwart cheating, each researcher must also append a string of 
her digital signature of the paper. Of course, only the signature is appended, not a public key. I.e. using the 
above-mentioned notation, researcher A sends paperA and S from a triplet (PubA, paperA, S)ρ.  When the 
paper is accepted and or a disputation occurs, the researcher must prove that she owns the proper 
verification/signing keys, i.e. that S is her proper signature. This should prevent changing the author and or 
the content of the paper later on. However, it would not work, when it is possible to construct k-collisions. 
Fro instance, having a k-collision (PubA, paperA, PubB, paperB, S), such that paperA = paperB, user B may 
pretend to be the author of the paper. Moreover, if it is possible to compute the k-collision non-
cooperatively, then user B can do so without an agreement with user A. 

What follows is that we cannot take the signature string S in itself as a fingerprint of the document 
content (paperA) and the identity of the signatory (PubA). Only the full triplet (PubA, paperA, S)ρ can be used 
for such a purpose. Without having investigated the area of k-collisions, such a conclusion would not be so 
obvious and applications, as the one described here, might easily be deployed. (Author would like to note 
here that such an application was already met in practice.) 

2.2 Another example 

In the European Electronic Signature Standardization Initiative [3], there is a term advanced electronic 
signature which is defined in the following way: electronic signature which meets the following 
requirements: a) it is uniquely linked to the signatory; b) it is capable of identifying the signatory; c) it is 
created using means that the signatory can maintain under his sole control; and d) it is linked to the data to 
which it relates in such a manner that any subsequent change of the data is detectable (see Directive 
1999/93/EC). It is the point (a) which is very important for us here. Let us have a cryptographic digital 
signature scheme which is planned to be used  for a construction of a particular advanced electronic 
signature scheme. Note that this is the kind of electronic signature which is commonly understood as a 
“safe” one through the whole European Union, and therefore almost all applications tend to achieve at least 
this “level” of an electronic signature scheme. It is also accepted that a general cryptographic digital 
signature scheme is automatically also an advanced electronic signature scheme. However, if the digital 
signature scheme used allows an attacker to construct k-collisions, then the electronic signature scheme 
based on it clearly cannot be called advanced, since the condition in (a) would not be fulfilled. Such a 
discrepancy can probably lead to tough judicial consequences, and therefore k-collisions should not be 
underestimated here.  



3. Generalized DSA 

The main purpose of Generalized DSA (GDSA) is to generalize common algebraic properties of DSA [6] 
and ECDSA [6, 8]. It is introduced here solely for the purpose of developing a general model for dealing 
with k-collisions, which have to give valid results for both DSA and ECDSA. Therefore, the particular 
security requirements for GDSA based signature schemes, other than those being connected with k-
collision attacks, are not discussed here. Moreover, we make an effort to keep the GDSA definition 
algebraically close to the way in which the (EC)DSA schemes are practically realized (here we may differ 
from the approaches generalizing (EC)DSA from other viewpoints, e.g. [1, 15]). 

Definition 3.1 (Generalized DSA – GDSA). A GDSA instance consists of public parameters, a private 
key, a  public key, and public transformations. 

− The public parameters are represented as the three-tuple (P, n, g), where P is a cyclic group, g is a 
generator of a prime-order subgroup G of P and n is the order of G. Unless stated otherwise, the group 
operation on P will be written in multiplicative notation and the identity element of P will be denoted as 
id. 

− The private key (x) is an integer satisfying 0 < x < n. The public key (y) is an element of P, y = gx. 

− The public transformations consist of two publicly known mappings denoted as H and ϕ. H is a hash 
function, H: M → H(M), where M is a set of input messages to be processed. We assume that H 
implicitly incorporates a string-to-integer conversion, i.e. H(M)⊂  Z. 

− The purpose of ϕ  is to define a conversion function ϕ: P → Zn. Note that since n is a prime, Zn is 
isomorphic to GF(n). Our reasoning doesn’t depend on the concrete definition of ϕ here.  

− We denote the GDSA instance as Inst, Inst = (P, n, g, x, y, H, ϕ). The GDSA instance without the private 
key x will be referred to as the public GDSA instance (or the public part of GDSA instance) Pub, Pub = 
(P, n, g, y, H, ϕ). 

Definition 3.2 (Proper GDSA instance). Let (P, n, g, x, y, H, ϕ) be a GDSA instance. This instance is said 
to be proper if the following conditions hold: 

i) P has a proper structure – the meaning of this condition depends on the particular kind of 
GDSA (e.g. P must not be built over a weak elliptic curve, n is large enough, etc.) 

ii) n is a prime, n divides the order of P  
iii) ord(g) = n 
iv) 0 < x < n 
v) gx = y 

The purpose of this definition is to summarize general requirements to which a GDSA instance must 
conform. We will use this definition when showing that a particular generated instance is sound enough to 
be regarded as a properly working scheme without any obvious marks of an attack. 

Definition 3.3 (GDSA signing algorithm). Let (P, n, g, x, y, H, ϕ) be a GDSA instance and let m be a 
message to be signed. The signing operation then proceeds with the following steps: 

i) compute the integer h, h = H(m) 
ii) generate a secret random integer k, 0 < k < n; note that k will be referred to as a nonce 
iii) compute the integer r, r = ϕ(gk) 
iv) compute the integer s, s = (h + rx)k-1 mod n, where kk-1 ≡ 1 (mod n) 
v) if either r = 0 or s = 0, repeat the whole computation from (ii) 
vi) the pair (r, s) is the signature of m 

Definition 3.4 (GDSA verifying algorithm). Let Pub, Pub = (P, n, g, y, H, ϕ),  be a public GDSA instance 
and let m be a message, whose signature (r, s)  has  to be verified. The verifying operation then proceeds 
with the following steps: 

i) if either r = 0 or s = 0, then the signature is rejected as an invalid one 
ii) compute the integer h, h = H(m) 



iii) compute the integer u1, u1 = h*s-1 mod n, where ss-1 ≡ 1 (mod n) 
iv) compute the integer u2, u2 = r*s-1 mod n 
v) compute the integer r’, r’ = ϕ(gu1yu2) 
vi) the signature is valid iff r’ = r, i.e. (Pub, m, (r,s))ρ iff r’ = r 

3.1 DSA 

The DSA scheme [6] will be viewed as the GDSA scheme where P is a multiplicative group Zp
*, where p is 

a prime and n|(p-1). The identity element is id = [1]p. The conversion function ϕ is defined as the mapping 
ϕ: Zp

* → Zn: a →  ((a mod p) mod n). The standard [6] currently prescribes the use of the SHA-1 [5] as H. 
Note that the order of the working prime order subgroup is often ([6]) denoted as q, therefore we adopt this 
notation in Appendix A. 

3.2 ECDSA 

The ECDSA scheme [6, 8] will be viewed as the GDSA scheme where P = E(Fq), Fq is a finite field 
isomorphic to GF(q) and E is a suitable planar elliptic curve over Fq. E(Fq) is an abelian group of points on 
the curve E (together with the special point at infinity denoted as O). The order of E(Fq) is denoted #E(Fq), 
so n|#E(Fq). The identity element is id = O. The group operation on E(Fq) is written in additive notation, 
where a v-times iterated addition of a point A, A ∈  E(Fq), is denoted as B = [v]A, B ∈  E(Fq). The 
conversion function ϕ is the mapping ϕ: E(Fq) → Zn: A = (x, y) →  int(x) mod n, where int(x) is an integer 
representation for the x-coordinate of A, x ∈  Fq. The concrete definition of int(.) depends on the way in 
which the field Fq is constructed. The standard [6] currently prescribes the use of the SHA-1 [5] as H. 

4. K-collisions for GDSA 

In this part we show how to effectively compute k-collisions for the GDSA scheme. The algorithm 
introduced here is message-independent, non-cooperative, and proper. Therefore, it can be also used for the 
purpose of signature stealing (c.f. §2). 

Theoretically, it might be possible for k-colliding instances to belong to different kinds of GDSA. 
However, our algorithm presented here is based on that the instances belong to the same kind of GDSA, i.e. 
they are both either DSA instances or ECDSA instances. This assumption allows us to design the algorithm 
in an effective way, while it does not bring any practical restriction. 

Algorithm 4.1 (Computing a k-collision for GDSA). 
Input: 

•  Public GDSA instance PubA = (PA, nA, gA, yA, HA, ϕA), which is a public part of a proper GDSA 
instance InstA. 

•  Message mA and its signature (r, s), such that (PubA, mA, (r, s))ρ. 
•  Message mB, which the k-collision is computed for. 

Output: 
•  GDSA instance InstB = (PB, nB, gB, xB, yB, HB, ϕB). 
•  k-collision (PubA, mA, PubB, mB, (r, s)). 

Computation: 
i) place P = PB = PA, n = nB = nA, H = HB = HA and ϕ = ϕB = ϕA 
ii) compute the integer hA, hA = H(mA) 
iii) compute the integer u1, u1 = hA*s-1 mod n, where ss-1 ≡ 1 (mod n) 
iv) compute the integer u2, u2 = r*s-1 mod n 
v) compute α, α ∈  P, α = gA

u1yA
u2 

vi) generate a secret random integer z, 0 < z < n 
vii) compute the integer kB, such that zkB ≡ 1 (mod n), i.e.  kB ≡ z-1 (mod n) 
viii) compute the integer hB, hB = H(mB) 



ix) if kBs – hB ≡ 0 (mod n) goto (vi) 
x) set xB = (kBs – hB)r-1 mod n, where rr-1 ≡ 1 (mod n) 
xi) set gB = αz 
xii) set yB = gB

xB 
xiii) if yB = yA goto (vi) 
xiv) set InstB = (PB, nB, gB, xB, yB, HB, ϕB), PubB = (PB, nB, gB, yB, HB, ϕB) 
xv) return InstB, (PubA, mA, PubB, mB, (r, s)) 

� 
Note that setting PB = PA (and nB = nA) should not look suspicious later on (e.g. at the court), because 

DSA and ECDSA schemes were both developed with the possibility of sharing the group P and its prime 
order subgroup among many independent users. Sometimes, it is even recommended in the case of ECDSA 
to use prescribed elliptic curves rather than generating new ones (c.f. curves in [6]). 

The value of z generated in step (vi) should be discarded after finishing the computation, since it may 
allow other attackers to discover the private key xB and it would serve as an easy proof of a “cooked” 
generation of InstB. 

Theorems on general properties of the GDSA instance InstB produced by algorithm 4.1, together with the 
main theorem stating that the algorithm produces a k-collision, follow. Unless stated otherwise, these 
theorems and lemmas presume the validity of the input assumptions of 4.1, and their symbols refer to its 
input, temporary and output variables. Owners of the instances InstA and InstB are referred to as the users A 
and B respectively. 

Lemma 4.2 (Tractability of algorithm 4.1). Algorithm 4.1 is tractable if the signing and verifying 
algorithms of the particular GDSA are tractable. 

Proof. This algorithm uses the same kind of operations as the signing and verifying algorithms (c.f. 
definitions 3.3 and 3.4). 

� 
Lemma 4.3 (On the generator gB). For gB it holds that gB = (gA

kA)z, where kA is the nonce used by the user 
A for the (r, s) computation. Furthermore, we have gB

kB = gA
kA and ϕ(gB

kB) = ϕ(gA
kA) = r. 

 
Proof. The equation gB = (gA

kA)z follows immediately from step (xi) of algorithm 4.1 and the assumption of 
(PubA, mA, (r, s))ρ. Also following are gB

kB = gA
kA and r = ϕ(gB

kB), since zkB ≡ 1 (mod n) and n is the order of 
gA. 

� 
Lemma 4.4 (On the values of xA,B and yA,B). It holds that: 

i) xB = [(kA
-1kBhA – hB)r-1 + kA

-1kBxA] mod n  
ii) xA = [(kAkB

-1hB – hA)r-1 + kAkB
-1xB] mod n 

iii) yB = gA
γ, for γ ≡ (hA – kAkB

-1hB)r-1 + xA (mod n) 
iv) yA = gB

λ, for λ ≡ (hB – kA
-1kBhA)r-1 + xB (mod n) 

Proof.  

i) According to step (x) of algorithm 4.1, we have xB = (kBs – hB)r-1 mod n. We assume that (r, s) 
is a valid signature of mA computed according to definition 3.3. From here we get s = (hA + 
rxA)kA

-1 mod n, where kAkA
-1 ≡ 1 (mod n) and kA is a random integer, 0 < kA < n. Substituting 

this expression into the equation for xB we  have xB = [(kA
-1kBhA – hB)r-1 + kA

-1kBxA] mod n. 

ii) Follows directly from (i). 

iii) Using (i), lemma 4.3 and the equation from step (xii) of 4.1 we get the equation for yB. 

iv) Analogically as (iii). 
� 

Theorem 4.5 (On termination). Algorithm 4.1 terminates. 

Proof. There are only two loops in 4.1 and these are in steps (ix) and (xiii). The loop in step (ix) acts if and 
only if kBs – hB ≡ 0 (mod n). Since gcd(s, n) = 1, there is exactly one value of kB, 0 < kB < n, satisfying this 
congruence. Therefore, an infinite loop does not occur here for randomly chosen values of kB. The second 
loop is in step (xiii) and it acts if and only if yB = yA. Using lemma 4.4 we can rewrite this condition as yA = 



gA
γ, for γ ≡ (hA – kAkB

-1hB)r-1 + xA (mod n), where kA is a random number, 0 < kA < n, which is fixed for all 
loops through algorithm 4.1. This condition holds if and only if  (hA – kAkB

-1hB)r-1 ≡ 0 (mod n). Again, there 
is only one value of kB which satisfies this congruence. Therefore, this loop is finite for randomly chosen 
values of kB. 

� 

Theorem 4.6 (Properness of InstB). The GDSA instance InstB computed by algorithm 4.1 is proper. 

Proof. Let us check the conditions (i - v) required by definition 3.2: 

i-ii) These conditions are fulfilled according to step (i) of algorithm 4.1. We rely on the 
assumption that InstA is proper, and therefore PA must have a proper structure, and n must 
divide the order of PA. 

iii) Recall that n = nB = nA and lemma 4.3 above. Since we assume that the instance InstA is 
proper, it holds that ord(gA) = n, where n is a prime. Because of n being a prime and kA, z < n 
it follows that gcd(n, kAz) = 1. Therefore ord(gB) = ord(gA) = n. 

iv) Since xB is a result of operation modulo n it trivially holds that 0 ≤ xB < n. It remains to check 
that xB ≠ 0. Let us suppose that xB = 0. Since gcd(r-1, n) = 1 and xB = (kBs – hB)r-1 mod n, this 
equation holds if and only if kBs – hB ≡ 0 (mod n). However, this is prevented by step (ix). 
Therefore 0 < xB < n. 

v) It follows directly from step (xii) of algorithm 4.1. 
� 

Theorem 4.7 (Algorithm 4.1 produces a k-collision). The five-tuple (PubA, mA, PubB, mB, (r, s)) computed 
by algorithm 4.1, is a k-collision. Furthermore, the algorithm is a message-independent non-cooperative 
and proper one. 

Proof. We assume that (PubA, mA, (r, s))ρ. It remains to show that also (PubB, mB, (r, s))ρ and PubA ≠ PubB.  
We use verifying algorithm 3.4 for mB and PubB at first. In the steps (i - iii) of 3.4 we obtain u1 = hBs-1 mod 
n, u2 = rs-1 mod n, where ss-1 ≡ 1 (mod n). In step (v) of 3.4 we get r’ = ϕ(gB

u1yB
u2) = ϕ(gB

ω), where ω ≡ hBs-

1 + xBrs-1 (mod n). From step (x) of 4.1 we have xB = (kBs – hB)r-1 mod n. Substituting this value to the 
congruence for ω we get ω ≡ hBs-1 + kB - hBs-1 ≡ kB (mod n), so r’ = ϕ(gB

kB). According to lemma 4.3 we get 
r’ = r. Therefore, the signature (r, s) is valid. Furthermore, according to the condition in step (xiii) of 4.1, 
the public instances PubA and PubB differ at least in the values of public keys yA and yB, therefore, (PubA, 
mA, PubB, mB, (r, s)) is a k-collision. Moreover, there is neither a restriction for messages mA,B nor a need for 
a cooperation with the user A. Therefore, this algorithm is message-independent and non-cooperative. Since 
the validity of the A’s private key is left intact and the B’s private key is computed in step (x) of 4.1, this 
algorithm is also proper. 

� 

Theorem 4.8 (On attacker’s private key secrecy). Unless the particular realization of GDSA can be 
broken (c.f. proposition 1.1), there is a negligible probability that the user A is able to break B’s instance 
InstB. 

Proof. If the particular GDSA realization (e.g. DSA, or ECDSA) cannot be broken, then there is no way for 
an ordinary user to break someone else’s instance. However, we shall check if the special construction of 
InstB used in algorithm 4.1 helps the users A and B to break each other’s instances or not. At first, we 
observe that the users A and B play symmetric roles in our scheme: Both of them may regard her GDSA 
instance as the first one for which the second user has computed her k-colliding instance. This symmetry 
can be seen from lemma 4.4. Therefore, if there is a way for the user A to discover the B’s private key, then 
there is also a way for the user B to discover A’s private key. Because there is no need for a cooperation 
between A and B, it follows that the user B could break the A’s GDSA instance simply by computing an 
appropriate k-collision. If we assume that breaking the particular GDSA scheme is hard, then there must be 
a negligible probability that the appropriate k-collision would be found using algorithm 4.1. Therefore, the 
construction used in 4.1 cannot practically allow the user B to break the A’s instance. From the symmetry 
observed above, it follows that the construction does not practically allow the user A to break B’s instance. 

� 



5. Basic Limits for General K-collision Searching Algorithms 

In §4 we have seen an effective algorithm for k-collision searching. However, there are other approaches to 
this problem. The aim of this paragraph is to show basic limits for general k-collision searching algorithms 
in GDSA schemes. It will help us when designing appropriate general countermeasures in §6. 

Definition 5.1. Let us denote ϕ|G the GDSA (c.f. def. 3.1) conversion function ϕ restricted on G, where G is 
the prime-order subgroup of P generated by g. 

It has been shown (c.f. [1, 12]), that ϕ |G is an almost-bijective mapping. Moreover, we conjecture the 
following hypothesis for secure GDSA instances. 

Hypothesis 5.2 (Inner collision resistance). For randomly chosen pairs (g1, g2), such that g1,2 ∈  P, ord(g1) 
= ord(g2) = n, there is no tractable algorithm producing integers v, w, such that ϕ|G(g1

v) = ϕ |G(g2
w), while 

g1
v ≠ g2

w. 

Theorem 5.3 (Limiting theorem). Unless GDSA schemes can be broken, there is no feasible proper k-
collision searching algorithm producing k-collision (PubA, mA, PubB, mB, (r, s)) for PubA,B, such that PubA 
= (P, n, gA, yA, H, ϕ) and PubB = (P, n, gB, yB, H, ϕ), where gA,B are arbitrary given generators. 

Proof (assuming validity of 5.2). Obviously, the GDSA instance Inst = (P, n, g, x, y, H, ϕ) can be broken if 
we can solve the discrete logarithm problem (DLP) according to the generator g effectively. We show how 
a general proper k-collision searching algorithm can be used for solving the DLP. Let us assume that we 
want to solve the DLP on P with the base g for the public key y to get the private key x. In the first step, we 
choose temporary helping GDSA instances InstA and InstB, such that InstA = (P, n, g, xA, yA, H, ϕ), InstB = 
(P, n, y, xB, yB, H, ϕ), where xA,B are arbitrarily chosen private keys and yA,B are the appropriate public keys. 
Note that InstB uses the public key y in the place of its generator gB. Also, note that xA,B may be fixed later 
on, during the k-collision searching process. We only assume that these values are known then (i.e. the 
algorithm is proper). Now we start searching to find two k-colliding messages mA,B, and a k-colliding 
signature (r, s). Since we know xA,B then, we can compute particular nonces kA,B for mA,B and (r, s) easily. It 
holds that r = ϕ |G(gkA) = ϕ|G(ykB). Using the properties of ϕ |G stated above, we can rewrite this as gkA = ykB 
with a high probability. Since n is the order of g and y = gx, we have kA ≡ xkB (mod n). From here we can 
compute the value of x easily, which means that our attack on x is finished. 

Hypothesis 5.2 tells us that the general algorithm used above cannot rely on inner collisions of ϕ |G. 
Although there may still be singular problems with these collisions, they should appear as often as if ϕ |G 
was a pseudorandom function. Such rare exceptions may then be easily overcome by repeating the whole 
process several times, using different values of gA,j and gB,j in each pass j. For instance, we can set gA,j = gj, 
gB,j = yj for j ∈  <1, n). This construction leads to jkA,j ≡ jxkB,j (mod n) then, so still  kA,j ≡ xkB,j (mod n). 

� 

6. Countermeasures 

6.1 Basic Reasoning 

Theorem 5.3 tells us that even if we place no restrictions on the public and private keys (except that we 
want to know these respective keys) and set no rules for the k-colliding messages and the signature, the k-
colliding instances PubA,B still cannot have their remaining public parameters set to arbitrary values. Their 
choices must in some way be dependent to allow an attacker to compute a k-collision. It requires further 
research to say how far this dependency goes, but we can conclude heuristically that the dependency is 
probably stronger than the necessity to omit the setup used in the premise of theorem 5.3. 

Corollary 6.1 (Hypothesis on dependency). If the particular GDSA scheme cannot be broken, then there 
is no proper k-collision searching algorithm that allows the public parameters of k-colliding instances to 
be chosen independently. 



6.2 Online Protocol 

Basing on corollary 6.1, we propose the idea of a simple but strong countermeasure: All public parameters 
for GDSA schemes must be independently generated by a trusted third party on a per-instance basis. The 
authority shall also issue a certificate of proper GDSA instance generation. For example, the scenario under 
which users generate their GDSA instances and requests for a public key certificate should be like this one: 

i. user -> certification authority: certification_request_start 
ii. certification authority -> user: public_ parameters_(P, n, g), token 
iii. user chooses a private key and computes the public key 
iv. user -> certification authority: public_key, possession_proof, token 

We assume the conversion function ϕ to be implicitly set according to the particular kind of GDSA. The 
token introduced in steps (ii) and (iv) helps the certification authority ensure that the particular public 
parameters generated are used only by one user. The possession_proof introduced in step (iv) serves as 
a proof of private key possession. It has to ensure that whatever k-collision searching algorithm should be 
used, it must be a proper one (c.f. definition 2.4 and corollary 6.1). The public key certificate issued 
according to the protocol written above also serves as the certificate of a proper GDSA instance generation. 

Note that in the case of ECDSA, this setup may be attacked by the inner m-collisions presented in [15, 
§4.2 – Duplicate Signatures]. However, disclosing such an m-collision leads to the private key disclosure 
and therefore it is not considered a security weakness ([15]). If we assume that the certification authority is 
honest, then the inner m-collisions of DSA described in [16] are successfully defeated by this setup. 

The proposed protocol may also be used in a situation when users need to share a common group P and 
its prime-order subgroup (e.g. they all want to use the same standardized elliptic curve). In such a case, the 
authority independently generates for each request a new value of the generator g only, while the remaining 
public parameters (P, n) stay constant. The impossibility of k-collision computing then follows directly 
from theorem 5.3. 

6.3 Non-invertible GDSA Setup 

It might be useful to substitute the above-mentioned protocol by a non-invertible verifiable GDSA setup. 
Such a setup may be regarded as an extension of the DSA and ECDSA setups currently defined in [6, 8]. 
One idea could be to extend the concept of “seeded” prime number (DSA case) searching or elliptic curve 
(ECDSA case) construction to also cover the subgroup generator g. This item remains unprotected by those 
mechanisms currently and it has already been shown ([16]) that it is no good. The value of SEED used to 
initialize the setup would then serve as the certificate of proper instance generation. This improving step 
would help to reduce the risk of k-collisions prominently. However, there still remains a possibility of 
generating a 2nd order k-collision cooperatively (the main problem here is that users are not forced to 
choose their public parameters independently). Let InstA = (P, n, g, xA, yA, H, ϕ) be a GDSA instance 
generated properly (e.g. certified by the SEED) and let (mA, mB) be two different messages for which users 
A and B want to find a k-collision. Now, the user A computes the signature (r, s) of mA in InstA normally, 
while she keeps the value of the nonce k. This value is passed to the user B then, together with the signature 
(r, s) and the public part of InstA. The user B then constructs InstB = (P, n, g, xB, yB, H, ϕ), where the private 
key xB is computed from the congruence s ≡ (H(mB) + xBr)k-1 (mod n). It is easy to see that (PubA, mA, PubB, 
mB, (r, s)) is the 2nd order k-collision. The drawback of this process is that it requires the cooperation 
between the users who then know each other’s private keys. Moreover, it allows a third party seeing this k-
collision to discover the linear relation between xA,B as xA – xB ≡ r-1(H(mB) – H(mA)) (mod n). On the other 
hand, it clearly breaks the countermeasure based on the simple setup extension. It follows that there is a 
need for a broader extension of the current standard – it shall also cover the generation of the private key. 
Moreover, the certificate of the proper private key generation shall be verifiable, without disclosing any 
secret information about the key. It remains an open research question on how to do such an extension 
securely. 



6.4 Notary Services and-or Authentication of Public Instances  

Another kind of countermeasure may be deployed in systems which use some kind of notary services (for 
overview on notary services see [11]). It may be feasible in such a situation to require every signed 
document to be over-signed by a trusted third party. The signature should cover: the message, its (primary) 
signature, and the public part of the GDSA instance which shall be used for the (primary) signature 
verification. Similar techniques may also be based on a time stamping service. 

It might be also tempting to propose the following countermeasure: request users to sign not only the 
message, but also the public part of GDSA instance. The signature should then cover the string 
m||public_instance instead of plain m. However, this countermeasure seems to have several weaknesses, at 
least from a theoretical point of view. It still leaves a possibility for an attacker to claim that, due to an 
error, the public_instance was appended badly or even it was not appended at all. Furthermore, there is a 
threat of cooperative 2nd order k-collisions which should be investigated to devise an acceptable proof of 
security. So far, it is known that it is not enough to hash m together with the public key only. The whole set 
of public parameters must be added, too. There is still an open question of how far this countermeasure is 
affected by the properties of the conversion function ϕ, especially by its invertibility. Moreover, this 
countermeasure affects data formats and the behavior of all client applications, in contrast with the protocol 
proposed in §6.2 above, which only needs the extension of the certificate request process. 

7. Closing Remarks  

We stress that k-collisions are not only a problem for DSA and ECDSA. The same problem may be studied 
in the RSA ([13]), ElGamal ([2]) and Schnorr ([14]) signature schemes (as well as in the others). Of course, 
there is a difference in how feasible and conspicuous these attacks are. Feasibility says whether it is 
possible to do such an attack, while the second criterion tells us if it is easy to recognize marks of the attack 
later. The current state of research shows that the DSA and ECDSA schemes belong to the group where k-
collision attacks are feasible and do not leave special marks on k-colliding instances. ElGamal and Schnorr 
schemes probably belong to the same group, since they share those general algebraic properties which were 
used for our attack. However, both of them introduce certain properties which induce limitations. For 
example, the algorithm presented here can produce 1st order k-collisions only, when applied (and adjusted) 
on Schnorr scheme (due to binding of the message m being signed and the value of r, r = gk mod p, as e = 
H(m||r), where the value of e becomes a part of the signature, c.f. [14, p. 168]). Therefore, we may conclude 
that these schemes come with some (maybe planned or unplanned) built-in countermeasures which are 
(however) not strong enough to defeat all these attacks. On the other hand, RSA seems to belong to the 
group where these attacks are still feasible, but they do produce special marks which could be used by a 
third party to even break one of the k-colliding instances. 

8. Conclusion 

We have introduced the notion of key-collisions in signature schemes, which may be regarded as a kind of 
attack parallel to well known message-collisions. Both of them share the common idea of an alternative 
explanation saying why the judge has a message and its (mathematically) valid signature when the user 
swears that she did not sign it. Instead of claiming that it was a different message from what has been 
signed in reality, an attack based on key-collisions leads to claiming that it was a different user who has 
signed the message or even who has signed a different message. Next, we presented a (trivially) feasible 
algorithm for key-collision searching in DSA and ECDSA, which is message-independent and does not 
require any cooperation between the owners of colliding instances. Therefore, an attacker may use this 
algorithm to steal a signature of another user. The effectiveness of the algorithm comes mainly from the 
ability of the attacker to generate (EC)DSA instances with a relatively high degree of freedom. We showed 
that even the legitimate owner of the key should not have the ability to generate her key completely at her 
will without having to be able to present a proof of its honest creation. 



It was shown in §5, that unless DSA and ECDSA schemes can be broken, possibilities for key-collision 
searching in these respective schemes can be prevented. We have developed a general countermeasure 
based on the simple online procedure for a key generation (§6.2). When deployed in an existing 
information system, it only changes a certificate request process. Other processes and data structures 
remain unchanged. Several other possible countermeasures were proposed and discussed, too (§6.3, §6.4). 
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Appendix A: Algorithm 4.1 edited for DSA and ECDSA 

The algorithm for effective k-collision searching (c.f. §4) edited for the DSA and ECDSA schemes is 
presented here. It should be a helpful illustration of how the general reasoning done for the GDSA model 
(c.f. §3, §4) transforms back to these particular schemes. 

Notes: The conversion function ϕ together with the hash function H (SHA-1) are implicitly defined for the 
DSA and ECDSA schemes (c.f. §3.1, §3.2). Therefore we omit them from the notation of the (EC)DSA 
instances here. Furthermore, we use the prime p alone when referring to the multiplicative group P = Zp

* in 
the case of DSA.  

Algorithm DSA-4.1 (Computing a k-collision for DSA). 
Input: 

•  Public DSA instance PubA = (pA, qA, gA, yA).  
•  Message mA and its signature (r, s), such that (PubA, mA, (r, s))ρ. 
•  Message mB, which the k-collision is computed for. 

Output: 
•  DSA instance InstB = (pB, qB, gB, xB, yB). 
•  k-collision (PubA, mA, PubB, mB, (r, s)). 

Computation: 
i) place p = pB = pA, q = qB = qA 
ii) compute the integer hA, hA = SHA-1(mA) 
iii) compute the integer u1, u1 = hA*s-1 mod q, where ss-1 ≡ 1 (mod q) 
iv) compute the integer u2, u2 = r*s-1 mod q 
v) compute α, α = gA

u1yA
u2 mod p 

vi) generate a secret random integer z, 0 < z < q 
vii) compute the integer kB, zkB ≡ 1 (mod q), i.e. kB ≡ z-1 (mod q) 
viii) compute the integer hB, hB = SHA-1(mB) 
ix) if (kBs – hB) ≡ 0 (mod q) goto (vi) 
x) set xB = (kBs – hB)r-1 mod q, where rr-1 ≡ 1 (mod q) 
xi) set gB = αz mod p 
xii) set yB = gB

xB mod p 
xiii) if yB = yA goto (vi) 
xiv) set InstB = (pB, qB, gB, xB, yB), PubB = (pB, qB, gB, yB) 
xv) return InstB, (PubA, mA, PubB, mB, (r, s)) 
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Algorithm ECDSA-4.1 (Computing a k-collision for ECDSA). 
Input: 

•  Public ECDSA instance PubA = (E(Fq)A, nA, GA, YA).  
•  Message mA and its signature (r, s), such that (PubA, mA, (r, s))ρ. 
•  Message mB, which the k-collision is computed for. 

Output: 
•  ECDSA instance InstB = (E(Fq)B, nB, GB, xB, YB). 
•  k-collision (PubA, mA, PubB, mB, (r, s)). 

Computation: 
i) place E(Fq)B = E(Fq)A, n = nB = nA 
ii) compute the integer hA, hA = SHA-1(mA) 
iii) compute the integer u1, u1 = hA*s-1 mod n, where ss-1 ≡ 1 (mod n) 
iv) compute the integer u2, u2 = r*s-1 mod n 
v) compute α, α = [u1]GA + [u2]YA 
vi) generate a secret random integer z, 0 < z < n 
vii) compute the integer kB, zkB ≡ 1 (mod n) i.e.  kB ≡ z-1 (mod n) 
viii) compute the integer hB, hB = SHA-1(mB) 
ix) if (kBs – hB) ≡ 0 (mod n) goto (vi) 
x) set xB = (kBs – hB)r-1 mod n, where rr-1 ≡ 1 (mod n) 
xi) set GB = [z]α 
xii) set YB = [xB]GB 
xiii) if YB = YA goto (vi) 
xiv) set InstB = (E(Fq)B, nB, GB, xB, YB), PubB = (E(Fq)B, nB, GB, YB) 
xv) return InstB, (PubA, mA, PubB, mB, (r, s)) 
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