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Abstract. Achieving secure communications in networks has been one
of the most important problems in information technology. Dolev, Dwork,
Waarts, and Yung have studied secure message transmission in one-way
or two-way channels. They only consider the case when all channels are
two-way or all channels are one-way. Goldreich, Goldwasser, and Linial,
Franklin and Yung, Franklin and Wright, and Wang and Desmedt have
studied secure communication and secure computation in multi-recipient
(multicast) models. In a “multicast channel” (such as Ethernet), one pro-
cessor can send the same message—simultaneously and privately—to a
fixed subset of processors. In this paper, we shall study necessary and
sufficient conditions for achieving secure communications against active
adversaries in mixed one-way and two-way channels. We also discuss
multicast channels and neighbor network channels.
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1 Introduction

If there is a private and authenticated channel between two parties, then se-
cure communication between them is guaranteed. However, in most cases, many
parties are only indirectly connected, as elements of an incomplete network of
private and authenticated channels. In other words they need to use intermediate
or internal nodes. Achieving participants cooperation in the presence of faults
is a major problem in distributed networks. Original work on secure distributed
computation assumed a complete graph for secure and reliable communication.
Dolev, Dwork, Waarts, and Yung [5] were able to reduce the size of the network
graph by providing protocols that achieve private and reliable communication
without the need for the parties to start with secret keys. The interplay of net-
work connectivity and secure communication has been studied extensively (see,
e.g., [1,2,4,5,11]). For example, Dolev [4] and Dolev et al. [5] showed that, in
the case of k Byzantine faults, reliable communication is achievable only if the
system’s network is 2k + 1 connected. They also showed that if all the paths
are one way, then 3k + 1 connectivity is necessary and sufficient for reliable and
private communications. However they did not prove any results for the general
case when there are certain number of directed paths in one direction and an-
other number of directed paths in the other direction. While undirected graphs



correspond naturally to the case of pairwise two-way channels, directed graphs
do not correspond to the case of all-one-way or all-two-way channels considered
in [5], but to the mixed case where there are some paths in one direction and
some paths in the other direction. In this paper, we will initiate the study in
this direction by showing what can be done with a general directed graph. Note
that this scenario is important in practice, in particular, when the network is
not symmetric. For example, a channel from A to B is cheap and a channel from
B to A is expensive but not impossible. Another example is that A has access
to more resources than B does.

Goldreich, Goldwasser, and Linial [10], Franklin and Yung [8], Franklin and
Wright [7], and Wang and Desmedt [17] have studied secure communication
and secure computation in multi-recipient (multicast) models. In a “multicast
channel” (such as Ethernet), one participant can send the same message—
simultaneously and privately—to a fixed subset of participants. Franklin and
Yung [8] have given a necessary and sufficient condition for individuals to ex-
change private messages in multicast models in the presence of passive adver-
saries (passive gossipers). For the case of active Byzantine adversaries, many
results have been presented by Franklin and Wright [7], and, Wang and Desmedt
[17]. Note that Goldreich, Goldwasser, and Linial [10] have also studied fault-
tolerant computation in the public multicast model (which can be thought of
as the largest possible multirecipient channels) in the presence of active Byzan-
tine adversaries. Specifically, Goldreich, et al. [10] have made an investigation of
general fault-tolerant distributed computation in the full-information model. In
the full information model no restrictions are made on the computational power
of the faulty parties or the information available to them. (Namely, the faulty
players may be infinitely powerful and there are no private channels connecting
pairs of honest players). In particular, they present efficient two-party protocols
for fault-tolerant computation of any bivariate function.

There are many examples of multicast channels (see, e.g. [7]), such as an
Ethernet bus or a token ring. Another example is a shared cryptographic key.
By publishing an encrypted message, a participant initiates a multicast to the
subset of participants that is able to decrypt it.

We present our model in Section 2. In Sections 3 and 4, we study secure
message transmission over directed graphs. Section 6 is devoted to reliable mes-
sage transmission over hypergraphs, and Section 7 is devoted to secure message
transmission over neighbor networks.

2 Model

We will abstract away the concrete network structures and consider directed
graphs. A directed graph is a graph G(V, E) where all edges have directions.
For a directed graph G(V, E) and two nodes A, B € V, throughout this paper, n
denotes the number of vertex disjoint paths between the two nodes and k denotes
the number of faults under the control of the adversary. We write |S| to denote
the number of elements in the set S. We write © €g S to indicate that z is



chosen with respect to the uniform distribution on S. Let F be a finite field, and
let a,b,¢, M € F. We define auth(M;a,b) := aM + b (following [7,9, 14, 15]) and
auth(M;a,b,c) := aM? +bM + ¢ (following [17]). Note that each authentication
key key = (a,b) can be used to authenticate one message M without revealing
any information about any component of the authentication key and that each
authentication key key = (a,b,c) can be used to authenticate two messages
M; and M> without revealing any information about any component of the
authentication key. We will also use a function (...) which maps a variable size
(we assume that this variable size is bounded by a pre-given bound) ordered
subset of F to an image element in a field extension F* of F, and from any
image element we can uniquely and efficiently recover the ordered subset. Let &
and n be two integers such that 0 < k <n < 3k + 1. A (k + 1)-out-of-n secret
sharing scheme is a probabilistic function S: F — F” with the property that for
any M € F and S(M) = (v1,...,v,), no information of M can be inferred from
any k entries of (v1,...,v,), and M can be recovered from any k + 1 entries of
(v1,...,vn). The set of all possible (vy,...,v,) is called a code and its elements
codewords. We say that a (k + 1)-out-of-n secret sharing scheme can detect k'
errors if given any codeword (vy,...,v,) and any tuple (u1,...,u,) over F such
that 0 < |{7: u; # v;,1 <4 <n}| <k one can detect that (uy,...,u,) is not a
codeword. If the code is Maximal Distance Separable, then the maximum value
of errors that can be detected is n — k — 1 [12]. We say that the (k + 1)-out-of-
n secret sharing scheme can correct k' errors if from any S(M) = (v1,...,v,)
and any tuple (ug,...,u,) over F with |[{i : u; # v;,1 < @ < n}| < k' one
can recover the secret m. If the code is Maximal Distance Separable, then the
maximum value of errors that allows the recovery of the vector (vq,...,v,) is
(n—k—1)/2[12]. A (k + 1)-out-of-n Maximal Distance Separable (MDS) secret
sharing scheme is a (k + 1)-out-of-n secret sharing scheme with the property
that for any &' < (n — k — 1)/2, one can correct k' errors and simultaneously
detect n—k—k' — 1 errors (as follows easily by generalizing [12, p. 10]). Maximal
Distance Separable (MDS) secret sharing schemes can be constructed from any
MDS codes, for example, from Reed-Solomon code [13].

In a message transmission protocol, the sender A starts with a message M4
drawn from a message space M with respect to a certain probability distribution.
At the end of the protocol, the receiver B outputs a message MZ. We consider a
synchronous system in which messages are sent via multicast in rounds. During
each round of the protocol, each node receives any messages that were multicast
for it at the end of the previous round, flips coins and perform local computations,
and then possibly multicasts a message. We will also assume that the message
space M is a subset of a finite field F.

We consider two kinds of adversaries. A passive adversary (or gossiper adver-
sary) is an adversary who can only observe the traffic through k internal nodes.
An active adversary (or Byzantine adversary) is an adversary with unlimited
computational power who can control k internal nodes. That is, an active ad-
versary will not only listen to the traffics through the controlled nodes, but also
control the message sent by those controlled nodes. Both kinds of adversaries



are assumed to know the complete protocol specification, message space, and the
complete structure of the graph. In this paper, we will not consider a dynamic
adversary who could change the nodes it controls from round to round, instead
we will only consider static adversaries. That is, at the start of the protocol,
the adversary chooses the k faulty nodes. An alternative interpretation is that
k nodes are static collaborating adversaries.

For any execution of the protocol, let adv be the adversary’s view of the entire
protocol. We write adv(M, ) to denote the adversary’s view when M4 = M and
when the sequence of coin flips used by the adversary is r.

Definition 1. (see Franklin and Wright [7])

1. Let § < % A message transmission protocol is d-reliable if, with probability
at least 1 — §, B terminates with MB = MA. The probability is over the
choices of M and the coin flips of all nodes.

2. A message transmission protocol is reliable if it is O-reliable.

3. A message transmission protocol is e-private if, for every two messages

Moy, My and every r, Y- |Prladv(Mo,r) = c] — Prladv(My,r) = ¢]| < 2e.

The probabilities are taken over the coin flips of the honest parties, and the

sum is over all possible values of the adversary’s view.

A message transmission protocol is perfectly private if it is O-private.

A message transmission protocol is (e,d)-secure if it is e-private and 0-

reliable.

6. An (e,d)-secure message transmission protocol is efficient if its round com-
plezity and bit complezity are polynomial in the size of the network, logé (if
e>0)andlog} (if6>0).

Sl

For two nodes A and B in a directed graph such that there are 2k+1 node disjoint
paths from A to B, there is a straightforward reliable message transmission from
A to B against a k-active adversary: A sends the message m to B via all the
2k + 1 paths, and B recovers the message m by a majority vote.

3 (0,9d)-Secure message transmission in directed graphs

Our discussion in this section will be concentrated on directed graphs. Dolev,
Dwork, Waarts, and Yung [5] addressed the problem of secure message transmis-
sions in a point-to-point network. In particular, they showed that if all channels
from A to B are one-way, then (3k + 1)-connectivity is necessary and sufficient
for (0,0)-secure message transmissions from A to B against a k-active adver-
sary. They also showed that if all channels between A and B are two-way, then
(2k + 1)-connectivity is necessary and sufficient for (0,0)-secure message trans-
missions between A and B against a k-active adversary. In this section we assume
that there are only 2k 4+ 1 — u directed node disjoint paths from A to B, where
1 < u < k. We show that u directed node disjoint paths from B to A are nec-
essary and sufficient to achieve (0, §)-secure message transmissions from A to B
against a k-active adversary.



Franklin and Wright [7] showed that even if all channels between A and B are
two way, 2k + 1 channels between A and B are still necessary for (1 — §)-reliable

(assuming that § < % (1 — IIT\)) message transmission from A to B against a

k-active adversary.

Theorem 1. (Frandlin and Wright [7]) Let G(V, E) be a directed graph, A, B €
V', and there are only 2k two-way node disjoint paths between A and B in G.
Then é-reliable message transmission from A to B against o k-active adversary

is impossible for § < % (1 — IIT\)

In the following, we first show that if there is no directed path from B to A,
then 2k+1 directed paths from A to B is necessary and sufficient for (0, §)-secure
message transmission from A to B.

Theorem 2. Let G(V, E) be a directed graph, A,B €V, and0 < § < % If there
is no directed paths from B to A, then the necessary and sufficient condition for
(0,8)-secure message transmission from A to B against a k-active adversary is
that there are 2k + 1 directed node disjoint paths from A to B.

Proof. The necessity is proved in Theorem 1. Let py,...,par+1 be the 2k + 1
directed node disjoint paths from A to B. Let M“ € F be the secret that A wants
to send to B. A constructs (k+ 1)-out-of-(2k 4 1) secret shares (s{, ..., sg‘kﬂ) of
MA. The protocol proceeds from round 1 through round 2k + 1. In each round
1 <1i <2k + 1, we have the following steps:

Step 1 A chooses {(af;, ;) €r F?: 1 < j <2k +1}.

Step 2 A sends (s, auth(s{; afl), b)), ..., auth(s'; azy, 1, b2, 1)) to B via
path p;, and sends (a{"j, b;‘}j) to B via path p; for each 1 < j <2k +1.

Step 3 B receives (s, ¢y, - .., ¢y 1) Via path p;, and receives (a);,bf;
path p; for each 1 < j <2k + 1.

Step 4 B computes t = |{j : ¢; = auth(s{;af;,b%;)}. If t > k + 1, then B
decides that s? is a valid share. Otherwise B discards s?.

) via

It is easy to check that after the round 2k + 1, with high probability, B will
get at least k + 1 valid shares of s4. Thus, with high probability, B will recover
the secret MB = M4, It is straightforward that the protocol achieves perfect
privacy. Thus the above protocol is a (0, §)-secure message transmission protocol
from A to B against a k-active adversary. Q.E.D.

By Theorem 1, the necessary condition for (0, §)-secure message transmission
from A to B against a k-active adversary is that there are at least k 4+ 1 node
disjoint paths from A to B and there are at least 2k + 1 node disjoint paths in
total from A to B and from B to A. In the following, we show that this condition
is also sufficient. We first show that the condition is sufficient for k£ = 1.



Theorem 3. Let G(V, E) be a directed graph, A, B € V. If there are two directed
node disjoint paths po and p; from A to B, and one directed path q (which is
node disjoint from po and p1) from B to A, then for any 0 < § < %, there
is a (0,0)-secure message transmission protocol from A to B against a I-active

adversary.

Proof. In the following protocol, A (0,§)-securely transmits a message M4 € F
to B.

Step 1 A chooses s§ €r F, (ag',by), (a1 ,bA) €g F2, and let 51 MA — 4.
For each i € {0,1}, A sends (s, (a?,b), auth( stiaft b)) to B
via path p;.

Step 2 Assumes that B receives (s2, (a2, b?), c¢P) via path p;. B checks whether
cB = auth(sZ;af ;08 ) for i = 0,1. If both equations hold, then B
knows that with high probability the adversary was either passive or
not on the paths from A to B. B can recover the secret message, sends
“OK” to A via the path ¢, and terminates the protocol. Otherwise,
one of equations does not hold and B knows that the adversary was on
one of the paths from A to B. In this case, B chooses ( B bP) er F?,
and sends ((a?,b%), (s&, (a8, bP), cb), (slB, (aB,bB),cB)) to A via the
path gq.

Step 3 If A receives “OK”, then A terminates the protocol. Otherwise, from
the information A received via path ¢, A decides which path from A to
B is corrupted and recovers B’s authentication key (a?,b4). A sends
(M4, auth(M4;a*,b4)) to B via the uncorrupted path from A to B.

Step 4 B recovers the message and checks that the authenticator is correct.

Similarly as in the proof of Theorem 2, it can be shown that the above protocol
is (0, d)-secure against a 1-active adversary. Q.E.D.

Theorem 4. Let G(V, E) be a directed graph, A,B € V, and k > u > 1. If there
are 2k + 1 — u directed node disjoint paths p1, ..., Paky1—v from A to B, and u
directed node disjoint paths qi1, ..., ¢ (q1, - - -, gu are node disjoint from py, ...,
Dak+1—u) from B to A, then for any 0 < & < %, there is an efficient (0, 6)-secure
message transmission protocol from A to B against a k-active adversary.

Before we give an efficient (0, d)-secure message transmission protocol from
A to B. We first demonstrate the underlying idea by giving a non-efficient (ex-
ponential in k) (0, d)-secure message transmission protocol from A to B against
a k-active adversary. Let M4 € F be the secret that A wants to send to B, and
Pi,...,P: be an enumeration of size k+1 subsets of {p1, ..., P2k+1—u>q1s- -, Gu}-
The protocol proceeds from round 1 through ¢. In each round 1 < m < t, we
have the following steps:

Step 1 For each p; € P, A chooses (af,,,b7,,) €r F? and sends (a7, b7,
to B via p;.

Step 2 For each p; € P,,, B receives (a? ,bP ) from A via p;.

1,m? 1,m



Step 3 For each ¢; € Py, B chooses (cf,,dP,) €r F? and sends (c?,,,df,)
to A via g;.

Step 4 For each ¢; € P,,, A receives ( f‘m,dA ) from B via g;.

Step 5 A computes CA =3 aff, +3 cp cln, DA=Y p b+
> giePo dZ ., and sends (M4 +CA auth(MA+CA C4,D%)) to B via
all paths in p; in Pp,.

Step 6 For each p; € P,,, B receives (efm,

Step 7 If (ef,, f5,) = (€f'm, ffm) for all p;,p; € Py, then B goes to Step 8.

Otherw1se, B goes to round m + 1.
Step 8 B computes C® =37 5 apy, +X,.cp.. Com» DP =2 cp, bbm +
B
ZqiE'Pm di m*
Step 9 If f5 = auth(f5,;
CP and terminates the protocol. Otherwise, B goes to round m + 1.

B ) from A via p;.

;CP, DB), then B computes the secret MZ = fB —

i,m

Since there is at least one P,, such that all paths in P,, are not corrupted, B
receives the correct secret by the end of the protocol with high probability. It is
also straightforward to check that the above protocol has perfect secrecy.

Proof. (Proof of Theorem 4) Let M4 € F be the secret that A wants to send
to B. A constructs (k4 1)-out-of-(2k 4+ 1 — u) secret shares (s{, ..., s§k+17u) of
MA. The protocol proceeds from round 1 through 2k + 2 + u. For each round
1 <i<2k+1— u, we have the following steps:

Step 1 A chooses {(a ai s ”) erF?:1<j<2k+1—u}

Step 2 A sends {s ,auth(s ;4, fl,bf‘l) } auth(sf;af%“_u,b;‘}%“_u)} to
B via path p;, and sends (a ZAJ,bA ) to B via path p; for each 1 < j <
2k + 1 — u.

Step 3 B receives {s”,d b B,.
p;j foreach 1 < j §2k+1—u

Step 4 B computes t = |{j : d; = auth(s;a];,b7;)}. If t > k + 1, then
B decides that sP is a valid share. Otherwise B decides that s? is an

invalid share.

-+, d%5 k41 _ } via path p;, and (a;,b7;) via path

At the end of round 2k + 1 — u, if B has received k + 1 valid shares, then B
recovers the secret MP from these valid shares and terminates the protocol.
Otherwise, B proceeds to round 2k 4+ 2 — u. In round 2k + 2 — u, we have the
following steps:

Step1 A chooses {(af,bA,c) €r F? : 1 < i < 2k + 1 — u}, and sends
(a, b, cf )toBv1apathpzforeachz<2k+1—u

Step 2 For each 1 <4 < 2k + 1 — u, B receives (a?,bB,cP) on path p; from

A (if no value is received on path p;, B sets it to a default value).
Step 3 For each 1 < i < 2k + 1 — u, B chooses r? €r F and computes
BB = {(rB, auth(rB;aB bB B)):1§i§2k+1—u}.

l’l’l’l



In each round 2k + 3 — u < i < 2k + 2, we have the following steps:

Step 1 B chooses (d,ef) €r F? and {(v7;, w )GRF2 1<j<ul.
Step 2 B sends (d?,eP), ﬂB and {auth((dP,e f),vZB], ) :1<j<u}toA

via path g;, and (v? ) to A via path ¢; for each 1<j<u.

Vi W
Step 3 A receives (or substltutes default values) (df,ef), B2, and {a 11 <
j < u} from B via path g;, and (v W ) from B via path q; for each
1<j<u.
According to the values that A has received, A divides the paths set {q1, ..., q.}
into subsets Q, ..., 9Q; such that for any [,m,n with 1 <[ <t¢,1<m,n <u,
and ¢, ¢n € Q;, we have
1. BA =
2. a%v —auth((dB ) va n,wﬁvn);
3. aﬁ’ = auth((dZ,eB); vfm, wﬁm).

For each Q, let ¢, € Q; and S = (r{,‘l,fyfl) :1<i<2k+1—u}. A computes
the number

t=|{i: vy = auth(rf};al, b, ¢), 1 < i <26+ 1 — u}| + Q]

If t; < k, then A decides that Q; is an unacceptable set, otherwise, A decides
that Q; is an acceptable set. Let Q; = () for t < [ < w.
For each round 2k + 3 <1 < 2k 4 2 + u, we have the following steps:

Step 1 If Q; = 0 or Q; is an unacceptable set, then go to round [ + 1.
Step 2 A computes P; = {p; : 7{}1 = auth(rf; aft, b2, c), 1 < i<2k+1 —u},

1l7 i29,C
A A A A
Cl = ZpiePz a; + ZqiEQz d;, and D" = Zp €P: b; + Zq €9, % -
Step 3 A sends ((Q;, P, M4 + C),auth({Q;, P, M4 + C#); C/A, D{*)) to B
via all paths p; € P;.
Step 4 B receives (af), ) from path p; for 1 <i <2k +1—u.
Step 5 For each 1 < <2k+1—u B computes ) = (Qzl, BB, CF =
— eB
ZPJE'PH +ZQJEQ 1 ] ’ and D EPJE'P IR +EQJEQ 65
Step 6 Foreach1l < <2k+1-u,B checks whether ,8” = auth(a?, a; l, C; l,Dfl).
If the equation holds, then B computes the secret MP = l’ Cz,l

If B has not got the secret at the end of round 2k + 1 — u, then there exists an
uncorrupted path g; from B to A and a paths set Q; such that ¢; € Q; and the
information that A receives from paths in Q; are reliable. Thus, at the end of
round 2k + 2 +u, B will output a secret MZ. It is easy to check that, with high
probability, this secret is the same as M4.

It is straightforward to show that the protocol achieves perfect privacy. Thus
it is a (0,d)-secure message transmission transmission protocol from A to B
against a k-active adversary. Q.E.D.



4 (0,0)-Secure message transmission in directed graphs

In the previous section, we addressed probabilistic reliable message transmis-
sion in directed graphs. In this section, we consider perfectly reliable message
transmission in directed graphs. We will show that if there are u directed node
disjoint paths from B to A, then a necessary and sufficient condition for (0, 0)-
secure message transmission from A to B against a k-active adversary is that
there are max{3k + 1 — 2u, 2k + 1} directed node disjoint paths from A to B.

Theorem 5. Let G(V, E) be a directed graph, A,B € V. Assume that there
are u directed node disjoint paths from B to A. Then a necessary condition for
(0,0)-secure message transmission from A to B against a k-active adversary is
that there are max{3k + 1 — 2u,2k + 1} directed node disjoint paths from A to
B.

Proof. If u = 0, then by the results in [5], we need 3k + 1 directed node disjoint
paths from A to B for (0,0)-secure message transmission against a k-active
adversary. If u > [£], then again by the results in [5], we need 2k + 1 directed
node disjoint paths from A to B for O-reliable (that is, perfectly reliable) message
transmission from A to B against a k-active adversary. From now on, we assume
that 0 < u < [£].

For a contradiction, we assume that there are only 3k — 2u directed node
disjoint paths from A to B, denoted as pi,--..,P3r_24- L€t q1,--.,q, be the
directed node disjoint paths from B to A.

Let IT be a (0,0)-secure message transmission protocol from A to B. In the
following, we will construct a k-active adversary to defeat this protocol. The
transcripts distribution viewf; of A is drawn from a probability distribution
that depends on the message M4 to be transmitted by A, the coin flips R4 of
A, the coin flips RE of B, the coin flips R of the adversary (without loss of
generality, we assume that the value R* will determine the choice of faulty paths
controlled by the adversary), and the coin flips R7 of all other honest nodes.
Without loss of generality, we can assume that the protocol proceeds in steps,
where A is silent during even steps and B is silent during odd steps (see [5]).

The strategy of the adversary is as follows. First it uses R to choose a value
b. If b = 0, then it uses R again to choose k directed paths p,,, ..., P, from A
to B and controls the first node on each of these k paths. If b = 1, then it uses
R4 again to choose k —u directed paths pq,,.. ., Pa,_, from A to B and controls
the first node on each of these k — u paths and the first node on each of the u
paths from B to A. Tt also uses R“ to choose a message M* e F according to
the same probability distribution from which the actual message M4 was drawn.
In the following we describe the protocol the adversary will follow.

— Case b = 0. The k paths p,,,--.,P., behaves as a passive adversary. That
is, it proceeds according to the protocol I7.
— Case b= 1. The k—u paths p,,, - . -, Da,_, ignores what A sends in each step

of the protocol and simulates what A would send to B when A sending M4



to B. The u paths from B ignores what B sends in each step of the protocol
and simulates what B would send to A when b = 0.

In the following, we assume that the tuple (M4, R4, RB, RT RA) is fixed, b = 0,
the protocol halts in [ steps, and the view of A is views; (M4, R4, RB, RT, RA).

Let af; be the values that A sends on path p; in step j and af = (af),...,af).
We can view af‘ as shares of the message M. Similarly, let afj be the values

that B receives on path p; in step j and af = (af,...,af).

First, it is straightforward to show that for any k paths p,,,- .., pe, from A to

B, there is an R{! such that b = 0, the adversary controls the paths p,,,- - -, Pay,
and

viewp (M*,R*, RE, RT | R*) = view (M4, R, RE, RT | R (1)

Due to the fact that IT is a perfectly private message transmission protocol, from
any k shares from (af',af,...,aj, ,,) one cannot recover the secret message
MA. Thus (af,af,...,af, ,,) is at least a (k + 1)-out-of-(3k — 2u) secret
sharing scheme.

Secondly, for any k—u paths pg,,. .., Pq,_, from A to B, there is an 1%54 such
that b= 1, M4 # M*, the adversary controls the paths pq, , - - -, Pay_. s Qs - - - » Gus
and

viewsy (M*, R*, R, RT, R*) = viewsy(M*,R*, R, RT | R} (2)

Due to the fact that IT is a perfectly reliable message transmission protocol, any

k —u errors in the shares (a?,af,...,a5, ) can be corrected by B to recover
the secret message M*.
In summary, (afl, @4, ..., a4, ,,) is at least a (k+ 1)-out-of-(3k — 2u) secret

sharing scheme that can correct k —u errors. By the results in [12], we know that
the maximum number of errors that a (k + 1)-out-of-(3k — 2u) secret sharing
scheme could correct is

{(3k—2u2)—k—1J _ {2k—zu—1

J:k—u—l.

This is a contradiction, which concludes the proof. Q.E.D.

For the sufficient condition, we first show the simple case for u = 1.

Theorem 6. Let G(V, E) be a directed graph, A,B € V, and k > 2. If there are
3k — 1 directed node disjoint paths p1,...,p3r_1 from A to B and one directed
path q from B to A (q is node disjoint from py,...,psr_1) then there is a (0,0)-
secure message transmission protocol from A to B against a k-active adversary.

Proof. In the following protocol 7, A (0,0)-securely transmits M4 €g F to B:

Step 1 Both A and B sets I = 1.
Step 2 A constructs (k+1)-out-of-(3k—1) MDS secret shares (st, - 3§4k71,1)
of MA. For each 1 <i < 3k — 1, A sends s;‘,‘I to B via the path p;.



Step 3 For each ¢ < 3k — 1, B receives sfj on path p;. By correcting at most

k —1 errors, B recovers a value MF from these shares. B sends s? to
A via the path q.

Step 4 A receives 5}4’ ; from g. A distinguishes the following two cases:

1. 5?,1 = s‘I“’I. A reliably sends “path pr maybe OK”, sets I = I + 1.
If I > 3k — 1 then goes to Step 6, otherwise, goes to Step 2.

2. EIA’ 1 7 3‘14’ 1- A reliably sends “path pr or ¢ is faulty”. A constructs
k-out-of-(3k — 2) MDS secret shares {r{}I i £ 11 <i<3k-1}
of M. For each i < 3k — 1 such that i # I, A sends r{},— to B via
the path p;. A terminates the protocol.

Step 5 B distinguishes the following two cases:
1. B reliably receives “path pr maybe OK”. B sets [ = I + 1. If
I > 3k — 1 then goes to Step 6, otherwise, goes to Step 2.

2. B reliably receives “path p; or g is faulty”. In this case, B also
receives rfl from path p; for each i # I. By correcting at most
k — 1 errors, B recovers M P from these shares and terminates the
protocol.

Step 6 B checks whether M5 = MJB for all 1 < 4,5 < 3k—1.If all these values

are equal, then B sets MZ = M5B, sends “stop” to A via ¢, and termi-
nates the protocol. Otherwise, B sends the shares (s’ 1, -, $5%_1 3_1)
to A via q.
Step 7 A distinguishes the following two cases:
1. A receives (51'3;_y, .., 55 _1 35_1) on the path ¢. A computes P =
{i : 58,1 # s{c_1}, reliably sends P to B, and terminates the
protocol.
2. A receives anything else. A terminates the protocol.

Step 8 B reliable receives P from A, recovers M P from the shares {7, _, :
i ¢ P}, and terminates the protocol.

Since there could be k faulty paths from A to B, and a (k+1)-out-of-(3k—1) MDS
secret sharing scheme can correct at most k£ — 1 errors and simultaneously detect
k — 1 errors. B may recover an incorrect message M B in Step 3. B therefore
needs to verify whether it has recovered the correct message in the following
steps. Note that if ¢ is faulty, then B must have recovered the correct message
in Step 3 for each I. In Step 3, B also sends SEI to A via the path ¢. This does
not violate the perfect privacy property since if there are k — 1 faulty paths from
A to B, then the adversary gets at most k shares including this share, and if
there are k faulty paths from A to B, then the adversary does not control the
path ¢ and does not get this share.

In Step 4, if 51, = 57, then it could be the case that sf; = sf; or it
could be the case that the path ¢ is faulty. In any case, we have to continue the
protocol further. However, if Eﬁ I # sﬁ 1, then A is convinced that either pr or
q is faulty. Since a k-out-of-(3k — 2) MDS secret sharing scheme could correct



k — 1 errors and detect k — 1 errors simultaneously. B will recover the correct
message in Step 5.

Now assume that B does not recover the correct message at the end of round
I =3k — 1. We can distinguish the following two cases:

— B recovers the same message M IB in all 3k — 1 rounds. If this happens, B is
convinced that this uniquely recovered message is the correct message. Note
that this follows from the following two arguments: If the path ¢ is faulty,
then obviously B has recovered the same correct message in each round. If
the path ¢ is non-faulty and we assume that the path p; (1 <t <3k—1)is
faulty, then in order for the adversary to avoid being caught by A in round
t, p; must behave nicely in round ¢, that is, sg‘}t = sft (otherwise A has
identified that g or p; is faulty in round t). Thus there are at most k — 1
errors in the shares that B received in round ¢ and B recovers the correct
message in round t.

— B recovers different messages in these 3k — 1 rounds. This happens only if ¢
is honest. Thus, B could send the shares it receives in round 3k — 1 to A via
path ¢ and A can tell B which shares are incorrect. Thus B could recover
the correct message from these non-faulty shares (there are at least 2k — 1
non-faulty shares).

The above arguments show that the protocol 7 is (0, 0)-secure against a k-active
adversary. Q.E.D.

Theorem 7. Let G(V, E) be a directed graph, A,B € V, and k > 2. If there are
n = max{3k + 1 — 2u, 2k + 1} directed node disjoint paths pi,...,p, from A to
B and u directed path q1,...,q, from B to A (qi,-..,q, are node disjoint from
D1,---,Dn) then there is a (0,0)-secure message transmission protocol from A to
B against a k-active adversary.

Proof. For u = 1 or k = 2, the result is proved in Theorem 6. We prove the
theorem by induction. Assume that v > 1, k¥ > 2, and the theorem holds for
u —1 and k — 1. In the following, we show that the Theorem holds for v and &
by induction.

Let #H = {hr : hr = {p1,,...,pr1,)} be the set of all ordered u-subsets of
{p1,...,pn}- Then |H| = (n%'u), In the following protocol m, A (0,0)-securely

transmits M4 €g F to B:

Step 1 Both A and B set I = 1.

Step 2 A constructs (k+1)-out-of-n MDS secret shares (s{'/, ..., s7; ;) of M4.
For each i <n, A sends s{,‘I to B via the path p;.

Step 3 For each i < n, B receives (or sets default) st on path p;. By correct-
ing at most k — u errors, B recovers a value M B from these shares.

For each i < u, B sends sﬁg, to A via the path ¢;. Note that we
assume hy = {pr,,...,pr,) here.

Step 4 For each i < u, A receives (or sets default) §ﬁ,7 ; from ¢;. A distin-
guishes the following two cases:



Step 5

Step 6

Step 7
Step 8

Step 9

Step 10

Step 11

1. sI I = 51 g for all i < u. A reliably sends “paths in hr maybe
OK”, sets =T +1.1f I > || then A goes to Step 6, otherwise,
goes to Step 2.

2. g}“io 1 # Sﬁo’f for some ip < u. A reliably sends “path pr,  or
gi, is faulty”. A goes to the (0,0)-secure message transmission
protocol against a (k — 1)-active adversary on the paths {p; : i #
I, }U{q; : i #io} to transmit M4 to B (here we use induction).

B distinguishes the following two cases:
1. B reliably receives “paths in hy maybe OK”. Bsets I =T+ 1. If

I > |H| then goes to Step 6, otherwise, goes to Step 2.
2. B reliably receives “path pr, or g;, is faulty”. In this case, B
goes to the (0,0)-secure message transmission protocol against a
(k — 1)-active adversary on the paths {p; : i # I;y} U{g; : i # 40}
and receives the message M B,
B computes whether MP = MPF for all 4,j < [#|. If all these values
are equal, then B sets M P = M1 , sends “stop” to A via all paths ¢;,
and terminates the protocol. Otherwise, B goes to Step 8.
If A receives “stop” on all paths ¢,-..,q,, then A terminates the
protocol, otherwise, A goes to Step 8.
A chooses R1 € R F, constructs (k + 1)-out-of-n MDS secret shares
(sf4,...,84) of R{ and sends s to B via path p; for each i < n.
For each i < n, B receives (or sets default) s® on path p;. B distin-
guishes the following two cases:

1. There are errors in the shares (sP,... s2). In this case, for each
j < u, B sends (s£,...,sB) to A via the path g;. Note that

a (k + 1)-out-of-n MDS secret sharing scheme could be used to
detect n—k—12>k errors.

2. There is no error in the shares (s2,...,s2). B recovers the value
RP from these shares and for each j < u, B sends “OK” to A via
path g;.

For each j < u, A receives (or sets default) (57 o - ..,Eﬁ’j) from the
path g] A dlstlngmshes the following two cases:
Si0.jo 7 s for some ig < n and jo < u. A reliably sends “path
Diy OT gj, 1s faulty” to B. A goes to the (0,0)-secure message
transmission protocol against a (k — 1)-active adversary on the
paths {p; 14 # 0} U {gj : j # jo} to transmit M* to B (here we
use induction again).

2. All other cases. A reliably transmits “continue the protocol” to

B and goes to Step 12.
B distinguishes the following two cases:

1. B reliably receives “continue the protocol”. B goes to Step 12.

2. B reliably receives “path p;, or gj, is faulty”. In this case, B
goes to the (0,0)-secure message transmission protocol against a
(k — 1)-active adversary on the paths {p; : i #io} U{gj : j # jo}
and receives the message M B



Step 12 A computes R4 = M4 — R{!, constructs (k 4 1)-out-of-n MDS secret
shares (s{!,...,s2) of Ry, and sends s{! to B via path p; for each
1 <n.

Step 13 For each i < n, B receives (or sets default) s on path p;. B distin-
guishes the following two cases:

1. There are errors in the shares (s2,...,s2). In this case, for each
j <u, Bsends (s£,...,sP) to A via the path g;.
2. There is no error in the shares (s2,...,s2). B recovers the value

RZ from these shares, computes the secret M? = RE + RZ, and
for each j < u, B sends “OK” to A via path g;. B terminates the
protocol.

Step 14 For each j < u, A receives (or sets default) (Eﬂj, .. .,éﬁ’j) from the

path - A distinguishes the following two cases:
L. 550, # sg“o for some ig < n and jo < u. A reliably sends “path

Diy O gj, is faulty” to B. A goes to the (0,0)-secure message
transmission protocol against a (k — 1)-active adversary on the
paths {p; : i #io} U{qg; : j # jo} to transmit M4 to B.
2. All other cases. A reliably transmits “the protocol is complete”
to B and terminates the protocol.
Step 15 B distinguishes the following two cases:
1. B reliably receives “the protocol is complete”. B terminates the
protocol.
2. B reliably receives “path p;, or gj, is faulty”. In this case, B
goes to the (0,0)-secure message transmission protocol against a
(k — 1)-active adversary on the paths {p; : i # o} U{g; : j # jo}
and receives the message MZ.
Since there could be k faulty paths from A to B, and a (k + 1)-out-of-n MDS
secret sharing scheme in Steps 2 and 3 can correct at most k — u errors and
simultaneously detect k — u errors. B may recover an incorrect message M Bin
Step 3. B therefore needs to verify whether it has recovered the correct message
in the following steps. Note that if all the paths from B to A are faulty, then B
must have recovered the correct message in Step 3 for each I < |H|. In Step 3,
B also sends sf, .1 to A via the path g;. This will not violate the perfect privacy
property since if there are ¢ faulty paths from B to A, then the adversary gets
k — t shares from the A to B paths and ¢ shares from the B to A paths. That
is, the adversary gets at most k shares.

In Step 4, if Eﬁ,I = sﬁ,I for all 4 < u, then for each i < u, it could be the case
that sf = sﬁ 1 or it could be the case that the path g; is faulty. In any case, we
have to continue the protocol further. However, if E}“io, - S’I“io’ 1 for some iy < u,
then A is convinced that either Pr,, Or g, is faulty. Thus if we delete the two
paths pr, and g¢;,, we have at most k£ — 1 unknown faulty paths, n — 1 paths
from A to B, and u — 1 paths from B to A. Since

max{3(k—1)+1—2(u—1),2(k — 1) + 1} = max{3k — 2u — 4,2k — 1}
< max{3k — 2u, 2k}
=n-1,



there is (by induction) a (0,0)-secure message transmission protocol from A to
B against a (k — 1)-active adversary on the paths {p; : i # L, } U{q : i # io},
B recovers the correct message M P in Step 5.

Assume that B does not recover the correct message at the beginning of Step
6. If B recovers the same value ME in all the |H| rounds between Step 2 and
Step 5, then B is convinced that this uniquely recovered value is the correct
message. Note that this follows from the following arguments:

— All paths ¢1,...,q, from B to A are faulty. In this case B obviously has
recovered the correct message in each round.

— There is non-faulty path from B to A. In this case, let t > 1, ¢;,,-.-,q;,
be a list of all non-faulty paths from B to A, pj,,...,p;, be faulty, and
hr = {pr,,---,pr,) with Ii; = ji,...,L;; = ji. I (s, ...,57 1) is the shares
that B receives in Step 3 of round I, then sﬁ’l = sﬁ’l, e sf,f = sﬁ’l

(otherwise A identifies that some ¢; or p; is faulty in round I). That is,

there are at most k — u errors in the shares (s{’/,...,s7 ), and B recovers

the correct secret message in round I.

Now assume that B does not recover the correct message at the beginning of
Step 6 and B recovers different values in these |#| rounds between Step 2 and
Step 5. If this happens, then there must be non-faulty paths from B to A. In
this case, both A and B continues the protocol from Step 8. During Step 8 and
Step 15, A tries to send R{! and R4 to B using the (k+ 1)-out-of-n MDS secret
sharing scheme. Since there are at most k faulty paths, and a (k + 1)-out-of-n
MDS secret sharing scheme could be used to correct 0 error and simultaneously
detect at least k errors, any error in these shares could be detected by B in
Steps 9 and 13. Since there are non-faulty paths from B to A, any errors in
these shares will be reported back A via the non-faulty B to A paths. Thus A
initiates a (0, 0)-secure message transmission protocol against a (k — 1)-active
adversary on the paths {p; : 4 # 40} U {g; : j # jo} in Step 10 or Step 14 and
B will receive the secret. If any error occurs in these cases, B reports either the
shares of R{* or the shares of R4 (but not both) to A via the B to A paths.
Thus we have achieved the perfect privacy here. On the other hand, if there
is no error in these shares of R{* and R4!, then B recovers the correct secret
M#B =RP + RS.

We therefore proved that the protocol 7 is (0,0)-secure against a k-active
adversary. Q.E.D.

In Theorem 7, we have the restriction that k > 2. In the following we show
a sufficient condition which is applicable to k£ = 1.

Theorem 8. Let G(V, E) be a directed graph, A, B € V. If there are 3k directed
node disjoint paths p,...,p3; from A to B and one directed path q from B
to A (q is node disjoint from py,...,psx) then there is a (0,0)-secure message
transmission protocol from A to B against a k-active adversary.

Proof. In the following protocol 7, A (0,0)-securely transmits M4 €g F to B.



Step 1 A constructs (k + 1)-out-of-3k MDS secret shares v4 = (s{!, ..., s4; ) of
MA. For each 1 < i < 3k, A sends s; to B via the path p;.

Step 2 Let v® = (sP,...,s5) be the shares B receives. If B finds that there
are at most k — 1 errors, B recovers M P from the shares, sends “stop”
to A via the path ¢, and terminates the protocol. Otherwise there are
k errors. In this case B sends v® back to A via the path ¢ (note that
q is an honest path in this case).

Step 3 A distinguishes the following two cases:
1. A receives 94 = (57,...,54,) from the path ¢q. A reliably sends
P={i:s! #358} to B.
2. A received “stop” or anything else via q. A terminates the protocol.

Step 4 B reliably receives P from A. B recovers M? from the shares {s? :
i ¢ P} and terminates the protocol (note that |{s? :i ¢ P}| = 2k).

Note that if B sends v® to A in Step 2 then k paths from A to B are corrupted
and the path ¢ is honest. Thus the adversary will not learn vZ. If the adversary
controls the path g, then it may change the message “stop” to something else.
In this case, A will not be able to identify the corrupted paths from A to B.
However, since B has already recovered the key, B will just ignore the next

received message. It is straightforward to show that the protocol is (0, 0)-secure.
Q.E.D.

5 Efficient (0,0)-secure message transmission in directed
graphs

In the previous section, we proved a necessary and sufficient condition for (0, 0)-
secure message transmission from A to B. Our protocols in these proofs are not
efficient (exponential in k). In this section, we show that if there are totally
3k + 1 paths between A and B, then there are efficient (linear in «) (0, 0)-secure
message transmission protocols from A to B.

Theorem 9. Let G(V, E) be a directed graph, A,B € V and k > u. If there are
n = 3k+1—wu directed node disjoint paths p1,...,pn from A to B and u directed
node disjoint paths qi,...,q, from B to A (qi,...,q. are node disjoint from
D1,---,Pn) then there is an efficient (0,0)-secure message transmission protocol
from A to B against a k-active adversary.

Proof. If we replace the steps between Step 1 and Step 7 of the protocol 7 in
the proof of Theorem 7 with the following steps:

Step 1 A constructs (k + 1)-out-of-n MDS secret shares (s{!, ...,s4) of MA4.
For each i < n, A sends s to B via the path p;.

Step 2 For each i < n, B receives (or sets default) s on path p;. If there

are at most k — u errors in the shares (s, ...,55), then B recovers the

secret message MP from these shares by correcting the errors, sends



“stop” to A via all paths ¢;, and terminates the protocol. Otherwise,
B sends “continue the protocol” to A via all paths ¢; and goes to Step
8 of the protocol 7.

Step 3 If A receives “stop” on all paths ¢i,...,q,, then A terminates the
protocol, otherwise, A goes to Step 8 of the protocol 7.

Note that a (k+1)-out-of-n MDS secret sharing scheme could be used to detect k
errors and simultaneously correct k—w errors. Thus if all the paths ¢, ..., ¢, are
controlled by the adversary, then B recovers the secret message M2 in Step 2. If
at least one path from B to A is not controlled by the adversary, then the protocol
7 in the proof of Theorem 7 starting from Step 8 will let B to recover the secret
message M B. Here we should also note that the induction initiated in Step 10 or
Step 14 of the protocol m works since 3k+1—u—1=3k—u > 3(k—1)+1—(u—1).
It is straightforward that the protocol will terminates in at most 11w steps.
Q.E.D.

In the previous theorems, including Theorem 9, we have the restriction that the
directed paths from B to A are all node disjoint from the directed paths from A
to B. In the following theorem we partially remove this restriction.

Theorem 10. Let G(V, E) be a directed graph, A,B € V. Assume that there
aren =3k +1—wu > 2k + 1 (which implies k > u) directed node disjoint paths
P1,---,Pn from A to B and u node disjoint directed paths qi1,...,q, from B to
A. If 3k + 1 — 2u paths among these 3k + 1 — u paths from A to B are node
disjoint from the u paths from B to A, then there is an efficient (0,0)-secure
message transmission protocol from A to B against a k-active adversary.

Proof. We note that the proof of Theorem 9 could not be used here since if we
remove (in the induction step) two paths p; and g¢; such that one of them is
corrupted, we are not guaranteed that the k-active adversary becomes a (k —1)-
active adversary (g; may share a node with some other directed paths from A
to B and that node could be corrupted).

First we describe the proof informally. The protocol is divided into two
phases. In phase one of the protocol, A tries to transmit the secret message
to B assuming at least one of the directed paths from B to A is not corrupted.
This is done by running u concurrent sub-protocols in phase one, in each sub-
protocol B uses one of the directed paths from B to A to send some feedback
information to A. In the second phase of the protocol, A transmits shares of the
secret message through the A to B paths excluding these paths which have in-
tersection with B to A paths. B will use the information received in the second
phase only if B detects that all directed paths from B to A are corrupted in
phase one.

In phase one, A and B execute the following protocol on the path set {p; :
1 <i < n}U{q} for each directed path ¢ from B to A. First A chooses Ry €r F
and sends shares of Ry to B via the paths p1,...,p, using a (k + 1)-out-of-n
MDS secret sharing scheme. If B can correct the errors in the received shares
(that is, there were at most k —u errors), B recovers Ry. Otherwise B needs help



from A and B sends the received shares back to A via the B to A path g. The
problems are that: B may receive help even if B has never asked for. However
B can detect this. Therefore B always works with A on such a protocol and
recovers the correct Ry. Then A sends Ry = M# — R, using a (k + 1)-out-of-n
MDS secret sharing scheme. If B can correct the errors in the received shares of
Ry, B has found the secret and can terminate the protocol. If B cannot correct
these errors, B needs to continue the protocol. In this situation, B distinguishes
the following two cases:

1. B has not asked for help in the transmission of Ry. B can ask for help now
and B will then recover the secret M4,

2. B has asked for help in the transmission of Ry. In this case B cannot ask for
help (otherwise the adversary may learn both the values of Ry and R; and
thus may recover the secret). The sub-protocol needs to be restarted (that
is, A constructs different Ry and R, for M4 and sends them to B again).
Each time when A and B restart this sub-protocol, A sends the shares of
Ry and Ry only via these “non-corrupted” paths from A to B. The “non-
corrupted” paths are computed from the feedbacks that A has received from
the path q. If ¢ is not corrupted, then the computation is reliable. However,
if g is corrupted, then the computation is unreliable. If there is at least one
non-corrupted path g;, from B to A, then B recovers the secret from the sub-
protocol running on the path set {p1,...,pn} U {gi,}. Otherwise B cannot
recover the secret in phase one and we will go to phase two.

If B asks for help in the transmission of Ry, then both A and B “identify” the
corrupted paths from A and B according to the information that B sends to A via
the path ¢. If k' dishonest paths from A to B have been (correctly or incorrectly)
identified at the restart of the sub-protocol, A uses a (k+1)-out-of-(3k+1—u—£k')
MDS secret sharing scheme. This MDS secret sharing scheme will only be used
for error detection (or message recovery in the case that no error occurs), thus
it can be used to detect 3k+1—u—k'—k—1=2k—u—k' > k— k' errors. Due
to the fact that this MDS secret sharing scheme cannot detect k errors we need
to organize ourselves that B will never use incorrectly identified paths from A
to B since otherwise B could compute the incorrect “secret”. This is easy to be
addressed by having B detect whether the path ¢ from B to A is dishonest or
not. This is done by having A reliably send to B what A received via the path
g. Since a (k + 1)-out-of-(3k + 1 — u) MDS secret sharing scheme can detect k
errors and simultaneously correct k — u errors, both A and B identify at least
k' > k —u + 1 dishonest paths from A to B in the first run of the sub-protocol.
During each following run of the sub-protocol, B will either recover the secret
message (when no error occurs) or detect at least one corrupted path from A
to B (A could also detect the corrupted path from A to B according to the
information A received on the path ¢). Thus the sub-protocol will be restarted
at most u times.

In phase two of the protocol, A constructs (k + 1)-out-of-(3k + 1 — 2u) MDS
shares (s1,..., 83k+1-24) of the secret M4 and sends these shares to B via the
3k+1—2u paths which are node disjoint from the paths from the u paths from B



to A. Note that if B has determined that all these u paths from B to A have been
corrupted in phase one, then B recovers the secret M4 from the received shares
(sP,-..,85 11 _1,) in phase two since a (k + 1)-out-of-(3k + 1 — 2u) MDS secret
sharing scheme can be used to detect and correct k — u errors simultaneously.
Note that if at least one path from B to A is honest in phase one, then B has
recovered the secret in phase and can just ignore this last message.

Now we present the entire protocol formally.

Step 1 B sets BA_LBAD = (. For each directed path ¢ from B to A, A and B
run the sub-protocol between Step 2 and Step 11 (the sup-protocols
for the u paths could be run parallely).
Step 2 Asets AB.CHANNELA = {py,...,p,} and j4 = 0. B sets ABL.CHANNEL® =
{p1,-..,pn} and jB = 0.
Step 3 Let n; = |[AB.CHANNEL"|. A chooses Ry €r F, and constructs
(k + 1)-out-of-n; MDS secret shares {s{* : p; € AB.CHANNEL"} of
Ry. For each p; € AB.CHANNEL*, A sends s to B via the path p;.

Step 4 For each p; € AB.CHANNEL®, B receives sB from A via the path
p;. B distinguishes the following two cases:

1. B can recover Ry. If j = 0 and there are at most k — u errors, B
recovers Ry by correcting the errors (note that a (k + 1)-out-of-n
MDS scheme can be used to detect k errors and simultaneously
correct k —u errors). If j > 0, then B recovers R only if there is
no error in the received shares. B sends “ok” to A via the path
q.

2. B cannot recover Ry. B sends {s” : p; € AB.CHANNEL?} to A
via the path gq.

Step 5 A distinguishes the following two cases:

1. A receives “ok” via the path q. A reliably sends “ok” to B.

2. A receives {3P : p; € AB_CHANNEL"} (or sets default values
if the received values are not in valid format). A sets BAD? =
{pi : 38 # s} and reliably sends {37 : p; € AB.CHANNEL"}
and BAD? to B. A sets AB.CHANNEL# = AB_CHANNEL“ \
BADA4,

Step 6 B distinguishes the following two cases:

1. B reliably receives “ok” from A. If B sent “ok” to A in the Step 4,
then goes to Step 7. Otherwise, B sets BA.BAD = BA_ BADU{q}
and goes to Step 11.

2. B reliably receives {57 : p; € AB.CHANNEL?} and BAD®
from A. If 57 = sP for all p; € AB.CHANNEL?, then B sets
AB_CHANNEL? = AB_.CHANNEL?” \ BAD?, recovers Ry from
{sP : p; € AB.CHANNEL®}, and goes to Step 7. Otherwise, B
sets BA.BAD = BA_BAD U {¢} and goes to Step 11.

Step 7 Let n; = |AB.CHANNEL"|. A constructs (k + 1)-out-of-n; MDS
secret shares {s# : p; € ABL.CHANNEL#} of Ry = M4 — Ry. For
each p; € AB.CHANNEL", A sends s{‘ to B via the path p;.



Step 8 For each p; € AB.CHANNEL? B receives sP from A via the path
p;. B distinguishes the following two cases:
1. B can recover Ry. B recovers R; only if there is no error in the
received shares. B sends “ok” to A via the path gq.

2. B cannot recover R;. For this situation we need to distinguish
two cases:
2.a) B sent “ok” to A in Step 4. That is, B has not asked for
help to recover Ry. Then B can ask for help now. B sends
{sP : p; € AB.CHANNEL”} to A via the path g.
2.b) B sent the received shares to A in Step 4. That is, B has asked
for help to recover Ry. Then B cannot ask for help now. B
sends “continue to the next round” to A via the path q.

Step 9 A distinguishes the following three cases:
1. A receives “ok” via the path g. A reliably sends “ok” to B.

2. A receives “continue to the next round” via the path q. A sets
j4 = j4 + 1, reliably sends “continue to the next round” to B,
and goes to Step 3.

3. A receives {58 : p; € AB.CHANNEL“} (or sets default values if
the received values are in invalid format). A sets BAD? = {p; :
58 # s}, AB.CHANNELA = AB_.CHANNEL* \ BAD4, and
reliably sends {57 : p; € AB.CHANNEL*} and BAD* to B.

Step 10 B distinguishes the following three cases:
1. B reliably receives “ok” from A. If B sent “ok” to A in the Step 8§,
then B has recovered the secret. B terminates the entire protocol.
Otherwise, B sets BA_.BAD = BA_ BAD U {¢} and goes to Step
11.

2. B reliably receives “continues to the next round”. If B sent “con-
tinues to the next round” to A in the Step 8, then B sets j& =
72 +1 and goes to Step 3. Otherwise, B sets BA_.BAD = BA_BADU
{q} and goes to Step 11.

3. B reliably receives {57 : p; € AB.CHANNEL?} and BAD®
from A. If 57 = sP for all p; € AB.CHANNEL®, then B sets
AB_CHANNEL? = AB_.CHANNEL? \ BAD?®, recovers R; from
{sP : p; € AB.CHANNEL®}, recovers the secret MP from both
Ry and Ry, and terminates the entire protocol. Otherwise, B sets
BA_BAD = BA_BAD U {¢} and goes to Step 11.

Step 11 B waits until all u sub-protocols in phase one finish. If [ BA_ BAD| =
u then B goes to Step 12. Otherwise, B has recovered the secret
message, thus terminates the entire protocol.

Step 12 A constructs (k+1)-out-of-(3k+1—2u) MDS shares (s1, - . ., S3k+1—2u)
of the secret M4 and sends these shares to B via the 3k + 1 — 2u
paths which are node disjoint from the u B to A paths. Note that if
|IBA_LBAD| = u, then B can recover the secret message M from the
received shares (sP, ..., 55,1 ,,) since a (k+1)-out-of-(3k +1 — 2u)



MDS secret sharing scheme can be used to detect and correct k — u
errors simultaneously.

It is straightforward to show that at the beginning of each run of the sub-protocol
between Step 2 and Step 11, Both A and B have the same sets of AB_.CHANNEL,
that is, AB.CHANNEL# = AB_.CHANNEL?® at Step 2. From the analysis before
the above protocol, it is straightforward that the above protocol is a (0, 0)-secure
message transmission protocol against a k-active adversary. Q.E.D.

6 Secure message transmissions in hypergraphs

Applications of hypergraphs in secure communications have been studied by
Franklin and Yung in [8]. A hypergraph H is a pair (V, E) where V is the node
set and F is the hyperedge set. Each hyperedge e € E is a pair (A4, A*) where
A €V and A* is a subset of V. In a hypergraph, we assume that any message
sent by a node A will be received identically by all nodes in A*, whether or not
A is faulty, and all parties outside of A* learn nothing about the content of the
message.

Let A, B € V be two nodes of the hypergraph H(V, E). We say that there
is a “direct link” from node A to node B if there exists a hyperedge (A, A*)
such that B € A*. We say that there is an “undirected link” from A to B if
there is a directed link from A to B or a directed link from B to A. If there is
a directed (undirected) link from A; to A;14 for every i, 0 < i < k, then we say
that there is a “directed path” (“undirected path’) from Ag to Ai. A and B are
“strongly k-connected’ (“weakly k-connected’) in the hypergraph H(V, E) if for
all S € V—{A, B}, |S| < k, there remains a directed (undirected) path from A to
B after the removal of S and all hyperedges (X, X*) such that SN(X*U{X}) # 0.
Franklin and Yung [8] showed that reliable and private communication from A to
B is possible against a k-passive adversary if and only if A and B are strongly
1-connected and weakly (k + 1)-connected. It should be noted that B and A
are strongly k-connected does not necessarily mean that A and B are strongly
k-connected.

Following Franklin and Yung [8], and, Franklin and Wright [7], we consider
multicast as our only communication primitive in this section. A message that
is multicast by any node A in a hypergraph is received by all nodes A* with
privacy (that is, nodes not in A* learn nothing about what was sent) and au-
thentication (that is, nodes in A* are guaranteed to receive the value that was
multicast and to know which node multicast it). We assume that all nodes in the
hypergraph know the complete protocol specification and the complete structure
of the hypergraph.

Definition 2. Let H(V, E) be a hypergraph, A, B € V be distinct nodes of H,
and k > 0. A, B are k-separable in H if there is a node set W C V with at most
k nodes such that any directed path from A to B goes through at least one node
in W. We say that W separates A, B.



Remark. Note that there is no straightforward relationship between strong
connectivity and separability in hypergraphs.

Theorem 11. Let H(V, E) be a hypergraph, A, B € V be distinct nodes of H,
and k > 0. The nodes A and B are not 2k-separable if and only if there are
2k + 1 directed node disjoint paths from A to B in H.

Proof. This follows directly from the maximum-flow minimum-cut theorem in
classical graph theory. For details, see, e.g., [6]. Q.E.D.

Theorem 12. Let H(V, E) be a hypergraph, A, B € V be distinct nodes of H,
and k > 0. A necessary and sufficient condition for reliable message transmission
from A to B against a k-active adversary is that A and B are not 2k-separable
in H.

Proof. First assume that A and B cannot be separated by a 2k-node set. By
Theorem 11, there are 2k + 1 directed node disjoint paths from A to B in H.
Thus reliable message transmission from A to B is possible.

Next assume that A and B can be separated by a 2k-node set W in H. We
shall show that reliable message transmission is impossible. Suppose that 7 is
a message transmission protocol from A to B and let W = Wy U W; be a 2k-
node separation of A and B with Wy and W; each having at most k& nodes. Let
mg be the message that A transmits. The adversary will attempt to maintain
a simulation of the possible behavior of A by executing 7 for message my #
mg. The strategy of the adversary is to flip a coin and then, depending on the
outcome, decide which set of Wy or W; to control. Let W3 be the chosen set. In
each execution step of the transmission protocol, the adversary causes each node
in Wy to follow the protocol w as if the protocol were transmitting the message
my. This simulation succeeds with nonzero probability. Since B does not know
whether b = 0 or b = 1, at the end of the protocol B cannot decide whether A has
transmitted mg or my if the adversary succeeds. Thus with nonzero probability,
the reliability is not achieved. Q.E.D.

Theorem 12 gives a sufficient and necessary condition for achieving reliable mes-
sage transmission against a k-active adversary over hypergraphs. In the follow-
ing example, we show that this condition is not sufficient for achieving privacy
against a k-active adversary (indeed, even not for a k-passive adversary).

Example 1 Let H(V, Ep,) be the hypergraph in Figure 1 where V = {A, B, v,
V2, U, U1, u2} and Eh = {(A; {U15U2}); (Ula{’uaB}): (U25{UaB}); (Aa {u17u2}))
(u1,{v, B}), (ua,{v,B})}. Then the nodes A and B are not 2-separable in H.
Theorem 12 shows that reliable message transmission from A to B is possi-
ble against a 1-active adversary. However, the hypergraph H is not weakly 2-
connected (the removal of the node v and the removal of the corresponding hy-
peredges will disconnect A and B). Thus, the result by Franklin and Yung [8]
shows that private message transmission from A to B is not possible against a
1-passive adversary.
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Fig. 1. The hypergraph H(V, E}) in Example 1

Theorem 13. Let § > 0 and A and B be two nodes in a hypergraph H(V,E)
satisfying the following conditions:

1. A and B are not 2k-separable in H.
2. B and A are not 2k-separable in H.
3. A and B are strongly k-connected in H.

Then there is a (0,0)-secure message transmission protocol from A to B against
a k-active adversary.

Proof. Assume that the conditions of the theorem is satisfied. For each k-node
subset set S of V' \ {4, B}, let ps be a directed path from A to B which wit-
nesses that A and B are strongly k-connected by removing the nodes in S and
corresponding hyperedges in H. Let S = {S : S C V \ {4,B},|S| = k} and
P = {ps:S € S}. Then A transmits the message M“ to B using the following
protocol.

Step 1 Foreach S € S, A chooses a random pair (as, bs) €g F2, and transmits
this pair to B via the path pg.

Step 2 For each S € S, B receives a pair (af,b%) from A via the path ps.

Step 3 For each S € S, B chooses a random rg €g F and computes sg =
auth(rg;aZ,bB).

Step 4 B reliably transmits s = {{rg,ss) : S € S) to A.

Step 5 A reliably receives the value s = ((rg,ss) : S € 8) from B.

Step 6 A computes the key index set Kingex = {zs : 85 = auth(rg;ad,ba)}
and the shared secret K4 = = D s eKiman aj.

Step 7 A reliably transmits (Kindex, M4 + K*4) to B, where M4 is the secret
message.



Step 8 B reliably receives the value (Kingex, ¢) from A. B computes the shared
secret KP =3, . af,and decrypts the message MP = ¢ — KP.

It is possible that af # aZ but auth(rs;af,bd) = auth(rs;aZ,bE) for some
S € S. However this probability is negligible. Thus the above protocol is reliable
with high probability. Since A and B are strongly k-connected in H, there is
a pair (ag,bs) such that (ag,bs) reliably reaches B and the adversary cannot
infer any information of ag from its view. Thus the above protocol is (0, §)-secure
against a k-active adversary if one chooses sufficiently large F. Q.E.D.

The results in Sections 3 and 4 show that the condition in Theorem 13 is not
necessary.

7 Secure message transmission over neighbor networks

7.1 Definitions

A special case of the hypergraph is the neighbor networks. A neighbor network
is a graph G(V, E). In a neighbor network, a node A € V is called a neighbor
of another node B € V if there is an edge (4, B) € E. In a neighbor network,
we assume that any message sent by a node A will be received identically by all
its neighbors, whether or not A is faulty, and all parties outside of A’s neighbor
learn nothing about the content of the message.

For a neighbor network G(V, E) and two nodes A, B in it, Franklin and
Wright [7], and, Wang and Desmedt [17] showed that if there are n multicast
lines (that is, n paths with disjoint neighborhoods) between A and B and there
are at most k£ malicious (Byzantine style) processors, then the condition n > k
is necessary and sufficient for achieving efficient probabilistically reliable and
perfect private communication.

For each neighbor network G(V, E), there is a hypergraph Hg(V, Ep,) which
is equivalent to G(V, E) in functionality. Hg(V, Ep,) is defined by letting Ej, be
the set of hyperedges (A4, A*) where A € V and A* is the set of neighbors of A.

Let A and B be two nodes in a neighbor network G(V, E). We have the
following definitions:

1. A and B are k-connectedin G(V, E) if there are k node disjoint paths between
A and B in G(V,E).

2. A and B are weakly k-hyper-connected in G(V, E) if A and B are weakly
k-connected in Hg(V, Ep).

3. A and B are k-neighbor-connected in G(V, E) if for any set V3 C V' \ {4, B}
with |Vi| < k, the removal of neighbor(Vy) and all incident edges from
G(V, E) does not disconnect A and B, where

neighbor (V1) = ViU{A € V : thereexistsB € V1 (B, A) such that € E}\{A, B}.

4. A and B are weakly (n, k)-connected if there are n node disjoint paths p, ...,
pn, between A and B and, for any node set T C (V' \ {4, B}) with |T'| < &,
there exists 1 < ¢ < n such that all nodes on p; have no neighbor in T'.



It is easy to check that the following relationships hold.
weak (n, k — 1)-connectivity (n > k) = k-neighbor-connectivity = weak
k-hyper-connectivity = k-connectivity
In the following examples, we show that these implications are strict.

Example 2 Let G(V, E) be the graph in Figure 2 where V = {A, B,C,D} and
E={(4,0),(C,B),(A,D),(D,B),(C,D)}. Then it is straightforward to check
that G(V, E) is 2-connected but not weakly 2-hyper-connected.
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Fig. 2. The graph G(V, E) in Example 2

Example 3 Let G(V, E) be the graph in Figure 8 where V. = {A,B,C,D, F}
and E = {(4,C), (A,D), (C,B), (D,B), (C,F), (F,D)}. Then it is straight-
forward to check that A and B are weakly 2-hyper-connected but not 2-neighbor-
connected.

AQ B

C

Fig. 3. The graph G(V, E) in Example 3

Example 4 Let G(V, E) be the graph in Figure 4 where V. = {A, B, C, D,
E, F, G, H} and E = {(AJC)} (CaD); (DaE) (EJB)’ (A,F), (F7G)’ (G,H)
(H,B), (C,H), (E,F)}. Then it is straightforward to check that A and B are
2-neighbor-connected but not weakly (2,1)-connected.

Example 2 shows that k-connectivity does not necessarily imply weak k-
hyper-connectivity. Example 3 shows that weak k-hyper-connectivity does not
necessarily imply k-neighbor-connectivity. Example 4 shows that k-neighbor con-
nectivity does not necessarily imply weak (n, k — 1)-connectivity for some n > k.
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Fig. 4. The graph G(V, E) in Example 4

7.2 (0,0)-Secure message transmission over neighbor networks

Wang and Desmedt [17] have given a sufficient condition for achieving (0,0)-
security message transmission against a k-active adversary over neighbor net-
works. In this section, we show that their condition is not necessary.

Theorem 14. (Wang and Desmedt [17]) If A and B are weakly (n, k)-connected
for some k < n, then there is an efficient (0,d)-secure message transmission
between A and B.

The condition in Theorem 14 is not necessary. For example, the neighbor
network G in Example 3 is not 2-neighbor-connected, thus not weakly (2,1)-
connected. In the following we present a (0, §)-secure message transmission pro-
tocol against a 1-active adversary from A to B for the neighbor network of
Example 3 .

Message transmission protocol for neighbor network G in Example 3.

Step 1 A chooses two random pairs (rf‘,rz ) €r F? and (r{,r{') €er F2. A
sends (r{!,r4!) to C and (r4',r4!) to D.

Step 2 B chooses two random pairs (TlB,'f'2 ) €r F2 and (r2,rP) e F2. B
sends (r2,r8) to C and (rf,rP) to D.

Step 3 C chooses a random pair (al,bl) €r F2. C sends (a; + rf‘,bl + 7’5‘)
to A and (a; +rP,b; +rP) to B.

Step 4 D chooses a random pair (az,bs) €g F2. D sends (ag + 4, by + )
to A and (as + 2, by +rP) to B.

Step 5 From the messages received from C' and D, A computes (af*, b{!) and
(az ’ bA)

Step 6 From the messages received from C and D, B computes (af,b?) and
(a3, b3).

Step 7 B chooses a random r € F, computes s; = auth(r; aP,bP) and s, =
auth(r; a®, bP). Using the probabilistically reliable message transmis-
sion protocol of Franklin and Wright [7], B transmits (r, s1, s2) to A.

Step 8 Let (r4,sf,s4) be the message received by A in the last step, A
computes the key index set Kindex = {i : 3 = auth(r4;a!,b1)}. A
also computes the shared secret K4 =3, Kinaon af.



Step 9 Using the probabilistically reliable message transmission protocol of
Franklin and Wright [7], A transmits (Kindex, M4 + K*4) to B, where
M*4 is the secret message.

Step 10 Let (K2 B) be the message that B received in the last step. B

index> €
computes the shared secret KZ = 3, KE, aB, and decrypts the

message MB =P — KB,

It is straightforward to check that the above protocol is an efficient (0, 6)-
secure message transmission protocol from A to B against a l-active adversary.

Example 1 shows that for a general hypergraph, the existence of a reliable
message transmission protocol does not imply the existence of a private message
transmission protocol. We show that this is true for probabilistic reliability and
perfect privacy in neighbor networks also.

Example 5 Let G(V, E) be the neighbor network in Figure 5 where V = {A,
B,C,D,E,F,G} and E = {(A,C),(C,D),(D,B),(A,E),(E,F),(F,B),(G,C),
(G,D),(G,E),(G,F)}. Then there is a probabilistic reliable message transmis-
sion protocol from A to B against a I-active adversary in G. But there is no
private message transmission from A to B against a 1-passive (or 1-active) ad-
versary in G.

F

Fig. 5. The graph G(V, E) in Example 5

Proof. Tt is straightforward to check that G(V, E) is not weakly 2-hyper-connected.
Indeed, in the hypergraph Hg(V, Ep) of G(V, E), the removal of node G and the
removal of the corresponding hyperedges will disconnect A and B completely.
Thus Franklin and Yung’s result in [8] shows that there is no private message
transmission protocol against a 1-passive (or 1-active) adversary from A to B.
It is also straightforward to check that Franklin and Wright’s [7] reliable mes-
sage transmission protocol against a l-active adversary works for the two paths
(A,C,D,B) and (A, E, F, B). Q.E.D.

Though weak k-hyper-connectivity is a necessary condition for achieving proba-
bilistically reliable and perfectly private message transmission against a (k — 1)-
active adversary, we do not know whether this condition is sufficient. We conjec-



ture that there is no probabilistically reliable and perfectly private message trans-
mission protocol against a 1-active adversary for the weakly 2-hyper-connected
neighbor network G(V, E) in Figure 6, where V. = {A, B, C, D, E, F, G,
HY and E = {(4,C), (C,D), (D,E), (E,B), (A,F), (F,G), (G,H), (H,B),
(D,@G)}. Note that in order to prove or refute our conjecture, it is sufficient to
show whether there is a probabilistically reliable message transmission protocol
against a l-active adversary for the neighbor network. For this specific neighbor
network, the trick in our previous protocol could be used to convert any proba-
bilistically reliable message transmission protocol to a probabilistically reliable
and perfectly private message transmission protocol against a 1-active adversary.

AO OB
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Fig. 6. The graph G(V, E)
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