
Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite

Fields via Explicit Formulae

Tanja Lange

Information-Security and Cryptography,
Ruhr-University of Bochum,

Universitätsstr. 150,
44780 Bochum, Germany,

lange@itsc.ruhr-uni-bochum.de,

http://www.itsc.ruhr-uni-bochum.de/tanja

December 15, 2003

Abstract

We extend the explicit formulae for arithmetic on genus two curves of [13, 21] to fields of even
characteristic and to arbitrary equation of the curve. These formulae can be evaluated faster than the
more general Cantor algorithm and allow to obtain faster arithmetic on a hyperelliptic genus 2 curve than
on elliptic curves. We give timings for implementations using various libraries for the field arithmetic.

1 Introduction

In this note we first give a short introduction to the mathematical background of hyperelliptic curves and
present the standard algorithms to do arithmetic in the ideal class group. This is the group used in the com-
putations to have an efficient way of computing and storing the elements. It is isomorphic to the Jacobian
of the curve. Then we present the explicit formulae which are faster than the usual algorithms, along with
the analysis of the number of operations and a proof for their correctness.
So far, the fastest explicit formulae are given by Miyamoto, Doi, Matsuo, Chao, and Tsuji [13] and Taka-
hashi [21], building upon the work of Harley [3], but applying to odd characteristic only. Here we give the
generalization to even characteristic and to curves stated in the most general form, thus working for any
finite field and any hyperelliptic curve given in Weierstraß representation. As to date the cited algorithms
are only available in Japanese we provide a full description and explain the steps in detail.
Before giving an outlook, we present some timings obtained using these formula. It turns out that the com-
parison between elliptic curves and hyperelliptic curves depends heavily on the chosen library – respectively
on the relation of inversion and multiplication and the overhead of function calls. We used GMP and NTL for
prime fields and a program of Nöcker [15] for binary fields. The curves used for the reference implementations
are appropriate for use in cryptography since the field size is of the correct order. As inversions are not too
expensive in any arithmetic used, we choose affine representations for elliptic and hyperelliptic curves.
After the publication of the first version of this paper it was brought to the authors attention that there
exist a further work on even characteristic by Sugizaki, Matsuo, Chao, and Tsujii [20].

2 Mathematical Background on Elliptic and Hyperelliptic Curves

In this section we briefly sketch what is needed in the remainder of this paper. As elliptic curves are
hyperelliptic curves of genus 1 the results stated below apply to this case as well. The interested reader is
referred to Menezes, Wu, and Zuccherato [12], Lorenzini [10], and Stichtenoth [19] for more details and proofs.

1

2 Tanja Lange, Efficient Arithmetic via Explicit Formulae

Let IFq be a finite field of characteristic p, q = pν , and let ĪFq denote the algebraic closure of IFq.

Definition 2.1 Let IFq(C)/IFq be a quadratic function field defined via an equation

C : y2 + h(x)y = f(x) in IFq[x, y], (1)

where f(x) ∈ IFq[x] is a monic polynomial of degree 2g + 1, h(x) ∈ IFq[x] is a polynomial of degree at most
g, and there are no solutions (a, b) ∈ ĪFq × ĪFq which simultaneously satisfy the equation b2 + h(a)b = f(a)
and the partial derivative equations 2b+h(a) = 0 and h′(a)b− f ′(a) = 0. The curve C/IFq associated to this
function field is called a hyperelliptic curve of genus g defined over IFq.

For odd characteristic it suffices to let h(x) = 0 and to have f squarefree to satisfy the last condition of the
definition.

For our purposes it is enough to consider a point as a tuple (a, b) ∈ ĪF2
q which satisfies n2 + h(a)b = f(a).

Besides these tuples there is one point ∞ at infinity. The hyperelliptic involution ι maps (a, b) to
(a,−b− h(a)) and leaves ∞ fixed.
A divisor D of C is an element of the free abelian group over the points of C, e. g. D =

∑
P∈C nPP with

nP ∈ ZZ and nP = 0 for almost all points P . The degree of D is defined as deg(D) =
∑
P∈C nP . To every

element F of the function field we can associate a divisor via the valuations at all points of the curve
div(F) =

∑
P∈C(ĪFq)

vP (F)P . These so called principal divisors are of degree zero and form a subgroup
of the group of degree zero divisors. The quotient group is called the divisor class group. The function
(x− a) leads to a divisor P + ιP − 2∞. Hence, we can achieve that we represent a divisor class by a divisor
D =

∑r
i=1 Pi − r∞, where Pi 6= ∞ and Pi 6= ιPj for i 6= j. Furthermore one finds a representative with

r ≤ g for each class. Note that D defined over IFq does not imply that each Pi is defined over this field. If
Pi is defined over IFql then all l conjugates of Pi must also occur in D. Therefore l is bounded by g.

The maximal ideals of IFq[x, y]/(y2 + h(x)y − f(x)) have a basis consisting of two polynomials and one can
achieve that the first polynomial is in IFq[x], whereas the second one is of the form y − v(x), v(x) ∈ IFq[x],
since we reduce modulo a polynomial of degree 2 in y. Now consider the ideal class group, i.e. the ideals
modulo the principal ideals. In Mumford [14][page 3.17] the following representation is introduced which
makes explicit the correspondence of ideal classes and divisor classes:

Theorem 2.2 (Mumford Representation)
Let the function field be given via the absolutely irreducible polynomial y2 + h(x)y = f(x), where h, f ∈
IFq[x], deg f = 2g + 1, deg h ≤ g. Each nontrivial ideal class over IFq can be represented via a unique ideal
generated by u(x) and y − v(x), u, v ∈ IFq[x] , where

1. u is monic,

2. deg v < deg u ≤ g,

3. u|v2 + vh− f .

Let D =
∑r
i=1 Pi − r∞, where Pi 6= ∞, Pi 6= ιPj for i 6= j and r ≤ g. Put Pi = (ai, bi).

Then the corresponding ideal class is represented by u =
∏r
i=1(x − ai) and if Pi occurs ni times then(

d
dt

)j [
v(x)2 + v(x)h(x)− f(x)

]
|x=ai

= 0, 0 ≤ j ≤ ni − 1.

The second part of the theorem means that for all points Pi = (ai, bi) occurring in the support of D we have
u(ai) = 0 and the third condition guarantees that v(ai) = bi with appropriate multiplicity.

For short we denote this ideal by [u, v]. The inverse of a class is represented by [u,−h− v], where the second
polynomial is understood modulo u if necessary. The ideal class group over IFq is denoted by Cl(C/IFq). The
zero element of of Cl(C/IFq) is represented by [1, 0].

Tanja Lange, Efficient Arithmetic via Explicit Formulae 3

3 Arithmetic using Cantor’s Algorithm

In this section we consider the group operation. Here we still deal with general hyperelliptic curves, i. e.
curves of arbitrary genus. Addition of divisor classes means multiplication of ideal classes, which consists in
a composition of the ideals and a first reduction to a basis of two polynomials. The output of this algorithm
is said to be semi-reduced. Then we need a second algorithm, which is usually called reduction, to find
the unique representative in the class referred to above. Such an ideal is called reduced. Due to the work
of Cantor [2] (for odd characteristic only) and Koblitz [4] one has an efficient algorithm to perform these
operation, which uses only polynomial arithmetic over the finite field in which the ideal classes are defined.

Algorithm 3.1 (Composition)
INPUT: D1 = [u1, v1], D2 = [u2, v2],

C : y2 + h(x)y = f(x).
OUTPUT:D = [u, v] semi-reduced with D ≡ D1D2.

1. compute d1 = gcd(u1, u2) = e1u1 + e2u2;

2. compute d = gcd(d1, v1 + v2 + h) = c1d1 + c2(v1 + v2 + h);

3. let s1 = c1e1, s2 = c1e2, s3 = c2; /* i.e. d = s1u1 + s2u2 + s3(v1 + v2 + h)*/

4. u = u1u2
d2 ;

v = s1u1v2+s2u2v1+s3(v1v2+f)
d mod u.

Algorithm 3.2 (Reduction)
INPUT: D = [u, v] semi-reduced.
OUTPUT:D′ = [u′, v′] reduced with D ≡ D′.

1. let u′ = f−vh−v2

u , v′ = (−h− v) mod u′;

2. if deg u′ > g put u = u′, v = v′;
goto step 1;

3. make u′ monic.

This algorithm provides a universal way of doing arithmetic in Cl(IFq) which applies to any genus and
characteristic. However, in a straightforward implementation several unneeded coefficients are computed.
Therefore a careful study making the steps explicit is necessary. We deal with this in the following section.

4 Explicit formulae

The first attempt to avoid using Cantor’s algorithm for faster arithmetic and deriving explicit formulae was
made by Spallek [18] for genus two and odd characteristic. Harley [3] takes a slightly different approach to
optimize the running time. This approach was generalized to even characteristic by Lange [7].
Building on the work of Matsuo, Chao, and Tsujii [11], recently Miyamoto, Doi, Matsuo, Chao, and Tsuji
[13] and Takahashi [21] obtained an even larger speed-up using Montgomery’s trick to reduce the number of
inversions to 1. We generalize the setting in order to deal with even characteristic as well. To do so, we first
give the case study of [7] investigating what can be the input of the combination algorithm and proceed in
considering these different cases. We determine the exact number of operations needed to perform addition
and doubling in the most common cases.
Unless stated otherwise the formulae hold independently of the characteristic, therefore we take care of the
signs; in characteristic two, 2y is understood as zero.

4 Tanja Lange, Efficient Arithmetic via Explicit Formulae

4.1 Different Cases

Consider the composition step of Cantors Algorithm 3.1. The input are two classes represented by two
polynomials [ui, vi] each. As we consider curves of genus two the following holds by Theorem 2.2:

1. u is monic,

2. deg v < deg u ≤ 2,

3. u|v2 + vh− f2.

Without loss of generality let deg u1 ≤ deg u2.

1. u1 is of degree zero, this is only possible in the case [u1, v1] = [1, 0], i. e. for the zero element. The
result of the combination and reduction is the second class [u2, v2].

2. If u1 is of degree one, then either u2 is of degree one as well or it has full degree.

(a) Assume deg u2 = 1, i. e. ui = x + ui0 and the vi are constant. Then if u1 = u2 we obtain for
v1 = −v2 − h(−u10) the zero element [1, 0] and for v1 = v2 we double the divisor to obtain

u = u2
1, (2)

v = ((f ′(−u10)− v1h
′(−u10))x+ (f ′(−u10)− v1h

′(−u10))u10)/(2v1 + h(−u10)) + v1.

Otherwise the composition leads to u = u1u2 and
v = ((v2 − v1)x+ v2u10 − v1u20)/(u10 − u20).
In all cases the results are already reduced.

(b) Now let the second polynomial be of degree two, u2 = x2 + u21x+ u20. Then the corresponding
divisors are given by D1 = P1 −∞ and D2 = P2 + P3 − 2∞, Pi 6=∞.

i. If u2(−u10) 6= 0 then P1 and −P1 do not occur in D2. This case will be dealt with below in
Subsection 4.2.2.

ii. Otherwise if v2(−u10) = v1 + h(−u10) then −P1 occurs in D2 and the resulting class is given
by u = x+ u21 − u10 and v = v2(−u21 + u10) as −u21 equals the sum of the x-coordinates of
the points.
Otherwise one first doubles [u1, v1] by (2) and then adds [x+u21−u10, v2(−u21 +u10)], hence,
reduces the problem to the case 2(b)i, unless D2 = 2P1 − 2∞ where one first doubles D2 as
in 3(a)ii and then subtracts D1 using 2(b)i.

3. Let deg u1 = deg u2 = 2.

(a) Let first u1 = u2. This means that for an appropriate ordering D1 = P1 + P2 − 2∞, D2 =
P3 + P4 − 2∞ the x-coordinates of Pi and Pi+2 are equal.

i. If v1 ≡ −v2 − h mod u1 then the result is [1, 0].
ii. If v1 = v2 then we are in the case in which we double a class of order different from two and

with first polynomial of full degree. Again we need to consider two sub-cases:
If D1 = P1 + P2 − 2∞ where P1 is equal to its opposite, then the result is 2P2 and can be
computed like above. P1 = (xP1 , yP1) is equal to its opposite, iff h(xP1) = −2yP1 . To check
for this case we compute the resultant of h+ 2v1 and u1.
A. If res(h + 2v1, u1) 6= 0 then we are in the usual case where both points are not equal to

their opposite. This will be considered in Subsection 4.2.3.
B. Otherwise we compute the gcd(h + 2v1, u1) = (x − xP1) to get the coordinate of P1 and

double [x+ u11 + xP1 , v1(−u11 − xP1)].
iii. Now we know that without loss of generality P1 = P3 and P2 6= P4 is the opposite of P4. Let

vi = vi1x+ vi0, then the result 2P1 is obtained by doubling
[x− (v10 − v20)/(v21 − v11), v1((v10 − v20)/(v21 − v11))] using (2).

Tanja Lange, Efficient Arithmetic via Explicit Formulae 5

(b) For the remaining case u1 6= u2, we need to consider the following possibilities.

i. If res(u1, u2) 6= 0 then no point of D1 is equal to a point or its opposite in D2. This is the
most frequent case. We deal with it in Subsection 4.2.1.

ii. If the above resultant is zero then gcd(u1, u2) = x − xP1 and we know that either D1 =
P1 + P2 − 2∞, D2 = P1 + P3 − 2∞ or D2 contains the opposite of P1 instead. This can be
checked by inserting xP1 in both v1 and v2.
A. If the results are equal then we are in the first case and proceed by computing D′ =

2(P1 −∞), then D′′ = D′ + P2 −∞ and finally D = D′′ + P3 −∞ by the formulae in
2. We extract the coordinates of P2 and P3 by P2 = (−u11 + xP1 , v1(−u11 + xP1)), P3 =
(−u21 + xP1 , v2(−u21 + xP1)).

B. In case v1(xP1) 6= v2(xP1) the result is P2 + P3 − 2∞.

If one uses the resultant as recommended in 3(a)ii and 3(b)i then one needs to compute a greatest common
divisor as well, to extract the coordinates of P1 when needed. However, most frequently we are in the case
of resultant nonzero and thus we save on average.

4.2 Addition and Doubling

We now present in detail the algorithms for the most common cases. Put f(x) = x5 +
∑4
i=0 fix

i, h(x) =∑2
i=0 hix

i. For the complexity estimates we always assume h2 ∈ {0, 1}. For nonzero h2 this can be achieved
by substituting y = h5

2y
′, x = h2

2x
′ and dividing the resulting equation by h10

2 . If one does not want
to transform some computations should be performed differently (like s0(s0 + h2) instead of s2

0 + s0h2).
Similarly we assume f4 = 0, as this can be derived for p 6= 5 by the substitution x′ = (x− f4/5), and include
this coefficient only for completeness. Furthermore we assume h1 ∈ {0, 1}. We would like to stress that the
formulae remain correct for other values, one simply has to allow some more operations.

4.2.1 Addition in Most Common Case

In this case the two divisor classes to be combined consist of four points different from each other and from
each other’s negative. The results of the composition Algorithm 3.1 are u1u2 and a polynomial v of degree
≤ 3 satisfying u|v2 + vh − f (see Theorem 2.2). As we started with ui|v2

i + vih − f we can obtain v using
Chinese remaindering:

v ≡ v1 mod u1, (3)
v ≡ v2 mod u2.

Then we compute the resulting first polynomial u′ by making (f − vh − h2)/(u1u2) monic and taking
v′ = (−h− v mod u′).
To optimize the computations we do not follow this literally. We now list the needed subexpressions and
then show that in fact we obtain the desired result.

k = (f − v2h− v2
2)/u2

s ≡ (v1 − v2)/u2 mod u1

l = s · u2

u = (k − s(l + h+ 2v2))/u1

u′ = u made monic
v′ ≡ −h− (l + v2) mod u′

The divisions made to get k and u are exact divisions due to the definition of the polynomials. Let us first
verify that v = l + v2 = s · u2 + v2 satisfies the system of equations (3). This is obvious for the second

6 Tanja Lange, Efficient Arithmetic via Explicit Formulae

equation. For the first one we consider v ≡ s · u2 + v2 ≡ ((v1 − v2)/u2)u2 + v2 ≡ v1 mod u1.
Now we check that u = (f − vh− v2)/(u1u2) by expanding out

u1 · u2 · u = u2(k − s(l + h+ 2v2)) = f − v2h− v2
2 − l(l + h)− 2lv2 = f − vh− v2.

In the course of computing we do not need all coefficients of the polynomials defined above. As f =
x5 +

∑4
i=0 fix

i is monic and of degree 5, u2 is monic of degree 2, deg h ≤ 2, and deg v2 = 1 we have that
k = x3+(f4−u21)x2+cx+c′, where c, c′ are some constants. In the computation of u we divide an expression
involving k by a polynomial of degree 2, thus we only need the above known part of k. In the computation
of a product of polynomials we use the following Karatsuba style formula to save one multiplication:

(ax+ b)(cx+ d) = acx2 + ((a+ b)(c+ d)− ac− bd)x+ bd.

To reduce a polynomial of degree 3 modulo a monic one of degree 2 we use

ax3 + bx2 + cx+ d ≡ (c− (i+ j)(a+ (b− ia)) + ia+ j(b− ia))x+ d− j(b− ia) mod x2 + ix+ j

using only 3 multiplications instead of four. Furthermore we use an almost inverse in the computation of s
and compute rs instead, where r is the resultant of u1 and u2, postponing and combining the inversion of r
with that of s.
In the following Table 1 we list the intermediate steps together with the number of multiplications (M),
squarings (S) and inversions (I) needed. As we assume h2, h1, f4 ∈ {0, 1} we do not count multiplications by
these coefficients. In the case study we have already computed the resultant of u1 and u2 when we arrive at
this algorithm. Hence, we can assume that ũ2 = u2 mod u1 and res(ũ2, u1) are known. However, we include
the costs in the table, as we use these expressions to compute 1/ũ2 mod u1.

Remark: Note, that if we assume that our field is represented via a normal basis and work in characteristic
two, the squarings are virtually for free and using a polynomial basis they still are by far cheaper than
multiplications. Furthermore, for even characteristic one can save one multiplications as (h1+2v1)w4 = h1w4.

4.2.2 Addition in Case deg u1 = 1, deg u2 = 2

By the above considerations we can assume that for u1 = x+ u10 we have that u2(−u10) 6= 0.
In principle we follow the same algorithm as stated in the previous subsection. But to obtain u we divide
by a polynomial of degree one, therefore we need an additional coefficient of k and save a lot in the other
operations. Table 2 shows that this case is much cheaper than the general one, however it is not too likely
to happen like all special cases.

4.2.3 Doubling

The above case study left open how one computes the double of a class where the first polynomial has degree
two and both points of the representing divisor are not equal to their opposite. Put u = x2 + u1x+ u0, v =
v1x+ v0. Combining [u, v] with itself should result in a class [unew, vnew], where

unew = u2,

vnew ≡ v mod u, (4)
unew | v2

new + vnewh− f. (5)

Then this class is reduced to obtain [u′, v′]. We use the following subexpressions:

k = (f − hv − v2)/u
s ≡ k/(h+ 2v) mod u
l = su

u1 = s2 − ((h+ 2v)s− k)/u
u′ = u1 made monic
v′ ≡ −h− (l + v) mod u′

Tanja Lange, Efficient Arithmetic via Explicit Formulae 7

Table 1: Addition, deg u1 = deg u2 = 2
Input [u1, v1], [u2, v2],deg u1 = deg u2 = 2

ui = x2 + ui1x+ ui0, vi = vi1x+ vi0
h = h2x

2 + h1x+ h0, f = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0

Output [u′, v′] = [u1, v1] + [u2, v2]
Step Expression Operations

1 compute resultant r of u1, u2: 1S, 3M
z1 = u11 − u21, z2 = u20 − u10, z3 = u11z1 + z2;
r = z2z3 + z2

1u10;
2 compute almost inverse of u2 modulo u1 (inv = r/u2 mod u1):

inv1 = z1, inv0 = z3;
3 compute s′ = rs ≡ (v1 − v2)inv mod u1: 5M

w0 = v10 − v20, w1 = v11 − v21, w2 = inv0w0, w3 = inv1w1;
s′1 = (inv0 + inv1)(w0 + w1)− w2 − w3(1 + u11), s′0 = w2 − u10w3;
If s1 = 0 see below

4 compute s′′ = x+ s0/s1 = x+ s′0/s
′
1 and s1: I, 2S, 5M

w1 = (rs′1)−1(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′
2
1w1(= s1);

w4 = rw2(= 1/s1), w5 = w2
4;

s′′0 = s′0w2;
5 compute l′ = s′′u2 = x3 + l′2x

2 + l′1x+ l′0: 2M
l′2 = u21 + s′′0 , l′1 = u21s

′′
0 + u20, l′0 = u20s

′′
0

6 compute u′ = (s(l + h+ 2v2)− k)/u1 = x2 + u′1x+ u′0: 3M
u′0 = (s′′0 − u11)(s′′0 − z1 + h2w4)− u10 + l′1 + (h1 + 2v21)w4 + (2u21 + z1 − f4)w5;
u′1 = 2s′′0 − z1 + h2w4 − w5;

7 compute v′ ≡ −h− (l + v2) mod u′ = v′1x+ v′0: 4M
w1 = l′2 − u′1, w2 = u′1w1 + u′0 − l′1;
v′1 = w2w3 − v21 − h1 + h2u

′
1;

w2 = u′0w1 − l′0;
v′0 = w2w3 − v20 − h0 + h2u

′
0;

total I, 3S, 22M
Special case s = s0

4’ compute s: I, M
inv = 1/r, s0 = s′0inv;

5’ compute u′ = (k − s(l + h+ 2v2))/u1 = x+ u′0: S
u′0 = f4 − u21 − u11 − s2

0 − s0h2;
6’ compute v′ ≡ −h− (l + v2) mod u′ = v′0: 2M

w1 = s0(u21 + u‘0) + h1 + v21 + h2u‘0, w2 = s0 + v20 + h0;
v′0 = u′0w1 − w2;

total I, 2S, 11M

8 Tanja Lange, Efficient Arithmetic via Explicit Formulae

Table 2: Addition, deg u1 = 1, deg u2 = 2
Input [u1, v1], [u2, v2],deg u1 = 1,deg u2 = 2

u1 = x+ u10, u2 = x2 + u21x+ u20, v1 = v10, v2 = v21x+ v20

h = h2x
2 + h1x+ h0, f = x5 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0

Output [u′, v′] = [u1, v1] + [u2, v2]
Step Expression Operations

1 compute r ≡ u2 mod u1: M
r = u20 − (u21 − u10)u10;

2 compute inverse of u2 modulo u1: I
inv = 1/r

3 compute s = (v1 − v2)inv mod u1: 2M
s0 = inv(v10 − v20 − v21u10);

4 compute l = s · u2 = s0x
2 + l1x+ l0: 2M

l1 = s0u21, l0 = s0u20;
5 compute k = (f − v2h− v2

2)/u2 = x3 + k2x
2 + k1x+ k0: M

k2 = f4 − u21, k1 = f3 − (f4 − u21)u21 − v21h2 − u20);
6 compute u′ = (k − s(l + h+ 2v2))/u1 = x2 + u′1x+ u′0: S,2M

u′1 = k2 − s2
0 − s0h2 − u10;

u′0 = k1 − s0(l1 + h1 + 2v21)− u10u
′
1;

7 compute v′ ≡ −h− (l + v2) mod u′ = v′1x+ v′0: 2M
v′1 = (h2 + s0)u′1 − (h1 + l1 + v21);
v′0 = (h2 + s0)u′0 − (h0 + l0 + v20);

total I, S, 10 M

Note that like above we do not compute the semi-reduced divisor explicitely, here vnew = su+ v. Hence, we
see that (4) holds. To prove (5) we consider

v2
new + vnewh− f ≡ l2 + 2lv + v2 + hl + hv − f = s2u2 + u(s(h+ 2v)− k)

and
(h+ 2v)s− k ≡ (h+ 2v)k/(h+ 2v)− k ≡ 0 mod u.

Finally, one finds by
(v2

new + vnewh− f)/unew = (s2u2 + (h+ 2v)su− ku)/u2

that u1 is in fact obtained as described in the reduction algorithm.
Table 3 lists the numbers of elementary operations needed in the following table. Unlike in the addition case
we now need the exact polynomial k to compute d. We include the costs to compute res(h̃, u) and assume
h2, h1, f4 ∈ {0, 1}.

Remarks:

1. Concerning the counting in Step 2 a remark is in order. Unless the characteristic is odd and h 6= 0,
the computation of v2

1 , u
2
1 and ṽ2

1 needs only 2 squarings instead of the obvious 3. (In detail: if for odd
characteristic h = 0 then ṽ2

1 = 4v2
1 . If p = 2 then ṽ2

1 = h2
2u

2
1 + h2

1 = h2
2w1 + h2

1 and h2, h1 ∈ {0, 1}.
These details can be fixed for an actual implementation.)

2. In characteristic 2 one can reduce the number of multiplications by 2 as in Step 1 w3 = h2u
2
1 + h1u1 =

h2w1 + h1u1 and in the computation of u′0 = s′′0
2 +w4(h2(s′′0 + u1) + h1) +w5f4 the multiplication by

f4 need not be counted.
If additionally h2 = 0 the number of operations reduces even to I, 5S, 17M , as r = h1(w0h1 + h0u1)
can be computed directly and for free, and u′0 = s′′0

2 + w4h1 + w5f4 needs only one squaring.

Tanja Lange, Efficient Arithmetic via Explicit Formulae 9

Table 3: Doubling, deg u = 2
Input [u, v],deg u = 2

u = x2 + u1x+ u0, v = v1x+ v0

h = h2x
2 + h1x+ h0, f = x5 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0

Output [u′, v′] = 2[u, v]
Step Expression Operations

1 compute ṽ ≡ (h+ 2v) mod u = ṽ1x+ ṽ0:
ṽ1 = h1 + 2v1 − h2u1, ṽ0 = h0 + 2v0 − h2u0;

2 compute resultant r =res(ṽ, u): 2S, 3M
w0 = v2

1 , w1 = u2
1, w2 = ṽ2

1 , w3 = u1ṽ1; (see below)
r = u0w2 + ṽ0(ṽ0 − w3);

3 compute almost inverse inv′ = inv · r:
inv′1 = −ṽ1, inv′0 = ṽ0 − w3;

4 compute k′ = (f − hv − v2)/u mod u = k′1x+ k′0: 1M
w3 = f3 + w1, w4 = 2u0;
k′1 = 2(w1 − f4u1) + w3 − w4 − v1h2;
k′0 = u1(2w4 − w3 + f4u1 + v1h2) + f2 − w0 − 2f4u0 − v1h1 − v0h2;

5 compute s′ = k′inv′ mod u: 5M
w0 = k′0inv

′
0, w1 = k′1inv

′
1;

s′1 = (inv′0 + inv′1)(k′0 + k′1)− w0 − w1(1 + u1);
s′0 = w0 − u0w1;
If s1 = 0 see below

6 compute s′′ = x+ s0/s1 and s1: I, 2S, 5M
w1 = 1/(rs′1)(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′

2
1w1(= s1);

w4 = rw2(= 1/s1), w5 = w2
4;

s′′0 = s′0w2;
7 compute l′ = s′′u = x3 + l′2x

2 + l′1x+ l′0: 2M
l′2 = u1 + s′′0 , l′1 = u1s

′′
0 + u0, l′0 = u0s

′′
0 ;

8 compute u′ = s2 + (h+ 2v)s/u+ (v2 + hv − f)/u2: S, 2M
u′0 = s′′0

2 + w4(h2(s′′0 − u1) + 2v1 + h1) + w5(2u1 − f4);
u′1 = 2s′′0 + w4h2 − w5;

9 compute v′ ≡ −h− (l + v) mod u′ = v′1x+ v′0: 4M
w1 = l′2 − u′1, w2 = u′1w1 + u′0 − l′1;
v′1 = w2w3 − v1 − h1 + u′1h2;
w2 = u′0w1 − l′0;
v′0 = w2w3 − v0 − h0 + h2u

′
0;

total I, 5S, 22 M
Special case s = s0

6’ compute s and precomputations: I,3M
w1 = 1/r, s0 = s′0w1;
w1 = u1s0 + v1 + h1, w2 = u0s0 + v0 + h0;

7’ compute u′ = (f − hv − v2)/u2 − (h+ 2v)s/u− s2: S
u′0 = f4 − s2

0 − s0h2 − 2u1;
8’ compute v′ ≡ −h− (su+ v) mod u′: 2M

w1 = w1 − u′0(s0 + h2), v′0 = u′0w1 − w2;
total I, 3S, 14M

10 Tanja Lange, Efficient Arithmetic via Explicit Formulae

5 Timings

To compare the arithmetic on elliptic and hyperelliptic curves of genus 2 we implemented the above formulae
in various environments. For elliptic curves we used the affine representation, i. e. the curve is given as in
the introduction with g = 1. This is justified by the fact that for all libraries one inversion takes less than
six multiplications. The times needed for multiplication, squaring and inversion by the different libraries are
listed in the appendix. Addition formulae for elliptic curves can be found in almost any textbook on this
subject, e. g. Blake, Seroussi, and Smart [1], Silverman [17] or Koblitz [5]. To add two distinct points one
needs one inversion, one squaring and two multiplications whereas doubling takes one more squaring.

ECC, IFqell HEC, IFqhyp
I S M I S M

Addition 1 1 2 1 2 23
Doubling 1 2 2 1 5 22
m-fold 6λ 10λ 12λ 6λ 24λ 134λ
log2m = λ

For properly chosen curves (not supersingular, group order contains a large prime factor) the security mainly
depends on the group size. By Weil’s theorem we have

|Cl(C/IFqn)| ∼ qng.

Hence, to achieve the same level of security the finite field for elliptic curves needs to be larger qell ∼ q2
hyp.

As the arithmetic in IFq takes time Õ(log q), inversions are more expensive than multiplications, and
squarings are even cheaper, one might expect that hyperelliptic curves could offer faster arithmetic than
elliptic curves for the same level of security or at least achieve the same level of speed. The outcome of the
experiments shows that this relation depends heavily on the underlying arithmetic. To be more precise,
breaking down the operations to the smaller field IFqhyp on an elliptic curve we need at least two times as
many inversions but less multiplications than on a hyperelliptic curve.
For the implementations we used curves over prime fields IFp and curves over IF2n . The latter are Koblitz
curves defined over IF2, therefore one can achieve a much faster implementation using the Frobenius
endomorphism (see [7]), however, here we were only interested in the effects of the usual arithmetic in the
ideal class group. We worked with the following curves and fields.

ECC
y2 = x3 + 2227264092164547360326443915353641005956041076603x+

IFp 1 +2705501697235753328656362326336626679936508382816
p1 = 2923003274661805836407369665432566039311865086059
y2 = x3 + 17737349176642349243894113027274253572128546075654068293x+

IFp 2 +11398124211651420413825497258317958241131759134764526623
p2 = 18389946490390666300300164325803710203424869466203226147

IF2 3 y2 + y = x3 + 1
IF2 4 y2 + y = x3 + x2 + 1

HEC
y2 = x5 + 153834295433461683634059x3 + 1503542947764347319629935x2+

IFp 5 +1930714025804554453580068x+ 790992824799875905266969
p3 = 1932005208863265003490787
y2 = x5 + 241216435998068557682742515x3 + 553011586465186980114036462x2+

IFp 6 +1456621446251091989731057514x+ 3440013483680364963850133535
p4 = 3713820117856140824697372689

IF2 7 y2 + xy = x5 + x2 + 1
IF2 8 y2 + (x2 + x+ 1)y = x5 + x

For the binary elliptic curves we considered the field extensions n = 163 and n = 191 and for hyperelliptic
curves we took n = 83 and n = 97.

Tanja Lange, Efficient Arithmetic via Explicit Formulae 11

Note that in the genus 2 case we cannot determine the group order for the prime fields, but the arithmetic
depends only on the field size, thus even if these particular curves should turn out to be weak the arithmetic
for appropriate curves is equally fast.
In all the experiments the special cases never occurred, this goes along with the fact that the probability of
occurrence is ∼ 1/p.
All computations where performed on a Pentium IV, 1.5 GHz under linux.

5.1 Prime Fields

We did a C implementation using GMP as long integer package and a C++ implementation with NTL. For
GMP the field elements were considered as integers and reduction took place only where necessary. With
NTL we used the library to perform finite field arithmetic.
We carried out 10 000 scalar multiplications per curve using binary double-and-add, where the scalar is in
the range of the group order. The table lists the average time needed to perform a scalar multiplication on
the respective curve, where the scalar was of the order of the assumed group size. Time is given in ms.

GMP ECC HEC
∼ 160 bits 4.577 8.232
∼ 180 bits 5.668 9.121

NTL ECC HEC
∼ 160 bits 10.785 11.326
∼ 180 bits 14.303 16.324

Thus interestingly the results show that the relation between the cost of arithmetic for elliptic and hyperel-
liptic curves depends heavily on the chosen implementation of field arithmetic. In any case the complexity
is of the same order (at most twice) for both genera. In GMP we have that an inversion is less expensive
compared to multiplications than in NTL (see Appendix). This relation seems to be the reason why in GMP
the arithmetic on elliptic curves is faster whereas in NTL the timings are balanced.

5.2 Binary Fields

The C++ program for curves over binary fields is based on an implementation of the arithmetic in IF2n by
Michael Nöcker [15], which allows to work with normal and polynomial bases and in the latter case accepts
user defined irreducible polynomials. His program was built on bipolar, an implementation of polynomial
arithmetic over IF2. Here we use polynomial arithmetic for the computations in IF2n . See [9] for a detailed
study of the appropriate implementation of Koblitz curves. As irreducible polynomials we took sparse
polynomials. For n = 163 and n = 83 we used a pentanomial; for n = 191 and n = 97 irreducible trinomials
exist. Again 10 000 scalar multiplications per curve and extension field were performed and the table lists
the average time for one scalar multiplication.

binary field ECC HEC
curve 3 4 7 8
∼ 160 bits 26.208 26.504 18.875 21.143
∼ 190 bits 31.958 32.240 25.215 27.188

First of all one notices that again with this library arithmetic on hyperelliptic curves is faster than on elliptic
curves. In comparing curves 3 and 4 respectively 7 and 8 one realizes that the running-time also depends
on the coefficients of the equation of the curve. The difference results from the distinct number of additions
needed.

6 Outlook

The formulae for even characteristic have been implemented on a ARM processor by Pelzl [16]. He also
generalizes the explicit formulae for genus three given by Kuroki, Gonda, Matsuo, Chao, and Tsuji [6] to
even characteristic.

12 Tanja Lange, Efficient Arithmetic via Explicit Formulae

For restricted devices inversions are very expensive. A first attempt to avoid divisions on the cost of more
multiplications and a further coordinate is given by Miyamoto, Doi, Matsuo, Chao, and Tsuji [13]. An
optimized version that also covers even characteristic and considers the case of scalar multiplication is to
appear [8].

References

[1] I.F. Blake, G. Seroussi, and N.P. Smart. Elliptic curves in cryptography. London Mathematical Society
Lecture Note Series. 265. Cambridge University Press, 1999.

[2] D.G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48:95–101, 1987.

[3] R. Harley. Fast arithmetic on genus 2 curves.
available at http://cristal.inria.fr/∼harley/hyper, 2000.

[4] N. Koblitz. Hyperelliptic cryptosystems. J. of Cryptology, 1:139–150, 1989.

[5] N. Koblitz. Algebraic aspects of cryptography. Springer, 1998.

[6] J. Kuroki, M. Gonda, K. Matsuo, J. Chao, and S. Tsuji. Fast Genus Three Hyperelliptic Curve Cryp-
tosystems. In Proc. of SCIS2002, IEICE Japan, 2002.

[7] T. Lange. Efficient Arithmetic on Hyperelliptic Curves. PhD thesis, Universität Gesamthochschule
Essen, 2001.

[8] T. Lange. Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves. Cryptology ePrint Archive,
Report 2002/147, 2002. http://eprint.iacr.org/ or http://www.itsc.ruhr-uni-bochum.de/tanja.

[9] T. Lange and M. Nöcker. Optimal implementation of hyperelliptic Koblitz curves over IF2n . in prepa-
ration.

[10] D. Lorenzini. An Invitation to Arithmetic Geometry, volume 9 of Graduate studies in mathematics.
AMS, 1996.

[11] K. Matsuo, J. Chao, and S. Tsujii. Fast genus two hyperellptic curve cryptosysytems. Technical Report
ISEC2001-23, IEICE, 2001. pages 89-96.

[12] A. Menezes, Y.-H. Wu, and R. Zuccherato. An Elementary Introduction to Hyperelliptic Curves. In
Algebraic Aspects of Cryptography [5].

[13] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, and S. Tsuji. A fast addition algorithm of genus two
hyperelliptic curve. In Proc. of SCIS2002, IEICE Japan, pages 497–502, 2002. in Japanese.

[14] D. Mumford. Tata Lectures on Theta II. Birkhäuser, 1984.

[15] M. Nöcker. Data structures for parallel exponentiation. PhD thesis, Universität Paderborn, 2001.

[16] J. Pelzl. Fast Hyperelliptic Curve Cryptosystems for Embedded Processors. Master’s thesis, Ruhr-
University of Bochum, 2002.

[17] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate texts in mathematics.
Springer, 1986.

[18] A.M. Spallek. Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen. PhD
thesis, Universität Gesamthochschule Essen, 1994.

[19] H. Stichtenoth. Algebraic Function Fields and Codes. Springer, 1993.

Tanja Lange, Efficient Arithmetic via Explicit Formulae 13

[20] H. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii. An Exntension of Harley algorithm addition algorithm
for hyperelliptic curves over finite fields of characteritic two. Technical Report ISEC2002-9(2002-5),
IEICE, 2002. pages 49-56.

[21] M. Takahashi. Improving Harley Algorithms for Jacobians of genus 2 Hyperelliptic Curves. In Proc. of
SCIS2002, IEICE Japan, 2002. in Japanese.

Appendix

Here we provide the timings for the field operations using the respective libraries. The timings were obtained
on a Pentium IV, 1.5 GHz under linux. We carried out 1 000 000 times each of the operations, times are
given in µs.
As using GMP we carried out modular reductions only when it lead to an increase of speed, the table lists
both the costs for multiplication and squaring of integers of the respective size without further reduction and
including a modular reduction. Accordingly, in the implementation the times needed on average for these
two operations is slightly larger if we disregard the reduction and smaller otherwise. Inversion is carried out
as modular inversion in any case. Using NTL or working with binary fields we automatically have modular
reduction. Finally we state the quotients of inversion and squaring over multiplications in all cases.

prime/fieldsize I S M Sred Mred
I
M

S
M

I
Mred

Sred
Mred

p1 ∼ 161 bits 16.22 3.04 5.93 3.99 6.84 2.73 0.51 2.37 0.58
GMP p2 ∼ 183 bits 17.23 2.31 4.42 3.18 5.37 3.89 0.52 3.20 0.59
4.0.1 p3 ∼ 81 bits 7.64 1.52 2.89 2.14 3.49 2.64 0.52 2.18 0.61

p4 ∼ 91 bits 8.39 1.63 3.01 2.14 3.55 2.78 0.54 2.36 0.60
p1 ∼ 161 bits 35.36 – – 4.95 7.74 – – 4.56 0.63

NTL p2 ∼ 183 bits 40.62 – – 5.66 8.88 – – 4.57 0.63
5.2 p3 ∼ 81 bits 18.24 – – 3.19 5.53 – – 3.29 0.57

p4 ∼ 91 bits 20.55 – – 3.06 4.98 – – 4.12 0.61
n = 163 49.81 – – 6.81 9.16 – – 5.43 0.74

IF2n n = 191 58.79 – – 7.19 9.60 – – 6.12 0.74
n = 83 25.68 – – 5.33 5.64 – – 4.55 0.94
n = 97 28.79 – – 5.45 5.96 – – 4.83 0.91

