

Cryptanalysis of the COS (2,128) Stream Ciphers

Steve Babbage

Vodafone Group R&D, Newbury, UK
steve.babbage@vodafone.com

Abstract: A new family of very fast stream ciphers called COS (for “crossing over system”) has been
proposed by Filiol and Fontaine, and seems to have been adopted for at least one commercial
standard. COS(2,128) Mode I and COS(2,128) Mode II are particular members of this family for
which the authors proposed a cryptanalysis challenge. The ciphers accept secret keys of 256, 192 or
128 bits. In this note we cryptanalyse both of these ciphers, using a small amount of known
keystream — with negligible effort in the case of Mode II, and with effort well below that required for
a single DES key search in the case of Mode I.

Keywords: COS, stream cipher, nonlinear feedback shift register, cryptanalysis.

1. The COS(2,128) stream ciphers
The COS family of stream ciphers has been introduced by Filiol and Fontaine [1,2]. They are
constructed from nonlinear feedback shift registers. COS(n,2L) uses n registers each of length
2L bits, so in particular COS(2,128) uses 2 registers L1 and L2 each of length 128 bits. We
describe the ciphers in this section.

1.1 Key loading
COS(2,128) uses a secret key of 256, 192 or 128 bits, and a “message key” of 32 bits. (The
message key is not assumed to be secret; it is there to allow the same secret key to be used
many times without generating the same keystream. It might be a frame counter, for
instance.)

A separate nonlinear feedback shift register M, of length 256 bits, is used for the key loading.
M is pictured as clocking from left to right. The process is as follows:

•

•

•

•

•

•

Place the secret key in M. (If the secret key is less than 256 bits long, each remaining byte
is derived from one of the secret key bytes by applying a look-up table — see [1,2] for
details.)

XOR the 32-bit message key onto the leftmost 32 bits of M.

Clock M 256 times.

Copy the rightmost 128 bits into L1.

Clock M 128 more times.

Copy the leftmost 128 bits into L2.

M uses a nonlinear feedback function computed on the bits from eleven of its stages.

The COS Stream Ciphers are Extremely Weak 2

1.2 Keystream generation
Once the registers L1 and L2 have been initialised, the following output generation step is
repeated to generate keystream (with i alternating between 1 and 2):

1. Clock Li 64, 65 or 66 times (the exact number of clocks to be applied is determined by
the values of some of the register bits).

2. Generate the following blocks of 64 bits each:

left-half (L1) ⊕ right-half (L2)

right-half (L1) ⊕ left-half (L2)

There are two modes of operation: mode II, in which all 128 of these bits are used as
keystream each time, and mode I, in which the 128 bits are considered as four words of 32
bits, and only two of the words are used as keystream each time1 (the ones selected depending
on the values of some register bits).

Each of the registers L1 and L2 uses a nonlinear feedback function computed on the bits from
nine of its stages (a different 9-bit to 1-bit function for each register, although the bit positions
used to provide the 9 inputs are the same for each register).

2. Cryptanalysis of Mode II
The analysis here appeared previously in an earlier note [3] by the present author.

2.1 The space of unknowns is trivially reduced to 64 bits
First suppose that the keystream blocks are known for two consecutive steps, and that the
number of times the register was clocked between the steps was 64 (this happens with
probability ½). Then the contents of the registers look like this, where α, β, γ, δ, ε are 64-bit
register halves:

γ δ γ δ

α β ε αRegister that
is clocked

Register that
is not clocked

Keystream
blocks

α⊕δ
β⊕γ

ε⊕δ
α⊕γ

It is clear that, if any one of α, β, γ, δ or ε is known, then all the others can immediately be
recovered, and so the state of both registers can be determined. This is despite the fact that
the secret key used to initialise the registers has length 128, 192 or 256 bits.

But it gets much worse than that.

2.2 The effective key size is roughly one bit
Now suppose that the keystream blocks are known for three consecutive steps, that one
register was clocked 64 times between the first and second step and that the other register was

1 Note: an early draft of [2] stated that, in Mode I, two 64-bit blocks (rather than two 32-bit words) were used
each time — which implied that, for COS(2,128), there was no difference between Modes I and II. That was the
understanding on which [3] was written. However, the published reference code at [1] uses two 32-bit words in
Mode I; and private communication with one of the designers makes it clear that this is what is intended.

The COS Stream Ciphers are Extremely Weak 3

clocked 65 times between the second and third step (this happens with probability ½ × ¼).
Then the contents of the registers look like this, where α, β, γ, δ, ε, ζ are 64-bit register
halves:

γ δ γ δ ζ γ´

α β ε α ε αFirst register
to be clocked

Second register
to be clocked

Keystream
blocks

α⊕δ
β⊕γ

ε⊕δ
α⊕γ

ε⊕γ´
α⊕ζ

Here γ´ means γ shifted to the right by one bit, with an unknown bit appearing in the leftmost
position.

Let us number the bits of the register halves, so that for instance α0 is the rightmost bit of α.

Now guess γ0.
We know α⊕γ, so we recover α0. •

•
•
•
•
•
•
•
•

We know β⊕γ, so we recover β0.
We know α⊕δ, so we recover δ0.
We know ε⊕δ, so we recover ε0.
We know ε⊕γ´, so we recover γ1.
We know α⊕γ, so we recover α1.
We know β⊕γ, so we recover β1.
etc etc …
… so we recover all of α, β, γ, δ and ε. And all we have had to “search” over is the single
bit γ0.

So we have an attack that requires three known keystream blocks and a 1-bit search, and
works with probability 1/8. We have implemented this attack using the reference code for
COS(2,128) provided at [1], and confirmed that it works as described here.

2.3 Variations of the above attack
The attack described in the previous section requires successive clocking amounts of 64 and
65. In fact it is easy to see that the attack can be generalised to work for any two successive
clocking amounts that are not both equal to 64. (You may have to search over two, three or
four bits instead of one ….) So, given any three consecutive blocks of known keystream,
with probability ¾ there is an attack that recovers the entire state of the registers with
negligible effort.

3. Cryptanalysis of Mode I
3.1 The space of unknowns is trivially reduced to not much more than 64 bits
Suppose that the keystream blocks are known for three consecutive steps, and that the number
of times the register was clocked between each of the steps was 64 (this happens with
probability ½ × ½). Then the contents of the registers look like this, where the ai and bi are
32-bit register quarters:

The COS Stream Ciphers are Extremely Weak 4

a1
First register
to be clocked

Second register
to be clocked

a0 a-1 a-2 a3 a2 a1 a0 a3 a2 a1 a0

b3 b2 b1 b0 b3 b2 b1 b0 b5 b4 b3 b2

Now suppose that the keystream words (considered as ordered pairs) that are selected at each
stage are as follows (this happens with probability 2-3 × 2-3 × 2-3 — see [1,2] for details of
how the words are selected):

Keystream
blocks

a1 ⊕ b1
a0 ⊕ b0

a1 ⊕ b3
a0 ⊕ b2

a3 ⊕ b3
a2 ⊕ b2

It is clear that, if any one of a1, a3, b1, or b3 is known, then all the others can immediately be
recovered, and similarly for a0, a2, b0, and b2. So a 64-bit guess is sufficient to determine the
entire state of both registers. This is despite the fact that the secret key used to initialise the
registers has length 128, 192 or 256 bits.

3.2 The space of unknowns is further reduced
The attack just described treats all the words ai and bi as independent unknowns. But of
course they are not all independent: for instance, b5 and b4 are entirely determined by b3, b2,
and b1 and b0. By taking advantage of the dependencies we can reduce the complexity of the
attack significantly.

Suppose that the keystream blocks are known for four consecutive steps, and that the number
of times the register was clocked between each of the steps was 64 (this happens with
probability ½ × ½ × ½). Then the contents of the registers look like this, where the ai and bi
are 32-bit register quarters:

a1
First register
to be clocked

Second register
to be clocked

a0 a-1 a-2 a3 a2 a1 a0 a3 a2 a1 a0 a5 a4 a3 a2

b3 b2 b1 b0 b3 b2 b1 b0 b5 b4 b3 b2 b5 b4 b3 b2

Suppose also that the keystream words selected at each stage are as follows (this happens with
probability 2-3 × 2-3 × 2-3 × 2-3):

Keystream
blocks

a1 ⊕ b1
a0 ⊕ b0

a1 ⊕ b3
a0 ⊕ b2

a3 ⊕ b3
a2 ⊕ b2

a3 ⊕ b5
a2 ⊕ b4

By guessing any one bit in any of a1, a3, b1, b3, or b5, we immediately learn the corresponding
bit in all the others. Similarly for a0, a2, b0, b2, and b4. But when we know particular sets of
nine bits, we can start to determine others for free, using the dependencies from the register
clocking. It turns out that guessing only 37 bits is sufficient to determine the 64 we need.
Number the bits of each word from 0 to 31, with bit 0 at the right hand end; by guessing bits
31, 28, 27, 25, 24, 21, 18, 15, 14, 13, 12, 11, 10, 9, 8, 5, 3, 2 and 0 of a1 and bits 31, 29, 28,
27, 26, 24, 23, 21, 18, 17, 15, 14, 13, 11, 10, 8, 5 and 2 of a0, we can deduce all of a0…a3 and
b0…b5 , i.e. the entire state of both registers. We deduce other bits by repeatedly XORing
known bits with known keystream and applying the nine-bit nonlinear function to particular
sets of 9 known bits.

Note: the particular set of 37 bits listed here was found by hand; we have no guarantee that 37
is optimal. It is quite possible that a smaller set might be found. Developing a method to find
the smallest possible set efficiently may be an interesting research problem.

The COS Stream Ciphers are Extremely Weak 5

3.3 Variations of the above attack
The precise attack described in the previous section requires a 37-bit exhaustive search, and
works on any block of 256 known keystream bits with probability (½)3 × (2-3)4 = 2-15. Given
plenty (roughly 221 bits2) of known keystream, this of course translates into an attack which
can be expected to succeed, and whose expected running time is around 252.

We described a scenario in which the registers were clocked exactly 64 bits each time. That
was for ease of explanation; a similar attack can be pursued no matter what the number of
clocks at each stage3. We do need to take account of the additional uncertainty as to how
many clocks were applied — but this only increases the complexity of the attack by one bit
(i.e. by a factor of two), because the bits that determine the clocks are all in the same positions
in the registers, so that guessing one clock control bit is sufficient to deduce them all by
XORing with known keystream. Applying this variation reduces the known keystream
requirement by a factor of 23, while increasing the running time by a factor of 2.

There are also many other sets of keystream words that would do us just as well, several of
which occur with the same probability as the ones we chose in section 3.2. This allows us to
reduce the requirement for known keystream by a factor of around 27, without altering the
expected running time for the attack4. By considering less likely sets of keystream words, we
can reduce the amount of known keystream required a little further, at the expense of a
modest increase in expected running time.

So applying the variations of the two previous paragraphs reduces the number of keystream
bits required to around 211.

Finally, there is scope for further analysis to see if any advantage can gained by considering
slightly longer sequences of known keystream with more dependencies between the unknown
bits. It seems likely, though, that the additional uncertainty about the clocking of the registers
and the selection of the keystream words will outweigh any reduction in the number of bits
that we need to guess.

2 We need about 215 × 64 bits (not 215 × 256, because the 256-bit blocks we consider can overlap).
3 The precise analysis of the 37 bits we needed to guess in section 3.2 is no longer appropriate. For simplicity,
we have assumed that the number of bits that would need to be guessed remains at 37; more analysis needs to be
done here.
4 Let the register state words be:

a1
First register
to be clocked

Second register
to be clocked

a0 a-1 a-2 a3 a2 a1 a0 a3 a2 a1 a0 a5 a4 a3 a2

b3 b2 b1 b0 b3 b2 b1 b0 b5 b4 b3 b2 b5 b4 b3 b2

Then any of the following sets of keystream words will do:

a1⊕b1, a0⊕b0, a3⊕b1, a2⊕b0, a3⊕b3, a2⊕b2, a5⊕b3, a4⊕b2
a1⊕b1, a0⊕b0, a3⊕b1, a2⊕b0, a3⊕b3, a2⊕b2, a3⊕b5, a2⊕b4
a1⊕b1, a0⊕b0, a1⊕b3, a0⊕b2, a3⊕b3, a2⊕b2, a5⊕b3, a4⊕b2
a1⊕b1, a0⊕b0, a1⊕b3, a0⊕b2, a3⊕b3, a2⊕b2, a3⊕b5, a2⊕b4
a1⊕b1, a0⊕b0, a1⊕b3, a0⊕b2, a1⊕b5, a0⊕b4, a3⊕b5, a2⊕b4
a -1⊕b3, a -2⊕b2, a1⊕b3, a0⊕b2, a1⊕b5, a0⊕b4, a3⊕b5, a2⊕b4
a -1⊕b3, a -2⊕b2, a1⊕b3, a0⊕b2, a3⊕b3, a2⊕b2, a3⊕b5, a2⊕b4

and within any pair of keystream words we can take the words in either order.

The COS Stream Ciphers are Extremely Weak 6

4. An observation on the key loading
If you use a cipher like this many times with the same secret key and a different message key
each time, you would hope that the keystream sequence would be different every time.
COS(2,128) does not, in fact, guarantee this; there is a non-trivial probability that two
different message keys will give the same keystream sequence.

Consider two message keys that differ only in the rightmost bit; and consider what happens in
each case as the register M is clocked, and the single bit difference moves along the register.
Every now and again, this differing bit will feature as one of the eleven inputs to the nonlinear
feedback function; whether it makes any difference to the output of this function will depend
on the values of the other ten input bits.

Number the stages of M 255 to 0, from left to right. Bits 31 to 0 of message key are XORed
into stages 255 to 224. Now one of the inputs to the feedback function comes from stage 227;
and the feedback function is linear in this particular input. Hence a single bit difference in
any of bits 31 to 3 of the message key will cause many more differences in the feedback bits,
and the two parallel instances of M will quickly diverge. But if the single bit difference is in
any of bits 2 to 0, then the story is very different; it is quite possible for this one differing bit
to pass along the register, never making any difference to the feedback, before it falls off the
right hand end. If this happens, then it does so before any of the contents of M are copied into
L1 or L2; the two instances of M are now exactly the same, and so the contents of L1 and L2 are
identical in each case, and the keystream is too.

An immediate estimation suggests that this should occur with probability roughly 2-9, since
the difference bit appears as an input to the feedback function 9 times before it falls off the
end of the register. Empirical testing suggests that the probability is closer to 2-9·5 for the
register M as defined in COS(2,128). In other words, in a multi-frame application where the
message key is an incrementing frame counter, out of a few thousand consecutive frames, we
can expect some pairs of frames to be encrypted with exactly the same keystream5.
Depending on the nature of the plaintext, this may well be enough for the attacker to
reconstruct some or all of the plaintext information, as is well known.

There is a higher probability that a single bit difference in the message key will leave the
resulting contents of just L1 unaffected; simplistic estimation suggests that this probability
should be around 2-5, while empirical testing suggests that it is in fact roughly 1/37. When
this happens, it will be quite easy to identify from the keystream, particularly because of a
remarkable property that COS(2,128) possesses: there is a significant probability that four
consecutive blocks of keystream XOR to all zeroes. Again with significant probability, this
allows an attacker to determine the XOR of the states of L2 in the two frames, hence the XOR
of the two keystream sequences, and hence the XOR of the two plaintext sequences. So this
is almost as bad as if the two keystream sequences had been the same — except that a small
amount of known keystream is required to perform the attack.

5. So does that mean that the ciphers have been broken?
In [3], as described here in section 2, the present author showed how Mode II of COS(2,128)
could be broken with negligible effort and a few hundred bits of known keystream. The
conclusion was that this cipher is extremely weak.

5 To put this in context: in GSM mobile telephony, 1000 frames corresponds to less than 5 seconds of a phone
call.

The COS Stream Ciphers are Extremely Weak 7

The COS designers responded in [4], saying in effect that Mode II was intended for
enciphering compressed plaintext, that therefore guessing a few hundred bits of plaintext was
pretty much equivalent to guessing all the plaintext, and thus that the assumption of even a
few hundred bits of known keystream was quite unrealistic. So they still assert that Mode II
is suitable for use.

We suggest that this shows a difference between two perspectives on whether or not a cipher
is broken:

•

•

The customer’s perspective: if there is a non-trivial chance that, if I use this cipher, an
eavesdropper could deduce my plaintext, then I should not use this cipher — I should
consider it broken.

The cryptanalyst’s perspective: unless I can be confident of deducing the plaintext from an
intercepted transmission, I am not happy that the cipher has been broken.

Mode II may not have been broken in the second sense: a cryptanalyst cannot be confident of
being able to know or guess a few hundred bits of known plaintext6. But in the first sense, it
certainly has been broken: even if the plaintext has been compressed, it is still very possible
that enough of the uncompressed plaintext might be guessed from the context that a few
hundred bits of compressed plaintext are known. (If I know the first paragraph of a
document, and I apply WinZip to that document, then I will know the first few hundred bits of
the resulting file.)

But it is the customer who decides whether or not to use a cipher. From the customer’s
perspective, this cipher is not suitable for use.

6. Conclusions
Mode II of COS(2,128) is extremely weak. The state of the generator can be recovered with
negligible effort, and high probability of success, from a very small amount (a few hundred
bits) of known keystream. The same is true of COS(n,2L) for any n and L.

Mode I of COS(2,128) can be broken faster than a single DES key search, given a few
thousand bits of known keystream. This is despite its key size of up to 256 bits (and
minimum of 128 bits).

We have also demonstrated a major flaw in the key loading process which can often result in
two frames of plaintext being encrypted with exactly the same keystream.

7. Scope for further research
More work needs to be done to determine the extent to which the Mode I attack can be
generalised to COS(n,2L) for n>2.

The attacks described in sections 2 and 3 break the ciphers in the sense that they recover the
initial state of L1 and L2. Can we then work back through the key loading process to recover
the secret key? Knowing the initial state of either L1 or L2 gives 128 bits of the state of M at
some point during the key loading, so there a simple 128-bit search allows the recovery of the
entire state of M; it is then possible to work back to the initial state of M, and hence to the
secret key (although some states have two possible predecessors at each clock of M, the
number of possible branches as we clock backwards does not grow significantly). But can we

6 Is it relevant that at least one of the designers comes from a background more like that of a cryptanalyst than
like that of a customer? This is idle speculation that has no place in a scientific paper.

The COS Stream Ciphers are Extremely Weak 8

do much better than that — perhaps using the observations of section 4 to deduce information
about the secret key?

The set of 37 bits used as a “basis” for deducing 64 unknowns in section 3.2 was found by
hand; finding the smallest possible set could be a nice self-contained research problem.

8. References
[1] E.Filiol and C.Fontaine, A New Ultrafast Stream Cipher Design: COS Ciphers,

http://www-rocq.inria.fr/codes/Eric.Filiol/English/COS/COS.html

[2] E.Filiol and C.Fontaine, A New Ultrafast Stream Cipher Design: COS Ciphers, in
Proceedings of the 8th IMA Conference on Cryptography and Coding, 2001 (to appear
in the Springer Verlag Lecture Notes in Computer Science series)

[3] S.H.Babbage, The COS Stream Ciphers are Extremely Weak,
http://eprint.iacr.org/2001/078/

[4] E.Filiol and C.Fontaine, COS Ciphers are not “extremely weak”! — the Design
Rationale of COS Ciphers, http://eprint.iacr.org/2001/080/

http://www-rocq.inria.fr/codes/Eric.Filiol/English/COS/COS.html

	The COS(2,128) stream ciphers
	Key loading
	Keystream generation

	Cryptanalysis of Mode II
	The space of unknowns is trivially reduced to 64 bits
	The effective key size is roughly one bit
	Variations of the above attack

	Cryptanalysis of Mode I
	The space of unknowns is trivially reduced to not much more than 64 bits
	The space of unknowns is further reduced
	Variations of the above attack

	An observation on the key loading
	So does that mean that the ciphers have been broken?
	Conclusions
	Scope for further research
	References

