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Abstract. We argue that thresholdtrust is not an option in most of the real-
life electronicauctions.Vé thenproposetwo new cryptographicVickrey auction
schemeshatinvolve, apartfrom the biddersandthe seller.S, anauctionauthor
ity A sothatunlessS and A colludethe outcomeof auctionswill becorrect,and
moreaer, S will notgetary informationaboutthe bids, while A will learnbid
statistics Furtherextensionamale it possibleto decreaselamagehat colluding
S and A cando, andto construct(m + 1)stpriceauctionschemesThe commu-
nicationcompleity betweerthe S and A in medium-sizeauctionss atleastone
orderof magnituddessthanin the NaorPinkas-Sumnescheme.
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1 Intr oduction

Vickrey auctions[Vic61] aresealed-bicauctionswherethe highestbidderis awvarded
theitem, but is requiredto pay only the second-highedtid. Despiteattractve theoret-
ical properties Vickrey auctionsarerelatively rarely usedin practicesincea cheating
sellercouldeither(1) changehe outcomeof auctionsor (2) reveal bidders’privatein-
formation. As arguedin [RTK90,RH95, in the first case,a honesthid taker will not
choosea Vickrey auction,while in the secondcase,a cheatingbid taker eventually
destrgs the trust on which the useof Vickrey auctionsdependsTherefore,Vickrey
auctionsare certainlymorewidely applicablewhensecureccryptographicallysothat
theselleris forcedto follow theauctionmechanisnandno extrainformationis revealed
to him. Attractive propertiesof Vickrey auctionstogethemwith theseobsenationshave
motivateda hugebody of researcton cryptographicVickrey auctionschemesstarting
with [NS93.

Now, mostof the cryptographicauctionschemesvork in oneof thefollowing two
trust models:(1) The threshold(symmetric)trust modelwherethe tasksof the seller
areexecutedoy N > 1 seners,with lessthanN/3 (or N/2, dependingon the precise



cryptographicmodel) senersassumedo be dishonestand (2) The two-party (asym-
metric) modelwith a seller S andanauctionauthority A, whereat leastoneof S and

A is assumedo behonestin thismodel,S and A areusuallyassignedomplementary
dutiesandaresupposedo verify theactionsof eachother

We arguethatthethresholdirustmodelis not suitablefor mary real-life electronic
auctionsThistrustmodelrequireghateachreplicatedsener shouldberun by aninde-
pendentauctionauthority of which a majority is moretrustworthy thanthe seller The
numberof suchtrustedauthoritiesis likely to be rathersmallcomparedo the number
of distinctsellers.Therefore every auctionauthoritywill participatein mary auctions
conductedby mary differentsellers.But in eachauction,this authority hasto do the
sameamountof work asthe sellers.That may quickly leadto the auctionauthorities
becomingbottlenecksitherin the senseof securityor efficiengy. Simplisticuseof the
thresholdtrust approachs thereforenot scalablein the caseof applicationdike elec-
tronic auctions(Seealso[NPS99 for additionalmotivation.)

In this paperwe proposetwo differentschemeshatwork in the two-partymodel.
The first schemeis intendedto illustrate the basic propertiesof this model. In this
scheme,S blindly shufles encryptedbids before forwardingthemto A. After that,
A computeghe secondhighestbid X, andsendst togethemwith a pointerto the win-
ner'sencryptedbid to S. ThesellerS thenidentifiesthewinner. At theend,ary bidder
cancomplainif he believestheresultto beincorrect.In particular if all bidderscon-
firm the linear order betweentheir bid b and X, (i.e., whetherb < X5, b = X, or
b > X,), A becomesaccountabldor his actions.However, this simple schemehas
severalvulnerabilitiesthatwe outline later

The main contribution of this paperis the homomorphicauction scheme In this
schemeabid b is encodechs B®, B beingthe (maximumallowed) numberof bidders.
Theth bidderencryptshis bid b; with A’s public key in a suitablehomomorphicen-
cryption schemeandsendsit to S. S multiplies all the receved encryptedbids, and
sendgheresultingencryptionB2: ¥ to A. After decryptingthis result, A findsoutthe
bid statistics(thatis, how mary biddersbid b for any possiblebid b) but is not ableto
connectary bidderswith their bids. Then, A sendsthe secondhighestbid to S. Ev-
ery actionin this schemds accompaniedvith an efficient (statistical)zero-knavledge
correctnesproof. By usingrecentlyproposedcryptographicangeproofs,we achieve
thatboththe biddersellerandthe sellerauthoritycommunicatiorcompleity areof or-
der@(V -log, B) bits,whereV is themaximumpossiblenumberof differentbids.In
medium-sizeauctionghis resultsin amountof interaction atleastoneorderof magni-
tudelessthanin theNaorPinkas-SumneschemdNPS99 thatwastheonly previously
known secureVickrey auctionschemewithout thresholdtrust.

Our schemesusea few cryptographicobsenationsthat might be of independent
interest.First, the homomorphicschemeusesa property of someknown homomor
phic public-key cryptosystemshatwe call coin-extractability; the samepropertymight
be also importantin other applications.(In the context of auction schemesgoin-
extractability of the Paillier cryptosystemwas alreadyusedin [BS01].) We propose
arangeproofin exponentghatcorrectsafew mistalesin the proof systenmfrom [DJO1,
Section5]; it seemsto be the most efficient currently known schemewith perfect
zero-knavledgethat works with arbitrary intervals; a more efficient statisticalzero-
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knowledge proof systemthat works only with a prime basewas recently proposed
in [Lip01]. Basedneitherof theseproofsystemsandarecentrangeprooffrom [Lip01]
we describean efficient noninteractie statistical zero-knavledge proof systemfor
proving that an encryptedvalue is the secondhighestvalue in someset. This proof
systemis usedby A to prove thathe computech correctsecond-highediid X andcan
beeasilyextendedo prove thatanencryptedvalueis the (m + 1)sthighestvaluefor a
smallm > 1. Thisresults,n particular in efficient (m + 1)stpriceauctions.

Road-map. We startwith a shortovervien of the existing auctionschemesn Sec-
tion 2. We give the necessarycryptographic)preliminariesfor the restof the paper
in Section3. In Section4, we describesereral auxiliary protocolsfor homomorphic
public-key cryptosystemsOur new auctionschemesredescribedn Section5, some
extensionsto themaregivenin Section6, followed by somediscussionn Section?.

We compareour schemesvith the NaorPinkas-Sumneschemen 8, andconcludethe

paperin Section9.

2 Stateof the Art

We will briefly surey the known cryptographicVickrey auctionschemeghat do not
rely onthethresholdrust.A few auctionscheme$Cac99BS01]arebasedntheYao's
millionaire’s problem.Suchschemesvoid thresholdtrust by usingan oblivious third
partyfor bid comparisonWithouta collusionbetweerthesellerandthethird party, the
sellerwill getto know somepartial orderamongthe bids but not the bid valuesthem-
seles.While [BS0]] alsodiscussesiow to extendtheir auctionschemeo the Vickrey
auctions,at leastthe extensionproposedn their paperwould alsoreveal the identity
of the secondhighestbidder This togetherwith the partial leak of informationto the
untrustedsellerposesa seriousproblem,sinceit demotivatespotentialhigh biddersto
participatein thattype of anauction.

The auctionschemeof Naor, Pinkasand Sumner[NPS99 usesa third party A
(that we call an auction authority) and no unnecessarynformationis leaked unless
the seller S andthe third party A collude.The NaorPinkas-Sumneschemebaseon
the two-party securecomputatiormodelof Yao,where A constructsa garbledcircuit,
transportst (off-line) to S andthen helpsS (on-line) to executeit. The circuit can
be designedo completelysatisfyall possiblesecurityrequirementsHowever, A may
“misdesign”thecircuit to performwhatevercomputationdielikes.A seriousdravback
of this schemds that a corruptthird party canonly be detectedby “cut-and-choose
techniquegNPS99 Section?.4] thatwouldintroducea severeoverheado theprotocol.
The authorssuggestthat A (called an auctionissuerin their scheme)should be an
establishedserviceprovider with high reputation,while S is a (usually considerably
lesstrusted)seller They arguethatevencheatingoncewould ruin thereputationof A.

Ontheotherhand,evenif the cut-and-choosgechniquds notused circuit transfer
wouldimply ahugecommunicatiorcomplexity betweend andsS. Evenif doneoff-line,
the amountof informationtransferreds clearlyinfeasiblein mary real-life scenarios.
Anotherdrawbackis thatthe circuit dependon the maximumnumberof biddersand
hencethe sellerhasto estimatethis numberbeforethe auctionrelatively precisely



Currently [NPS99 seemdo betheonly publishedsecureVickrey auctionscheme
thatneitherrevealsany unnecessarinformationnorreliesonthethresholdrust.More-
over, we areawareof only oneothersecureVickrey auctionschemerecentlyproposed
by Kikuchi [Kik01]. Kikuchi’s schemehassmallercommunicationcomplexity than
the NaorPinkas-Sumneschemebut relieson thresholdrrust. Moreover, the numberof
biddersin Kikuchi’s schemeés boundedabore by the numberof auctionseners,which
makesit unusablen mary practicalsituations.(However, it is still applicable for ex-
ample,in radio frequeng spectrumor wirelessspectrumlicenseauctions,wherethe
numberof competitords relatively small.)

The Sakurai-Miyazakiauction scheme[SMO0Q] is securewithout an explicit
threshold-trusassumptionHowever, this schemeusesa bulletin board,a secureim-
plementatiorof which introducesimplicit thresholdtrust. It alsobaseson somerela-
tively ad hoc securityprimitives.Finally, therearealsoschemesvherethresholdtrust
is w.r.t. the bidders.However, in theseschemesthe thresholdtrustassumptiorseems
to have evenlessground,sincein mary practicalcasesthereis no guarante¢hateven
asinglebidderwill behonest.

3 Preliminaries

Notation. Let B bethe (maximum)numberof bidders,let V' be the (maximum)num-
ber of differentbids. After an auction,let (X1,...,Xg) be the vector of bidsin a
nonincreasingrder, andlet Y; be the bidderwho bid X;. Let ¢ denotethe security
parameterfor a probabilisticpublic-key cryptosystemG, E, D), let ¢ = Ex(m;r)

denotethe encryptionof m by usinga randomcoin r underthekey K. In generalwe
denotethe messagepaceby M, the key spaceby K, the noncespaceby R andthe
ciphertext spaceby C.

Homomorphicencryption. Let G be the key generatioralgorithm, E the encryption
algorithmand D thedecryptionalgorithm.We saythata public-key cryptosystenil =

(G, E, D) is doublyhomomorphidf the setsM andR are(additive) Abelian groups,
andEK(ml; Tl)-EK(mQ; 7‘2) = EK(m1+m2; r1 +7‘2) for every(K, mi,Ma,T1, 7‘2) €

K x M2 x R2.If II is doublyhomomorphigchenEx (em;er) = Ex (m;r)e for all e,

andEx (m;r) = Ex(0;7) - Ex(m;0). In mostof the known (doubly) homomorphic
public-key cryptosystemsall spacesM, R andC arekey-dependentin suchcasesve

assumehatthecorrespondindrey K is understoodrom thecontext. With thisin mind,

wedenoteM := [log, |[M[], R := [log, R[], C := [log, |C]].

Damgard-Jurik cryptosysteniDJ01]. Damgard-Jurikcryptosystenis an extensionof

the Paillier cryptosystenwith the main differencethat the size of messagepacecan
beincreaseolynomiallywithoutincreasingR| atthe sametime. Here, K’ = n is an

RSA modulusands is a public parameterThe messagspaceM = Z,s, coin space
R = Z} .., andciphertet space&’ = Z7 . ., varytogethemwith thekey n. In onevariant
of this cryptosystema messagen is encryptedoy generatinga randomnumberr and
letting Ex (m;r) := (14+n)™ -7 mod n*t!,
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Coin-extractability. We saythat (G, E, D, R) is a coin-extractablepublic-key cryp-
tosystemf (G, E, D) is a public-key cryptosystemand R is an efficient algorithm,
suchthat Rk (Ex (m;r)) = r for all m andr. The Damgard-Jurikcryptosystemis
coin-extractablesinceafterdecrypting: = Ex (m;r), receverobtains™ mod nt!.
Sinceheknowsfactorizatiorof n, he cantheneasilyfind r. Coin-extrability of the Pail-
lier cryptosystenwasalsousedin [BS01]. Note thatwe let R to be anadditive group
evenif in the Damgard-JurikcryptosystemR = Z* ..., is amultiplicative group.

Proofs of knowled@. For some(unknawn) bit-string « and predicateP(-), PK(y =
P(a)) is a(usually honest-erifier zero-knavledge)proof-of-knovledge betweertwo
partiesthat given the publicly known value y, the first party knows a value of «,
suchthat the predicateP(«) is true. The corventionis that Greeklettersdenotethe
knowledgeproved,whereasll otherparameterareknown to the verifier. We assume
that the “Greek variables”are scopedwithin one proof-of-knavledge. For example,
PK(c = Ex(m;p)) is aproof thatgivenascommoninput a ciphertet ¢, plaintext m
anda public key K, the prover knows a noncep, suchthatc = Ex (m; p). For mary
predicatesthe correspondingproofs are alreadyknown; for a few predicatesve will
devisenew proofsin Section4.

In our subsequenprotocols,we will needtwo proofs-of-knavledgefrom [DJO1].
Thefirst proof systemis for PK(c¢ = Ex(my;p) V ¢ = Ek(ms2;p)); we call thisa
1-out-of2 proof systemA noninteractve versionof this proofis 3t + 2R bits long.
The secondproof systemis for PK(c; = Ex(p1;p1) A ca = Eg(uz;p2) Acg =
Ex (us; p3s) A puipe = ps); we call this a proof systenfor multiplicativerelationship
A noninteractie versionof this proofis 2t + M + 2R bitslong.

Rang proof. In rest of this paperwe will assumethat M is a linearly ordered
ring so that we could apply the recentrangeproof by Lipmaa [Lip01] for PK(c =

Ex(p;p) A p € [L,H]). We will briefly outline this proof system Prover and Verifier
useboth a doubly homomorphigoublic-key cryptosystermandan integer commitment
scheme[DF01]. Now, p € [L, H] canbe proven by first shaving thaty — L > 0

andthen showing thatH — p > 0. Thus, it suficesto describea proof systemfor

PK(c = Ex(u;p) A (p > 0)) that proceedsas follows: (1) Prover commits to

1 andprovesin statisticalzero-knavledgethat the committednumberis equalto u

(mod |M|). (2) Prover finds a representatiop = p? + p2 + p2 + p2 of p. (Such
representatioexistsiff 4 > 0 asshown by Lagrange An efficient algorithmfor find-

ing u; wasproposedy RabinandShallit [RS86].) Prover commitsto (u1, po, pi3, pa)

andthenprovesin statisticalzero-kn(svvledgethatE?:1 u? = p. With suitablesecurity
parametersa noninteractie versionof this proofis ~ 3366 + % [log, H] byteslong.
For moredetailssee[Lip01].

4 Auxiliary Proofs

Range Proof in Exponents.In the following we will needa proof systemfor PK (¢ =
Ex(B*;p) A (i € [0,H])); we call sucha proof systema range proof in exponents

Our proof systemis basedn the obserationthatu € [0, H] iff u = ZJU:OEZ Hl Hj - pj
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for somey; € {0,1} andH; := |(H + 27)/27+!|. For example,u € [0,10] iff p =
Spo + 3p1 + pa + ps, whereagu € [0,9] iff p = 5uo + 2u1 + p2 + ps. Equivalently,
u € [0,H]iff B = H}:gz Wl (BHi)ki for somey; € {0,1}. Basedon this, we can
provethat

Theorem1. Let (G, E, D) be the Damgard-Jurik cryptosystemwe follow our no-
tational corventionthat R is an additive group. For j € [0, [log, H]], let H; :=
|(H +279=1)/27|. Thenthe next protocol is a complete HVZK and specially sound
proof systemfor PK(c = Ex(B*;p) A p € [0,H]). Letcs,_1 < Ex(1;0). For all
j €10, [log, H]] do:

— Both\erifierandProver precomputdi ;. Provergeneatesanr; s.t.EJLl:°§2 Hl rj =

p,anda cj; + EK((BHJ')”J';TJ-). Prover sendscy; to Verifier. Both parties
computecy; = [[}_o cik. Prover provesto Verifier that ¢i; is an encryption
of either 1 or BYi by using a 1-out-of2 proof systemfrom [DJO1] and that

PK(ca,j—1 = Ex(p1;p1) Ac1j = Ex(p2; p2) Aeaj = Ex (ps; p3) Apape = p3),
by usinga proof systenfor multiplicativerelationshipfrom[DJ01].

Moreover, PK(c = Ex (B*; p) A p € [L, H]) canbe provensimilarily by takingH;
|(H — L +27)/27*+!| and adding an extra addendH_; = L. A proof for PK(c
Eg(B*;p) A p > L) cannowbederivedby lettingH = | M| — 1.

Note thatif ¢ = Ex(B*;p) for u € [0,H] then(B")#i € {1,B"}. Complete-
nessof this proof systemfollows sincecs; « Ex (3 5_o(B™)#; 37 _ ri) (hence
€3,|log, H| = €), D (¢25)/ Dk (c2,j-1) = Dk ((B")#) = Dg(e1;5), andbothproto-
colsfrom [DJO]] arecomplete.

Let/; = 3t + 2R bethelengthof the 1-out-of-2 proof systemfrom [DJO]] andlet
l> = 2t + M + 2R bethelengthof the proof systemfor multiplicative relationship
from Lemma[DJO01]. Clearly, a noninteractve versionof the protocolfrom Theoreml
isthen(|logo H| + 1) - (C + £1 + £3) = (|logaH| + 1) - (C +5t+4R+ M) <
log, V - (C' + 5t + 4R + M) bitslong.

Damcard and Jurik presentech very similar rangeproof in exponentsin [DJO1].
However, their proofsysterrhada subtleflaw of workingonly whenH is 27 —1 for some
j. The soledifferencebetweerour proof systemandthe onein [DJO01, Section5] is in
the choiceof thevaluesH;: Namely DamgardandJurik choseH to bethe j-th bit in
thebinaryexpansiorof H, while we have chosertlifferentH;;, sothatvaluesy € [0, H]
have at leastone (but possibly several different) representation " H;u;, but values
from outsideof thisinterval donothave suchrepresentation©ur protocolhasidentical
compleity to theprotocolfrom [DJO]] sincethevaluesH; canbeprecomputedby both
partiesseparatelyWe wererecentlyacknavledged Dam01]] thatthe authorsof [DJO0]]
were aware of the flaw in [DJOJ] and have a differentsolutionto it. However, their
new protocol,describedn the upcomingjournal version[DJN], requiresin particular
approximately2 log, H additional proof systemsfor multiplicative relationship.This
meanghatcomparedo their solutionwe sase aconstanfactorin thesizeof interactve
protocol.



Protocol 1 Proofthat( X5, tiebreak) is correctlycomputed.

1. Pfindsz + Dp(c) andr < Rp(c). Hedecodes in baseB as}_; x; B?. Basedon this,
P finds Xy < max{j : z; > 0} and X».
2. If tiebreak = 0 (thereis notie-break)thendo:
(a) P proceedssfollows.Letr; «<—r R, c1 < Ep(B*';r1) andcs « Ep(z — BX2 —
BX1 ;7 —r1). Send(c1,c2) to V.
(b) V verifiesthate: - Ep(B*2;0) - ¢c2 = c.
(c) After that, P provesto V, that
i. c1 encryptsa(> Xz)th powerof B: PK(ci = Ep(B*;p) Ap € [X2 4+ 1,V]).
i. PK(cz=Ep(u;p)Ap € [0,(B—2)- B*>~? —1]) by usingtherangeproof.
3. Otherwise(if thereis atie-break)do:
(@) Psendss + Ep(z —2(BX2);r)t0V.
(b) V verifiesthat(Ep(B*2;0))? - ¢z = c.
(c) P provestoV thate» encryptsavaluelessthan(B—2)-B*2: PK(c2 = Ep(u; p)Ap €
[0,(B —2)-B*> —1]).

Proof That X, is Second_argestin Set. Let (G, E, D, R) be a coin-extractabledou-
bly homomorphicpublic-key cryptosystemlike the Damgard-Jurik cryptosystemin
Protocol 1, Prover P and Verifier V' have a commoninput (X5, tiebreak, ¢), where
Dp(c) =3, z;B% for somez; € [0, B — 1]. Prover hasto prove to Verifier that(1)
If tiebreak = 0, thenthereis exactly one jo, suchthatbd;, > X,, andexactly onej,
suchthatd;, = Xs, and(2) If tiebreak = 1, thenthereare no such-s, for which
b; > X», butthereexist jo # ji, suchthatb;, = b;, = X,. Let{; bethelengthof
the usedrange-proof-in-&ponerts,and/, bethelengthof the usedrangeproof. Then
anoninteractie versionof Protocoll is < 2C + ¢; + ¢ bitslong.

5 NewAuction Schemes

We now presenburauctionschemesln thefollowing schemesall partiesareassumed
to have a public encryptionkey anda signaturekey thatarein public knowledge.The
signatureschemeshouldbe secureagainstthe chosen-messagatack.In the scheme
of Section5.2, A alsohasa public integer commitmentkey. We assumehat the key-
distribution mechanisnis secure.

5.1 Simple Scheme

Protocol2 depictsa simpleauctionschemehatputsmoretruston 4, comparedo the
later schemerom Section5.2, but avoids elaboratedtryptographigrotocolsanddoes
not put asseverelimites on the valuesB andV asthe latter. If tiebreak = 0 (no tie-

break),a successfuprotestconstitutesbidderi,, proving (in zero-knavledge)thathe
did notbid morethan X5, or someotherbidderproving thathe bid alsomorethan Xs.

If tiebreak = 1, asuccessfuprotestmeans,, proving thathebid lessthan X5, or some
otherbidder proving that he bid morethan X,. All suchproofscanbe basedon the
previously describedangeproofsthatoriginatefrom [Lip01].
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Protocol 2 The simpleauctionscheme.
BIDDING PHASE

1. Bidder+i encryptsh; by using A’s public key andsendsthe resultingciphertet ¢; together
with sig; (c;) to S via aconfidentialchannel.

2. S verifiesthe signaturegcomplains,if necessary)He computesz < sigg({ci}), where
{ci} isrepresenteth somefixedorderthatdoesnot dependon-s. (For example,in lexico-
graphicorderwith respecto thec;-s.). He broadcast${c;, sigg(ci) }, 2) to all bidders.

3. Everybidderi obtains({c;s, sigs(ci7)}, 2), andcomplainsif ¢; is missing.He alsoverifies
thesignaturez.

BID OPENING PHASE

1. A doesthe following. Obtain {(c;, sigg(ci))} and z, and verify the signaturessigg (c;),
Vi, and z. For all i: Decryptc; and obtaind;. Computethe secondhighestbid X,. Set
tiebreak <« 1 if thereis atie-breakandtiebreak < 0, otherwise.Send(X3, tiebreak),
togethewith signaturez’ « sig 4 (Xo, tiebreak, {c;}) to S.

2. S verifiesthesignaturez’. He thenbroadcast$ X5, tiebreak, z, 2') to all bidders.

3. After obtaining(Xa, tiebreak, z, z'), all biddersverify the signaturez’, in particularthatit

is givenover thesameset{c; } asz.

. A pointsto S ac;,,, suchthatD 4 (¢;,, ) = Xi. S identifiesi,, anddeclareshim thewinner

5. Bidderscannow protestagainsthe choiceof i,,.

S

In this auctionscheme, A will getto know the winner andthe bid statistics,but
cannotbind bids with concretebidders.A malicious A canchangeX, to X}, X; >
X}, > X,. ThesellerS will getto know only theminimalamountof information: That
is, X», andthewinner (or all winnersif thereis atie-break)If S and A donotcollude,
thesellercannotdeviate from the protocolwithout beingdetected.

5.2 Homomorphic Scheme

Protocol 3 depictsthe homomorphicscheme whereevery bid b; is encodedas B:.
This encodingwill allow everybodyto compute givenencryptionsof B, anencryp-
tion of 3, B® without knowing the correspondinglecryptionkey. Note that for this
schemeto work correctlyit is necessaryhat BY < | M|. We assumemplicitly that
communicatiorgoesover a confidentialchannel.

The auctionauthoritywill getto know the bid statisticsbut cannotbind themwith
the bidders.The sellerwill getto know only the minimal amountof information, X5
andthewinner (or all winnersif thereis atie-break).If S andA donotcollude,neither
S nor A candeviatefrom the protocolwithout beingdetected.

In mary situations knowing bid statisticsmight not be very valuablefor A: First,
evenif theauthoritydoessellthe statisticdo thesellerof asubsequerduction thenew
sellerwill mostprobablynot have exactly the samesetof bidders.Secondjf S would
usedesignatederifier signaturegwith verifier A), A would beunableto corvincethe
new sellerthatheis actuallysellingcorrectdata,unlesscarefullybuilding up reputation
of a“honestcheater” However, suchareputatioris unlikely to stayhiddenfrom bidders



Protocol 3 Thehomomorphicauctionscheme.
BIDDING PHASE

1. Bidderi encodesandencryptshis bid b; by using A’s publickey, ¢; = Ea(B%;r;), signs
it, andsends(c;, sig;(c;)) to S. Bidderi provesto S thatthe bid is correctlycomputedoy
performinga prooffor PK(c; = Ea(B*;p) A (p < V +1)).

2. S doesthe following: Verify the signaturesand complainif necessarylet ¢ « [, ¢; =
Ea(¥; B%; 3, 1) = Ea(¥, z;B’;3, 1), C + {cx(i)} for randompermutationr,
h + H(C) andz = sigg(h, c). SendC to all bidders.Post(c, z).

3. Forall 4, bidderi verifiesthate; € C, ¢ =[],/ ¢ andz = sigg(h,C).

BID OPENING PHASE

1. A obtains(c, z) andverifiesthesignaturez.

2. After that, A decryptsc, obtainsDx (¢) = 3_; x; BY andthencomputeshe secondhigh-
estbid X2 anda bit tiebreak, suchthat tiebreak = 1 iff thereis a tie-break.He sends
(X, tiebreak), togethemwith his signaturez = sig , (X2, tiebreak), to S.

3. S verifiesz.

4. A provesto S thatthe pair (X2, tiebreak) is correctly computed(SeeSection4 for the

correspondingproof.)

. S publishesX» onanauthenticatednediumtogethemwith A’s andhis own signatures.

6. Bidderscannow participatein the confirmationphasewith S. If tiebreak = 0, the bidder
who confirmsthat he bid morethan X, will bethewinner If tiebreak = 1, a previously
announcedule (for example the equalprobabilityrule) is usedto determinehewinner

)]

for extendedperiodsof time. Third, evenif it is impossibleto verify for surewhether
A ahuseshebid statistics put too obviousatkuseswill certainlybe noticedandruin his
reputation.

The confirmationstepis optional,sincethe proof of step4 alreadyshows that X5
is correctlycomputed.The highestbidderhasto participatein the confirmationphase
to claim theitem. However, if he doesnot, onecanapply a mandatoryprotocolwhere
every bidderhaseitherto confirmor revoke thatheis eligible to win.

6 Refinementsto Our Auction Schemes

Using a prime B. If B is a prime, the rangeproofsin exponentscan be madecon-
siderablyshorterasshavn in [LipO1]. Without goinginto moredetails,we notethata
noninteractie versionof this proof haslength2636 + [log, |M|] + = log, H bytes.
Now, restrictingB to bea primeis nota big obstaclan ourauctionschemeReally, by
the prime numbertheoremthe averagegapp;+1 — p; betweertwo consequenprimes
lessthann is ©(log, n). In particular the largestprime gapbetweernprimeslessthan
1200 is 22. Thus,the sellerhasto introduceapproximately® (log, B) dummybidders
thatdo not actuallyparticipatein theauction.

Extensiorto (m + 1)stprice auctions. Vickrey auctionmechanisntanbegeneralized
to the (m + 1)st priceauctionmechanismyherem copiesof the sameitem aregiven
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tom highestbiddersfor the (m + 1)sthighestbid. The (m + 1)stpriceauctionscheme
is a directincentive-compatiblenechanisniVic61]. A trivial modificationto our ho-
momorphicauctionschemeesultsin a (m + 1)stpriceauctionschemavith additional
communicatiorof about(m — 2) - (C + £) bits,wherel < 2(C +5t+ 4R+ M)log, V
is the lengthof the rangeproof in exponentsfrom Section4. Briefly, this modification
consistof changingProtocoll sothatinsteadof proving that D (¢) = BXt +BX2 41
with x1 > X, andr < BX2*+!, P provesthat Dk (c) = Y1~ BX: + BX2 4+ 7 with
Xxi > X, andT < BX2*! On the otherhand,if we assumehat B is a prime then
usually? < 3 KB. Theonly previoussecure(m + 1)st-priceauctionschemeshatwe
areawareof by Kikuchi [Kik01] andby Naor, PinkasandSumne[NPS99. In thelatter
schemecircuit for the mth price auctionsis aboutm log, V' timesbiggerthancircuit
for thefirst priceauctiongPin01].

Thresholding It is possibleto distribute A and/orS usingthe thresholdtrust model.
For example,whentruston A is distributedin a way wherebid statisticswill only be

leakedif atleastl/3rd of the A-senersarefaulty thenin thehomomorphicschemehe

thresholded4 doesnothave to provethat X, wascorrectlycomputedThis introduces
a new interestingbipartite thresholdtrust mode| wheresomeof the functionality is

controlledby onesetS of seners(operatedoy oneor moreparties) while someother
functionalityis controlledby anotherset.A of seners(operatedy oneor moreparties,
independentrom the partieswho operatghesetS). SenersetsS and.A checkthatthe

othersetbehaescorrectly Ourauctionschemestaysecuraunlesssignificantfractions
of bothS and A cheat.We feel that this bipartitethresholdtrust modelmight alsobe

interestingn mary otherapplicationslik e e-woting.

Reducingheinfluenceof collusions. Let H bea securecommitmentschemeijn prac-
tice onemay assumehat H is a hashfunction. Damagecausedby colluding A and
S canbereducedn both of our auctionschemesvhenthe biddersfirst senda signed
commitmentto their bid to S, who thenbroadcastall commitmentdogetherwith his
signatureon the tuple of commitmentsOnly afterthat, actualencryptedbids aresent
toS.

Whenthis “meta-schemefs employed, an auctionwill staycorrectevenwhenS
and A collude. The only usefrom the colluding is thatthen A and S will obtainad-
ditional information: Namely they will be ableto connectevery bidderwith his bid.
However, they will not be ableto artificially raise X, or declarea falsewinner. The
samesimple but very usefulmethodworks in conjunctionwith almostevery auction
(andvoting) scheme.

Therearethreescenariohow this meta-scheméself couldbe albused.First, a bid-
der cancheatby sendinga commitmentbut thenrefusingto sendthe bid. However,
sincethe commitmentsare signedthe offendingbidderis identifiablein somesense.
Secondcolluding S and A candeletesomebidsthatarenotto theirliking, arguingthat
the correspondingencryptedbid wasnot submitted However, in this casecorrespond-
ing bidderscanprove by shoving their bidsthat.S (and A) werefaulty. Third, S and
A canarrangea shill to submita very low fake bid. If thentheresultsarenotto their
liking, they canclaim thatthe shill failedto sendthe encryption.However, this shill is
againidentifiable.Hence this concernmight not be very seriousespeciallyin the local
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electronicauctions.(A moregeneralsolutionwould be to usea fair exchangeinstead
of receiptsduringthe bid commitment.)

Avoiding replay attadks. Becauseof the relianceon homomorphismencryptedbids
cannotcontainary otherinformationbut B . This opensup cut-and-pastattacksthat
may compromisebid privagy. As asimpleexample a crooksellerthatwantsto find the
highestbid in anauctioncouldreplaythe winning bid, alongwith abunchof zerobids
andoneartificially highbidb =V — 1 to A.

Replayattackscanbe avoidedby onceagainusingthe coin-extractability property
of thecryptosystemasfarastherandomcoinsr; arenotrevealedto theseller Namely
accompaw eachbid with E4(transaction_id; r;), wherer; is the samecoin that was
usedto encryptthe bid, andtransaction_id is guaranteedo be unique(i.e, something
that A candetectin caseof areplay).

Preferablytransaction_id shouldalso containa commitmentof auctionparame-
ters.For example transaction_id canbecomputedas H (auction_advertisement) where
auction_advertisement includesall relevantdetailsaboutthe auction(e.g.,sellername,
sequencaumberaddedby seller auctionmechanismgdeadlinesetc.).Sincethisis the
only communicatiorchannel(for arbitrarydata)from biddersto the auctionauthority,
it shouldbe usedto sendall security-criticalinformation.For example,in the absence
of sucha communicatiorbetweerbiddersand A, S couldadwertisea Vickrey auction
tothebiddersbut tell A thatit is afirst-priceauction.

Avoiding replayattacksin e-votingschemes.Similar cut-and-pasteeplayattackscan
be appliedto the voting schemeshatbaseon homomorphiccryptosystems Hereone
canuseexactly the samesolutionasin the previous paragraphsEvenif replayingis
hardto mountto voting systemspur proposediefencemechanismsreso simplethat
onemight considerusingthem.

7 Discussion

Local electionic auctions. In local electonic auctions the bidders are physically
presentatanauctionhouse andparticipatevia alocal wirelessnetwork by usingsome
mobile devices for computationsLocal online auctionshave somespecific positive
propertiesthat simplify their organizationand decreasehe trust requirementsFirst,
dueto the locality assumptionthe bidderscancloselyexaminethe goodsbeforethey
decideto bid. Similarly, the winning bidderis physically presentand paymentcanbe
enforcedasin traditionalauctions Hence the two mostcommonsourceof complaints
aboutinternetauctionsare avoided. Secondwe canassumehigh bandwidthcapacity
andsuficiently reliablecommunicationdbetweerthe sellerandthe bidders.In partic-
ular, the audienceis captive: Bidderswill stay available. Therefore,a multiple-round
auctionis nota problem.

Our auctionschemesvere designedwith local electronicauctionsin mind though
not solelyfor them.Partially dueto theseremarkswe have assumedhatlaw enforce-
mentis out of the scopeof the currentpaper:It is certainly easyto enforcecorrect
behaviour in local auctions,but in remoteauctionsone mustuseadditionalprotocols
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[log, IM[], V][ 100 200 [ 300 [400 [500]1000
1024 1209 34 10 | 5 | 4] 2
1536 4.2 -10* 205 34 | 14| 8| 2
2048 1.4-10% 1209 | 110 | 34 | 17| 4
3072 1.7-10°4.2-10%| 1209 | 205 | 70 | 8
4096 oo |1.4-10°]12884(1209|292| 17

Table 1. Examplevaluesof maximumpossibleB andV for somecommoncardinalitiesof mes-
sagespacesln generalagreate] M| meanghateitherhighersecurityparametehasto beused,
or thebid shouldconsistof severalencryptions: co” meanghatthe numberof possiblebidders
far exceedghe populationof Earth,andis hencevirtually unlimited.

thatarenotdescribedn this paper e.g.,punishbidderswho refuseto co-operatén the
confirmationphase.

Moreover, in local electronicauctionghebidderandthesellerarein the sameroom
or at leastbuilding, while the authority might be kilometersaway. The sameauthor
ity might be involved in mary otherauctionsin parallel. This obsenation motivated
usto prioritize the sellerauthority communicationcomplexity over the sellerbidders
communicatiorcomplexity.

Limitation on the numberof valuations. A disadwantageof the homomorphicscheme
from Sections.2is thatthenumberof differentvaluationss small.Namely if theplain-
text messagspacdas M thenthemaximumnumberof valuationst andthemaximum
numberof biddersB areboundedby V - log, B < log, |M|. While onecanincrease
the sizeof messagaspacedoingthis will greatlyincreasehe computationatomplex-
ity of the homomorphicschemewith log, | M| = 3072 beingalmostthe limit with
the currentcomputationatechnology Still, it meanghatfor smallerV', the numberof
biddersis almostunlimited,asseenfrom Table1l.

We feel thatchoiceV < 500 is sufficientin mostof the auctionsFor example,in
anauctionof asecond-haniem, thebid b € [0, V] couldcorrespondo theprice 2 Pb,
whereP is theoriginal price of the solditem. A priceincreaseof 1% of P seemgo be
sufficiently precise Moreover, themappingbetweerthe bidsandactualpricesdoesnot
haveto belinear, it only hasto be strictly monotonicandpublicly known. In particular
one might usehigher precisionwith large bids thanwith small bids. The factthatin
our schemeheremight be morebiddersthanavailablebid optionsshouldnot be a big
concern(Similarencodingvasusedn [DJ0]] in thecontext of electronicvotingwhere
V—thenumberof candidates—isisuallymuchlessthan500.)

8 Comparisonto Naor-Pinkas-SumnerScheme

We will next comparethe homomorphicschemedrom Section5.2 to the NaorPinkas-
SumnerischemdNPS99, theonly previouscryptographicdvickrey auctionschemehat
doesnotrely onthethresholdrust.

In our scheme A recevesmoreinformationthanin [NPS99. On the otherhand,
detectingmisbehaior by the auctionauthority A is considerablymore complicated
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in [NPS99. Basically to catcha cheatingauthoritywith probability1 — 2=™, the off-
line compleity in their schemewill increasem times,comparedo the basicscheme.
In thehomomorphicschemetheactionsof A areverifiable;verifiability canbe omitted
but this would decreas¢heinteractiononly by a half.

First,theoff-line communicatiorcomplexity of NaorPinkas-Sumneschemédwith-
out applyingthe cut-and-choosenethod)is 300B - log, V' bytes,the on-line commu-
nicationcompleity betweerthe senersis aboutBt - log, V' andthe communication
compleity of eachbidderis O(¢ - log, V). This makesthetotal communicatiorover-
headof theauctioneeto be ©(Bt - log, V).

In the homomaorphicschemewithout the confirmationphase bidders’ sole com-
municationwith S consistf oneencryptionanda proof of bid correctnesshattakes
together(C + 5t + 4R + M)O(log, V') bits,andrequires®(log, V) encryptionslf B
is a primethena constannumberof encryptionsandcommunicatiorof ©(V - log, B)
bits suffices.Confirmationphasehasthe samecomplexity. Thereforethetotal commu-
nicationbetweertheauctioneeandthebiddersis @(BV -log, B).

As motivatedin Section7, our primary concernas regardscommunicationcom-
plexity is the communicatiorbetweenS and A thatis dominatedby the noninterac-
tive proof that (X5, tiebreak) was correctly calculated.When B is a prime thenthe
asymptoticsellerauthority communicationcomplexity will be ©(V - log, B) thatis
closeto optimalfor large-scaleauctions We will next give a comparisorof the seller
authority communicationcomplexity for someconcretevaluesof B and V. We will
usethe Damgard-JurikcryptosystemwhereR ~ C =~ %M . We will supposehat
M = 1024 andchooses ass « [V -log, B/M]. We will alsoassumehatt = 80
andthatV € {300,500}. For thesespecialcasesgefficiency comparisonof the ho-
momorphicschemefrom Section5.2 with the NaorPinkas-SumneschemgNPS99
is presentedn Table2. (For the homomorphicschemethis table shovs the combined
total lengthof arangeproof andarangeproofin exponentssincebothareusedin the
correctnesproof. This table alsopresentswo versionsof the homomorphicscheme,
onethatworkswith agenericB andanotheronewhichworksonly with aprime B.)

As seenfrom Table2, if B > 50 thenthe sellerauthorityinteractionin the prime-
B homomorphicschemes lessthan30V - log, B bytes.The prime-B homomorphic
schemeand the NaorPinkasschemehave roughly equalcommunicationcomplexity
for small-scaleauctions.On the otherhand,the prime-B versionof the homomorphic
schemds atleast10 (resp.,at least100) timesmorecommunication-dfcientthanthe
NaorPinkas-Sumneschemean medium-scal@auctiong(resp.,in large-scaleauctions).
The differencein interactionwill be even greaterwhenthe cut-and-choosenethodis
appliedto the NaorPinkas-Sumnescheme.

Finally, notethat in our schemethe computationsof the seller consistof a few
exponentiationperevery bidderanda few exponentiationsvhencommunicatingvith
the authority Every bidder hasto do a few exponentiationsOn the other hand,the
computationatomplexity of theauthorityis somevhathigherdueto theuseof arange
proof; howeverrangeproofsfrom [Lip01] seemto provide anadequatefficiency.



v [ 3] 4] 8] 16] 32[ 64] 128] 256] 512] 1024
gener B[24.6[24.6[24.6]38.1[38.1] 38.1] 51.6] 51.6] 51.6] 51.6
Our |primeB | 5.7| 5.7| 5.7| 8.4| 84| 84| 11.0| 11.0] 11.0] 11.0
300
s=1 §=2 s=3
[NPS99] || 7-2[ 9.6]19.3]38.6]77.1[154.3[308.6[617.2]1234.3[2468.6
gener B[26.5[26.5[41.041.0[55.6] 55.6] 70.1] 70.1] 84.6] 84.6
Our |primeB | 5.7| 5.7| 8.4| 8.4/11.0| 11.0| 13.6| 13.6] 16.2] 16.2
500
s=1 s=2 s=3 s=4 s=5
[NPS99 7.9]10.5/21.0]42.0[84.1]168.1[336.2]672.4]1344.9[2679.7

Table 2. Communicatiorefficiengy of thehomomorphischemefor bothgenericB anda prime
B) andtheNaorPinkas-SumneschemgNPS99]for V' € {300, 500} andvarying B. Theproof
lengthsaregivenin kilobytes.In the caseof our schemewe alsomentionthe sizeof s.

9 Conclusions

We proposedwo differentauctionschemeghat work in a settingwithout threshold
trustandarepracticalfor alarge numberof bidders.In bothschemesve have anseller
S andanauctionauthority A thatareassumedhotto collude.In the secondhomomor
phic, schemeve embedmary bidsin oneencryption.This allows the communication
compleity to bereducedsubstantially

The homomorphicschemeachieves, especiallycomparedo [NPS99, (1) Similar
level of securityfor otherpartiesw.r.t. selleror bidders;(2) Verifiability of A duringthe
protocolexecution: A canchangethe outcomeof auctionsonly when colluding with
S; (4) Both biddersellerandsellerauthoritycommunicatiorcompleities arereduced
to O(V - log, B) bits with a moderate-sizéiddenconstanin the ©-expressionThis
makesit possibleto useour auctionschemen large-scaleuctions.

Ontheotherhand themaindravbacksof our schemere(1) Someavhatlowerlevel
of confidentialityfor otherpartiesw.r.t. auctionauthority;and(2) Limited numberof
possiblebids.However, asarguedbefore,both dravbacksmight not bethatserious.In
particular we feel that scalabilityin the numberof possiblebiddersis moreimportant
thanin the numberof possiblebids. Finally, notethatthe homomorphicschemerom
Section5.2 canbe usedasa backbonefor voting schememodulothe changethat A,
insteadof sendingback (X, tiebreak) andproving its correctnesgustsendsackz =
D 4(c) togethemwith a proof of correctdecryption.
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to the NaorPinkas-Sumneauctionschemesinceit hascommunicatiorcomplexity of
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O(V -log, B) ascomparedo ©(B - log, V') (with a considerablysmallerconstantn
the big-© expression)lt would beinterestingto find a secureVickrey auctionscheme
withoutthresholdrustwherethecommunicatiorcompleity is polylogarithmicin both
B andV'. It would alsobeinterestingto know how to avoid A gettingto know the bid
statisticswithout usingthresholdtrust.
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